1
|
Abou-El-Naga AM, Mansour HAELH, El-Sawi MR, El-Dein MA, Tag YM, Ghanem RA, Shawki MA. Restorative effects of Momordica charantia extract on cerebellar GFAP and NGF expression in pregnant diabetic rats and their offspring. PLoS One 2025; 20:e0321022. [PMID: 40184394 PMCID: PMC11970674 DOI: 10.1371/journal.pone.0321022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 04/06/2025] Open
Abstract
Maternal diabetes mellitus is linked to neurobiological and cognitive impairments, increasing the risk of brain and cerebellar defects in diabetic pregnant rats and their offspring. Momordica charantia (bitter melon) possesses antidiabetic properties due to its bioactive compounds, including phenolics, alkaloids, proteins, steroids, inorganic compounds, and lipids. Forty pregnant rats were randomly assigned to four groups: control; M charantia (BM); diabetic (DM); and diabetic treated with M charantia (BM+DM). Diabetic maternal rats showed significantly elevated serum glucose, insulin, leptin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels, with a concomitant decrease in insulin sensitivity check index (QUICKI), glucose transporter 4 (GLUT4), adenosine monophosphate-activated protein kinase (AMPK), acetylcholine (ACh), and dopamine. Oxidative stress markers in cerebellar tissue indicated increased malondialdehyde (MDA) and decreased glutathione (GSH) levels. Cerebellar tissue analysis revealed significantly reduced superoxide dismutase (SOD), catalase (CAT), B-cell lymphoma 2 (Bcl-2), and nerve growth factor (NGF), while Bcl-2-associated X protein (BAX) and glial fibrillary acidic protein (GFAP) were elevated. Histological and ultrastructural analysis of the diabetic maternal cerebellum showed moderate vacuolation of the neuropil in all cerebellar cortical layers, along with Purkinje cell degeneration and necrosis, including Nissl substance loss. Offspring of diabetic mothers exhibited multifocal Purkinje cell loss, empty baskets, and cerebellar cortical dysplasia with abnormal tissue development and organization. In conclusion, M. charantia supports central nervous system health in diabetic pregnant rats and their offspring by enhancing antioxidant markers, regulating GFAP and NGF, and mitigating apoptosis, ultimately improving cerebellar pathology and neural development.
Collapse
Affiliation(s)
| | | | - Mamdouh R. El-Sawi
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mai Alaa El-Dein
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Yasmin M. Tag
- Oral BiologyDepartment, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamsa, Egypt
| | - Reham A. Ghanem
- Oral BiologyDepartment, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamsa, Egypt
| | - Manar A. Shawki
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Singh AD, Chawda M, Kulkarni YA. Vasant Kusumakar Rasa Ameliorates Diabetic Encephalopathy by Reducing Oxidative Stress and Neuroinflammation and Improving Neurotransmitter Levels in Experimental Animals. Cureus 2024; 16:e75905. [PMID: 39830570 PMCID: PMC11739537 DOI: 10.7759/cureus.75905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 01/22/2025] Open
Abstract
PURPOSE Diabetic encephalopathy (DE) is one of the complications of diabetes that affects the brain. In the Ayurveda system of medicine, Vasant Kusumakar Rasa (VKR) is cited as a classical herbo-mineral formulation for diabetes. However, the role of VKR in DE is still unclear. METHODS High-fat diet and streptozotocin (35 mg/kg, i.p.) were used to induce type 2 DE in Sprague Dawley rats. VKR at doses 28 mg/kg and 56 mg/kg was given via intragastric route to diabetic rats for 16 weeks. Estimation of plasma glucose, serum insulin, glycohemoglobin, and C-reactive protein (C-RP) was analyzed. Furthermore, the Morris water maze test was performed to assess cognitive behavior. Pro-inflammatory, such as TNF-α, IL-1β, and IL-6, were measured in brain tissue homogenate. Antioxidant enzyme assays were performed to estimate the levels of malondialdehyde, reduced glutathione, superoxide dismutase, and catalase in brain tissue. Histopathology of brain sections was performed using hematoxylin and eosin (H & E) staining. Neurotransmitters (viz., serotonin (5-HT), dopamine (DA), and norepinephrine (NE)) were estimated in the brain by high-performance liquid chromatography (HPLC). The data were analyzed by using ANOVA, followed by Dunnett's multiple comparison test. RESULTS VKR treatment, at a dose of 28 and 56 mg/kg, reduced the plasma glucose level significantly (236.7±17.08 and 221.8±17.50, respectively; p<0.001) when compared with diabetic control (461.7±13.03). The treatment also reduced serum insulin and glycated hemoglobin levels and improved the escape latency in VKR-treated animals as compared to diabetic animals. Brain tissue pro-inflammatory marker levels were reduced, and oxidative stress enzymes showed positive marks in diabetic rats treated with VKR. Histopathology of the brain demonstrated a reduction in neuronal damage in the VKR-treated diabetic animals. VKR treatment at doses of 28 and 56 mg/kg also improved the levels of 5-HT (1.78±0.11 and 1.72±0.18, respectively) when compared with diabetic control (0.91±0.08) significantly (p<0.01). DA levels were significantly (p<0.01) increased in VKR-treated animals when compared with diabetic animals. The treatment of VKR for 16 weeks also improved the NE levels significantly when compared with diabetic control animals. CONCLUSION The result of the study indicates that the treatment with VKR for 16 weeks has significant therapeutic potential in the management of type 2 DE.
Collapse
Affiliation(s)
- Alok D Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, IND
| | - Mukesh Chawda
- Medical Services, Shree Dhootapapeshwar Limited, Mumbai, IND
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, IND
| |
Collapse
|
3
|
Ansari MA, Al-Jarallah A, Rao MS, Babiker A, Bensalamah K. Upregulation of NADPH-oxidase, inducible nitric oxide synthase and apoptosis in the hippocampus following impaired insulin signaling in the rats: Development of sporadic Alzheimer's disease. Brain Res 2024; 1834:148890. [PMID: 38552936 DOI: 10.1016/j.brainres.2024.148890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
NADPH-oxidase (NOX) is a multi-subunit enzyme complex. The upregulation of NOX causes massive production of superoxide (O2¯), which avidly reacts with nitric oxide (NO) and increases cellular reactive oxygen/nitrogen species (ROS/RNS). Increased ROS/RNS plays pivotal role in the sporadic Alzheimer's disease (sAD) development and brain damage following impaired insulin signaling. Hence, this study aimed to examine early-time course of changes in NOX and NOS expression, and apoptotic proteins in the rats hippocampi following insulin signaling impairment [induced by STZ injection; intraperitoneal (IP) or in cerebral ventricles (ICV)]. Early effects (1, 3, or 6 weeks) on the NOX activity, translocation of NOX subunits from cytosol to the membrane, NO-synthases [neuronal-, inducible- and endothelial-NOS; nNOS, iNOS and eNOS], The Rac-1 protein expression, levels of NO and O2¯, cytochrome c release, caspase-3 and 9 activations (cleavage) were studied. STZ injection (in both models) increased NOX activity, O2¯ production, and enhanced cytosolic subunits translocation into membrane. The iNOS but not nNOS and eNOS expression and NO levels were increased in STZ treated rats. Finally, STZ injection increased cytochrome c release, caspase-3 and 9 activations in a manner that was significantly associated with levels of O2¯ and NO in the hippocampus. ICV-STZ administration resulted in significant profound changes over the IP route. In conclusion, impairment in insulin function induces early changes in ROS/RNS contents through NOX and iNOS upregulation and neuronal apoptosis in the hippocampus. Our results could mechanistically explain the role of impaired insulin function in the development of sAD.
Collapse
Affiliation(s)
- Mubeen A Ansari
- Department of Pharmacology and Toxicology, Kuwait University, Kuwait City, Safat 13110, Kuwait.
| | - Aishah Al-Jarallah
- Department of Biochemistry, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Muddanna S Rao
- Department of Anatomy, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Ahmed Babiker
- Faculty of Medicine, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Khaled Bensalamah
- Faculty of Medicine, Kuwait University, Kuwait City, Safat 13110, Kuwait
| |
Collapse
|
4
|
Basatinya AM, Sajedianfard J, Nazifi S, Hosseinzadeh S. The analgesic effects of insulin and its disorders in streptozotocin-induced short-term diabetes. Physiol Rep 2024; 12:e16009. [PMID: 38639646 PMCID: PMC11027902 DOI: 10.14814/phy2.16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Evidence suggests that insulin resistance plays an important role in developing diabetes complications. The association between insulin resistance and pain perception is less well understood. This study aimed to investigate the effects of peripheral insulin deficiency on pain pathways in the brain. Diabetes was induced in 60 male rats with streptozotocin (STZ). Insulin was injected into the left ventricle of the brain by intracerebroventricular (ICV) injection, then pain was induced by subcutaneous injection of 2.5% formalin. Samples were collected at 4 weeks after STZ injection. Dopamine (DA), serotonin, reactive oxygen species (ROS), and mitochondrial glutathione (mGSH) were measured by ELISA, and gene factors were assessed by RT-qPCR. In diabetic rats, the levels of DA, serotonin, and mGSH decreased in the nuclei of the thalamus, raphe magnus, and periaqueductal gray, and the levels of ROS increased. In addition, the levels of expression of the neuron-specific enolase and receptor for advanced glycation end genes increased, but the expression of glial fibrillary acidic protein expression was reduced. These results support the findings that insulin has an analgesic effect in non-diabetic rats, as demonstrated by the formalin test. ICV injection of insulin reduces pain sensation, but this was not observed in diabetic rats, which may be due to cell damage ameliorated by insulin.
Collapse
Affiliation(s)
| | - Javad Sajedianfard
- Department of Basic Sciences, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Saeed Nazifi
- Department of Clinical Science, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Saied Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
5
|
Abo-Elghiet F, Ahmed AH, Aly HF, Younis EA, Rabeh MA, Alshehri SA, Alshahrani KSA, Mohamed SA. D-Pinitol Content and Antioxidant and Antidiabetic Activities of Five Bougainvillea spectabilis Willd. Cultivars. Pharmaceuticals (Basel) 2023; 16:1008. [PMID: 37513920 PMCID: PMC10385032 DOI: 10.3390/ph16071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus is a major challenge for global health, and Bougainvillea spectabilis Willd. (B. spectabilis) is a widely used herbal remedy with diverse cultivars traditionally used for diabetes treatment. However, the comparative efficacy of these cultivars remains ambiguous. This study aimed to evaluate the D-pinitol content and DPPH radical-scavenging activity of methanolic leaves extracts of five B. spectabilis cultivars. Furthermore, the effects of these cultivars on various parameters, including blood glucose levels, oxidative stress markers, inflammatory cytokines, lipid profiles, liver enzymes, renal function markers, and histopathological changes, were assessed in STZ-induced diabetic rats after one month of oral daily treatment. All tested cultivars demonstrated significant improvements in the measured parameters, albeit to varying extents. Notably, the LOE cultivar, distinguished by its orange bracts, exhibited the highest efficacy, surpassing the effectiveness of glibenclamide, an antidiabetic medication, and displayed the highest concentration of D-pinitol. These findings underscore the importance of carefully selecting the appropriate B. spectabilis cultivar to maximize the antidiabetic efficacy, with a particular emphasis on the correlation between antidiabetic activity and D-pinitol concentrations.
Collapse
Affiliation(s)
- Fatma Abo-Elghiet
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt; (A.H.A.); (S.A.M.)
| | - Amal H. Ahmed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt; (A.H.A.); (S.A.M.)
| | - Hanan F. Aly
- Department of Therapeutic Chemistry, National Research Centre (NRC), El Behouth St., Giza 12311, Egypt; (H.F.A.); (E.A.Y.)
| | - Eman A. Younis
- Department of Therapeutic Chemistry, National Research Centre (NRC), El Behouth St., Giza 12311, Egypt; (H.F.A.); (E.A.Y.)
| | - Mohamed A. Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (M.A.R.); (S.A.A.)
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (M.A.R.); (S.A.A.)
| | | | - Shaza A. Mohamed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt; (A.H.A.); (S.A.M.)
| |
Collapse
|
6
|
Salama B, Alzahrani KJ, Alghamdi KS, Al-Amer O, Hassan KE, Elhefny MA, Albarakati AJA, Alharthi F, Althagafi HA, Al Sberi H, Amin HK, Lokman MS, Alsharif KF, Albrakati A, Abdel Moneim AE, Kassab RB, Fathalla AS. Silver Nanoparticles Enhance Oxidative Stress, Inflammation, and Apoptosis in Liver and Kidney Tissues: Potential Protective Role of Thymoquinone. Biol Trace Elem Res 2023; 201:2942-2954. [PMID: 36018545 DOI: 10.1007/s12011-022-03399-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 12/30/2022]
Abstract
Silver nanoparticles (AgNPs) are the most common nanomaterials in consumer products. Therefore, it has been crucial to control AgNPs toxicological effects to improve their safety and increase the outcome of their applications. This work investigated the possible protective effect of thymoquinone (TQ) against AgNPs-induced hepatic and renal cytotoxicity in rats. Serum markers of liver and kidney functions as well as liver and kidney oxidative stress status, pro-inflammatory cytokines, apoptosis markers, and histopathology were assessed. TQ reversed AgNPs-induced elevation in serum liver and kidney function markers, including aspartate transaminase, alanine transaminase, urea, and creatinine. Moreover, TQ co-administration with AgNPs alleviates hepatic and renal oxidative insults by decreasing MDA and NO levels with a significant increase in the activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione recycling enzymes peroxidase and reductase) compared to AgNPs-treated rats. Besides, TQ upregulated hepatic and renal Nrf2 gene expression in AgNPs-intoxicated rats. Furthermore, TQ co-administration decreased the hepatic and renal pro-inflammatory mediators represented by IL-1β, TNF-α, TGF-β, and NF-κB levels. Besides, TQ co-administration decreased apoptotic protein (Bax) levels and increased the anti-apoptotic protein (Bcl-2) levels. These findings were confirmed by the histopathological examination of hepatic and renal tissues. Our data affirmed the protective effect of TQ against AgNPs cytotoxicity and proposed a possible mechanism of TQ antioxidant, anti-inflammatory, and anti-apoptotic effects. Consequently, we could conclude that using TQ might control AgNPs toxicological effects, improve their safety, and increase the outcome of their applications.
Collapse
Affiliation(s)
- Basma Salama
- Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khalid S Alghamdi
- Regional Laboratory, General Administration of Laboratories and Blood Banks, Ministry of Health, Taif, Saudi Arabia
| | - Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Khalid E Hassan
- Pathology Department, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Medial Genetics, Faculty of Medicine, Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Hatem K Amin
- Biochemistry Department, Faculty of Pharmacy, Galala University, El-Galala City, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Rami B Kassab
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, 11795, Egypt.
| | - Ayah S Fathalla
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| |
Collapse
|
7
|
Elganzoury SS, Abdelfattah MS, Habotta OA, El-Khadragy M, Abdel Moneim AE, Abdalla MS. Neuro-amelioration of Ficus lyrata (fiddle-leaf fig) extract conjugated with selenium nanoparticles against aluminium toxicity in rat brain: relevance to neurotransmitters, oxidative, inflammatory, and apoptotic events. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65822-65834. [PMID: 37093386 DOI: 10.1007/s11356-023-26935-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Aluminium is a non-essential metal, and its accumulation in the brain is linked with potent neurotoxic action and the development of many neurological diseases. This investigation, therefore, intended to examine the antagonistic efficacy of Ficus lyrata (fiddle-leaf fig) extract (FLE) conjugated with selenium nanoparticles (FLE-SeNPs) against aluminium chloride (AlCl3)-induced hippocampal injury in rats. Rats were allocated to five groups: control, FLE, AlCl3 (100 mg/kg), AlCl3 + FLE (100 mg/kg), and AlCl3 + FLE-SeNPs (0.5 mg/kg). All agents were administered orally every day for 42 days. The result revealed that pre-treated rats with FLE-SeNPs showed markedly lower acetylcholinesterase and Na+/K+-ATPase activities in the hippocampus than those in AlCl3 group. Additionally, FLE-SeNPs counteracted the oxidant stress-mediated by AlCl3 by increasing superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents in rat hippocampus. Besides, the formulated nanoparticles decreased the hippocampal malondialdehyde, carbonyl protein, and nitric oxide levels of AlCl3-exposed animals. Furthermore, FLE-SeNPs attenuated neural tissue inflammation, as demonstrated by decreased interleukin-1 beta, interleukin-6, nuclear factor kappa B, and glial fibrillary acidic protein. Remarkable anti-apoptotic action was exerted by FLE-SeNPs by increasing B cell lymphoma 2 and decreasing caspase-3 and Bcl-2-associated-X protein in AlCl3-exposed rats. The abovementioned results correlated well with the hippocampal histopathological findings. Given these results, SeNPs synthesized with FLE imparted a remarkable neuroprotective action against AlCl3-induced neurotoxicity by reversing oxidative damage, neuronal inflammation, and apoptosis in exposed rats.
Collapse
Affiliation(s)
- Sara S Elganzoury
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Manal El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Mohga S Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
Habotta O, Ateya A, Saleh RM, El-Ashry ES. Thiamethoxam Evoked Neural Oxido-inflammatory Stress in Male Rats Through Modulation of Nrf2/NF-kB/iNOS Signaling and Inflammatory Cytokines: Neuroprotective Effect of Silymarin. Neurotoxicology 2023; 96:28-36. [PMID: 36958429 DOI: 10.1016/j.neuro.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Thiamethoxam (TMX), a neonicotinoid insecticide, is a widely used insecticide with neurotoxic potential. Silymarin (SM), a milk thistle-derived flavonoid, is known with its promising biological activities. This study explored the neuroprotective effects of SM against TMX-triggered cortical injury in male rats. Animals were divided into four groups and treated daily either with SM (150mg/kg), TMX (78.15mg/kg), or both at the aforementioned doses for 28 days. Our results revealed marked declines in cortical SOD and CAT activities with elevations in MDA, IL-1b and TNF-α levels in TMX-treated rats. Further, TMX induced down-regulation in the gene expressions of Sod, Cat, Gpx, and Nrf-2, with up-regulation in the gene expressions of IL-1b, IL-6, iNOS, TNF-α and NF-kB. Interestingly, pre-treatment with SM provided a notable neuroprotective action against TMX-mediated cortical damage that indicates its promising antioxidant and anti-inflammatory activities. This effect may be mediated by Nrf2/NF-kB/iNOS signalling and suppression of excess free radicals and production of inflammatory cytokines. In brief, SM could be a promising therapeutic agent against TMX-mediated neural complication via its antioxidant and anti-inflammatory properties. PRACTICAL APPLICATIONS: The using of neonicotinoids as thiamethoxam is recently increased and is associated with brain damage. TMX induced excessive oxidative and inflammatory damage. Therefore, new therapeutic approaches are needed to counteract its adverse effects on the nervous system. SM, a flavonoid, is extracted from the seeds and fruits of milk thistle. Due to its potent antioxidative activity, SM have been applied to mitigate the oxidative stress as well as inflammatory disorders. Herein, we examined the potential therapeutic role of SM against TMX-induced brain oxidative stress and inflammation in rats through evaluating oxidative markers, inflammatory response, and histopathological changes in the brain cortical tissue.
Collapse
Affiliation(s)
- Ola Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Wealth Development Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman S El-Ashry
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
Anese M, Alongi M, Cervantes-Flores M, Simental-Mendía LE, Martínez-Aguilar G, Valenzuela-Ramírez AA, Rojas-Contreras JA, Guerrero-Romero F, Gamboa-Gómez CI. Influence of coffee roasting degree on inflammatory and oxidative stress markers in high-fructose and saturated fat-fed rats. Food Res Int 2023; 165:112530. [PMID: 36869534 DOI: 10.1016/j.foodres.2023.112530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Abstract
The objective of this study was to evaluate the effect of roasting coffee degree on inflammatory (NF-kβ F-6 and TNF-α) and stress oxidative markers (malondialdehyde (MDA), nitric oxide (NO) end product concentrations, catalase (CAT), and superoxide dismutase (SOD) in high-fructose and saturated fat (HFSFD)-fed rats. Roasting was performed using hot air circulation (200 °C) for 45 and 60 min, obtaining dark and very dark coffee, respectively. Male Wistar rats were randomly assigned to receive a) unroasted coffee, b) dark coffee, c) very dark coffee, or distilled water for the control group (n = 8). Coffee brews (7.4 mL/per day equivalent to 75 mL/day in humans) were given by gavage for sixteen weeks. All treated groups significantly decreased NF-kβ F-6 (∼30 % for unroasted, ∼50 % for dark, and ∼ 75 % for very dark group) and TNF-α in the liver compared with the control group. Additionally, TNF-α showed a significant reduction in all treatment groups (∼26 % for unroasted and dark groups, and ∼ 39 % for very dark group) in adipose tissue (AT) compared with the negative control. Regarding oxidative stress makers, all coffee brews exerted antioxidant effects in serum, AT, liver, kidney, and heart. Our results revealed that the anti-inflammatory and antioxidant effects of coffee vary according to the roasting degree in HFSFD-fed rats.
Collapse
Affiliation(s)
- Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Marilisa Alongi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Maribel Cervantes-Flores
- Faculty of Chemical Sciences, Universidad Juárez del Estado de Durango, Avenida Veterinaria S/N. Col. Valle del Sur. C.P. 34120, Durango, Mexico
| | - Luis E Simental-Mendía
- Biomedical Research Unit, Mexican Social Security Institute at Durango, Canoas 100. Col. Los Ángeles CP 34067, Durango, Mexico
| | - Gerardo Martínez-Aguilar
- Biomedical Research Unit, Mexican Social Security Institute at Durango, Canoas 100. Col. Los Ángeles CP 34067, Durango, Mexico
| | | | - Juan A Rojas-Contreras
- TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Dgo., Mexico
| | - Fernando Guerrero-Romero
- Biomedical Research Unit, Mexican Social Security Institute at Durango, Canoas 100. Col. Los Ángeles CP 34067, Durango, Mexico.
| | - Claudia I Gamboa-Gómez
- Biomedical Research Unit, Mexican Social Security Institute at Durango, Canoas 100. Col. Los Ángeles CP 34067, Durango, Mexico.
| |
Collapse
|
10
|
Green Coffee Bean Extract Potentially Ameliorates Liver Injury due to HFD/STZ-Induced Diabetes in Rats. J Food Biochem 2023. [DOI: 10.1155/2023/1500032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The goal of the current study was to examine the therapeutic potential of green coffee bean extract (GCBE) in the treatment of diabetic hepatic damage induced by high-fat diet (HFD) and streptozotocin (STZ) administration. The novelty of this study lies in constructing a newly stabilized in vivo obese diabetic animal model in rats using HFD/STZ for investigating the dose-dependent effect of two commonly used doses of GCBE in hepatoprotection against oxidative stress-induced hepatic damage by measuring many parameters that have not been carried out previously in other studies. GCBE that was used in this study was a hot water extract of green coffee beans with a concentration of 0.1 g ml−1. Male albino rats were given a single dose of STZ (35 mg kg−1), and HFD to induce diabetes mellitus (DM). For 28 days, two separate doses of GCBE 50 mg kg−1 and 100 mg kg−1 were administered orally to diabetic animals. Leptin, liver enzymes, oxidative stress parameters, inflammatory parameters, fasting plasma glucose (FPG), fasting plasma insulin (FPI), and lipid profile levels were examined. Real-time PCR and ELISA were used to quantitatively detect the mRNAs of the genes involved in the insulin signaling pathway, the genes involved in glucose metabolism, and the amounts of proteins. The levels of FPG, lipid profile, liver enzymes, inflammatory markers, and leptin in the HFD/STZ diabetic group revealed a considerable spike, while they considerably decreased after GCBE treatment in a dose-dependent manner. After GCBE treatment, the diabetic group showed a significant rise in the antioxidant markers glutathione, superoxide dismutase, and catalase, as well as a decrease in malondialdehyde and nitric oxide levels. The liver changes caused by HFD/STZ were entirely reversed by GCBE, and most intriguingly, in a dose-dependent manner. We concluded that GCBE can repair the hepatic oxidative damage caused by HFD and STZ by reversing all the previously measured parameters and improving the insulin signaling pathways. GCBE demonstrated strong antifree radical activity and significantly protected cells from oxidative damage caused by HFD/STZ.
Collapse
|
11
|
Alsharif KF, Albrakati A, Al Omairi NE, Almalki AS, Alsanie W, Abd Elmageed ZY, Alharthi F, Althagafi HA, Alghamdi AAA, Hassan IE, Habotta OA, Lokman MS, Kassab RB, El-Hennamy RE. Neuroprotective efficacy of the bacterial metabolite, prodigiosin, against aluminium chloride-induced neurochemical alternations associated with Alzheimer's disease murine model: Involvement of Nrf2/HO-1/NF-κB signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:266-277. [PMID: 36447373 DOI: 10.1002/tox.23718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Prodigiosin (PDG) is a bacterial metabolite with numerous biological and pharmaceutical properties. Exposure to aluminium is considered a root etiological factor in the pathological progress of Alzheimer's disease (AD). Here, in this investigation, we explored the neuroprotective potential of PDG against aluminium chloride (AlCl3 )-mediated AD-like neurological alterations in rats. For this purpose, rats were gavaged either AlCl3 (100 mg/kg), PDG (300 mg/kg), or both for 42 days. As a result of the analyzes performed on the hippocampal tissue, it was observed that AlCl3 induced biochemical, molecular, and histopathological changes like those related to AD. PDG pre-treatment significantly decreased acetylcholinesterase activity and restored the levels of brain-derived neurotrophic factor, monoamines (dopamine, norepinephrine, and serotonin), and transmembrane protein (Na+ /K+ -ATPase). Furthermore, PDG boosted the hippocampal antioxidant capacity, as shown by the increased superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents. These findings were accompanied by decreases in malondialdehyde and nitric oxide levels. The antioxidant effect may promote the upregulation of the expression of antioxidant genes (Nrf2 and HO-1). Moreover, PDG exerted notable anti-inflammatory effects via the lessening of interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor kappa B, and decreases in the gene expression of inducible nitric oxide synthase. In addition, noteworthy decreases in pro-apoptotic (Bax and caspase-3) levels and increases in anti-apoptotic (Bcl-2) biomarkers suggested an anti-apoptotic effect of PDG. In support, the hippocampal histological examination validated the aforementioned changes. To summarize, the promising neuromodulatory, antioxidative, anti-inflammatory, and anti-apoptotic activities of PDG establish it as a potent therapeutic option for AD.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Naif E Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | | | - Walaa Alsanie
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Zakaria Y Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ibrahim Eid Hassan
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Physics, College of Science and Arts, Qassim University, Alnbhaniah, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Rami B Kassab
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rehab E El-Hennamy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
12
|
Younis NN, Eissa RG. Alzheimer's disease and green coffee bean extract. TREATMENTS, NUTRACEUTICALS, SUPPLEMENTS, AND HERBAL MEDICINE IN NEUROLOGICAL DISORDERS 2023:65-79. [DOI: 10.1016/b978-0-323-90052-2.00040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Alsharif KF, Albrakati A, Al Omairi NE, Almalki AS, Alsanie WF, Elmageed ZYA, Habotta OA, Lokman MS, Althagafi HA, Alghamdi AAA, Moneim AEA, Alyami H, Belal SKM, Alnefaie G, Alamri AS, Albezrah NKA, Kassab RB, Albarakati AJA, Hassan KE, Agil A. Therapeutic antischizophrenic activity of prodigiosin and selenium co-supplementation against amphetamine hydrochloride-induced behavioural changes and oxidative, inflammatory, and apoptotic challenges in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7987-8001. [PMID: 36048389 DOI: 10.1007/s11356-022-22409-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Schizophrenia (SCZ), a multifactorial neuropsychiatric disorder, is treated with inefficient antipsychotics and linked to poor treatment outcomes. This study, therefore, investigated the combined administration of prodigiosin (PDG) and selenium (Na2SeO3) against SCZ induced by amphetamine (AMPH) in rats. Animals were allocated into four groups corresponding to their respective 7-day treatments: control, AMPH (2 mg/kg), PDG (300 mg/kg) + Na2SeO3 (2 mg/kg), and AMPH + PDG + Na2SeO3. The model group exhibited biochemical, molecular, and histopathological changes similar to those of the SCZ group. Contrastingly, co-administration of PDG and Na2SeO3 significantly increased the time for social interaction and decreased AChE and dopamine. It also downregulated the gene expression of NMDAR1 and restored neurotrophin (BDNF and NGF) levels. Further, PDG combined with Na2SeO3 improved the antioxidant defence of the hippocampus by boosting the activities of SOD, CAT, GPx, and GR. These findings were accompanied by an increased GSH, alongside decreased MDA and NO levels. Furthermore, schizophrenic rats having received PDG and Na2SeO3 displayed markedly lower IL-1β and TNF-α levels compared to the model group. Interestingly, remarkable declines in the Bax (pro-apoptotic) and increases in Bcl-2 (anti-apoptotic) levels were observed in the SCZ group that received PDG and Na2SeO3. The hippocampal histological examination confirmed these changes. Collectively, these findings show that the co-administration of PDG and Na2SeO3 may have a promising therapeutic effect for SCZ. This is mediated by mechanisms related to the modulation of cholinergic, dopaminergic, and glutaric neurotransmission and neurotrophic factors, alongside the suppression of oxidative damage, neuroinflammation, and apoptosis machinery.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Naif E Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulraheem S Almalki
- Department of Chemistry, Faculty of Science, Taif University, Taif, 21974, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Zakaria Y Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA, 71203, USA
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Hussain Alyami
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Saied K M Belal
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ghaliah Alnefaie
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Nisreen Khalid Aref Albezrah
- Department of Obstetric and Gynecology, Medicine College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Rami B Kassab
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al Qura University, Makkah, Saudi Arabia
| | - Khalid Ebraheem Hassan
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, 18071, Granada, Spain
| |
Collapse
|
14
|
Othman MS, Obeidat ST, Aleid GM, Abdel-Daim MM, Habotta OA, Schwartz L, Al-Bagawi AH, Hussein MM, Bakkar A. Pergularia tomentosa coupled with selenium nanoparticles salvaged lead acetate-induced redox imbalance, inflammation, apoptosis, and disruption of neurotransmission in rats’ brain. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
In this study, the neuroprotective potential of either Pergularia tomentosa leaf methanolic extract (PtE) alone or in combination with selenium nanoparticles (SeNPs-PtE) was investigated against lead acetate (PbAc)-induced neurotoxicity. Experimental rats were pretreated with PtE (100 mg/kg) or SeNPs-PtE (0.5 mg/kg) and injected intraperitoneally with PbAc (20 mg/kg) for 2 weeks. Notably, SeNPs-PtE decreased brain Pb accumulation and enhanced the level of dopamine and the activity of AChE compared to the control rats. In addition, elevated neural levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione along with decreased lipid peroxidation levels were noticed in pretreated groups with SeNPs-PtE. Moreover, SeNPs-PtE significantly suppressed neural inflammation, as indicated by lower levels of interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, nuclear factor-kappa B p65, and nitric oxide in the examined brain tissue. The molecular results also unveiled significant down-regulation in iNOS gene expression in the brains of SeNPs-PtE-treated rats. In addition, SeNPs-PtE administration counteracted the neural loss by increasing B-cell lymphoma 2 (Bcl-2) and brain-derived neurotrophic factor levels as well as decreasing BCL2-associated X protein and caspase-3 levels. To sum up, our data suggest that P. tomentosa extract alone or in combination with SeNPs has great potential in reversing the neural tissue impairment induced by PbAc via its antioxidant, anti-inflammatory, and anti-apoptotic activities. This study might have therapeutic implications in preventing and treating several lead-induced neurological disorders.
Collapse
Affiliation(s)
- Mohamed S. Othman
- Basic Sciences Department, University of Ha’il , 2240 , Hail , Saudi Arabia
| | - Sofian T. Obeidat
- Basic Sciences Department, University of Ha’il , 2240 , Hail , Saudi Arabia
| | - Ghada M. Aleid
- Basic Sciences Department, University of Ha’il , 2240 , Hail , Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Phamacy Program, Batterjee Medical College , 6231 Jeddah , Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University , 41522 Ismailia , Egypt
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University , 35516 , Mansoura , Egypt
| | - Laurent Schwartz
- Oncology Department, Assistance Publique des Hopitaux de Paris , 71150 Paris , France
| | - Amal H. Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha’il , 2240 , Hail , Saudi Arabia
| | - Manal M. Hussein
- Zoology and Entomology Department, Faculty of Science, Helwan University , 11795 , Cairo , Egypt
| | - Ashraf Bakkar
- Biochemistry Department, Faculty of Biotechnology, October University for Modern Science and Arts (MSA) , 12585 Giza , Egypt
| |
Collapse
|
15
|
Hussein MM, Althagafi HA, Alharthi F, Albrakati A, Alsharif KF, Theyab A, Kassab RB, Mufti AH, Algahtani M, Oyouni AAA, Baty RS, Abdel Moneim AE, Lokman MS. Apigenin attenuates molecular, biochemical, and histopathological changes associated with renal impairments induced by gentamicin exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65276-65288. [PMID: 35484458 DOI: 10.1007/s11356-022-20235-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/09/2022] [Indexed: 04/16/2023]
Abstract
Gentamicin (GM) is an aminoglycoside antibiotic used to treat bacterial infections. However, its application is accompanied by renal impairments. Apigenin is a flavonoid found in many edible plants with potent therapeutic values. This study was designed to elucidate the therapeutic effects of apigenin on GM-induced nephrotoxicity. Animals were injected orally with three different doses of apigenin (5 mg kg-1 day-1, 10 mg kg-1 day-1, and 20 mg kg-1 day-1). Apigenin administration abolished the alterations in the kidney index and serum levels of kidney-specific functions markers, namely blood urea nitrogen and creatinine, and KIM-1, NGAL, and cystatin C following GM exposure. Additionally, apigenin increased levels of enzymatic (glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase) and non-enzymatic antioxidant proteins (reduced glutathione) and decreased levels of lipid peroxide, nitric oxide, and downregulated nitric oxide synthase-2 in the kidney tissue following GM administration. At the molecular scope, apigenin administration was found to upregulate the mRNA expression of Nfe2l2 and Hmox1 in the kidney tissue. Moreover, apigenin administration suppressed renal inflammation and apoptosis by decreasing levels of interleukin-1β, tumor necrosis factor-alpha, nuclear factor kappa-B, Bax, and caspase-3, while increasing B-cell lymphoma-2 compared with those in GM-administered group. The recorded data suggests that apigenin treatment could be used to alleviate renal impairments associated with GM administration.
Collapse
Affiliation(s)
- Manal M Hussein
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Al Makhwah, Al-Bahah, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | | | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Al Makhwah, Al-Bahah, Saudi Arabia.
| | - Ahmad H Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, the Comprehensive Specialized Clinics of Security Forces, Jeddah, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Roua S Baty
- Department of Biotechnology, College of Applied Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia
| |
Collapse
|
16
|
Effects of Fermented Camel Milk Supplemented with Sidr Fruit (Ziziphus spina-christi L.) Pulp on Hyperglycemia in Streptozotocin-Induced Diabetic Rats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes is one of the most common chronic metabolic diseases, and its occurrence rate has increased in recent decades. Sidr (Ziziphus spina-christi L.) is a traditional herbaceous medicinal plant. In addition to its good flavor, sidr has antidiabetic, anti-inflammatory, sedative, analgesic, and hypoglycemic activities. Camel milk has a high nutritional and health value, but its salty taste remains the main drawback in relation to its organoleptic properties. The production of flavored or fortified camel milk products to mask the salty taste can be very beneficial. This study aimed to investigate the effects of sidr fruit pulp (SFP) on the functional and nutritional properties of fermented camel milk. SFP was added to camel milk at rates of 5%, 10%, and 15%, followed by the selection of the best-fermented product in terms of functional and nutritional properties (camel milk supplemented with 15% SFP), and an evaluation of its hypoglycemic activity in streptozotocin (STZ)-induced diabetic rats. Thirty-two male adult albino rats (weighing 150–185 g) were divided into four groups: Group 1, nontreated nondiabetic rats (negative control); Group 2, diabetic rats given STZ (60 mg/kg body weight; positive control); Group 3, diabetic rats fed a basal diet with fermented camel milk (10 g/day); and Group 4, diabetic rats fed a basal diet with fermented camel milk supplemented with 15% SFP (10 g/day). The results revealed that supplementation of camel milk with SFP increased its total solids, protein, ash, fiber, viscosity, phenolic content, and antioxidant activity, which was proportional to the supplementation ratio. Fermented camel milk supplemented with 15% SFP had the highest scores for sensory properties compared to other treatments. Fermented camel milk supplemented with 15% SFP showed significantly decreased (p < 0.05) blood glucose, malondialdehyde, low-density lipoprotein-cholesterol, cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, creatinine, and urea, and a significantly increased (p < 0.05) high-density lipoprotein-cholesterol, total protein content, and albumin compared to diabetic rats. The administration of fermented camel milk supplemented with 15% SFP in diabetic rats restored a series of histopathological changes alonsgside an improvement in various enzyme and liver function tests compared to the untreated group, indicating that fermented camel milk supplemented with 15% SFP might play a preventive role in such patients.
Collapse
|
17
|
Al-Kuraishy HM, Al-Gareeb AI, Alkazmi L, Habotta OA, Batiha GES. High-mobility group box 1 (HMGB1) in COVID-19: extrapolation of dangerous liaisons. Inflammopharmacology 2022; 30:811-820. [PMID: 35471628 PMCID: PMC9040700 DOI: 10.1007/s10787-022-00988-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
High-mobility group box 1 (HMGB1), a multifunctional nuclear protein, exists mainly within the nucleus of all mammal eukaryotic cells. It is actively secreted by the necrotic cells as a response to the inflammatory signaling pathway. HMGB1 binds to receptor ligands as RAGE, and TLR and becomes a pro-inflammatory cytokine with a robust capacity to trigger inflammatory response. It is a critical mediator of the pathogenesis of systemic inflammation in numerous inflammatory disorders. Release of HMGB1 is associated with different viral infections and strongly participates in the regulation of viral replication cycles. In COVID-19 era, high HMGB1 serum levels were observed in COVID-19 patients and linked with the disease severity, development of cytokine storm (CS), acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). SARS-CoV-2-induced cytolytic effect may encourage release of HMGB1 due to nuclear damage. Besides, HMGB1 activates release of pro-inflammatory cytokines from immune cells and up-regulation of angiotensin I-converting enzyme 2 (ACE2). Therefore, targeting of the HMGB1 pathway by anti-HMGB1 agents, such as heparin, resveratrol and metformin, may decrease COVID-19 severity. HMGB1 signaling pathway has noteworthy role in the pathogenesis of SARS-CoV-2 infections and linked with development of ALI and ARDS in COVID-19 patients. Different endogenous and exogenous agents may affect release and activation of HMGB1 pathway. Targeting of HMGB1-mediated TLR2/TLR4, RAGE and MAPK signaling, might be a new promising drug candidate against development of ALI and/or ARDS in severely affected COVID-19 patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
18
|
Ma S, Bi W, Liu X, Li S, Qiu Y, Huang C, Lv R, Yin Q. Single-Cell Sequencing Analysis of the db/db Mouse Hippocampus Reveals Cell-Type-Specific Insights Into the Pathobiology of Diabetes-Associated Cognitive Dysfunction. Front Endocrinol (Lausanne) 2022; 13:891039. [PMID: 35721719 PMCID: PMC9200615 DOI: 10.3389/fendo.2022.891039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes-associated cognitive decline (DCD), is one of the complications of diabetes, which is characterized by a series of neurophysiological and pathological abnormalities. However, the exact pathogenesis of DCD is still unknown. Single-cell RNA sequencing (scRNA-seq) could discover unusual subpopulations, explore functional heterogeneity and identify signaling pathways and potential markers. The aim of this research was to provide deeper opinion into molecular and cellular changes underlying DCD, identify different cellular types of the diabetic mice hippocampus at single-cell level, and elucidate the factors mediating the pathogenesis of DCD. To elucidate cell specific gene expression changes in the hippocampus of diabetic encephalopathy. Single-cell RNA sequencing of hippocampus from db/m and db/db mice was carried out. Subclustering analysis was performed to further describe microglial cell subpopulations. Interestingly using immunohistochemistry, these findings were confirmed at the protein level. Single cell analysis yielded transcriptome data for 14621 hippocampal cells and defined 11 different cell types. Analysis of differentially expressed genes in the microglia compartments indicated that infection- and immune system process- associated terms, oxidative stress and inflammation play vital roles in the progression of DCD. Compared with db/m mouse, experiments at the protein level supported the activation of microglia, increased expression of inflammatory factors and oxidative stress damage in the hippocampus of db/db mouse. In addition, a major finding of our research was the subpopulation of microglia that express genes related to pro-inflammatory disease-associated microglia (DAM). Our research reveals pathological alterations of inflammation and oxidative stress mediated hippocampal damage in the db/db mice, and may provide potential diagnostic biomarkers and therapeutic interventions for DCD.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenkai Bi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangbin Li
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaxin Qiu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengcheng Huang
- Clinical Education Administration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renjun Lv
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Renjun Lv, ; Qingqing Yin,
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Renjun Lv, ; Qingqing Yin,
| |
Collapse
|
19
|
Othman MS, Khaled AM, Al-Bagawi AH, Fareid MA, Ghany RA, Habotta OA, Abdel Moneim AE. Hepatorenal protective efficacy of flavonoids from Ocimum basilicum extract in diabetic albino rats: A focus on hypoglycemic, antioxidant, anti-inflammatory and anti-apoptotic activities. Biomed Pharmacother 2021; 144:112287. [PMID: 34649220 DOI: 10.1016/j.biopha.2021.112287] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 02/09/2023] Open
Abstract
Plant derived phytochemical therapy is a bright candidate for treatment of diabetes and its associated complications. Ocimum baslicum is used as an anti-diabetic traditional medicine. Hence, the present study investigated the effect of Hail Ocimum extract (HOE) and its total flavonoids (HOETF) against hepatorenal damage in experimental diabetes induced by high-fat diet (HFD) and injection of streptozotocin (STZ) in rats. Diabetic animals were co-treated daily with HOE, HOETF or metformin (MET) as a standard anti-diabetic drug for four weeks. Compared to controls, HFD/STZ-treatment lead to significant increases in fasting blood glucose, insulin and HOMA-IR levels. Furthermore, diabetic rats had elevated hepatic (ALT and ALP) and kidney functions (urea and creatinine) biomarkers together with disturbed lipid profile and decreased PPAR-γ gene expression. Higher levels of hepatic and renal LPO and NO paralleled with lower levels of GSH and activities of antioxidant enzymes (SOD, CAT, GPx and GR) after HFD/STZ treatment. Additionally, noteworthy inflammatory and apoptotic responses were evident in both organs of diabetic rats as witnessed by augmented levels of TNF-α, IL-1b and Bax levels with declined levels of Bcl-2. Moreover, histological examination of hepatic, renal and pancreatic tissues validated the biochemical findings. On contrary, co-treatment of diabetic animals with HOE or HOETF could decrease glucose and insulin levels together with improvement of lipid markers and alleviation of hepatorenal dysfunction, oxidative injury, inflammatory and apoptotic events. Conclusively, HOE or HOETF could be a promising complementary therapeutic option for the management of diabetic hepatorenal complication owing to their antioxidant, anti-inflammatory; anti-apoptotic properties.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.
| | - Azza M Khaled
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Amal H Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha'il, Hail, Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Reda A Ghany
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
20
|
Rizk S, Taha H, Abdel Moneim AE, Amin HK. Neuroprotective effect of green and roasted coffee bean extracts on cerebral ischemia-induced injury in rats. Metab Brain Dis 2021; 36:1943-1956. [PMID: 34228267 DOI: 10.1007/s11011-021-00769-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Stroke is a lethal event with a high incidence in Egypt. Quick early intervention can be lifesaving. Transient global ischemia (TGI), a type of ischemic stroke, is mainly instigated by cardiac arrest. Ischemia followed by reperfusion causes further neuronal cell damage. In this study, we aimed to evaluate the potential apoptotic, anti-inflammatory, and neuroprotective effects of green (GCBE) and roasted (RCBE) coffee bean water extract against transient global ischemia-induced via a bilateral common carotid artery occlusion (CAO) in rats. Before CAO, 1.5 ml/kg body weight/day of GCBE or RCBE was administered for 14 days by oral gavage. Ischemia/reperfusion (I/R) and sham groups were treated with a vehicle. Oxidative stress biomarkers and antioxidant enzyme activities, such as MDA, NO, GSH, SOD, CAT, GR, GPx, inflammatory markers TNF-α, IL-1β, and NF-κB, and BDNF were investigated. Quantitative real-time PCR analysis of mitogen-activated protein kinase pathways, in addition to heme oxygenase 1, and nuclear factor erythroid 2-related factor 2 were determined. Apoptotic markers, including Bcl-2, Bax, and caspase 3, in addition to the vascular endothelial growth factor-a, were investigated, followed by an examination of hippocampal histopathology. Pre-administration of GCBE and RCBE improved neurological function and neuronal survival, suppressed the spread of oxidative stress, inflammation, and apoptosis, and reversed most of the pathological changes. However, green coffee bean extract was more effective than roasted coffee bean extract, perhaps due to the roasting process, which may affect active compounds. In conclusion, GCBE and RCBE represent a potential clinical strategy for pre-ischemic conditioning.
Collapse
Affiliation(s)
- Sara Rizk
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Heba Taha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Hatem K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
21
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
22
|
Nawata K. Estimation of Diabetes Prevalence, and Evaluation of Factors Affecting Blood Glucose Levels and Use of Medications in Japan. Health (London) 2021. [DOI: 10.4236/health.2021.1312102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Albasher G. Modulation of reproductive dysfunctions associated with streptozocin-induced diabetes by Artemisia judaica extract in rats fed a high-fat diet. Mol Biol Rep 2020; 47:7517-7527. [PMID: 32920759 DOI: 10.1007/s11033-020-05814-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
We investigated the palliative effect of Artemisia judaica extract (AjE) on testicular deterioration induced by DM in high-fat diet/streptozocin (HFD/STZ)-injected rats. Forty rats were allocated to the following five groups: control, AjE, HFD/STZ, HFD/STZ-AjE, and HFD/STZ-metformin. HFD/STZ-diabetic rats showed a marked decrease in testicular weight and male sex hormones. There was significant suppression of testicular antioxidant enzymes and glutathione content in HFD/STZ-diabetic rats. However, rats that had received the STZ injection and the high-fat diet displayed increased malondialdehyde content and nitric oxide levels as well as tumour necrosis factor-alpha. High levels of Bax and low levels of Bcl-2 were detected after the STZ injection. Obvious pathological alterations were found in the testicular tissue of the HFD/STZ-diabetic rats. Thus, the administration of AjE attenuated the biochemical, molecular, and histopathological changes in the testes of the diabetic rats. The obtained findings showed that AjE treatment attenuated the diabetes-induced reprotoxicity in male rats via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|