1
|
Trujillo E, Monreal-Escalante E, Angulo C. Microalgae-made human vaccines and therapeutics: A decade of advances. Biotechnol J 2024; 19:e2400091. [PMID: 38719615 DOI: 10.1002/biot.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Microalgal emergence is a promising platform with two-decade historical background for producing vaccines and biopharmaceuticals. During that period, microalgal-based vaccines have reported successful production for various diseases. Thus, species selection is important for genetic transformation and delivery methods that have been developed. Although many vaccine prototypes have been produced for infectious and non-infectious diseases, fewer studies have reached immunological and immunoprotective evaluations. Microalgae-made vaccines for Staphylococcus aureus, malaria, influenza, human papilloma, and Zika viruses have been explored in their capacity to induce humoral or cellular immune responses and protective efficacies against experimental challenges. Therefore, specific pathogen antigens and immune system role are important and addressed in controlling these infections. Regarding non-communicable diseases, these vaccines have been investigated for breast cancer; microalgal-produced therapeutic molecules and microalgal-made interferon-α have been explored for hypertension and potential applications in treating viral infections and cancer, respectively. Thus, conducting immunological trials is emphasized, discussing the promising results observed in terms of immunogenicity, desired immune response for controlling affections, and challenges for achieving the desired protection levels. The potential advantages and hurdles associated with this innovative approach are highlighted, underlining the relevance of assessing immune responses in preclinical and clinical trials to validate the efficacy of these biopharmaceuticals. The promising future of this healthcare technology is also envisaged.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
2
|
Xu T, Mitra R, Tan D, Li Z, Zhou C, Chen T, Xie Z, Han J. Utilization of gene manipulation system for advancing the biotechnological potential of halophiles: A review. Biotechnol Adv 2024; 70:108302. [PMID: 38101552 DOI: 10.1016/j.biotechadv.2023.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Halophiles are salt-loving microorganisms known to have their natural resistance against media contamination even when cultivated in nonsterile and continuous bioprocess system, thus acting as promising cell factories for Next Generation of Industrial Biotechnology (NGIB). NGIB - a successor to the traditional industrial biotechnology, is a more sustainable and efficient bioprocess technology while saving energy and water in a more convenient way as well as reducing the investment cost and skilled workforce requirement. Numerous studies have achieved intriguing outcomes during synthesis of different metabolite using halophiles such as polyhydroxyalkanoates (PHA), ectoine, biosurfactants, and carotenoids. Present-day development in genetic maneuverings have shown optimistic effects on the industrial applications of halophiles. However, viable and competent genetic manipulation system and gene editing tools are critical to accelerate the process of halophile engineering. With the aid of such powerful gene manipulation systems, exclusive microbial chassis are being crafted with desirable features to breed another innovative area of research such as synthetic biology. This review provides an aerial perspective on how the expansion of adaptable gene manipulation toolkits in halophiles are contributing towards biotechnological advancement, and also focusses on their subsequent application for production improvement. This current methodical and comprehensive review will definitely help the scientific fraternity to bridge the gap between challenges and opportunities in halophile engineering.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; International College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhengjun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Biochemical Engineering, Beijing Union University, Beijing 100023, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
3
|
Nuclear localization signal peptides enhance genetic transformation of Dunaliella salina. Mol Biol Rep 2023; 50:1459-1467. [PMID: 36482029 DOI: 10.1007/s11033-022-08159-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dunaliella salina (D. salina) expression system shows a very attractive application prospect, but it currently has a technical bottleneck, namely the low or unstable expression of recombinant proteins. Given the characteristics of cell-penetrating peptides or/and nuclear localization signal (NLS) peptides, this study is the first attempt to improve the transformation rate of foreign gene with trans-activating transcriptional (TAT) protein or/and NLS peptides. METHODS AND RESULTS Using salt gradient method, exogenous plasmids were transferred into D. salina cells with TAT or TAT/NLS complexes simultaneously. The β-glucuronidase gene expression was identified by means of histochemical stain and RT-qPCR detection. Through observation with light microscope, TAT-mediating cells exhibit an apparent cytotoxicity even at ratios of 0.5, no significant toxicity was noted in the TAT/plasmid/NLS complex group. It is obvious that with the addition of peptides the toxicity decreases significantly. Histochemical staining showed that the transformants presented blue color under light microscope, but the negative control and blank control are not. Furthermore, based on a TAT/plasmids ratio of 4 with 10 µg NLS peptides mediation, RT-qPCR results demonstrated that the transcripts of target gene were increased by 269 times than that of control group. CONCLUSIONS This study demonstrated that combination of TAT and NLS peptides can significantly improve the transformation rate and expression level of foreign gene in D. salina system. It offers a promising way for promoting the application and development of D. salina bioreactor.
Collapse
|
4
|
Xie Y, Khoo KS, Chew KW, Devadas VV, Phang SJ, Lim HR, Rajendran S, Show PL. Advancement of renewable energy technologies via artificial and microalgae photosynthesis. BIORESOURCE TECHNOLOGY 2022; 363:127830. [PMID: 36029982 DOI: 10.1016/j.biortech.2022.127830] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
There has been an urgent need to tackle global climate change and replace conventional fuels with alternatives from sustainable sources. This has led to the emergence of bioenergy sources like biofuels and biohydrogen extracted from microalgae biomass. Microalgae takes up carbon dioxide and absorbs sunlight, as part of its photosynthesis process, for growth and producing useful compounds for renewable energy. While, the developments in artificial photosynthesis to a chemical process that biomimics the natural photosynthesis process to fix CO2 in the air. However, the artificial photosynthesis technology is still being investigated for its implementation in large scale production. Microalgae photosynthesis can provide the same advantages as artificial photosynthesis, along with the prospect of having final microalgae products suitable for various application. There are significant potential to adapt either microalgae photosynthesis or artificial photosynthesis to reduce the CO2 in the climate and contribute to a cleaner and green cultivation method.
Collapse
Affiliation(s)
- Youping Xie
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Vishno Vardhan Devadas
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sue Jiun Phang
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Jalan Venna P5/2, Precinct 5, 62200 Putrajaya, Malaysia
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda. General Velasquez, 1775 Arica, Chile
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
5
|
Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes (Basel) 2022. [DOI: 10.3390/pr10091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The demand for effective, low-cost vaccines increases research in next-generation biomanufacturing platforms and the study of new vaccine delivery systems (e.g., mucosal vaccines). Applied biotechnology in antigen production guides research toward developing genetic modification techniques in different biological models to achieve the expression of heterologous proteins. These studies are based on various transformation protocols, applied in prokaryotic systems such as Escherichia coli to eukaryotic models such as yeasts, insect cell cultures, animals, and plants, including a particular type of photosynthetic organisms: microalgae, demonstrating the feasibility of recombinant protein expression in these biological models. Microalgae are one of the recombinant protein expression models with the most significant potential and studies in the last decade. Unicellular photosynthetic organisms are widely diverse with biological and growth-specific characteristics. Some examples of the species with commercial interest are Chlamydomonas, Botryococcus, Chlorella, Dunaliella, Haematococcus, and Spirulina. The production of microalgae species at an industrial level through specialized equipment for this purpose allows for proposing microalgae as a basis for producing recombinant proteins at a commercial level. A specie with a particular interest in biotechnology application due to growth characteristics, composition, and protein production capacity is D. salina, which can be cultivated under industrial standards to obtain βcarotene of high interest to humans. D saline currently has advantages over other microalgae species, such as its growth in culture media with a high salt concentration which reduces the risk of contamination, rapid growth, generally considered safe (GRAS), recombinant protein biofactory, and a possible delivery vehicle for mucosal application. This review discusses the status of microalgae D. salina as a platform of expression of recombinant production for its potential mucosal application as a vaccine delivery system, taking an advance on the technology for its production and cultivation at an industrial level.
Collapse
|
6
|
Bolaños-Martínez OC, Mahendran G, Rosales-Mendoza S, Vimolmangkang S. Current Status and Perspective on the Use of Viral-Based Vectors in Eukaryotic Microalgae. Mar Drugs 2022; 20:md20070434. [PMID: 35877728 PMCID: PMC9318342 DOI: 10.3390/md20070434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
During the last two decades, microalgae have attracted increasing interest, both commercially and scientifically. Commercial potential involves utilizing valuable natural compounds, including carotenoids, polysaccharides, and polyunsaturated fatty acids, which are widely applicable in food, biofuel, and pharmaceutical industries. Conversely, scientific potential focuses on bioreactors for producing recombinant proteins and developing viable technologies to significantly increase the yield and harvest periods. Here, viral-based vectors and transient expression strategies have significantly contributed to improving plant biotechnology. We present an updated outlook covering microalgal biotechnology for pharmaceutical application, transformation techniques for generating recombinant proteins, and genetic engineering tactics for viral-based vector construction. Challenges in industrial application are also discussed.
Collapse
Affiliation(s)
- Omayra C. Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ganesan Mahendran
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico;
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, San Luis Potosí 78210, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8358
| |
Collapse
|
7
|
Kuo EY, Yang RY, Chin YY, Chien YL, Chen YC, Wei CY, Kao LJ, Chang YH, Li YJ, Chen TY, Lee TM. Multi-omics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae. Biotechnol J 2022; 17:e2100603. [PMID: 35467782 DOI: 10.1002/biot.202100603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value-added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome-editing tools in microalgae biorefinery and wastewater treatment. The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eva YuHua Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yuan Yu Chin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Lin Chien
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu Chu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Cheng-Yu Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Li-Jung Kao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Hua Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu-Jia Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Te-Yuan Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
8
|
Singh M, Mal N, Mohapatra R, Bagchi T, Parambath SD, Chavali M, Rao KM, Ramanaiah SV, Kadier A, Kumar G, Chandrasekhar K, Kim SH. Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices. CHEMOSPHERE 2022; 293:133513. [PMID: 34990720 DOI: 10.1016/j.chemosphere.2022.133513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery. Furthermore, the techno-economic strategies further maximize metabolites production for biofuel, biohydrogen, and other industrial applications. The experimental methodologies in algal photobioreactor promote high biomass production, enriched in lipid and starch content in limited environmental conditions. This review presents an optimization framework combining genetic manipulation methods to simulate microalgal growth dynamics, understand the complexity of algal biorefinery to scale up, and identify green strategies for techno-economic feasibility of algae for biomass conversion. Overall, the algal biorefinery opens up new possibilities for the valorization of algae biomass and the synthesis of various novel products.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Reecha Mohapatra
- Department of Life Sciences, NIT Rourkela, 769008, Odisha, India
| | - Trisha Bagchi
- Department of Botany, West Bengal State University, Barasat, 700126, West Bengal, India
| | | | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science & Technology, Alliance University (Central Campus), Chandapura-Anekal Main Road, Bengaluru, 562106, Karnataka, India; NTRC-MCETRC and 109 Nano Composite Technologies Pvt. Ltd., Guntur District, 522201, Andhra Pradesh, India
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea; Department of Automotive Lighting Convergence Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material and Opto-electronic Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Chen H, Wang Q. Microalgae-Based Green Bio-Manufacturing—How Far From Us. Front Microbiol 2022; 13:832097. [PMID: 35250947 PMCID: PMC8891535 DOI: 10.3389/fmicb.2022.832097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Qiang Wang
| |
Collapse
|
10
|
Castellanos-Huerta I, Gómez-Verduzco G, Tellez-Isaias G, Ayora-Talavera G, Bañuelos-Hernández B, Petrone-García VM, Velázquez-Juárez G, Fernández-Siurob I. Transformation of Dunaliella salina by Agrobacterium tumefaciens for the Expression of the Hemagglutinin of Avian Influenza Virus H5. Microorganisms 2022; 10:microorganisms10020361. [PMID: 35208815 PMCID: PMC8877374 DOI: 10.3390/microorganisms10020361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Avian influenza (AI) is one of the main threats to the poultry industry worldwide. Vaccination efforts are based on inactivated, live attenuated, and recombinant vaccines, where the virus hemagglutinin (HA) is the main component of any vaccine formulation. This study uses Dunaliella salina to express the AIV HA protein of an H5 virus. D. salina offers a system of feasible culture properties, generally recognized as safe for humans (GRAS), with N-glycosylation and nuclear transformation by Agrobacterium tumefaciens. The cloning and transformation of D. salina cells with the H5HA gene was confirmed by polymerase chain reaction (PCR). SDS-PAGE and Western blot confirmed HA5r protein expression, and the correct expression and biological activity of the HA5r protein were confirmed by a hemagglutination assay (HA). This study proves the feasibility of using a different biological system for expressing complex antigens from viruses. These findings suggest that a complex protein such as HA5r from AIV (H5N2) can be successfully expressed in D. salina.
Collapse
Affiliation(s)
- Inkar Castellanos-Huerta
- Programa de Maestría y Doctorado en Ciencias de la Producción y de la Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Correspondence: ; Tel.: +52-442-2163119
| | - Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de Mexico 04510, Mexico;
| | | | - Guadalupe Ayora-Talavera
- Centro de Investigaciones Regionales, Dr. Hideyo Noguchi, Universidad Autonoma de Yucatán (UADY), Mérida 97000, Mexico;
| | - Bernardo Bañuelos-Hernández
- Escuela de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, León 37150, Mexico;
| | - Víctor Manuel Petrone-García
- Departamento de Ciencias Pecuarias, Facultad de Estudios Superiores Cuautitlán UNAM, Cuautitlán Izcalli 54714, Mexico;
| | - Gilberto Velázquez-Juárez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Mexico;
| | | |
Collapse
|
11
|
Lu Y, Gu X, Lin H, Melis A. Engineering microalgae: transition from empirical design to programmable cells. Crit Rev Biotechnol 2021; 41:1233-1256. [PMID: 34130561 DOI: 10.1080/07388551.2021.1917507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Domesticated microalgae hold great promise for the sustainable provision of various bioresources for human domestic and industrial consumption. Efforts to exploit their potential are far from being fully realized due to limitations in the know-how of microalgal engineering. The associated technologies are not as well developed as those for heterotrophic microbes, cyanobacteria, and plants. However, recent studies on microalgal metabolic engineering, genome editing, and synthetic biology have immensely helped to enhance transformation efficiencies and are bringing new insights into this field. Therefore, this article, summarizes recent developments in microalgal biotechnology and examines the prospects for generating specialty and commodity products through the processes of metabolic engineering and synthetic biology. After a brief examination of empirical engineering methods and vector design, this article focuses on quantitative transformation cassette design, elaborates on target editing methods and emerging digital design of algal cellular metabolism to arrive at high yields of valuable products. These advances have enabled a transition of manners in microalgal engineering from single-gene and enzyme-based metabolic engineering to systems-level precision engineering, from cells created with genetically modified (GM) tags to that without GM tags, and ultimately from proof of concept to tangible industrial applications. Finally, future trends are proposed in microalgal engineering, aiming to establish individualized transformation systems in newly identified species for strain-specific specialty and commodity products, while developing sophisticated universal toolkits in model algal species.
Collapse
Affiliation(s)
- Yandu Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xinping Gu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Hanzhi Lin
- Institute of Marine & Environmental Technology, Center for Environmental Science, University of Maryland, College Park, MD, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
12
|
Malla A, Rosales-Mendoza S, Phoolcharoen W, Vimolmangkang S. Efficient Transient Expression of Recombinant Proteins Using DNA Viral Vectors in Freshwater Microalgal Species. FRONTIERS IN PLANT SCIENCE 2021; 12:650820. [PMID: 33897742 PMCID: PMC8058379 DOI: 10.3389/fpls.2021.650820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
The increase in the world population, the advent of new infections and health issues, and the scarcity of natural biological products have spotlighted the importance of recombinant protein technology and its large-scale production in a cost-effective manner. Microalgae have become a significant promising platform with the potential to meet the increasing demand for recombinant proteins and other biologicals. Microalgae are safe organisms that can grow rapidly and are easily cultivated with basic nutrient requirements. Although continuous efforts have led to considerable progress in the algae genetic engineering field, there are still many hurdles to overcome before these microorganisms emerge as a mature expression system. Hence, there is a need to develop efficient expression approaches to exploit microalgae for the production of recombinant proteins at convenient yields. This study aimed to test the ability of the DNA geminiviral vector with Rep-mediated replication to transiently express recombinant proteins in the freshwater microalgal species Chlamydomonas reinhardtii and Chlorella vulgaris using Agrobacterium-mediated transformation. The SARS-CoV-2 receptor binding domain (RBD) and basic fibroblast growth factor (bFGF) are representative antigen proteins and growth factor proteins, respectively, that were subcloned in a geminiviral vector and were used for nuclear transformation to transiently express these proteins in C. reinhardtii and C. vulgaris. The results showed that the geminiviral vector allowed the expression of both recombinant proteins in both algal species, with yields at 48 h posttransformation of up to 1.14 μg/g RBD and 1.61 ng/g FGF in C. vulgaris and 1.61 μg/g RBD and 1.025 ng/g FGF in C. reinhardtii. Thus, this study provides a proof of concept for the use of DNA viral vectors for the simple, rapid, and efficient production of recombinant proteins that repress the difficulties faced in the genetic transformation of these unicellular green microalgae. This concept opens an avenue to explore and optimize green microalgae as an ideal economically valuable platform for the production of therapeutic and industrially relevant recombinant proteins in shorter time periods with significant yields.
Collapse
Affiliation(s)
- Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Gutiérrez S, Lauersen KJ. Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. BIOLOGY 2021; 10:265. [PMID: 33810286 PMCID: PMC8067306 DOI: 10.3390/biology10040265] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the simple inputs of water, carbon dioxide, (sun)light, and trace elements. Their engineering holds the promise of tailored bio-molecule production using sustainable, environmentally friendly waste carbon inputs. Although algal engineering examples are beginning to show maturity, severe limitations remain in the transformation of multigene expression cassettes into model species and DNA delivery into non-model hosts. This review highlights common and emerging DNA delivery methods used for other organisms that may find future applications in algal engineering.
Collapse
Affiliation(s)
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
14
|
Chakdar H, Hasan M, Pabbi S, Nevalainen H, Shukla P. High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 321:124495. [PMID: 33307484 DOI: 10.1016/j.biortech.2020.124495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Eukaryotic microalgae are a rich source of commercially important metabolites including lipids, pigments, sugars, amino acids and enzymes. However, their inherent genetic potential is usually not enough to support high level production of metabolites of interest. In order to move on from the traditional approach of improving product yields by modification of the cultivation conditions, understanding the metabolic pathways leading to the synthesis of the bioproducts of interest is crucial. Identification of new targets for strain engineering has been greatly facilitated by the rapid development of high-throughput sequencing and spectroscopic techniques discussed in this review. Despite the availability of high throughput analytical tools, examples of gathering and application of proteomic and metabolomic data for metabolic engineering of microalgae are few and mainly limited to lipid production. The present review highlights the application of contemporary proteomic and metabolomic techniques in eukaryotic microalgae for redesigning pathways for enhanced production of algal metabolites.
Collapse
Affiliation(s)
- Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh 275103, India
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
15
|
CRISPR/Cas technology promotes the various application of Dunaliella salina system. Appl Microbiol Biotechnol 2020; 104:8621-8630. [PMID: 32918585 DOI: 10.1007/s00253-020-10892-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
Dunaliella salina (D. salina) has been widely applied in various fields because of its inherent advantages, such as the study of halotolerant mechanism, wastewater treatment, recombinant proteins expression, biofuel production, preparation of natural materials, and others. However, owing to the existence of low yield or in the laboratory exploration stage, D. salina system has been greatly restricted for practical production of various components. In past decade, significant progresses have been achieved for research of D. salina in these fields. Among them, D. salina as a novel expression system demonstrated a bright prospect, especially for large-scale production of foreign proteins, like the vaccines, antibodies, and other therapeutic proteins. Due to the low efficiency, application of traditional regulation tools is also greatly limited for exploration of D. salina system. The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system offers a precise editing tool to overcome the obstacles of D. salina system. This review not only comprehensively summarizes the recent progresses of D. salina in domain of gene engineering but also gives a deep analysis of problems and deficiencies in different fields of D. salina. Moreover, further prospects of CRISPR/Cas system and its significant challenges have been discussed in various aspects of D. salina. It provides a great referencing value for speeding up the maturity of D. salina system, and also supplies practical guiding significance to expand the new application fields for D. salina. KEY POINTS: • The review provides recent research progresses of various applications of D. salina. • The problems and deficiencies in different fields of D. salina were deeply analyzed. • The further prospects of CRISPR/Cas technology in D. salina system were predicted. • CRISPR/Cas system will promote the new application fields and maturity for D. salina.
Collapse
|
16
|
Towards a new avenue for producing therapeutic proteins: Microalgae as a tempting green biofactory. Biotechnol Adv 2020; 40:107499. [DOI: 10.1016/j.biotechadv.2019.107499] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/02/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
|
17
|
Song G, Wang W, Hu L, Liu Y, Li A, Du J, Wang J, Jia M, Feng S. An exploration of the rapid transformation method for Dunaliella salina system. AMB Express 2019; 9:181. [PMID: 31707481 PMCID: PMC6842366 DOI: 10.1186/s13568-019-0905-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
As a new expression system, Dunaliella salina (D. salina) has bright prospects and applications in various fields. However, its application is currently restricted because of the low expression and instability of foreign gene in D. salina cells. During genetic operation, transformation is a crucial step for genes expression in D. salina system. Although several transformation methods are existing currently, many inherent deficiencies and limitations still can be found in actual practice. Thus, we attempted to set up a rapid transformation method using the change of salt concentrations for D. salina. Based on osmotic pressure difference, exogenous genes can be spontaneously transferred into D. salina cells. After that, transformed D. salina cells were subjected to histochemical and molecular analysis. The results showed that the reporter gene, beta-glucuronidase genes were successfully expressed in the positive transformants, and detected in all of transformed cells by PCR analysis. Moreover, different transformation parameters, containing the salt gradient, time, dye dosage and Triton X-100 concentration, were optimized to obtain an optimal transformation result. Taken together, we preliminarily established a rapid transformation method with the features of fast, simple, economic, and high-efficient. This method will provide a strong genetic manipulation tool for the future transformation of D. salina system.
Collapse
|
18
|
The Microalgae Biorefinery: A Perspective on the Current Status and Future Opportunities Using Genetic Modification. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is clear scientific evidence that emissions of greenhouse gases (GHG), arising from fossil fuel combustion and land-use change as a result of human activities, are perturbing the Earth’s climate. Microalgae-derived biofuels have been chased since the 1980s without success but, lately, a new biorefinery concept is receiving increasing attention. Here, we discuss the possible solutions to the many problems that make this process unrealised to date, considering also the possibility of including genetically modified (GM) organisms to improve the productivity and process economics. Currently, unless coupled to a service or higher value product production, biofuels derived from microalgae fail to achieve economic reality. However, provided sufficient development of new technologies, potentially including new or improved organisms to lower both production and processing costs, as well as looking at the utility of distributed versus centralised production models, algae biofuels could achieve an impact, off-setting our heavy reliance on petroleum-based liquid fuels.
Collapse
|
19
|
Ortiz-Matamoros MF, Villanueva MA, Islas-Flores T. Genetic transformation of cell-walled plant and algae cells: delivering DNA through the cell wall. Brief Funct Genomics 2019; 17:26-33. [PMID: 29365068 DOI: 10.1093/bfgp/elx014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transformation techniques are a fundamental tool for functional genomics studies. These techniques are routinely used in many prokaryotic and eukaryotic organisms, but in eukaryotes that are surrounded by a cell wall, these protocols have proven difficult to successfully deliver heterologous or homologous DNA within their cytoplasm and nucleus. Such cell-walled organisms represent a challenge that requires the development of genetic transformation techniques that are able to overcome their natural barrier, to achieve targeted gene expression. Here, we review the techniques that have been proven successful and applied to these cell-walled eukaryotic organisms. We focus, especially, on plant cells, microalgae, and the latest approaches to mediate DNA uptake by the photosynthetic dinoflagellate Symbiodinium.
Collapse
|
20
|
Zhang Z, He P, Zhou Y, Xie X, Feng S, Sun C. Anti-HBV effect of interferon-thymosin α1 recombinant proteins in transgenic Dunaliella salina in vitro and in vivo. Exp Ther Med 2018; 16:517-522. [PMID: 30112022 PMCID: PMC6090406 DOI: 10.3892/etm.2018.6227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/08/2018] [Indexed: 01/04/2023] Open
Abstract
The aim of the present study was to investigate the anti-hepatitis B virus (HBV) effect of interferon (IFN)-thymosin α1 (TA1) in a transgenic Dunaliella salina (TDS) system in vitro and in vivo. The toxicity of TDS in the HepG2.2.15 cell line was assessed using an MTT assay. The effect of TDS on the secretion of HBV early antigen (HBeAg) and HBV surface antigen (HBsAg) in culture supernatants was measured using ELISA. In addition, HBV-DNA was analyzed using quantitative polymerase chain reaction. Drug treatment experiments were performed in vivo on ducks congenitally infected with duck HBV (DHBV). The drug was administered once daily for 21 continuous days. Blood was drawn from all ducks prior to treatment, following treatment for 7, 14 and 21 days, and following drug withdrawal for 5 days. Serum DHBV-DNA was determined using quantitative PCR. In addition, the histology of duck liver tissues was assessed using hematoxylin and eosin, and orcein staining. The results demonstrated that TDS suppressed cell viability and HBsAg and HBeAg secretion in HepG2.2.15 cells. Furthermore, the treatment index values for HBsAg and HBeAg following TDS treatment were 2.96 and 3.07 respectively, which were greater than those of the IFN-α treated group. In addition, the DHBV-infected duck model experiments indicated that serum DHBV-DNA levels were significantly decreased in the group of TDS (20 g/kg) following treatment for 7, 14 and 21 days compared with the control group. Following withdrawal of the drug for 5 days, the levels of DHBV-DNA did not relapse in the medium and high dose groups of TDS (10 and 20 g/kg, respectively). Histological analysis of duck liver also demonstrated that TDS and IFN-α treatment alleviated inflammation and HBsAg signals in duck livers. In conclusion, TDS markedly suppresses HBV replication in vitro and in vivo and its anti-HBV effect is greater than that of IFN-α.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ping He
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yan Zhou
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xuhua Xie
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuying Feng
- Medical Research Center, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Changyu Sun
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
21
|
Norzagaray-Valenzuela CD, Germán-Báez LJ, Valdez-Flores MA, Hernández-Verdugo S, Shelton LM, Valdez-Ortiz A. Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by Agrobacterium tumefaciens. J Microbiol Methods 2018; 150:9-17. [PMID: 29777738 DOI: 10.1016/j.mimet.2018.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022]
Abstract
Microalgae are photosynthetic microorganisms widely used for the production of highly valued compounds, and recently they have been shown to be promising as a system for the heterologous expression of proteins. Several transformation methods have been successfully developed, from which the Agrobacterium tumefaciens-mediated method remains the most promising. However, microalgae transformation efficiency by A. tumefaciens is shown to vary depending on several transformation conditions. The present study aimed to establish an efficient genetic transformation system in the green microalgae Dunaliella tertiolecta using the A. tumefaciens method. The parameters assessed were the infection medium, the concentration of the A. tumefaciens and co-culture time. As a preliminary screening, the expression of the gusA gene and the viability of transformed cells were evaluated and used to calculate a novel parameter called Transformation Efficiency Index (TEI). The statistical analysis of TEI values showed five treatments with the highest gusA gene expression. To ensure stable transformation, transformed colonies were cultured on selective medium using hygromycin B and the DNA of resistant colonies were extracted after five subcultures and molecularly analyzed by PCR. Results revealed that treatments which use solid infection medium, A. tumefaciens OD600 = 0.5 and co-culture times of 72 h exhibited the highest percentage of stable gusA expression. Overall, this study established an efficient, optimized A. tumefaciens-mediated genetic transformation of D. tertiolecta, which represents a relatively easy procedure with no expensive equipment required. This simple and efficient protocol opens the possibility for further genetic manipulation of this commercially-important microalgae for biotechnological applications.
Collapse
Affiliation(s)
- Claudia D Norzagaray-Valenzuela
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz S/N, Culiacán, Sinaloa C.P. 80030, Mexico
| | - Lourdes J Germán-Báez
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz S/N, Culiacán, Sinaloa C.P. 80030, Mexico
| | - Marco A Valdez-Flores
- Centro de Investigación Asociado a la Salud Pública, Facultad de Medicina, Universidad Autónoma de Sinaloa, Campo 2. Av. Cedros y Calle Sauces, Culiacán, Sinaloa C.P. 80019, Mexico
| | | | - Luke M Shelton
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Angel Valdez-Ortiz
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz S/N, Culiacán, Sinaloa C.P. 80030, Mexico.
| |
Collapse
|
22
|
Dehghani J, Movafeghi A, Barzegari A, Barar J. Efficient and stable transformation of Dunaliella pseudosalina by 3 strains of Agrobacterium tumefaciens. ACTA ACUST UNITED AC 2017; 7:247-254. [PMID: 29435432 PMCID: PMC5801536 DOI: 10.15171/bi.2017.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022]
Abstract
![]()
Introduction:
Several platforms including mammalian, plant and insect cells as well as bacteria, yeasts, and microalgae are available for the production of recombinant proteins. Low efficiency of delivery systems, extracellular and intracellular degradation of foreign genes during transformation, difficulties in targeting and importing into the nucleus, and finally problems in integration into nuclear genome are the most bottlenecks of classical plasmids for producing recombinant proteins. Owing to high growth rate, no common pathogen with humans, being utilized as humans’ food, and capability to perform N-glycosylation, microalgae are proposed as an ideal system for such biotechnological approaches. Here, Agrobacterium tumefaciens is introduced as an alternative tool for transformation of the microalga Dunaliella pseudosalina.
Methods: The transformation of gfp gene into the D. pseudosalina was evaluated by three strains including EHA101, GV3301 and GV3850 of A. tumefaciens. The integrating and expression of gfp gene were determined by PCR, RT-PCR, Q-PCR and SDS-PAGE analyses.
Results: The T-DNA of pCAMBIA1304 plasmid was successfully integrated into the genome of the microalgal cells. Although all of the strains were able to transform the algal cells, GV3301 possessed higher potential to transform the microalgal cells in comparison to EHA101 and GV3850 strains. Moreover, the stability of gfp gene was successfully established during a course of two months period in the microalgal genome.
Conclusion : Agrobacterium is introduced as a competent system for stable transformation of Dunaliella strains in order to produce eukaryotic recombinant proteins.
Collapse
Affiliation(s)
- Jaber Dehghani
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, 29th Bahman Blvd, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, 29th Bahman Blvd, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran.,School of Advanced Biomedical Sciences, Tabriz University of Medical Science, Daneshgah street, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
23
|
Bayro-Kaiser V, Nelson N. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy. PHOTOSYNTHESIS RESEARCH 2017; 133:49-62. [PMID: 28239761 PMCID: PMC5500669 DOI: 10.1007/s11120-017-0350-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/06/2017] [Indexed: 05/17/2023]
Abstract
Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.
Collapse
Affiliation(s)
- Vinzenz Bayro-Kaiser
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| |
Collapse
|
24
|
Effects of disrupted omega-3 desaturase gene construct on fatty acid composition and expression of four fatty acid biosynthetic genes in transgenic Chlorella vulgaris. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Lopez H, Magdaleno D, Stephano J. The complete chloroplast genome of the green microalgae Dunaliella salina strain SQ. Mitochondrial DNA B Resour 2017; 2:225-226. [PMID: 33473777 PMCID: PMC7800116 DOI: 10.1080/23802359.2017.1310610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The complete chloroplast genome of the microalgae Dunaliella salina strain SQ was determined in this study. The total length of the chloroplast genome is 243,635 bp with 29.73% GC content. The genome is composed by a small single copy (SSC) region of 101,527 bp and a large single-copy region of 107,815 bp separated by two inverted repeats (IR) regions of 17,145 bp. A total of 98 genes were annotated, including 66 coding genes, 3 rRNAs, and 29 tRNAs. This complete plastid genome can be used to elucidate genetic variations in organellar genomes between D. salina strains.
Collapse
Affiliation(s)
- Haydee Lopez
- Facultad de Ciencias Marinas, Universidad Autonoma de Baja California, Ensenada, Mexico
| | - Dante Magdaleno
- Facultad de Ciencias Marinas, Universidad Autonoma de Baja California, Ensenada, Mexico
| | - Jose Stephano
- Facultad de Ciencias, Universidad Autonoma de Baja California, Ensenada, Mexico
| |
Collapse
|
26
|
Magdaleno D, Lopez H, Stephano Hornedo JL. The complete mitochondrial genome of the green microalgae Dunaliella salina strain SQ. Mitochondrial DNA B Resour 2017; 2:311-312. [PMID: 33473810 PMCID: PMC7799956 DOI: 10.1080/23802359.2017.1331331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The complete mitochondrial genome of the microalgae Dunaliella salina strain SQ (GenBank accession number: KX641170) was de novo assembled and annotated using Illumina MiSeq sequencing data. The mitochondrial genome is 41,904 bp long with 31.85% GC content and contains 7 protein-coding genes, 16 introns, 3 ribosomal RNA genes and 3 transfer RNA genes. To date, only two complete mitochondrial genomes of Dunaliella salina strains have been reported, and this genome provides knowledge to the study of genetic variations and evolution of mitochondrial genomes of Dunaliella salina strains.
Collapse
Affiliation(s)
- Dante Magdaleno
- Facultad de Ciencias Marinas, Universidad Autonoma de Baja California, Ensenada, BC, Mexico
| | - Haydee Lopez
- Facultad de Ciencias Marinas, Universidad Autonoma de Baja California, Ensenada, BC, Mexico
| | | |
Collapse
|
27
|
Carotenoids from microalgae: A review of recent developments. Biotechnol Adv 2016; 34:1396-1412. [DOI: 10.1016/j.biotechadv.2016.10.005] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
|
28
|
Specht EA, Karunanithi PS, Gimpel JA, Ansari WS, Mayfield SP. Host Organisms: Algae. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Elizabeth A. Specht
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| | - Prema S. Karunanithi
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| | - Javier A. Gimpel
- Centre for Biotechnology and Bioengineering; Department of Chemical Engineering and Biotechnology, Universidad de Chile; 851 Beaucheff Santiago USA
| | - William S. Ansari
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| | - Stephen P. Mayfield
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| |
Collapse
|
29
|
Srinivasan R, Gothandam KM. Synergistic Action of D-Glucose and Acetosyringone on Agrobacterium Strains for Efficient Dunaliella Transformation. PLoS One 2016; 11:e0158322. [PMID: 27351975 PMCID: PMC4924854 DOI: 10.1371/journal.pone.0158322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
An effective transformation protocol for Dunaliella, a β-carotene producer, was developed using the synergistic mechanism of D-glucose and Acetosyringone on three different Agrobacterium strains (EHA105, GV3101 and LBA4404). In the present study, we investigated the pre-induction of Agrobacterium strains harboring pMDC45 binary vector in TAP media at varying concentrations of D-glucose (5 mM, 10 mM, and 15mM) and 100 μM of Acetosyringone for co-cultivation. Induction of Agrobacterium strains with 10 mM D-glucose and 100 μM Acetosyringone showed higher rates of efficiency compared to other treatments. The presence of GFP and HPT transgenes as a measure of transformation efficiency from the transgenic lines were determined using fluorescent microscopy, PCR, and southern blot analyzes. Highest transformation rate was obtained with the Agrobacterium strain LBA4404 (181 ± 3.78 cfu per 106 cells) followed by GV3101 (128 ± 5.29 cfu per 106 cells) and EHA105 (61 ± 5.03 cfu per 106 cells). However, the Agrobacterium strain GV3101 exhibited more efficient single copy transgene (HPT) transfer into the genome of D. salina than LBA4404. Therefore, future studies dealing with genetic modifications in D. salina can utilize GV3101 as an optimal Agrobacterium strain for gene transfer.
Collapse
|
30
|
The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int J Mol Sci 2016; 17:ijms17060962. [PMID: 27322258 PMCID: PMC4926494 DOI: 10.3390/ijms17060962] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals.
Collapse
|
31
|
Banerjee C, Singh PK, Shukla P. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies. Biotechnol J 2016; 11:303-14. [DOI: 10.1002/biot.201500284] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Chiranjib Banerjee
- Department of Environmental Science & Engineering; Indian School of Mines; Dhanbad Jharkhand India
| | - Puneet Kumar Singh
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology; Maharshi Dayanand University; Rohtak Haryana India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology; Maharshi Dayanand University; Rohtak Haryana India
| |
Collapse
|
32
|
Hempel F, Maier UG. Microalgae as Solar-Powered Protein Factories. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:241-62. [DOI: 10.1007/978-3-319-27216-0_16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Varela JC, Pereira H, Vila M, León R. Production of carotenoids by microalgae: achievements and challenges. PHOTOSYNTHESIS RESEARCH 2015; 125:423-36. [PMID: 25921207 DOI: 10.1007/s11120-015-0149-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/21/2015] [Indexed: 05/26/2023]
Abstract
Carotenoids are a wide group of lipophylic isoprenoids synthesized by all photosynthetic organisms and also by some non-photosynthetic bacteria and fungi. Animals, which cannot synthesize carotenoids de novo, must include them in their diet to fulfil essential provitamin, antioxidant, or colouring requirements. Carotenoids are indispensable in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. In this review, we outline the factors inducing carotenoid accumulation in microalgae, the knowledge acquired on the metabolic pathways responsible for their biosynthesis, and the recent achievements in the genetic engineering of this pathway. Despite the considerable progress achieved in understanding and engineering algal carotenogenesis, many aspects remain to be elucidated. The increasing number of sequenced microalgal genomes and the data generated by high-throughput technologies will enable a better understanding of carotenoid biosynthesis in microalgae. Moreover, the growing number of industrial microalgal species genetically modified will allow the production of novel strains with enhanced carotenoid contents.
Collapse
Affiliation(s)
- João C Varela
- Centre of Marine Science, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | | | |
Collapse
|
34
|
Pareek M, Sachdev M, Tetorya M, Rajam MV. Glass-Bead and Agrobacterium-Mediated Genetic Transformation of Fusarium oxysporum. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Quaternary ammonium salt containing soybean oil: An efficient nanosize gene delivery carrier for halophile green microalgal transformation. Chem Biol Interact 2015; 225:80-9. [DOI: 10.1016/j.cbi.2014.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 02/02/2023]
|
36
|
The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins. World J Microbiol Biotechnol 2014; 30:2783-96. [PMID: 25115849 DOI: 10.1007/s11274-014-1714-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/30/2014] [Indexed: 02/01/2023]
Abstract
Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein.
Collapse
|
37
|
Mathieu-Rivet E, Kiefer-Meyer MC, Vanier G, Ovide C, Burel C, Lerouge P, Bardor M. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2014; 5:359. [PMID: 25183966 PMCID: PMC4135232 DOI: 10.3389/fpls.2014.00359] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/04/2014] [Indexed: 05/09/2023]
Abstract
Microalgae are currently used for the production of food compounds. Recently, few microalgae species have been investigated as potential biofactories for the production of biopharmaceuticals. Indeed in this context, microalgae are cheap, classified as Generally Recognized As Safe (GRAS) organisms and can be grown easily. However, problems remain to be solved before any industrial production of microalgae-made biopharmaceuticals. Among them, post-translational modifications of the proteins need to be considered. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. Therefore, the evaluation of microalgae as alternative cell factory for biopharmaceutical productions thus requires to investigate their N-glycosylation capability in order to determine to what extend it differs from their human counterpart and to determine appropriate strategies for remodeling the microalgae glycosylation into human-compatible oligosaccharides. Here, we review the secreted recombinant proteins which have been successfully produced in microalgae. We also report on recent bioinformatics and biochemical data concerning the structure of glycans N-linked to proteins from various microalgae phyla and comment the consequences on the glycan engineering strategies that may be necessary to render those microalgae-made biopharmaceuticals compatible with human therapy.
Collapse
Affiliation(s)
- Elodie Mathieu-Rivet
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Marie-Christine Kiefer-Meyer
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Gaëtan Vanier
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Clément Ovide
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Carole Burel
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire Glyco-MEV, Faculté des Sciences et Techniques, UPRES EA 4358, Normandie Université, IRIB, VASIMont-Saint-Aignan, France
- Institut Universitaire de FranceParis, France
| |
Collapse
|
38
|
Lin H, Qin S. Tipping points in seaweed genetic engineering: scaling up opportunities in the next decade. Mar Drugs 2014; 12:3025-45. [PMID: 24857961 PMCID: PMC4052329 DOI: 10.3390/md12053025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/04/2014] [Accepted: 04/25/2014] [Indexed: 12/30/2022] Open
Abstract
Seaweed genetic engineering is a transgenic expression system with unique features compared with those of heterotrophic prokaryotes and higher plants. This study discusses several newly sequenced seaweed nuclear genomes and the necessity that research on vector design should consider endogenous promoters, codon optimization, and gene copy number. Seaweed viruses and artificial transposons can be applied as transformation methods after acquiring a comprehensive understanding of the mechanism of viral infections in seaweeds and transposon patterns in seaweed genomes. After cultivating transgenic algal cells and tissues in a photobioreactor, a biosafety assessment of genetically modified (GM) seaweeds must be conducted before open-sea application. We propose a set of programs for the evaluation of gene flow from GM seaweeds to local/geographical environments. The effective implementation of such programs requires fundamentally systematic and interdisciplinary studies on algal physiology and genetics, marine hydrology, reproductive biology, and ecology.
Collapse
Affiliation(s)
- Hanzhi Lin
- Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Song Qin
- Key Lab of Coastal Biology and Bio-resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, China.
| |
Collapse
|
39
|
Wichuk K, Brynjólfsson S, Fu W. Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects. Bioengineered 2014; 5:204-8. [PMID: 24691165 PMCID: PMC4101014 DOI: 10.4161/bioe.28720] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/27/2022] Open
Abstract
We recently evaluated the relationship between abiotic environmental stresses and lutein biosynthesis in the green microalga Dunaliella salina and suggested a rational design of stress-driven adaptive evolution experiments for carotenoids production in microalgae. Here, we summarize our recent findings regarding the biotechnological production of carotenoids from microalgae and outline emerging technology in this field. Carotenoid metabolic pathways are characterized in several representative algal species as they pave the way for biotechnology development. The adaptive evolution strategy is highlighted in connection with enhanced growth rate and carotenoid metabolism. In addition, available genetic modification tools are described, with emphasis on model species. A brief discussion on the role of lights as limiting factors in carotenoid production in microalgae is also included. Overall, our analysis suggests that light-driven metabolism and the photosynthetic efficiency of microalgae in photobioreactors are the main bottlenecks in enhancing biotechnological potential of carotenoid production from microalgae.
Collapse
Affiliation(s)
- Kristine Wichuk
- Center for Systems Biology; University of Iceland; Reykjavík, Iceland
| | - Sigurður Brynjólfsson
- Center for Systems Biology; University of Iceland; Reykjavík, Iceland
- Faculty of Industrial Engineering, Mechanical Engineering, and Computer Science; University of Iceland; Reykjavík, Iceland
| | - Weiqi Fu
- Center for Systems Biology; University of Iceland; Reykjavík, Iceland
| |
Collapse
|
40
|
Feng S, Li S, Li Q, Shi K, Xue L. Preparation of recombinant human canstatin using transgenic Dunaliella salina. Acta Biochim Biophys Sin (Shanghai) 2014; 46:428-30. [PMID: 24777497 DOI: 10.1093/abbs/gmu009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shuying Feng
- Department of Immunology, Medical College, Henan University of Science and Technology, Luoyang 471003, China
| | | | | | | | | |
Collapse
|
41
|
Dunaliella salina as a novel host for the production of recombinant proteins. Appl Microbiol Biotechnol 2014; 98:4293-300. [DOI: 10.1007/s00253-014-5636-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 11/26/2022]
|
42
|
Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Arch Virol 2013; 159:519-25. [DOI: 10.1007/s00705-013-1856-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
|
43
|
Díaz-Santos E, de la Vega M, Vila M, Vigara J, León R. Efficiency of different heterologous promoters in the unicellular microalgaChlamydomonas reinhardtii. Biotechnol Prog 2013; 29:319-28. [DOI: 10.1002/btpr.1690] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/27/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Encarnación Díaz-Santos
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Marta de la Vega
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Marta Vila
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Javier Vigara
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| | - Rosa León
- Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales; Universidad de Huelva; Avda. Fuerzas Armadas s/n 21007 Huelva Spain
| |
Collapse
|
44
|
Establishment of an efficient genetic transformation system in Scenedesmus obliquus. J Biotechnol 2013; 163:61-8. [DOI: 10.1016/j.jbiotec.2012.10.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 11/30/2022]
|
45
|
Vila M, Díaz-Santos E, de la Vega M, Rodríguez H, Vargas A, León R. Promoter trapping in microalgae using the antibiotic paromomycin as selective agent. Mar Drugs 2012; 10:2749-65. [PMID: 23211713 PMCID: PMC3528124 DOI: 10.3390/md10122749] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/12/2012] [Accepted: 11/15/2012] [Indexed: 11/16/2022] Open
Abstract
The lack of highly active endogenous promoters to drive the expression of transgenes is one of the main drawbacks to achieving efficient transformation of many microalgal species. Using the model chlorophyte Chlamydomonas reinhardtii and the paromomycin resistance APHVIII gene from Streptomyces rimosus as a marker, we have demonstrated that random insertion of the promoterless marker gene and subsequent isolation of the most robust transformants allows for the identification of novel strong promoter sequences in microalgae. Digestion of the genomic DNA with an enzyme that has a unique restriction site inside the marker gene and a high number of target sites in the genome of the microalga, followed by inverse PCR, allows for easy determination of the genomic region, which precedes the APHVIII marker gene. In most of the transformants analyzed, the marker gene is inserted in intragenic regions and its expression relies on its adequate insertion in frame with native genes. As an example, one of the new promoters identified was used to direct the expression of the APHVIII marker gene in C. reinhardtii, showing high transformation efficiencies.
Collapse
Affiliation(s)
- Marta Vila
- Biochemistry Laboratory, Experimental Sciences Faculty, University of Huelva, Huelva 27071, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Wang B, Wang J, Zhang W, Meldrum DR. Application of synthetic biology in cyanobacteria and algae. Front Microbiol 2012; 3:344. [PMID: 23049529 PMCID: PMC3446811 DOI: 10.3389/fmicb.2012.00344] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/05/2012] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed.
Collapse
Affiliation(s)
- Bo Wang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University Tempe, AZ, USA ; Biological Design Graduate Program, Arizona State University Tempe, AZ, USA
| | | | | | | |
Collapse
|
47
|
Qin S, Lin H, Jiang P. Advances in genetic engineering of marine algae. Biotechnol Adv 2012; 30:1602-13. [PMID: 22634258 DOI: 10.1016/j.biotechadv.2012.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/12/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.
Collapse
Affiliation(s)
- Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | | | | |
Collapse
|
48
|
Thanh T, Chi VTQ, Omar H, Abdullah MP, Napis S. Sequence analysis and potentials of the native RbcS promoter in the development of an alternative eukaryotic expression system using green Microalga Ankistrodesmus convolutus. Int J Mol Sci 2012; 13:2676-2691. [PMID: 22489117 PMCID: PMC3317680 DOI: 10.3390/ijms13032676] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/02/2012] [Accepted: 02/05/2012] [Indexed: 12/17/2022] Open
Abstract
The availability of highly active homologous promoters is critical in the development of a transformation system and improvement of the transformation efficiency. To facilitate transformation of green microalga Ankistrodesmus convolutus which is considered as a potential candidate for many biotechnological applications, a highly-expressed native promoter sequence of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (AcRbcS) has been used to drive the expression of β-glucuronidase (gusA) gene in this microalga. Besides the determination of the transcription start site by 5'-RACE, sequence analysis revealed that AcRbcS promoter contained consensus TATA-box and several putative cis-acting elements, including some representative light-regulatory elements (e.g., G-box, Sp1 motif and SORLIP2), which confer light responsiveness in plants, and several potential conserved motifs (e.g., CAGAC-motif, YCCYTGG-motifs and CACCACA-motif), which may be involved in light responsiveness of RbcS gene in green microalgae. Using AcRbcS promoter::gusA translational fusion, it was demonstrated that this promoter could function as a light-regulated promoter in transgenic A. convolutus, which suggested that the isolated AcRbcS promoter was a full and active promoter sequence that contained all cis-elements required for developmental and light-mediated control of gene expression, and this promoter can be used to drive the expression of heterologous genes in A. convolutus. This achievement therefore advances the development of A. convolutus as an alternative expression system for the production of recombinant proteins. This is the first report on development of gene manipulation system for unicellular green alga A. convolutus.
Collapse
Affiliation(s)
| | | | | | | | - Suhaimi Napis
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +603-8947-1207; Fax: +603-8948-3514
| |
Collapse
|
49
|
Jia Y, Li S, Allen G, Feng S, Xue L. A novel glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter for expressing transgenes in the halotolerant alga Dunaliella salina. Curr Microbiol 2012; 64:506-13. [PMID: 22371187 DOI: 10.1007/s00284-012-0102-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/01/2012] [Indexed: 11/28/2022]
Abstract
A major challenge for efficient transgene expression in Dunaliella salina is to find strong endogenous promoters to drive the transgene expression. In the present study, a novel glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter was cloned and used to drive expressions of the bialaphos resistance (bar) gene and of the N-terminal fragment of human canstatin (Can-N). The results showed that the bar gene was transcribed by the GAPDH promoter and integrated into the genome of the transformants of D. salina. Furthermore, the PCR identification, Southern and western blots indicated that Can-N was expressed in transgenic D. salina, demonstrating that the promoter of the D. salina GAPDH gene is suitable for driving expression of heterologous genes in transgenic D. salina.
Collapse
Affiliation(s)
- Yanlong Jia
- Institute of Tumor Molecular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | | | | | | | | |
Collapse
|
50
|
Larkum AWD, Ross IL, Kruse O, Hankamer B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 2011; 30:198-205. [PMID: 22178650 DOI: 10.1016/j.tibtech.2011.11.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023]
Abstract
Microalgal production technologies are seen as increasingly attractive for bioenergy production to improve fuel security and reduce CO(2) emissions. Photosynthetically derived fuels are a renewable, potentially carbon-neutral and scalable alternative reserve. Microalgae have particular promise because they can be produced on non-arable land and utilize saline and wastewater streams. Furthermore, emerging microalgal technologies can be used to produce a range of products such as biofuels, protein-rich animal feeds, chemical feedstocks (e.g. bioplastic precursors) and higher-value products. This review focuses on the selection, breeding and engineering of microalgae for improved biomass and biofuel conversion efficiencies.
Collapse
Affiliation(s)
- Anthony W D Larkum
- Climate Change Cluster, University of Technology (Sydney), Broadway, NSW 2007, Australia.
| | | | | | | |
Collapse
|