1
|
Prasad SK, Acharjee A, Singh VV, Trigun SK, Acharjee P. Modulation of brain energy metabolism in hepatic encephalopathy: impact of glucose metabolic dysfunction. Metab Brain Dis 2024; 39:1649-1665. [PMID: 39120853 DOI: 10.1007/s11011-024-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cerebral function is linked to a high level of metabolic activity and relies on glucose as its primary energy source. Glucose aids in the maintenance of physiological brain activities; as a result, a disruption in metabolism has a significant impact on brain function, launching a chain of events that leads to neuronal death. This metabolic insufficiency has been observed in a variety of brain diseases and neuroexcitotoxicity disorders, including hepatic encephalopathy. It is a significant neurological complication that develops in people with liver disease, ranging from asymptomatic abnormalities to coma. Hyperammonemia is the main neurotoxic villain in the development of hepatic encephalopathy and induces a wide range of complications in the brain. The neurotoxic effects of ammonia on brain function are thought to be mediated by impaired glucose metabolism. Accordingly, in this review, we provide an understanding of deranged brain energy metabolism, emphasizing the role of glucose metabolic dysfunction in the pathogenesis of hepatic encephalopathy. We also highlighted the differential metabolic profiles of brain cells and the status of metabolic cooperation between them. The major metabolic pathways that have been explored are glycolysis, glycogen metabolism, lactate metabolism, the pentose phosphate pathway, and the Krebs cycle. Furthermore, the lack of efficacy in current hepatic encephalopathy treatment methods highlights the need to investigate potential therapeutic targets for hepatic encephalopathy, with regulating deficient bioenergetics being a viable alternative in this case. This review also demonstrates the importance of the development of glucose metabolism-focused disease diagnostics and treatments, which are now being pursued for many ailments.
Collapse
Affiliation(s)
- Shambhu Kumar Prasad
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arup Acharjee
- Department of Zoology, University of Allahabad, Prayagraj, 211002, India.
| | - Vishal Vikram Singh
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Trigun
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Papia Acharjee
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Gallego-Durán R, Hadjihambi A, Ampuero J, Rose CF, Jalan R, Romero-Gómez M. Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 2024; 21:774-791. [PMID: 39251708 DOI: 10.1038/s41575-024-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Javier Ampuero
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
3
|
Pierzchala K, Hadjihambi A, Mosso J, Jalan R, Rose CF, Cudalbu C. Lessons on brain edema in HE: from cellular to animal models and clinical studies. Metab Brain Dis 2024; 39:403-437. [PMID: 37606786 PMCID: PMC10957693 DOI: 10.1007/s11011-023-01269-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Brain edema is considered as a common feature associated with hepatic encephalopathy (HE). However, its central role as cause or consequence of HE and its implication in the development of the neurological alterations linked to HE are still under debate. It is now well accepted that type A and type C HE are biologically and clinically different, leading to different manifestations of brain edema. As a result, the findings on brain edema/swelling in type C HE are variable and sometimes controversial. In the light of the changing natural history of liver disease, better description of the clinical trajectory of cirrhosis and understanding of molecular mechanisms of HE, and the role of brain edema as a central component in the pathogenesis of HE is revisited in the current review. Furthermore, this review highlights the main techniques to measure brain edema and their advantages/disadvantages together with an in-depth description of the main ex-vivo/in-vivo findings using cell cultures, animal models and humans with HE. These findings are instrumental in elucidating the role of brain edema in HE and also in designing new multimodal studies by performing in-vivo combined with ex-vivo experiments for a better characterization of brain edema longitudinally and of its role in HE, especially in type C HE where water content changes are small.
Collapse
Affiliation(s)
- Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland.
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jessie Mosso
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), EPFL, Lausanne, Switzerland
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- European Foundation for the Study of Chronic Liver Failure (EF Clif), Barcelona, Spain
| | - Christopher F Rose
- Hépato-Neuro Laboratory, Centre de Recherche du Centre Hospitalier de l', Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, QC, Montreal, H3T 1J4, Canada
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland.
| |
Collapse
|
4
|
Shurubor YI, Krasnikov AB, Isakova EP, Deryabina YI, Yudin VS, Keskinov AA, Krasnikov BF. Energy Metabolites and Indicative Significance of α-Ketoglutarate and α-Ketoglutaramate in Assessing the Progression of Chronic Hepatoencephalopathy. Biomolecules 2024; 14:217. [PMID: 38397454 PMCID: PMC10887089 DOI: 10.3390/biom14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In the example of a rat model with chronic hepatoencephalopathy (HE), changes in the organ morphology of rats affect the balance of metabolites of the tricarboxylic acid (TCA) cycle and metabolites of the glutamine-glutamate (Gln-Glu) cycle, namely α-ketoglutarate (αKG) and α-ketoglutaramate (αKGM), as well as the enzymes associated with them, ω-amidase (ωA) and glutamine transaminase (GTK). This model of rats was obtained as a result of 2-22 weeks of consumption by animals of hepatotoxin thioacetamide (TAA) added to drinking water at a concentration of 0.4 g/L. The control (n = 26) and TAA-induced (n = 55) groups of rats consisted of 11 cohorts each. The control cohorts consisted of 2-4 rats, and the TAA-induced cohorts consisted of 4-7 individuals. Every two weeks, samples of blood plasma, liver, kidney, and brain tissues were taken from the next cohort of rats (a total of 320 samples). By the end of the experiment, irreversible morphological changes were observed in the organs of rats: the weight of the animals was reduced up to ~45%, the weight of the kidneys up to 5%, the brain up to ~20%, and the weight of the liver increased up to ~20%. The analysis revealed: (i) a decrease in the activity of ωA and GTK in the tissues of the brain, kidneys, and liver of rats with chronic HE (by ~3, 40, and 65% and ~10, 60, and 70%, respectively); and (ii) the appearance of a significant imbalance in the content of metabolites of the Gln-Glu cycle, αKG, and αKGM. It is indicative that a ~1.5-12-fold increase in the level of αKG in the blood plasma and tissues of the organs of rats with chronic HE was accompanied by a synchronous, ~1.2-2.5-fold decrease in the level of αKGM. The data obtained indicate an essential involvement of the Gln-Glu cycle in the regulation of energy metabolism in rats under conditions of chronic HE. Attention is focused on the significance of the αKG/αKGM ratio, which can act as a potential marker for diagnosing the degree of HE development.
Collapse
Affiliation(s)
- Yevgeniya I. Shurubor
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
| | | | - Elena P. Isakova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.P.I.); (Y.I.D.)
| | - Yulia I. Deryabina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.P.I.); (Y.I.D.)
| | - Vladimir S. Yudin
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
| | - Anton A. Keskinov
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
| | - Boris F. Krasnikov
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, N.I. Pirogov Russian National Research Medical University, 1 Ostrovitianova Str., 117997 Moscow, Russia
| |
Collapse
|
5
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
6
|
Cheon SY, Kim MY, Kim J, Kim EJ, Kam EH, Cho I, Koo BN, Kim SY. Hyperammonemia induces microglial NLRP3 inflammasome activation via mitochondrial oxidative stress in hepatic encephalopathy. Biomed J 2023; 46:100593. [PMID: 37059364 PMCID: PMC10498413 DOI: 10.1016/j.bj.2023.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND The role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in the pathogenesis of hepatic encephalopathy (HE) is unclear. Mitochondrial reactive oxygen species (mtROS) is a signal for NLRP3 inflammasome activation. Therefore, we aimed to determine whether mtROS-dependent NLRP3 inflammasome activation is involved in HE, using in vivo and in vitro models. METHODS Bile duct ligation (BDL) in C57/BL6 mice was used as an in vivo HE model. NLRP3 activation was assessed in the hippocampus. Immunofluorescence staining was performed to determine the cellular source of NLRP3 in the hippocampal tissue. For the in vitro experiment, BV-2 microglial cells were primed with lipopolysaccharide (LPS), followed by ammonia treatment. NLRP3 activation and mitochondrial dysfunction were measured. Mito-TEMPO was used to suppress mtROS production. RESULTS BDL mice showed cognitive impairment with hyperammonemia. Both the priming and activation steps of NLRP3 inflammasome activation were processed in the hippocampus of BDL mice. Moreover, intracellular ROS levels increased in the hippocampus, and NLRP3 was mainly expressed in the microglia of the hippocampus. In LPS-primed BV-2 cells, ammonia treatment induced NLRP3 inflammasome activation and pyroptosis, with elevation of mtROS and altered mitochondrial membrane potential. Pretreatment with Mito-TEMPO suppressed mtROS production and the subsequent NLRP3 inflammasome activation and pyroptosis under LPS and ammonia treatment in BV-2 cells. CONCLUSIONS Hyperammonemia in HE may be involved in mtROS overproduction and subsequent NLRP3 inflammasome activation. Further studies using NLRP3-specific inhibitor or NLRP3 knockout mice are needed to elucidate the important role of NLRP3 inflammasome in HE development.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Min-Yu Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeongmin Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Inja Cho
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Bhardwaj A, Bhardwaj R, Saini A, Dhawan DK, Kaur T. Impact of Calcium Influx on Endoplasmic Reticulum in Excitotoxic Neurons: Role of Chemical Chaperone 4-PBA. Cell Mol Neurobiol 2023; 43:1619-1635. [PMID: 36002608 PMCID: PMC11412423 DOI: 10.1007/s10571-022-01271-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propoinic acid (AMPA) receptors instigates excitotoxicity via enhanced calcium influx in the neurons thus inciting deleterious consequences. Additionally, Endoplasmic Reticulum (ER) is pivotal in maintaining the intracellular calcium balance. Considering this, studying the aftermath of enhanced calcium uptake by neurons and its effect on ER environment can assist in delineating the pathophysiological events incurred by excitotoxicty. The current study was premeditated to decipher the role of ER pertaining to calcium homeostasis in AMPA-induced excitotoxicity. The findings showed, increased intracellular calcium levels (measured by flowcytometry and spectroflourimeter using Fura 2AM) in AMPA excitotoxic animals (male Sprague dawely rats) (intra-hippocampal injection of 10 mM AMPA). Further, ER resident proteins like calnexin, PDI and ERp72 were found to be upregulated, which further modulated the functioning of ER membrane calcium channels viz. IP3R, RyR, and SERCA pump. Altered calcium homeostasis further led to ER stress and deranged the protein folding capacity of ER post AMPA toxicity, which was ascertained by unfolded protein response (UPR) pathway markers such as IRE1α, eIF2α, and ATF6α. Chemical chaperone, 4-phenybutric acid (4-PBA), ameliorated the protein folding capacity and subsequent UPR markers. In addition, modulation of calcium channels and calcium regulating machinery of ER post 4-PBA administration restored the calcium homeostasis. Therefore the study reinforces the significance of ER stress, a debilitating outcome of impaired calcium homeostasis, under AMPA-induced excitotoxicity. Also, employing chaperone-based therapeutic approach to curb ER stress can restore the calcium imbalance in the neuropathological diseases.
Collapse
Affiliation(s)
- Ankita Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Rishi Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | | | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Higarza SG, Arboleya S, Arias JL, Gueimonde M, Arias N. The gut–microbiota–brain changes across the liver disease spectrum. Front Cell Neurosci 2022; 16:994404. [PMID: 36159394 PMCID: PMC9490445 DOI: 10.3389/fncel.2022.994404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Gut microbiota dysbiosis plays a significant role in the progression of liver disease, and no effective drugs are available for the full spectrum. In this study, we aimed to explore the dynamic changes of gut microbiota along the liver disease spectrum, together with the changes in cognition and brain metabolism. Sprague–Dawley rats were divided into four groups reflecting different stages of liver disease: control diet (NC); high-fat, high-cholesterol diet (HFHC), emulating non-alcoholic steatohepatitis; control diet + thioacetamide (NC + TAA), simulating acute liver failure; and high-fat, high-cholesterol diet + thioacetamide (HFHC + TAA) to assess the effect of the superimposed damages. The diet was administered for 14 weeks and the thioacetamide was administrated (100 mg/kg day) intraperitoneally over 3 days. Our results showed changes in plasma biochemistry and liver damage across the spectrum. Differences in gut microbiota at the compositional level were found among the experimental groups. Members of the Enterobacteriaceae family were most abundant in HFHC and HFHC + TAA groups, and Akkermansiaceae in the NC + TAA group, albeit lactobacilli genus being dominant in the NC group. Moreover, harm to the liver affected the diversity and bacterial community structure, with a loss of rare species. Indeed, the superimposed damage group (HFHC + TAA) suffered a loss of both rare and abundant species. Behavioral evaluation has shown that HFHC, NC + TAA, and HFHC + TAA displayed a worsened execution when discriminating the new object. Also, NC + TAA and HFHC + TAA were not capable of recognizing the changes in place of the object. Furthermore, working memory was affected in HFHC and HFHC + TAA groups, whereas the NC + TAA group displayed a significant delay in the acquisition. Brain oxidative metabolism changes were observed in the prefrontal, retrosplenial, and perirhinal cortices, as well as the amygdala and mammillary bodies. Besides, groups administered with thioacetamide presented an increased oxidative metabolic activity in the adrenal glands. These results highlight the importance of cross-comparison along the liver spectrum to understand the different gut–microbiota–brain changes. Furthermore, our data point out specific gut microbiota targets to design more effective treatments, though the liver–gut–brain axis focused on specific stages of liver disease.
Collapse
Affiliation(s)
- Sara G. Higarza
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Asturias, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Asturias, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Institute of Dairy Products of the Principality of Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Asturias, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Institute of Dairy Products of the Principality of Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Natalia Arias
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Department of Psychology, Faculty of Life and Natural Sciences, BRABE Group, Nebrija University, Madrid, Spain
- *Correspondence: Natalia Arias,
| |
Collapse
|
9
|
Hadjihambi A, Cudalbu C, Pierzchala K, Simicic D, Donnelly C, Konstantinou C, Davies N, Habtesion A, Gourine AV, Jalan R, Hosford PS. Abnormal brain oxygen homeostasis in an animal model of liver disease. JHEP Rep 2022; 4:100509. [PMID: 35865351 PMCID: PMC9293761 DOI: 10.1016/j.jhepr.2022.100509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 01/15/2023] Open
Abstract
Background & Aims Increased plasma ammonia concentration and consequent disruption of brain energy metabolism could underpin the pathogenesis of hepatic encephalopathy (HE). Brain energy homeostasis relies on effective maintenance of brain oxygenation, and dysregulation impairs neuronal function leading to cognitive impairment. We hypothesised that HE is associated with reduced brain oxygenation and we explored the potential role of ammonia as an underlying pathophysiological factor. Methods In a rat model of chronic liver disease with minimal HE (mHE; bile duct ligation [BDL]), brain tissue oxygen measurement, and proton magnetic resonance spectroscopy were used to investigate how hyperammonaemia impacts oxygenation and metabolic substrate availability in the central nervous system. Ornithine phenylacetate (OP, OCR-002; Ocera Therapeutics, CA, USA) was used as an experimental treatment to reduce plasma ammonia concentration. Results In BDL animals, glucose, lactate, and tissue oxygen concentration in the cerebral cortex were significantly lower than those in sham-operated controls. OP treatment corrected the hyperammonaemia and restored brain tissue oxygen. Although BDL animals were hypotensive, cortical tissue oxygen concentration was significantly improved by treatments that increased arterial blood pressure. Cerebrovascular reactivity to exogenously applied CO2 was found to be normal in BDL animals. Conclusions These data suggest that hyperammonaemia significantly decreases cortical oxygenation, potentially compromising brain energy metabolism. These findings have potential clinical implications for the treatment of patients with mHE. Lay summary Brain dysfunction is a serious complication of cirrhosis and affects approximately 30% of these patients; however, its treatment continues to be an unmet clinical need. This study shows that oxygen concentration in the brain of an animal model of cirrhosis is markedly reduced. Low arterial blood pressure and increased ammonia (a neurotoxin that accumulates in patients with liver failure) are shown to be the main underlying causes. Experimental correction of these abnormalities restored oxygen concentration in the brain, suggesting potential therapeutic avenues to explore.
Collapse
Key Words
- 1H-MRS, proton magnetic resonance spectroscopy
- AIT, Animal Imaging and Technology
- ALT, alanine transaminase
- ATZ, acetazolamide
- Ala, alanine
- Asc, ascorbate
- Asp, aspartate
- BDL, bile duct ligation
- BOLD, blood oxygen level dependent
- BP, blood pressure
- CBF, cerebral blood flow
- CIBM, Center for Biomedical Imaging
- CLD, chronic liver disease
- CMRO2, cerebral metabolic rate of oxygen
- CNS, central nervous system
- Chronic liver disease
- Cr, creatine
- EPFL, Ecole Polytechnique Fédérale de Lausanne
- GABA, γ-aminobutyric acid
- GPC, glycerophosphocholine
- GSH, glutathione
- Glc, glucose
- Gln, glutamine
- Glu, glutamate
- HE, hepatic encephalopathy
- Hyperammonaemia
- Ins, myo-inositol
- Lac, lactate
- MAP, mean arterial pressure
- NAA, N acetylaspartate
- NO, nitric oxide
- OP, ornithine phenylacetate
- Ornithine phenylacetate
- Oxygen
- PCho, phosphocholine
- PCr, phosphocreatine
- PE, phenylephrine
- Phenylephrine
- SPECIAL, spin echo full intensity acquired localised
- TE, echo time
- Tau, taurine
- VOI, volume of interest
- [18F]-FDG PET, [18F]-fluorodeoxyglucose positron emission tomography
- eNOS, endothelial nitric oxide synthase
- fMRI, functional magnetic resonance imaging
- hepatic encephalopathy
- mHE, minimal HE
- pCO2, partial pressure of carbon dioxide
- pO2, partial pressure of oxygen
- tCho, total choline
- tCr, total creatine
Collapse
Affiliation(s)
- Anna Hadjihambi
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London, UK
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dunja Simicic
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Chris Donnelly
- Institute of Sports Science and Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Christos Konstantinou
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Nathan Davies
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London, UK
| | - Abeba Habtesion
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London, UK
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London, UK
- European Foundation for the Study of Chronic Liver Failure
| | - Patrick S. Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, UK
| |
Collapse
|
10
|
Simicic D, Cudalbu C, Pierzchala K. Overview of oxidative stress findings in hepatic encephalopathy: From cellular and ammonium-based animal models to human data. Anal Biochem 2022; 654:114795. [PMID: 35753389 DOI: 10.1016/j.ab.2022.114795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Oxidative stress is a natural phenomenon in the body. Under physiological conditions intracellular reactive oxygen species (ROS) are normal components of signal transduction cascades, and their levels are maintained by a complex antioxidants systems participating in the in-vivo redox homeostasis. Increased oxidative stress is present in several chronic diseases and interferes with phagocytic and nervous cell functions, causing an up-regulation of cytokines and inflammation. Hepatic encephalopathy (HE) occurs in both acute liver failure (ALF) and chronic liver disease. Increased blood and brain ammonium has been considered as an important factor in pathogenesis of HE and has been associated with inflammation, neurotoxicity, and oxidative stress. The relationship between ROS and the pathophysiology of HE is still poorly understood. Therefore, sensing ROS production for a better understanding of the relationship between oxidative stress and functional outcome in HE pathophysiology is critical for determining the disease mechanisms, as well as to improve the management of patients. This review is emphasizing the important role of oxidative stress in HE development and documents the changes occurring as a consequence of oxidative stress augmentation based on cellular and ammonium-based animal models to human data.
Collapse
Affiliation(s)
- D Simicic
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - C Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - K Pierzchala
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland.
| |
Collapse
|
11
|
Claeys W, Van Hoecke L, Lefere S, Geerts A, Verhelst X, Van Vlierberghe H, Degroote H, Devisscher L, Vandenbroucke RE, Van Steenkiste C. The neurogliovascular unit in hepatic encephalopathy. JHEP Rep 2021; 3:100352. [PMID: 34611619 PMCID: PMC8476774 DOI: 10.1016/j.jhepr.2021.100352] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological complication of hepatic dysfunction and portosystemic shunting. It is highly prevalent in patients with cirrhosis and is associated with poor outcomes. New insights into the role of peripheral origins in HE have led to the development of innovative treatment strategies like faecal microbiota transplantation. However, this broadening of view has not been applied fully to perturbations in the central nervous system. The old paradigm that HE is the clinical manifestation of ammonia-induced astrocyte dysfunction and its secondary neuronal consequences requires updating. In this review, we will use the holistic concept of the neurogliovascular unit to describe central nervous system disturbances in HE, an approach that has proven instrumental in other neurological disorders. We will describe HE as a global dysfunction of the neurogliovascular unit, where blood flow and nutrient supply to the brain, as well as the function of the blood-brain barrier, are impaired. This leads to an accumulation of neurotoxic substances, chief among them ammonia and inflammatory mediators, causing dysfunction of astrocytes and microglia. Finally, glymphatic dysfunction impairs the clearance of these neurotoxins, further aggravating their effect on the brain. Taking a broader view of central nervous system alterations in liver disease could serve as the basis for further research into the specific brain pathophysiology of HE, as well as the development of therapeutic strategies specifically aimed at counteracting the often irreversible central nervous system damage seen in these patients.
Collapse
Key Words
- ABC, ATP-binding cassette
- ACLF, acute-on-chronic liver failure
- AD, acute decompensation
- ALF, acute liver failure
- AOM, azoxymethane
- AQP4, aquaporin 4
- Acute Liver Failure
- Ammonia
- BBB, blood-brain barrier
- BCRP, breast cancer resistance protein
- BDL, bile duct ligation
- Blood-brain barrier
- Brain edema
- CCL, chemokine ligand
- CCR, C-C chemokine receptor
- CE, cerebral oedema
- CLD, chronic liver disease
- CLDN, claudin
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Cirrhosis
- Energy metabolism
- GS, glutamine synthetase
- Glymphatic system
- HE, hepatic encephalopathy
- HO-1, heme oxygenase 1
- IL-, interleukin
- MMP-9, matrix metalloproteinase 9
- MRP, multidrug resistance associated protein
- NGVU
- NGVU, neurogliovascular unit
- NKCC1, Na-K-2Cl cotransporter 1
- Neuroinflammation
- OCLN, occludin
- ONS, oxidative and nitrosative stress
- Oxidative stress
- P-gp, P-glycoprotein
- PCA, portacaval anastomosis
- PSS, portosystemic shunt
- S1PR2, sphingosine-1-phosphate receptor 2
- SUR1, sulfonylurea receptor 1
- Systemic inflammation
- TAA, thioacetamide
- TGFβ, transforming growth factor beta
- TJ, tight junction
- TNF, tumour necrosis factor
- TNFR1, tumour necrosis factor receptor 1
- ZO, zonula occludens
- mPT, mitochondrial pore transition
Collapse
Affiliation(s)
- Wouter Claeys
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent; Ghent University, Ghent, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Helena Degroote
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent; Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Van Steenkiste
- Antwerp University, Department of Gastroenterology and Hepatology, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| |
Collapse
|
12
|
Häussinger D, Butz M, Schnitzler A, Görg B. Pathomechanisms in hepatic encephalopathy. Biol Chem 2021; 402:1087-1102. [PMID: 34049427 DOI: 10.1515/hsz-2021-0168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a frequent neuropsychiatric complication in patients with acute or chronic liver failure. Symptoms of HE in particular include disturbances of sensory and motor functions and cognition. HE is triggered by heterogeneous factors such as ammonia being a main toxin, benzodiazepines, proinflammatory cytokines and hyponatremia. HE in patients with liver cirrhosis is triggered by a low-grade cerebral edema and cerebral oxidative/nitrosative stress which bring about a number of functionally relevant alterations including posttranslational protein modifications, oxidation of RNA, gene expression changes and senescence. These alterations are suggested to impair astrocyte/neuronal functions and communication. On the system level, a global slowing of oscillatory brain activity and networks can be observed paralleling behavioral perceptual and motor impairments. Moreover, these changes are related to increased cerebral ammonia, alterations in neurometabolite and neurotransmitter concentrations and cortical excitability in HE patients.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Markus Butz
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Anamika, Trigun SK. Sirtuin-3 activation by honokiol restores mitochondrial dysfunction in the hippocampus of the hepatic encephalopathy rat model of ammonia neurotoxicity. J Biochem Mol Toxicol 2021; 35:e22735. [PMID: 33522075 DOI: 10.1002/jbt.22735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/06/2020] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
The neurotoxic level of ammonia in the brain during liver cirrhosis causes a nervous system disorder, hepatic encephalopathy (HE), by affecting mitochondrial functions. Sirtuin-3 (SIRT3) is emerging as a master regulator of mitochondrial integrity, which is currently being focused as a pathogenic hotspot for HE. This article describes SIRT3 level versus mitochondrial dysfunction markers in the hippocampus of the control, the moderate-grade hepatic encephalopathy (MoHE), developed in thioacetamide-induced (100 mg/kg bw ip for 10 days) liver cirrhotic rats, and the MoHE rats treated with an SIRT3 activator, honokiol (HKL; 10 mg/kg bw ip), for 7 days from 8th day of the thioacetamide schedule. As compared with the control group rats, hippocampus mitochondria of MoHE rats showed a significant decline in SIRT3 expression and its activity with concordant enhancement of ROS and declined membrane permeability transition and organelle viability scores. This was consistent with the declined mitochondrial thiol level and thiol-regenerating enzyme, isocitrate dehydrogenase 2. Also, significantly declined activities of electron transport chain complexes I, III, IV, and Q10 , decreased NAD+ /NADH and ATP/AMP ratios, and enhanced number of the shrunken mitochondria were recorded in the hippocampus of those MoHE rats. However, all these mitochondrial aberrations were observed to regain their normal profiles/levels, concordant to the enhanced SIRT3 expression and its activity due to treatment with HKL. The findings suggest a role of SIRT3 in mitochondrial structure-function derangements associated with MoHE pathogenesis and SIRT3 activation by HKL as a relevant strategy to protect mitochondrial integrity during ammonia neurotoxicity.
Collapse
Affiliation(s)
- Anamika
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra K Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Hajipour S, Farbood Y, Dianat M, Rashno M, Khorsandi LS, Sarkaki A. Thymoquinone improves behavioral and biochemical deficits in hepatic encephalopathy induced by thioacetamide in rats. Neurosci Lett 2021; 745:135617. [PMID: 33421492 DOI: 10.1016/j.neulet.2020.135617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a cerebral function alteration in patients with liver dysfunction. The present study aimed to evaluate the therapeutic effects of thymoquinone (TQ) on behavioral deficits and its possible mechanism(s) in a thioacetamide (TAA)-induced HE model. HE was induced in male Wistar rats by intraperitoneal (i.p.) injection of TAA (200 mg/kg) for once every 48 h for 14 consecutive days. Thymoquinone (5, 10, and 20 mg/kg) was administered for seven consecutive days (i.p.) after HE induction. Anxiety and depression-like behaviors assessed by standard paradigms respectively. Finally, their brain hippocampus sections prepared to evaluate the oxidative stress changes in rats. Data showed treatment HE rats with TQ ameliorated anxiety and depression-like behaviors. TQ administration also reduced oxidative stress due to its potential to enhance the levels of glutathione-peroxidase (GPx), catalase (CAT), and total thiol content in the hippocampus. These findings suggest that TQ has notable effects against acute hepatic failure and HE complications through modulation of oxidative stress.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Persian Gulf Physiology Research Center. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Laya Sadat Khorsandi
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz. Iran.
| |
Collapse
|
15
|
Drews L, Zimmermann M, Westhoff P, Brilhaus D, Poss RE, Bergmann L, Wiek C, Brenneisen P, Piekorz RP, Mettler-Altmann T, Weber APM, Reichert AS. Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner. Dis Model Mech 2020; 13:dmm047134. [PMID: 32917661 PMCID: PMC7657470 DOI: 10.1242/dmm.047134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023] Open
Abstract
Astrocyte dysfunction is a primary factor in hepatic encephalopathy (HE) impairing neuronal activity under hyperammonemia. In particular, the early events causing ammonia-induced toxicity to astrocytes are not well understood. Using established cellular HE models, we show that mitochondria rapidly undergo fragmentation in a reversible manner upon hyperammonemia. Further, in our analyses, within a timescale of minutes, mitochondrial respiration and glycolysis were hampered, which occurred in a pH-independent manner. Using metabolomics, an accumulation of glucose and numerous amino acids, including branched chain amino acids, was observed. Metabolomic tracking of 15N-labeled ammonia showed rapid incorporation of 15N into glutamate and glutamate-derived amino acids. Downregulating human GLUD2 [encoding mitochondrial glutamate dehydrogenase 2 (GDH2)], inhibiting GDH2 activity by SIRT4 overexpression, and supplementing cells with glutamate or glutamine alleviated ammonia-induced inhibition of mitochondrial respiration. Metabolomic tracking of 13C-glutamine showed that hyperammonemia can inhibit anaplerosis of tricarboxylic acid (TCA) cycle intermediates. Contrary to its classical anaplerotic role, we show that, under hyperammonemia, GDH2 catalyzes the removal of ammonia by reductive amination of α-ketoglutarate, which efficiently and rapidly inhibits the TCA cycle. Overall, we propose a critical GDH2-dependent mechanism in HE models that helps to remove ammonia, but also impairs energy metabolism in mitochondria rapidly.
Collapse
Affiliation(s)
- Leonie Drews
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marcel Zimmermann
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebecca E Poss
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Laura Bergmann
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery (ENT), Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Peter Brenneisen
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Roland P Piekorz
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Pathania A, Rawat A, Dahiya SS, Dhanda S, Barnwal RP, Baishya B, Sandhir R. 1H NMR-Based Metabolic Signatures in the Liver and Brain in a Rat Model of Hepatic Encephalopathy. J Proteome Res 2020; 19:3668-3679. [PMID: 32660248 DOI: 10.1021/acs.jproteome.0c00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hepatic encephalopathy (HE) is a debilitating neuropsychiatric complication associated with acute and chronic liver failure. It is characterized by diverse symptoms with variable severity that includes cognitive and motor deficits. The aim of the study is to assess metabolic alterations in the brain and liver using nuclear magnetic resonance (NMR) spectroscopy and subsequent multivariate analyses to characterize metabolic signatures associated with HE. HE was developed by bile duct ligation (BDL) that resulted in hepatic dysfunctions and cirrhosis as shown by liver function tests. Metabolic profiles from control and BDL rats indicated increased levels of lactate, branched-chain amino acids (BCAAs), glutamate, and choline in the liver, whereas levels of glucose, phenylalanine, and pyridoxine were decreased. In brain, the levels of lactate, acetate, succinate, citrate, and malate were increased, while glucose, creatine, isoleucine, leucine, and proline levels were decreased. Furthermore, neurotransmitters such as glutamate and GABA were increased, whereas choline and myo-inositol were decreased. The alterations in neurotransmitter levels resulted in cognitive and motor defects in BDL rats. A significant correlation was found among alterations in NAA/choline, choline/creatine, and NAA/creatine with behavioral deficits. Thus, the data suggests impairment in metabolic pathways such as the tricarboxylic acid (TCA) cycle, glycolysis, and ketogenesis in the liver and brain of animals with HE. The study highlights that metabolic signatures could be potential markers to monitor HE progression and to assess therapeutic interventions.
Collapse
Affiliation(s)
- Anjana Pathania
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Atul Rawat
- Department of Surgery, IU Health Comprehensive Wound Centre, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.,Centre for Biomedical Magnetic Resonance (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh 226014, India
| | - Sitender Singh Dahiya
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Saurabh Dhanda
- Department of Biochemistry, Dr. Rajendra Prasad Government Medical College, Kangra at Tanda, Himachal Pradesh 176001, India
| | | | - Bikash Baishya
- Centre for Biomedical Magnetic Resonance (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh 226014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| |
Collapse
|
17
|
Guazzelli PA, Cittolin-Santos GF, Meira-Martins LA, Grings M, Nonose Y, Lazzarotto GS, Nogara D, da Silva JS, Fontella FU, Wajner M, Leipnitz G, Souza DO, de Assis AM. Acute Liver Failure Induces Glial Reactivity, Oxidative Stress and Impairs Brain Energy Metabolism in Rats. Front Mol Neurosci 2020; 12:327. [PMID: 31998076 PMCID: PMC6968792 DOI: 10.3389/fnmol.2019.00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Acute liver failure (ALF) implies a severe and rapid liver dysfunction that leads to impaired liver metabolism and hepatic encephalopathy (HE). Recent studies have suggested that several brain alterations such as astrocytic dysfunction and energy metabolism impairment may synergistically interact, playing a role in the development of HE. The purpose of the present study is to investigate early alterations in redox status, energy metabolism and astrocytic reactivity of rats submitted to ALF. Adult male Wistar rats were submitted either to subtotal hepatectomy (92% of liver mass) or sham operation to induce ALF. Twenty-four hours after the surgery, animals with ALF presented higher plasmatic levels of ammonia, lactate, ALT and AST and lower levels of glucose than the animals in the sham group. Animals with ALF presented several astrocytic morphological alterations indicating astrocytic reactivity. The ALF group also presented higher mitochondrial oxygen consumption, higher enzymatic activity and higher ATP levels in the brain (frontoparietal cortex). Moreover, ALF induced an increase in glutamate oxidation concomitant with a decrease in glucose and lactate oxidation. The increase in brain energy metabolism caused by astrocytic reactivity resulted in augmented levels of reactive oxygen species (ROS) and Poly [ADP-ribose] polymerase 1 (PARP1) and a decreased activity of the enzymes superoxide dismutase and glutathione peroxidase (GSH-Px). These findings suggest that in the early stages of ALF the brain presents a hypermetabolic state, oxidative stress and astrocytic reactivity, which could be in part sustained by an increase in mitochondrial oxidation of glutamate.
Collapse
Affiliation(s)
- Pedro Arend Guazzelli
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Giordano Fabricio Cittolin-Santos
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Leo Anderson Meira-Martins
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Mateus Grings
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yasmine Nonose
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Gabriel S Lazzarotto
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Daniela Nogara
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Jussemara S da Silva
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Fernanda U Fontella
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Moacir Wajner
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Diogo O Souza
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Adriano Martimbianco de Assis
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas-UCPel, Pelotas, Brazil
| |
Collapse
|
18
|
Lin W, Chen X, Gao YQ, Yang ZT, Yang W, Chen HJ. Hippocampal atrophy and functional connectivity disruption in cirrhotic patients with minimal hepatic encephalopathy. Metab Brain Dis 2019; 34:1519-1529. [PMID: 31363985 DOI: 10.1007/s11011-019-00457-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
The hippocampus is a crucial pathological node for minimal hepatic encephalopathy (MHE) and it is associated with various cognitive impairments. Investigations on alterations involving hippocampal morphology and functional connectivity (FC) in MHE are limited. This study aimed to simultaneously evaluate hippocampal volume and FC alterations and their association with cognitive decline in MHE. Twenty-two cirrhotic patients with MHE, 31 cirrhotic patients without MHE (NHE), and 43 healthy controls underwent high-resolution T1-weighted imaging, resting-state functional magnetic resonance imaging, and cognition assessment based on Psychometric Hepatic Encephalopathy Score (PHES). The structural images were preprocessed using a voxel-based morphometry method, during which hippocampal volume was measured. The hippocampal connectivity network was identified using seed-based correlation analysis. Hippocampal volume and FC strength were compared across the three groups and correlated against the PHES results of the cirrhotic patients. Compared to the controls, MHE patients exhibited a significantly lower bilateral hippocampal volume. A slight decrease in hippocampal volume was obtained from NHE to MHE, but it did not reach statistically significance. In addition, the average FC strength of the bilateral hippocampal connectivity network was significantly lower in the MHE patients. In particular, the MHE patients showed a decrease in FC involving the left hippocampus to bilateral posterior cingulate gyrus and left angular gyrus. The MHE patients also showed FC reduction between the right hippocampus and bilateral medial frontal cortex. A progressive reduction in hippocampal FC from NHE to MHE was also observed. The bilateral hippocampal FC strength (but not hippocampal volume) was positively correlated with the PHES results of the cirrhotic patients. Our assessment of MHE patients revealed decreased hippocampal volume, which suggests regional atrophy, and reduced hippocampal connectivity with regions that are primarily involved in the default-mode network, thereby suggesting a functional disconnection syndrome. These alterations reveal the mechanisms underlying cognitive deterioration with disease progression.
Collapse
Affiliation(s)
- Weiwen Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xuhui Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | | | - Zhe-Ting Yang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Weizhu Yang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
19
|
Song JL, Paixao L, Li Q, Li SH, Zhang R, Westover MB. A novel neural computational model of generalized periodic discharges in acute hepatic encephalopathy. J Comput Neurosci 2019; 47:109-124. [PMID: 31506807 PMCID: PMC6881550 DOI: 10.1007/s10827-019-00727-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023]
Abstract
Acute hepatic encephalopathy (AHE) due to acute liver failure is a common form of delirium, a state of confusion, impaired attention, and decreased arousal. The electroencephalogram (EEG) in AHE often exhibits a striking abnormal pattern of brain activity, which epileptiform discharges repeat in a regular repeating pattern. This pattern is known as generalized periodic discharges, or triphasic-waves (TPWs). While much is known about the neurophysiological mechanisms underlying AHE, how these mechanisms relate to TPWs is poorly understood. In order to develop hypotheses how TPWs arise, our work builds a computational model of AHE (AHE-CM), based on three modifications of the well-studied Liley model which emulate mechanisms believed central to brain dysfunction in AHE: increased neuronal excitability, impaired synaptic transmission, and enhanced postsynaptic inhibition. To relate our AHE-CM to clinical EEG data from patients with AHE, we design a model parameter optimization method based on particle filtering (PF-POM). Based on results from 7 AHE patients, we find that the proposed AHE-CM not only performs well in reproducing important aspects of the EEG, namely the periodicity of triphasic waves (TPWs), but is also helpful in suggesting mechanisms underlying variation in EEG patterns seen in AHE. In particular, our model helps explain what conditions lead to increased frequency of TPWs. In this way, our model represents a starting point for exploring the underlying mechanisms of brain dynamics in delirium by relating microscopic mechanisms to EEG patterns.
Collapse
Affiliation(s)
- Jiang-Ling Song
- The Medical Big Data Research Center, Northwest University, Xi'an, 710127, China
- The Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Luis Paixao
- The Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Qiang Li
- The Medical Big Data Research Center, Northwest University, Xi'an, 710127, China
| | - Si-Hui Li
- The Medical Big Data Research Center, Northwest University, Xi'an, 710127, China
| | - Rui Zhang
- The Medical Big Data Research Center, Northwest University, Xi'an, 710127, China
| | - M Brandon Westover
- The Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Heidari R. Brain mitochondria as potential therapeutic targets for managing hepatic encephalopathy. Life Sci 2019; 218:65-80. [PMID: 30578865 DOI: 10.1016/j.lfs.2018.12.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/08/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE) is a critical clinical complication. There is a consensus that ammonia plays a pivotal role in the pathogenesis of HE. Ammonia is a neurotoxin which induces a wide range of functional disturbances in the central nervous system (CNS). On the other hand, HE is associated with the increased free radical formation, tissue inflammation, disturbed neurotransmission, astrocytes swelling, brain edema, and brain herniation. In view of the severe CNS complications ensued HE, potential therapeutic points of intervention need to be vigorously investigated. A role for CNS mitochondrial damage and energy crisis has been considered in HE. It has been found that ammonia induces mitochondrial impairment as a result of a multifaceted interaction of different signaling molecules. Hence, ammonia-induced mitochondrial injury and compromised brain energy metabolism might play a vital role in the pathogenesis of ammonia neurotoxicity. This review focuses on the concept that mitochondrial dysfunction and cellular energy crisis indeed plays a critical role in the pathogenesis of hyperammonemia-induced brain injury. Further, it will highlight the potential therapeutic value of mitochondrial protecting agents and energy providers in the management of HE. The data collected in this review might provide clues to new therapeutic interventions aimed at minimizing HE-associated complications.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Bai Y, Wang Y, Yang Y. Hepatic encephalopathy changes mitochondrial dynamics and autophagy in the substantia nigra. Metab Brain Dis 2018; 33:1669-1678. [PMID: 29998403 DOI: 10.1007/s11011-018-0275-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
Hepatic encephalopathy (HE) has been reported in more than 40% of patients with cirrhosis in clinical practice. HE changes mitochondrial dysfunction. Mitochondrial dynamics and autophagy are important for maintaining and removing damaged mitochondria. We used molecular biology and morphology methods to evaluate changes in mitochondrial dynamics and autophagy of the substantia nigra (SN) and prefrontal cortex (PFC) in HE. In this study, we observed that HE increased mitochondrial dynamics and autophagy in the SN, which was not seen in the PFC. HE stimulated dynamin-related protein 1 (DRP1) transformation from the cytosolic to the mitochondria within SN cells, which increased mitochondrial fission and the number of mitochondria. The fusion protein L-OPA1 (long isoforms of OPA1) was increased in the SN of HE mice. HE also increased the levels of autophagy proteins PINK1/PARKIN and P62/LC3-B in the SN, which can selectively remove damaged mitochondria and cell, respectively. Additionally, we used electron microscopy to directly observe changes in mitochondrial morphology in the SN of HE mice and found the number of mitochondria was increased. However, there were no significant changes in the fission, fusion or autophagy proteins in PFC-purified mitochondrial proteins in HE mice. The number of mitochondria also did not show alterations in the PFC of HE mice compared with that in a sham group. These results illustrate that mitochondria can protect themselves by changing the dynamics and autophagy in the SN of HE mice. Changes in the mitochondrial dynamics and autophagy related to HE can help repair damaged mitochondria and provide a further understanding of the mechanisms of hepatic encephalopathy.
Collapse
Affiliation(s)
- Yunhu Bai
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yayun Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
22
|
Serum and Hepatic Autofluorescence as a Real-Time Diagnostic Tool for Early Cholestasis Assessment. Int J Mol Sci 2018; 19:ijms19092634. [PMID: 30189659 PMCID: PMC6165295 DOI: 10.3390/ijms19092634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
While it is well established that various factors can impair the production and flow of bile and lead to cholestatic disease in hepatic and extrahepatic sites, an enhanced assessment of the biomarkers of the underlying pathophysiological mechanisms is still needed to improve early diagnosis and therapeutic strategies. Hence, we investigated fluorescing endogenous biomolecules as possible intrinsic biomarkers of molecular and cellular changes in cholestasis. Spectroscopic autofluorescence (AF) analysis was performed using a fiber optic probe (366 nm excitation), under living conditions and in serum, on the livers of male Wistar rats submitted to bile duct ligation (BDL, 24, 48, and 72 h). Biomarkers of liver injury were assayed biochemically. In the serum, AF analysis distinctly detected increased bilirubin at 24 h BDL. A continuous, significant increase in red-fluorescing porphyrin derivatives indicated the subversion of heme metabolism, consistent with an almost twofold increase in the serum iron at 72 h BDL. In the liver, changes in the AF of NAD(P)H and flavins, as well as lipopigments, indicated the impairment of mitochondrial functionality, oxidative stress, and the accumulation of oxidative products. A serum/hepatic AF profile can be thus proposed as a supportive diagnostic tool for the in situ, real-time study of bio-metabolic alterations in bile duct ligation (BDL) in experimental hepatology, with the potential to eventually translate to clinical diagnosis.
Collapse
|
23
|
Bhardwaj A, Bhardwaj R, Dhawan DK, Kaur T. Exploring the Effect of Endoplasmic Reticulum Stress Inhibition by 4-Phenylbutyric Acid on AMPA-Induced Hippocampal Excitotoxicity in Rat Brain. Neurotox Res 2018; 35:83-91. [DOI: 10.1007/s12640-018-9932-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/05/2023]
|
24
|
Jeong JH, Kim DK, Lee NS, Jeong YG, Kim HW, Kim JS, Han SY. Neuroprotective Effect of Nortriptyline in Overt Hepatic Encephalopathy Through Attenuation of Mitochondrial Dysfunction. ASN Neuro 2018; 10:1759091418810583. [PMID: 30428281 PMCID: PMC6238202 DOI: 10.1177/1759091418810583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Hyperammonemia associated with overt hepatic encephalopathy (OHE) causes excitotoxic neuronal death through activation of the cytochrome C (CytC)-mediated mitochondria-dependent apoptotic pathway. We tested the therapeutic effect of nortriptyline (NT), a mitochondrial permeability transition pore (mPTP) blocker that can possibly inhibit mitochondrial CytC efflux to the cytosol on in vivo and in vitro OHE models. After ensuring the generation of OHE rats, established by bile duct ligation (BDL), they were intraperitoneally administered either 20 mg/kg NT (i.e., BDL+NT) or another vehicle (i.e., BDL+VEH) for 14 days. Compared with the control, BDL+VEH showed an increment of motor deficits, cell death, synaptic loss, apoptosis, and mitochondria with aberrant morphology in substantia nigra compacta dopaminergic (DA-ergic) neurons. However, the extent was significantly reversed in BDL+NT. Subsequently, we studied the neuroprotective mechanism of NT using PC-12 cells, a DA-ergic cell line, which exposed glutamate used as an excitotoxin. Compared with the control, the cells exposed to 15 mM glutamate (i.e., GLU) showed incremental cell death, apoptosis, and demise in mitochondrial respiration. Importantly, efflux of CytC from mitochondria to cytosol and the dissipation of mitochondrial membrane potential (△Ψm), an indicator of mPTP opening, were prominent in GLU. However, compared with the GLU, the cells cotreated with 10 μM NT (i.e., GLU+NT) showed a significant reduction in the aforementioned phenomenon. Together, we concluded that NT can be used for OHE therapeutics, mitigating the excitotoxic death of substantia nigra compacta DA-ergic neurons via mPTP-associated mitochondrial dysfunction inhibition.
Collapse
Affiliation(s)
- Ji Heun Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, South Korea
| | - Do Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, South Korea
| | - Nam-Seob Lee
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, South Korea
| | - Young-Gil Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, South Korea
| | - Ho Won Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Seung-Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, South Korea
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| |
Collapse
|