1
|
Zhang M, Jiang P, Wu Q, Han X, Man J, Sun J, Liang J, Chen J, Zhao Q, Guo Y, An Y, Jia H, Li S, Xu Y. Identification of candidate genes for Fusarium head blight resistance from QTLs using RIL population in wheat. PLANT MOLECULAR BIOLOGY 2024; 114:62. [PMID: 38771394 DOI: 10.1007/s11103-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Fusarium head blight (FHB) stands out as one of the most devastating wheat diseases and leads to significantly grain yield losses and quality reductions in epidemic years. Exploring quantitative trait loci (QTL) for FHB resistance is a critical step for developing new FHB-resistant varieties. We previously constructed a genetic map of unigenes (UG-Map) according to the physical positions using a set of recombinant-inbred lines (RILs) derived from the cross of 'TN18 × LM6' (TL-RILs). Here, the number of diseased spikelets (NDS) and relative disease index (RDI) for FHB resistance were investigated under four environments using TL-RILs, which were distributed across 13 chromosomes. A number of 36 candidate genes for NDS and RDI from of 19 stable QTLs were identified. The average number of candidate genes per QTL was 1.89, with 14 (73.7%), two (10.5%), and three (15.8%) QTLs including one, two, and 3-10 candidate genes, respectively. Among the 24 candidate genes annotated in the reference genome RefSeq v1.1, the homologous genes of seven candidate genes, including TraesCS4B02G227300 for QNds/Rdi-4BL-4553, TraesCS5B02G303200, TraesCS5B02G303300, TraesCS5B02G303700, TraesCS5B02G303800 and TraesCS5B02G304000 for QNds/Rdi-5BL-9509, and TraesCS7A02G568400 for QNds/Rdi-7AL-14499, were previously reported to be related to FHB resistance in wheat, barely or Brachypodium distachyon. These genes should be closely associated with FHB resistance in wheat. In addition, the homologous genes of five genes, including TraesCS1A02G037600LC for QNds-1AS-2225, TraesCS1D02G017800 and TraesCS1D02G017900 for QNds-1DS-527, TraesCS1D02G018000 for QRdi-1DS-575, and TraesCS4B02G227400 for QNds/Rdi-4BL-4553, were involved in plant defense responses against pathogens. These genes should be likely associated with FHB resistance in wheat.
Collapse
Affiliation(s)
- Mingxia Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Peng Jiang
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Nanjing, 210095, China
| | - Qun Wu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xu Han
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junxia Man
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junsheng Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinlong Liang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingchuan Chen
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Qi Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Guo
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanrong An
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Haiyan Jia
- Applied Plant Genomics Laboratory, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sishen Li
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| | - Yongyu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
2
|
Yang F, Zhang L, Zhang X, Guan J, Wang B, Wu X, Song M, Wei A, Liu Z, Huo D. Genome-wide investigation of UDP-Glycosyltransferase family in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2024; 24:249. [PMID: 38580941 PMCID: PMC10998406 DOI: 10.1186/s12870-024-04926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum) belongs to Polygonaceae family and has attracted increasing attention owing to its high nutritional value. UDP-glycosyltransferases (UGTs) glycosylate a variety of plant secondary metabolites to control many metabolic processes during plant growth and development. However, there have been no systematic reports of UGT superfamily in F. tataricum. RESULTS We identified 173 FtUGTs in F. tataricum based on their conserved UDPGT domain. Phylogenetic analysis of FtUGTs with 73 Arabidopsis UGTs clustered them into 21 families. FtUGTs from the same family usually had similar gene structure and motif compositions. Most of FtUGTs did not contain introns or had only one intron. Tandem repeats contributed more to FtUGTs amplification than segmental duplications. Expression analysis indicates that FtUGTs are widely expressed in various tissues and likely play important roles in plant growth and development. The gene expression analysis response to different abiotic stresses showed that some FtUGTs were involved in response to drought and cadmium stress. Our study provides useful information on the UGTs in F. tataricum, and will facilitate their further study to better understand their function. CONCLUSIONS Our results provide a theoretical basis for further exploration of the functional characteristics of FtUGTs and for understanding the growth, development, and metabolic model in F. tataricum.
Collapse
Affiliation(s)
- Fan Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Jingru Guan
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Bo Wang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoying Wu
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Minli Song
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Aili Wei
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Zhang Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China.
| |
Collapse
|
3
|
Yang Q, Zhang Y, Qu X, Wu F, Li X, Ren M, Tong Y, Wu X, Yang A, Chen Y, Chen S. Genome-wide analysis of UDP-glycosyltransferases family and identification of UGT genes involved in abiotic stress and flavonol biosynthesis in Nicotiana tabacum. BMC PLANT BIOLOGY 2023; 23:204. [PMID: 37076827 PMCID: PMC10114341 DOI: 10.1186/s12870-023-04208-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Uridine disphosphate (UDP) glycosyltransferases (UGTs) act upon a huge variety of highly diverse and complex substrates, such as phytohormones and specialized metabolites, to regulate plant growth, development, disease resistance, and environmental interactions. However, a comprehensive investigation of UGT genes in tobacco has not been conducted. RESULTS In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in Nicotiana tabacum. We predicted 276 NtUGT genes, which were classified into 18 major phylogenetic subgroups. The NtUGT genes were invariably distributed among all the 24 chromosomes with structural diversity in exon/intron structure, conserved motifs, and cis-acting elements of promoters. Three groups of proteins which involved in flavonoid biosynthesis, plant growth and development, transportation and modification were identified that interact with NtUGT proteins using the PPI analysis. Expression analysis of NtUGT genes in cold stress, drought stress and different flower color using both online RNA-Seq data and the realtime PCR analysis, suggested the distinct role of NtUGT genes in resistance of cold, drought and in flavonoid biosynthesis. The enzymatic activities of seven NtUGT proteins that potentially involved in flavonoid glycosylation were analyzed, and found that all seven exhibited activity on myricetin; six (NtUGT108, NtUGT123, NtUGT141, NtUGT155, NtUGT179, and NtUGT195) showed activity on cyanidin; and three (NtUGT108, NtUGT195, and NtUGT217) were active on the flavonol aglycones kaempferol and quercetin, which catalyzing the substrates (myricetin, cyanidin or flavonol) to form new products. We further investigated the enzymatic products and enzymatic properties of NtUGT108, NtUGT195, and NtUGT217, suggested their diverse enzymatic activity toward flavonol, and NtUGT217 showed the highest catalyzed efficient toward quercetin. Overexpression of NtUGT217 significantly increase the content levels of the quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside in transgenic tobacco leaves. CONCLUSION We identified 276 UGT genes in Nicotiana tabacum. Our study uncovered valuable information about the phylogenetic structure, distribution, genomic characters, expression patterns and enzymatic activity of NtUGT genes in tobacco. We further identified three NtUGT genes involved in flavonoid biosynthesis, and overexpressed NtUGT217 to validate its function in catalyze quercetin. The results provide key candidate NtUGT genes for future breeding of cold and drought resistance and for potential metabolic engineering of flavonoid compounds.
Collapse
Affiliation(s)
- Qing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Qujing Tobacco Company of Yunnan Province, Qujing, 655000, China
| | - Yinchao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaoling Qu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fengyan Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiuchun Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Min Ren
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ying Tong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Yong Chen
- China National Tobacco Corporation, Beijing, 100045, China.
| | - Shuai Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
4
|
Shi J, Shui D, Su S, Xiong Z, Zai W. Gene enrichment and co-expression analysis shed light on transcriptional responses to Ralstonia solanacearum in tomato. BMC Genomics 2023; 24:159. [PMID: 36991339 DOI: 10.1186/s12864-023-09237-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Tomato (Solanum lycopersicum) is both an important agricultural product and an excellent model system for studying plant-pathogen interactions. It is susceptible to bacterial wilt caused by Ralstonia solanacearum (Rs), and infection can result in severe yield and quality losses. To investigate which genes are involved in the resistance response to this pathogen, we sequenced the transcriptomes of both resistant and susceptible tomato inbred lines before and after Rs inoculation. RESULTS In total, 75.02 Gb of high-quality reads were generated from 12 RNA-seq libraries. A total of 1,312 differentially expressed genes (DEGs) were identified, including 693 up-regulated and 621 down-regulated genes. Additionally, 836 unique DEGs were obtained when comparing two tomato lines, including 27 co-expression hub genes. A total of 1,290 DEGs were functionally annotated using eight databases, most of which were found to be involved in biological pathways such as DNA and chromatin activity, plant-pathogen interaction, plant hormone signal transduction, secondary metabolite biosynthesis, and defense response. Among the core-enriched genes in 12 key pathways related to resistance, 36 genotype-specific DEGs were identified. RT-qPCR integrated analysis revealed that multiple DEGs may play a significant role in tomato response to Rs. In particular, Solyc01g073985.1 (NLR disease resistance protein) and Solyc04g058170.1 (calcium-binding protein) in plant-pathogen interaction are likely to be involved in the resistance. CONCLUSION We analyzed the transcriptomes of both resistant and susceptible tomato lines during control and inoculated conditions and identified several key genotype-specific hub genes involved in a variety of different biological processes. These findings lay a foundation for better understanding the molecular basis by which resistant tomato lines respond to Rs.
Collapse
Affiliation(s)
- Jianlei Shi
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Deju Shui
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China
| | - Shiwen Su
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China
| | - Zili Xiong
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China.
| | - Wenshan Zai
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China.
| |
Collapse
|
5
|
Ma H, Liu Y, Zhao X, Zhang S, Ma H. Exploring and applying genes to enhance the resistance to Fusarium head blight in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1026611. [PMID: 36388594 PMCID: PMC9647131 DOI: 10.3389/fpls.2022.1026611] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
Fusarium head blight (FHB) is a destructive disease in wheat worldwide. Fusarium graminearum species complex (FGSC) is the main causal pathogen causing severe damage to wheat with reduction in both grain yield and quality. Additionally, mycotoxins produced by the FHB pathogens are hazardous to the health of human and livestock. Large numbers of genes conferring FHB resistance to date have been characterized from wheat and its relatives, and some of them have been widely used in breeding and significantly improved the resistance to FHB in wheat. However, the disease spreads rapidly and has been severe due to the climate and cropping system changes in the last decade. It is an urgent necessity to explore and apply more genes related to FHB resistant for wheat breeding. In this review, we summarized the genes with FHB resistance and mycotoxin detoxication identified from common wheat and its relatives by using forward- and reverse-genetic approaches, and introduced the effects of such genes and the genes with FHB resistant from other plant species, and host-induced gene silencing (HIGS) in enhancing the resistance to FHB in wheat. We also outlined the molecular rationale of the resistance and the application of the cloned genes for FHB control. Finally, we discussed the future challenges and opportunities in this field.
Collapse
Affiliation(s)
- Haigang Ma
- *Correspondence: Haigang Ma, ; Hongxiang Ma,
| | | | | | | | | |
Collapse
|
6
|
Malla KB, Thapa G, Doohan FM. Mitochondrial phosphate transporter and methyltransferase genes contribute to Fusarium head blight Type II disease resistance and grain development in wheat. PLoS One 2021; 16:e0258726. [PMID: 34648604 PMCID: PMC8516198 DOI: 10.1371/journal.pone.0258726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Fusarium head blight (FHB) is an economically important disease of wheat that results in yield loss and grain contaminated with fungal mycotoxins that are harmful to human and animal health. Herein we characterised two wheat genes involved in the FHB response in wheat: a wheat mitochondrial phosphate transporter (TaMPT) and a methyltransferase (TaSAM). Wheat has three sub-genomes (A, B, and D) and gene expression studies demonstrated that TaMPT and TaSAM homoeologs were differentially expressed in response to FHB infection and the mycotoxigenic Fusarium virulence factor deoxynivalenol (DON) in FHB resistant wheat cv. CM82036 and susceptible cv. Remus. Virus-induced gene silencing (VIGS) of either TaMPT or TaSAM enhanced the susceptibility of cv. CM82036 to FHB disease, reducing disease spread (Type II disease resistance). VIGS of TaMPT and TaSAM significantly reduced grain number and grain weight. This indicates TaSAM and TaMPT genes also contribute to grain development in wheat and adds to the increasing body of evidence linking FHB resistance genes to grain development. Hence, Fusarium responsive genes TaSAM and TaMPT warrant further study to determine their potential to enhance both disease resistance and grain development in wheat.
Collapse
Affiliation(s)
- Keshav B. Malla
- UCD Earth Institute, UCD Institute of Food and Health and UCD School of Biology and Environmental Sciences, UCD Science Centre East, University College Dublin, Belfield, Dublin, Ireland
| | - Ganesh Thapa
- UCD Earth Institute, UCD Institute of Food and Health and UCD School of Biology and Environmental Sciences, UCD Science Centre East, University College Dublin, Belfield, Dublin, Ireland
| | - Fiona M. Doohan
- UCD Earth Institute, UCD Institute of Food and Health and UCD School of Biology and Environmental Sciences, UCD Science Centre East, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
7
|
Huang C, Gangola MP, Kutcher HR, Hucl P, Ganeshan S, Chibbar RN. In Vitro Wheat Immature Spike Culture Screening Identified Fusarium Head Blight Resistance in Wheat Spike Cultured Derived Variants and in the Progeny of Their Crosses with an Elite Cultivar. THE PLANT PATHOLOGY JOURNAL 2020; 36:558-569. [PMID: 33312091 PMCID: PMC7721538 DOI: 10.5423/ppj.oa.07.2020.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease of wheat (Triticum aestivum L.). The lack of genetic resources with stable FHB resistance combined with a reliable and rapid screening method to evaluate FHB resistance is a major limitation to the development of FHB resistant wheat germplasm. The present study utilized an immature wheat spike culture method to screen wheat spike culture derived variants (SCDV) for FHB resistance. Mycotoxin concentrations determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) correlated significantly (P < 0.01) with FHB severity and disease progression during in vitro spike culture. Selected SCDV lines assessed for FHB resistance in a Fusarium field disease nursery in Carman, Manitoba, Canada in 2016 showed significant (P < 0.01) correlation of disease severity to the in vitro spike culture screening method. Selected resistant SCDV lines were also crossed with an elite cv. CDC Hughes and the progeny of F2 and BC1F2 were screened by high resolution melt curve (HRM) analyses for the wheat UDPglucosyl transferase gene (TaUGT-3B) single nucleotide polymorphism to identify resistant (T-allele) and susceptible (G-allele) markers. The progeny from the crosses were also screened for FHB severity using the immature spike culture method and identified resistant progeny grouped according to the HRM genotyping data. The results demonstrate a reliable approach using the immature spike culture to screen for FHB resistance in progeny of crosses in early stage of breeding programs.
Collapse
Affiliation(s)
- Chen Huang
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Manu P. Gangola
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - H. Randy Kutcher
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Pierre Hucl
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Seedhabadee Ganeshan
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Ravindra N. Chibbar
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| |
Collapse
|
8
|
He Y, Wu L, Liu X, Jiang P, Yu L, Qiu J, Wang G, Zhang X, Ma H. TaUGT6, a Novel UDP-Glycosyltransferase Gene Enhances the Resistance to FHB and DON Accumulation in Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:574775. [PMID: 33178244 PMCID: PMC7596251 DOI: 10.3389/fpls.2020.574775] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/18/2020] [Indexed: 05/04/2023]
Abstract
Fusarium head blight (FHB), a devastating wheat disease, results in loss of yield and production of mycotoxins including deoxynivalenol (DON) in infected grains. DON is harmful to human and animal health and facilitates the spread of FHB symptoms. Its conversion into DON-3-glucoside (D3G) by UDP-glycosyltransferases (UGTs) is correlated with FHB resistance, and only few gene members in wheat have been investigated. Here, Fusarium graminearum and DON-induced TaUGT6 expression in the resistant cultivar Sumai 3 was cloned and characterized. TaUGT6::GFP was subcellularly located throughout cells. Purified TaUGT6 protein could convert DON into D3G to some extent in vitro. Transformation of TaUGT6 into Arabidopsis increased root tolerance when grown on agar plates containing DON. Furthermore, TaUGT6 overexpression in wheat showed improved resistance to Fusarium spread after F. graminearum inoculation. Overall, this study provides useful insight into a novel UGT gene for FHB resistance in wheat.
Collapse
Affiliation(s)
- Yi He
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Wu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiang Liu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Peng Jiang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lixuan Yu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianbo Qiu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xu Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hongxiang Ma
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
A Comparative Transcriptome Analysis, Conserved Regulatory Elements and Associated Transcription Factors Related to Accumulation of Fusariotoxins in Grain of Rye ( Secale cereale L.) Hybrids. Int J Mol Sci 2020; 21:ijms21197418. [PMID: 33049995 PMCID: PMC7582487 DOI: 10.3390/ijms21197418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Detoxification of fusariotoxin is a type V Fusarium head blight (FHB) resistance and is considered a component of type II resistance, which is related to the spread of infection within spikes. Understanding this type of resistance is vital for FHB resistance, but to date, nothing is known about candidate genes that confer this resistance in rye due to scarce genomic resources. In this study, we generated a transcriptomic resource. The molecular response was mined through a comprehensive transcriptomic analysis of two rye hybrids differing in the build-up of fusariotoxin contents in grain upon pathogen infection. Gene mining identified candidate genes and pathways contributing to the detoxification of fusariotoxins in rye. Moreover, we found cis regulatory elements in the promoters of identified genes and linked them to transcription factors. In the fusariotoxin analysis, we found that grain from the Nordic seed rye hybrid "Helltop" accumulated 4 times higher concentrations of deoxynivalenol (DON), 9 times higher nivalenol (NIV), and 28 times higher of zearalenone (ZEN) than that of the hybrid "DH372" after artificial inoculation under field conditions. In the transcriptome analysis, we identified 6675 and 5151 differentially expressed genes (DEGs) in DH372 and Helltop, respectively, compared to non-inoculated control plants. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEGs were associated with glycolysis and the mechanistic target of rapamycin (mTOR) signaling pathway in Helltop, whereas carbon fixation in photosynthesis organisms were represented in DH372. The gene ontology (GO) enrichment and gene set enrichment analysis (GSEA) of DEGs lead to identification of the metabolic and biosynthetic processes of peptides and amides in DH372, whereas photosynthesis, negative regulation of catalytic activity, and protein-chromophore linkage were the significant pathways in Helltop. In the process of gene mining, we found four genes that were known to be involved in FHB resistance in wheat and that were differentially expressed after infection only in DH372 but not in Helltop. Based on our results, we assume that DH372 employed a specific response to pathogen infection that led to detoxification of fusariotoxin and prevented their accumulation in grain. Our results indicate that DH372 might resist the accumulation of fusariotoxin through activation of the glycolysis and drug metabolism via cytochrome P450. The identified genes in DH372 might be regulated by the WRKY family transcription factors as associated cis regulatory elements found in the in silico analysis. The results of this study will help rye breeders to develop strategies against type V FHB.
Collapse
|
10
|
Petit E, Berger M, Camborde L, Vallejo V, Daydé J, Jacques A. Development of screening methods for functional characterization of UGTs from Stevia rebaudiana. Sci Rep 2020; 10:15137. [PMID: 32934264 PMCID: PMC7493886 DOI: 10.1038/s41598-020-71746-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is a key modification that contributes to determine bioactivity and bioavailability of plant natural products, including that of terpenoids and steviol glycosides (SVglys). It is mediated by uridine-diphosphate glycosyltransferases (UGTs), that achieve their activity by transferring sugars on small molecules. Thus, the diversity of SVglys is due to the number, the position and the nature of glycosylations on the hydroxyl groups in C-13 and C-19 of steviol. Despite the intense sweetener property of SVglys and the numerous studies conducted, the SVglys biosynthetic pathway remains largely unknown. More than 60 SVglys and 68 putative UGTs have been identified in Stevia rebaudiana. This study aims to provide methods to characterize UGTs putatively involved in SVglys biosynthesis. After agroinfiltration-based transient gene expression in Nicotiana benthamiana, functionality of the recombinant UGT can be tested simply and directly in plants expressing it or from a crude extract. The combined use of binary vectors from pGWBs series to produce expression vectors containing the stevia's UGT, enables functionality testing with many substrates as well as other applications for further analysis, including subcellular localization.
Collapse
Affiliation(s)
- Eva Petit
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France
| | - Monique Berger
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France.
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales (LRSV), CNRS, Université Paul Sabatier (UPS), Toulouse, France
| | | | - Jean Daydé
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France
| | - Alban Jacques
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France
| |
Collapse
|
11
|
Ameye M, Van Meulebroek L, Meuninck B, Vanhaecke L, Smagghe G, Haesaert G, Audenaert K. Metabolomics Reveal Induction of ROS Production and Glycosylation Events in Wheat Upon Exposure to the Green Leaf Volatile Z-3-Hexenyl Acetate. FRONTIERS IN PLANT SCIENCE 2020; 11:596271. [PMID: 33343599 PMCID: PMC7744478 DOI: 10.3389/fpls.2020.596271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The activation and priming of plant defense upon perception of green leaf volatiles (GLVs) have often been reported. However, information as to which metabolic pathways in plants are affected by GLVs remains elusive. We report the production of reactive oxygen species in the tip of young wheat leaves followed by activation of antioxidant-related enzyme activity. In this study, we aimed to uncover metabolic signatures upon exposure to the GLV Z-3-hexenyl acetate (Z-3-HAC). By using an untargeted metabolomics approach, we observed changes in the phenylpropanoid pathways which yield metabolites that are involved in many anti-oxidative processes. Furthermore, exposure to GLV, followed by infection with Fusarium graminearum (Fg), induced significantly greater changes in the phenylpropanoid pathway compared to a sole Z-3-HAC treatment. Fragmentation of a selection of metabolites, which are significantly more upregulated in the Z-3-HAC + Fg treatment, showed D-glucose to be present as a substructure. This suggests that Z-3-HAC induces early glycosylation processes in plants. Additionally, we identified the presence of hexenyl diglycosides, which indicates that aerial Z-3-HAC is metabolized in the leaves by glycosyltransferases. Together these data indicate that GLV Z-3-HAC is taken up by leaves and incites oxidative stress. This subsequently results in the modulation of the phenylpropanoid pathway and an induction of glycosylation processes.
Collapse
Affiliation(s)
- Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- *Correspondence: Maarten Ameye,
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - Bianca Meuninck
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Kris Audenaert,
| |
Collapse
|
12
|
Perochon A, Váry Z, Malla KB, Halford NG, Paul MJ, Doohan FM. The wheat SnRK1α family and its contribution to Fusarium toxin tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110217. [PMID: 31521211 DOI: 10.1016/j.plantsci.2019.110217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 05/09/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by phytopathogenic Fusarium fungi in cereal grain and plays a role as a disease virulence factor. TaFROG (Triticum aestivum Fusarium Resistance Orphan Gene) enhances wheat resistance to DON and it interacts with a sucrose non-fermenting-1 (SNF1)-related protein kinase 1 catalytic subunit α (SnRK1α). This protein kinase family is central integrator of stress and energy signalling, regulating plant metabolism and growth. Little is known regarding the role of SnRK1α in the biotic stress response, especially in wheat. In this study, 15 wheat (Triticum aestivum) SnRK1α genes (TaSnRK1αs) belonging to four homoeologous groups were identified in the wheat genome. TaSnRK1αs are expressed ubiquitously in all organs and developmental stages apart from two members predominantly detected in grain. While DON treatment had either no effect or downregulated the transcription of TaSnRK1αs, it increased both the kinase activity associated with SnRK1α and the level of active (phosphorylated) SnRK1α. Down-regulation of two TaSnRK1αs homoeolog groups using virus induced gene silencing (VIGS) increased the DON-induced damage of wheat spikelets. Thus, we demonstrate that TaSnRK1αs contribute positively to wheat tolerance of DON and conclude that this gene family may provide useful tools for the improvement of crop biotic stress resistance.
Collapse
Affiliation(s)
- Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Zsolt Váry
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Keshav B Malla
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel G Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Matthew J Paul
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
13
|
Lyagin I, Efremenko E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules 2019; 24:E2362. [PMID: 31247992 PMCID: PMC6651818 DOI: 10.3390/molecules24132362] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are highly dangerous natural compounds produced by various fungi. Enzymatic transformation seems to be the most promising method for detoxification of mycotoxins. This review summarizes current information on enzymes of different classes to convert various mycotoxins. An in-depth analysis of 11 key enzyme mechanisms towards dozens of major mycotoxins was realized. Additionally, molecular docking of mycotoxins to enzymes' active centers was carried out to clarify some of these catalytic mechanisms. Analyzing protein homologues from various organisms (plants, animals, fungi, and bacteria), the prevalence and availability of natural sources of active biocatalysts with a high practical potential is discussed. The importance of multifunctional enzyme combinations for detoxification of mycotoxins is posed.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia.
| |
Collapse
|
14
|
Gatti M, Choulet F, Macadré C, Guérard F, Seng JM, Langin T, Dufresne M. Identification, Molecular Cloning, and Functional Characterization of a Wheat UDP-Glucosyltransferase Involved in Resistance to Fusarium Head Blight and to Mycotoxin Accumulation. FRONTIERS IN PLANT SCIENCE 2018; 9:1853. [PMID: 30619419 PMCID: PMC6300724 DOI: 10.3389/fpls.2018.01853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/30/2018] [Indexed: 05/20/2023]
Abstract
Plant uridine diphosphate (UDP)-glucosyltransferases (UGT) catalyze the glucosylation of xenobiotic, endogenous substrates and phytotoxic agents produced by pathogens such as mycotoxins. The Bradi5g03300 UGT-encoding gene from the model plant Brachypodium distachyon was previously shown to confer tolerance to the mycotoxin deoxynivalenol (DON) through glucosylation into DON 3-O-glucose (D3G). This gene was shown to be involved in early establishment of quantitative resistance to Fusarium Head Blight, a major disease of small-grain cereals. In the present work, using a translational biology approach, we identified and characterized a wheat candidate gene, Traes_2BS_14CA35D5D, orthologous to Bradi5g03300 on the short arm of chromosome 2B of bread wheat (Triticum aestivum L.). We showed that this UGT-encoding gene was highly inducible upon infection by a DON-producing Fusarium graminearum strain while not induced upon infection by a strain unable to produce DON. Transformation of this wheat UGT-encoding gene into B. distachyon revealed its ability to confer FHB resistance and root tolerance to DON as well as to potentially conjugate DON into D3G in planta and its impact on total DON reduction. In conclusion, we provide a UGT-encoding candidate gene to include in selection process for FHB resistance.
Collapse
Affiliation(s)
- Miriam Gatti
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Frédéric Choulet
- Unité Génétique Diversité et Ecophysiologie des Céréales INRA, UMR1095, Clermont-Ferrand, France
| | - Catherine Macadré
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Florence Guérard
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Jean-Marc Seng
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Thierry Langin
- Unité Génétique Diversité et Ecophysiologie des Céréales INRA, UMR1095, Clermont-Ferrand, France
| | - Marie Dufresne
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
15
|
Gunupuru LR, Arunachalam C, Malla KB, Kahla A, Perochon A, Jia J, Thapa G, Doohan FM. A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield. PLoS One 2018; 13:e0204992. [PMID: 30312356 PMCID: PMC6185721 DOI: 10.1371/journal.pone.0204992] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/18/2018] [Indexed: 01/20/2023] Open
Abstract
The mycotoxin deoxynivalenol (DON) serves as a plant disease virulence factor for the fungi Fusarium graminearum and F. culmorum during the development of Fusarium head blight (FHB) disease on wheat. A wheat cytochrome P450 gene from the subfamily CYP72A, TaCYP72A, was cloned from wheat cultivar CM82036. TaCYP72A was located on chromosome 3A with homeologs present on 3B and 3D of the wheat genome. Using gene expression studies, we showed that TaCYP72A variants were activated in wheat spikelets as an early response to F. graminearum, and this activation was in response to the mycotoxic Fusarium virulence factor deoxynivalenol (DON). Virus induced gene silencing (VIGS) studies in wheat heads revealed that this gene family contributes to DON resistance. VIGS resulted in more DON-induced discoloration of spikelets, as compared to mock VIGS treatment. In addition to positively affecting DON resistance, TaCYP72A also had a positive effect on grain number. VIGS of TaCYP72A genes reduced grain number by more than 59%. Thus, we provide evidence that TaCYP72A contributes to host resistance to DON and conclude that this gene family warrants further assessment as positive contributors to both biotic stress resistance and grain development in wheat.
Collapse
Affiliation(s)
- Lokanadha R. Gunupuru
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Chanemougasoundharam Arunachalam
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Keshav B. Malla
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Amal Kahla
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Alexandre Perochon
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Jianguang Jia
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Ganesh Thapa
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| | - Fiona M. Doohan
- School of Biology & Environment Science and Earth Institute, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Su P, Guo X, Fan Y, Wang L, Yu G, Ge W, Zhao L, Ma X, Wu J, Li A, Wang H, Kong L. Application of Brachypodium genotypes to the analysis of type II resistance to Fusarium head blight (FHB). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:255-266. [PMID: 29807599 DOI: 10.1016/j.plantsci.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
The resistance to Fusarium head blight (FHB) in wheat is mainly via the restrain of fungal expansion through spike rachis (type II resistance). In order to unravel the resistance mechanisms, Brachypodium distachyon 21 (Bd21), a monocotyledonous model plant, was previously proved to interact with F. graminearum, while the disease development in spike still needs to be explored in detail. Herein, it is found that the fungal spores mainly germinate on pistil of Bd21, then the hyphae rapidly extend to the bottom of floret and enter spike rachis, similar with the infection progress in wheat. However, structural difference of spike rachis was found between Brachypodium and wheat. It was found that the spread of the fungus through the rachis node of inoculated spikelets is an important index for the evaluation of type II FHB resistance in Brachypodium under optimal conditions at 28 °C and 50%-70% humidity. To verify the feasibility of this strategy, the transcription factor TaTGA2 was overexpressed in Bd21, and transgenic plants were found to show improved resistance to F. graminearum in both spikes and detached leaves, which was further supported by the increased disease severity when silencing TaTGA2 in the wheat cultivar "Sumai 3" or in tilling "Kronos" mutants. Except for Bd21, another 49 Brachypodium germplasms were further screened for FHB resistance, and three moderately susceptible germplasms, namely, PI 317418, W6-39284, and PI 254868, feasible for transformation, were determined to be better hosts than Bd21 when evaluating heterologous genes that positively regulate FHB resistance. The present study also observed variations in the levels of FHB resistance between coleoptiles and spikes or transgenic plants and natural germplasms.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xiuxiu Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Yanhui Fan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Liang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Guanghui Yu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Wenyang Ge
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Lanfei Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
17
|
Wang Q, Shao B, Shaikh FI, Friedt W, Gottwald S. Wheat Resistances to Fusarium Root Rot and Head Blight Are Both Associated with Deoxynivalenol- and Jasmonate-Related Gene Expression. PHYTOPATHOLOGY 2018; 108:602-616. [PMID: 29256831 DOI: 10.1094/phyto-05-17-0172-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fusarium graminearum is a major pathogen of wheat causing Fusarium head blight (FHB). Its ability to colonize wheat via seedling root infection has been reported recently. Our previous study on Fusarium root rot (FRR) has disclosed histological characteristics of pathogenesis and pathogen defense that mirror processes of spike infection. Therefore, it would be interesting to understand whether genes relevant for FHB resistance are induced in roots. The concept of similar-acting defense mechanisms provides a basis for research at broad Fusarium resistance in crop plants. However, molecular defense responses involved in FRR as well as their relation to spike resistance are unknown. To test the hypothesis of a conserved defense response, a candidate gene expression study was conducted to test the activity of selected prominent FHB defense-related genes in seedling roots, adult plant roots, spikes, and shoots. FRR was examined at seedling and adult plant stages to assess age-related pattern of disease and pathogen resistance. This study offers first evidence for a significant genetic overlap in root and spike defense responses, both in local and distant tissues. The results point to plant development-specific rather than organ-specific determinants of resistance, and suggest roots as an interesting model for studies on wheat-Fusarium interactions.
Collapse
Affiliation(s)
- Qing Wang
- All authors: Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Beiqi Shao
- All authors: Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Fayaz Imamrasul Shaikh
- All authors: Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Wolfgang Friedt
- All authors: Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Sven Gottwald
- All authors: Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
18
|
He Y, Ahmad D, Zhang X, Zhang Y, Wu L, Jiang P, Ma H. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2018; 18:67. [PMID: 29673318 PMCID: PMC5909277 DOI: 10.1186/s12870-018-1286-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Fusarium head blight (FHB), a devastating disease in wheat worldwide, results in yield loses and mycotoxin, such as deoxynivalenol (DON), accumulation in infected grains. DON also facilitates the pathogen colonization and spread of FHB symptoms during disease development. UDP-glycosyltransferase enzymes (UGTs) are known to contribute to detoxification and enhance FHB resistance by glycosylating DON into DON-3-glucoside (D3G) in wheat. However, a comprehensive investigation of wheat (Triticum aestivum) UGT genes is still lacking. RESULTS In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in wheat based on the PSPG conserved box that resulted in the identification of 179 putative UGT genes. The identified genes were clustered into 16 major phylogenetic groups with a lack of phylogenetic group K. The UGT genes were invariably distributed among all the chromosomes of the 3 genomes. At least 10 intron insertion events were found in the UGT sequences, where intron 4 was observed as the most conserved intron. The expression analysis of the wheat UGT genes using both online microarray data and quantitative real-time PCR verification suggested the distinct role of UGT genes in different tissues and developmental stages. The expression of many UGT genes was up-regulated after Fusarium graminearum inoculation, and six of the genes were further verified by RT-qPCR. CONCLUSION We identified 179 UGT genes from wheat using the available sequenced wheat genome. This study provides useful insight into the phylogenetic structure, distribution, and expression patterns of family-1 UDP glycosyltransferases in wheat. The results also offer a foundation for future work aimed at elucidating the molecular mechanisms underlying the resistance to FHB and DON accumulation.
Collapse
Affiliation(s)
- Yi He
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Dawood Ahmad
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Xu Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Yu Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Lei Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Peng Jiang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Hongxiang Ma
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| |
Collapse
|
19
|
Zhao L, Ma X, Su P, Ge W, Wu H, Guo X, Li A, Wang H, Kong L. Cloning and characterization of a specific UDP-glycosyltransferase gene induced by DON and Fusarium graminearum. PLANT CELL REPORTS 2018; 37:641-652. [PMID: 29372381 DOI: 10.1007/s00299-018-2257-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/11/2018] [Indexed: 05/09/2023]
Abstract
TaUGT5: can reduce the proliferation and destruction of F. graminearum and enhance the ability of FHB resistance in wheat. Deoxynivalenol (DON) is one of the most important toxins produced by Fusarium species that enhances the spread of the pathogen in the host. As a defense, the UDP-glycosyltransferase (UGT) family has been deduced to transform DON into the less toxic form DON-3-O-glucoside (D3G), but the specific gene member in wheat that is responsible for Fusarium head blight (FHB) resistance has been little investigated and proved. In this study, a DON and Fusarium graminearum responsive gene TaUGT5, which is specific for resistant cultivars, was cloned with a 1431 bp open reading frame (ORF) encoding 476 amino acids in Sumai3. TaUGT5 is located on chromosome 2B, which has been confirmed in nulli-tetrasomic lines of Chinese Spring (CS) and is solely expressed among three homologs on the A, B and D genomes. Over-expression of this gene in Arabidopsis conferred enhanced tolerance when grown on agar plates that contain DON. Similarly, the coleoptiles of wheat over-expressing TaUGT5 showed more resistance to F. graminearum, evidencing reduced proliferation and destruction of plant tissue by the pathogen. However, the disease resistance in spikes was not as significant as that on coleoptile compared with wild-type plants. A subcellular localization analysis revealed that TaUGT5 was localized on the plasma membrane of tobacco leaf epidermal cells. It is possible that TaUGT5 could enhance tolerance to DON, protect the plant cell from the pathogen infection and result in better maintenance of the cell structure, which slows down pathogen proliferation in plant tissue.
Collapse
Affiliation(s)
- Lanfei Zhao
- State Key Laboratory of Crop Biology/Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology/Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Peisen Su
- State Key Laboratory of Crop Biology/Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Wenyang Ge
- State Key Laboratory of Crop Biology/Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongyan Wu
- Shandong AgrUnir. Fert. SciTech. Co., Ltd, Feicheng, 271600, People's Republic of China
| | - Xiuxiu Guo
- Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Anfei Li
- State Key Laboratory of Crop Biology/Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology/Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology/Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Kazan K, Gardiner DM. Transcriptomics of cereal-Fusarium graminearum interactions: what we have learned so far. MOLECULAR PLANT PATHOLOGY 2018; 19:764-778. [PMID: 28411402 PMCID: PMC6638174 DOI: 10.1111/mpp.12561] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 05/16/2023]
Abstract
The ascomycete fungal pathogen Fusarium graminearum causes the globally important Fusarium head blight (FHB) disease on cereal hosts, such as wheat and barley. In addition to reducing grain yield, infection by this pathogen causes major quality losses. In particular, the contamination of food and feed with the F. graminearum trichothecene toxin deoxynivalenol (DON) can have many adverse short- and long-term effects on human and animal health. During the last decade, the interaction between F. graminearum and both cereal and model hosts has been extensively studied through transcriptomic analyses. In this review, we present an overview of how such analyses have advanced our understanding of this economically important plant-microbe interaction. From a host point of view, the transcriptomes of FHB-resistant and FHB-susceptible cereal genotypes, including near-isogenic lines (NILs) that differ by the presence or absence of quantitative trait loci (QTLs), have been studied to understand the mechanisms of disease resistance afforded by such QTLs. Transcriptomic analyses employed to dissect host responses to DON have facilitated the identification of the genes involved in toxin detoxification and disease resistance. From the pathogen point of view, the transcriptome of F. graminearum during pathogenic vs. saprophytic growth, or when infecting different cereal hosts or different tissues of the same host, have been studied. In addition, comparative transcriptomic analyses of F. graminearum knock-out mutants with altered virulence have provided new insights into pathogenicity-related processes. The F. graminearum transcriptomic data generated over the years are now being exploited to build a systems level understanding of the biology of this pathogen, with an ultimate aim of developing effective and sustainable disease prevention strategies.
Collapse
Affiliation(s)
- Kemal Kazan
- CSIRO Agriculture and Food Queensland Bioscience PrecinctSt. LuciaQld4067Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI)University of Queensland, Queensland Bioscience PrecinctSt. LuciaQld4067Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and Food Queensland Bioscience PrecinctSt. LuciaQld4067Australia
| |
Collapse
|
21
|
A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Sharma P, Gangola MP, Huang C, Kutcher HR, Ganeshan S, Chibbar RN. Single Nucleotide Polymorphisms in B-Genome Specific UDP-Glucosyl Transferases Associated with Fusarium Head Blight Resistance and Reduced Deoxynivalenol Accumulation in Wheat Grain. PHYTOPATHOLOGY 2018; 108:124-132. [PMID: 29063821 DOI: 10.1094/phyto-04-17-0159-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An in vitro spike culture method was optimized to evaluate Fusarium head blight (FHB) resistance in wheat (Triticum aestivum) and used to screen a population of ethyl methane sulfonate treated spike culture-derived variants (SCDV). Of the 134 SCDV evaluated, the disease severity score of 47 of the variants was ≤30%. Single nucleotide polymorphisms (SNP) in the UDP-glucosyltransferase (UGT) genes, TaUGT-2B, TaUGT-3B, and TaUGT-EST, differed between AC Nanda (an FHB-susceptible wheat variety) and Sumai-3 (an FHB-resistant wheat cultivar). SNP at 450 and 1,558 bp from the translation initiation site in TaUGT-2B and TaUGT-3B, respectively were negatively correlated with FHB severity in the SCDV population, whereas the SNP in TaUGT-EST was not associated with FHB severity. Fusarium graminearum strain M7-07-1 induced early expression of TaUGT-2B and TaUGT-3B in FHB-resistant SCDV lines, which were associated with deoxynivalenol accumulation and reduced FHB disease progression. At 8 days after inoculation, deoxynivalenol concentration varied from 767 ppm in FHB-resistant variants to 2,576 ppm in FHB-susceptible variants. The FHB-resistant SCDV identified can be used as new sources of FHB resistance in wheat improvement programs.
Collapse
Affiliation(s)
- Pallavi Sharma
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Manu P Gangola
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Chen Huang
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - H Randy Kutcher
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Seedhabadee Ganeshan
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Ravindra N Chibbar
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| |
Collapse
|
23
|
Powell JJ, Carere J, Fitzgerald TL, Stiller J, Covarelli L, Xu Q, Gubler F, Colgrave ML, Gardiner DM, Manners JM, Henry RJ, Kazan K. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.). ANNALS OF BOTANY 2017; 119:853-867. [PMID: 27941094 PMCID: PMC5604588 DOI: 10.1093/aob/mcw207] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/11/2016] [Indexed: 05/18/2023]
Abstract
Background and Aims Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. Methods We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum . The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Key Results Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding pathogen-responsive uridine-diphosphate glycosyltransferases (UGTs) potentially involved in detoxification of the Fusarium mycotoxin deoxynivalenol (DON) were differentially expressed. Using a F. pseudograminearum DON-non-producing mutant, DON was shown to play an important role in virulence during Fusarium crown rot. An over-representation of genes involved in the phenylalanine, tryptophan and tyrosine biosynthesis pathways was observed. This was confirmed through metabolite analyses that demonstrated tryptamine and serotonin levels are induced after F. pseudograminearum inoculation. Conclusions Overall, the observed host response in bread wheat to F. pseudograminearum during early infection exhibited enrichment of processes related to pathogen perception, defence signalling, transport and metabolism and deployment of chemical and enzymatic defences. Additional functional analyses of candidate genes should reveal their roles in disease resistance or susceptibility. Better understanding of host responses contributing to resistance and/or susceptibility will aid the development of future disease improvement strategies against this important plant pathogen.
Collapse
Affiliation(s)
- Jonathan J. Powell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture, Queensland Bioscience Precinct, St Lucia, 4067 Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, 4072, St Lucia, Queensland, Australia
| | - Jason Carere
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture, Queensland Bioscience Precinct, St Lucia, 4067 Queensland, Australia
| | - Timothy L. Fitzgerald
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture, Queensland Bioscience Precinct, St Lucia, 4067 Queensland, Australia
| | - Jiri Stiller
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture, Queensland Bioscience Precinct, St Lucia, 4067 Queensland, Australia
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Qian Xu
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Black Mountain, Australian Capital Territory, 2610, Australia
| | - Frank Gubler
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Black Mountain, Australian Capital Territory, 2610, Australia
| | - Michelle L. Colgrave
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture, Queensland Bioscience Precinct, St Lucia, 4067 Queensland, Australia
| | - Donald M. Gardiner
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, 4072, St Lucia, Queensland, Australia
| | - John M. Manners
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Black Mountain, Australian Capital Territory, 2610, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, 4072, St Lucia, Queensland, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture, Queensland Bioscience Precinct, St Lucia, 4067 Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, 4072, St Lucia, Queensland, Australia
| |
Collapse
|
24
|
Michlmayr H, Varga E, Lupi F, Malachová A, Hametner C, Berthiller F, Adam G. Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077. Toxins (Basel) 2017; 9:E58. [PMID: 28208765 PMCID: PMC5331437 DOI: 10.3390/toxins9020058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 01/25/2023] Open
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin occurring in Fusarium-infected cereals. Glucosylation is an important plant defense mechanism and generally reduces the acute toxicity of mycotoxins to humans and animals. Toxicological information about ZEN-glucosides is limited due to the unavailability of larger amounts required for animal studies. HvUGT14077, a recently-validated ZEN-conjugating barley UDP-glucosyltransferase was expressed in Escherichia coli, affinity purified, and characterized. HvUGT14077 possesses high affinity (Km = 3 µM) and catalytic efficiency (kcat/Km = 190 s-1·mM-1) with ZEN. It also efficiently glucosylates the phase-I ZEN-metabolites α-zearalenol and β-zearalenol, with kcat/Km of 40 and 74 s-1·mM-1, respectively. HvUGT14077 catalyzes O-glucosylation at C-14 and C-16 with preference of 14-glucoside synthesis. Furthermore, relatively slow consecutive formation of 14,16-di-glucosides was observed; their structures were tentatively identified by mass spectrometry and for ZEN-14,16-di-glucoside confirmed by nuclear magnetic resonance spectroscopy. Recombinant HvUGT14077 allowed efficient preparative synthesis of ZEN-glucosides, yielding about 90% ZEN-14-glucoside and 10% ZEN-16-glucoside. The yield of ZEN-16-glucoside could be increased to 85% by co-incubation with a β-glucosidase highly selective for ZEN-14-glucoside. Depletion of the co-substrate UDP-glucose was counteracted by a sucrose synthase based regeneration system. This strategy could also be of interest to increase the yield of minor glucosides synthesized by other glucosyltransferases.
Collapse
Affiliation(s)
- Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria.
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.
| | - Elisabeth Varga
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Francesca Lupi
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via-Napoli 25, 71122 Foggia, Italy.
| | - Alexandra Malachová
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Franz Berthiller
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria.
| |
Collapse
|
25
|
Tian Y, Tan Y, Liu N, Yan Z, Liao Y, Chen J, de Saeger S, Yang H, Zhang Q, Wu A. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum. Toxins (Basel) 2016; 8:toxins8110335. [PMID: 27854265 PMCID: PMC5127131 DOI: 10.3390/toxins8110335] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/06/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin mainly produced by the Fusarium graminearum complex, which are important phytopathogens that can infect crops and lead to a serious disease called Fusarium head blight (FHB). As the most common B type trichothecene mycotoxin, DON has toxic effects on animals and humans, which poses a risk to food security. Thus, efforts have been devoted to control DON contamination in different ways. Management of DON production by Trichoderma strains as a biological control-based strategy has drawn great attention recently. In our study, eight selected Trichoderma strains were evaluated for their antagonistic activities on F. graminearum by dual culture on potato dextrose agar (PDA) medium. As potential antagonists, Trichoderma strains showed prominent inhibitory effects on mycelial growth and mycotoxin production of F. graminearum. In addition, the modified mycotoxin deoxynivalenol-3-glucoside (D3G), which was once regarded as a detoxification product of DON in plant defense, was detected when Trichoderma were confronted with F. graminearum. The occurrence of D3G in F. graminearum and Trichoderma interaction was reported for the first time, and these findings provide evidence that Trichoderma strains possess a self-protection mechanism as plants to detoxify DON into D3G when competing with F. graminearum.
Collapse
Affiliation(s)
- Ye Tian
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | - Yanglan Tan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Chen
- Department of Resources and Environment Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Sarah de Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Hua Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qiaoyan Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| |
Collapse
|
26
|
Wetterhorn KM, Newmister SA, Caniza RK, Busman M, McCormick SP, Berthiller F, Adam G, Rayment I. Crystal Structure of Os79 (Os04g0206600) from Oryza sativa: A UDP-glucosyltransferase Involved in the Detoxification of Deoxynivalenol. Biochemistry 2016; 55:6175-6186. [DOI: 10.1021/acs.biochem.6b00709] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karl M. Wetterhorn
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Sean A. Newmister
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Rachell K. Caniza
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Mark Busman
- Mycotoxin
Prevention and Applied Microbiology Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Susan P. McCormick
- Mycotoxin
Prevention and Applied Microbiology Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Franz Berthiller
- Christian
Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical
Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse
20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department
of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Ivan Rayment
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 2016; 48:1576-1580. [DOI: 10.1038/ng.3706] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/29/2016] [Indexed: 11/09/2022]
|
28
|
Zuo DY, Yi SY, Liu RJ, Qu B, Huang T, He WJ, Li C, Li HP, Liao YC. A Deoxynivalenol-Activated Methionyl-tRNA Synthetase Gene from Wheat Encodes a Nuclear Localized Protein and Protects Plants Against Fusarium Pathogens and Mycotoxins. PHYTOPATHOLOGY 2016; 106:614-623. [PMID: 26882849 DOI: 10.1094/phyto-12-15-0327-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fusarium graminearum is the fungal pathogen that causes globally important diseases of cereals and produces mycotoxins such as deoxynivalenol (DON). Owing to the dearth of available sources of resistance to Fusarium pathogens, characterization of novel genes that confer resistance to mycotoxins and mycotoxin-producing fungi is vitally important for breeding resistant crop varieties. In this study, a wheat methionyl-tRNA synthetase (TaMetRS) gene was identified from suspension cell cultures treated with DON. It shares conserved aminoacylation catalytic and tRNA anticodon binding domains with human MetRS and with the only previously characterized plant MetRS, suggesting that it functions in aminoacylation in the cytoplasm. However, the TaMetRS comprises a typical nuclear localization signal and cellular localization studies with a TaMetRS::GFP fusion protein showed that TaMetRS is localized in the nucleus. Expression of TaMetRS was activated by DON treatment and by infection with a DON-producing F. graminearum strain in wheat spikes. No such activation was observed following infection with a non-DON-producing F. graminearum strain. Expression of TaMetRS in Arabidopsis plants conferred significant resistance to DON and F. graminearum. These results indicated that this DON-activated TaMetRS gene may encode a novel type of MetRS in plants that has a role in defense and detoxification.
Collapse
Affiliation(s)
- Dong-Yun Zuo
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shu-Yuan Yi
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rong-Jing Liu
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Bo Qu
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Huang
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Wei-Jie He
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Cheng Li
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - He-Ping Li
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu-Cai Liao
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
29
|
Tian Y, Tan Y, Liu N, Liao Y, Sun C, Wang S, Wu A. Functional Agents to Biologically Control Deoxynivalenol Contamination in Cereal Grains. Front Microbiol 2016; 7:395. [PMID: 27064760 PMCID: PMC4811902 DOI: 10.3389/fmicb.2016.00395] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/14/2016] [Indexed: 01/30/2023] Open
Abstract
Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety.
Collapse
Affiliation(s)
- Ye Tian
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Yanglan Tan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Changpo Sun
- Academy of State Administration of GrainBeijing, China
| | - Shuangxia Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
30
|
Shu X, Livingston DP, Franks RG, Boston RS, Woloshuk CP, Payne GA. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2015; 16:662-74. [PMID: 25469958 PMCID: PMC6638326 DOI: 10.1111/mpp.12224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aspergillus flavus and Fusarium verticillioides are fungal pathogens that colonize maize kernels and produce the harmful mycotoxins aflatoxin and fumonisin, respectively. Management practice based on potential host resistance to reduce contamination by these mycotoxins has proven difficult, resulting in the need for a better understanding of the infection process by these fungi and the response of maize seeds to infection. In this study, we followed the colonization of seeds by histological methods and the transcriptional changes of two maize defence-related genes in specific seed tissues by RNA in situ hybridization. Maize kernels were inoculated with either A. flavus or F. verticillioides 21-22 days after pollination, and harvested at 4, 12, 24, 48, 72, 96 and 120 h post-inoculation. The fungi colonized all tissues of maize seed, but differed in their interactions with aleurone and germ tissues. RNA in situ hybridization showed the induction of the maize pathogenesis-related protein, maize seed (PRms) gene in the aleurone and scutellum on infection by either fungus. Transcripts of the maize sucrose synthase-encoding gene, shrunken-1 (Sh1), were observed in the embryo of non-infected kernels, but were induced on infection by each fungus in the aleurone and scutellum. By comparing histological and RNA in situ hybridization results from adjacent serial sections, we found that the transcripts of these two genes accumulated in tissue prior to the arrival of the advancing pathogens in the seeds. A knowledge of the patterns of colonization and tissue-specific gene expression in response to these fungi will be helpful in the development of resistance.
Collapse
Affiliation(s)
- Xiaomei Shu
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7567, USA
| | - David P Livingston
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Robert G Franks
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rebecca S Boston
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Charles P Woloshuk
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gary A Payne
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7567, USA
| |
Collapse
|
31
|
Michlmayr H, Malachová A, Varga E, Kleinová J, Lemmens M, Newmister S, Rayment I, Berthiller F, Adam G. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-D-glucoside. Toxins (Basel) 2015; 7:2685-700. [PMID: 26197338 PMCID: PMC4516937 DOI: 10.3390/toxins7072685] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 12/20/2022] Open
Abstract
Glycosylation is an important plant defense mechanism and conjugates of Fusarium mycotoxins often co-occur with their parent compounds in cereal-based food and feed. In case of deoxynivalenol (DON), deoxynivalenol-3-O-β-D-glucoside (D3G) is the most important masked mycotoxin. The toxicological significance of D3G is not yet fully understood so that it is crucial to obtain this compound in pure and sufficient quantities for toxicological risk assessment and for use as an analytical standard. The aim of this study was the biochemical characterization of a DON-inactivating UDP-glucosyltransferase from rice (OsUGT79) and to investigate its suitability for preparative D3G synthesis. Apparent Michaelis constants (Km) of recombinant OsUGT79 were 0.23 mM DON and 2.2 mM UDP-glucose. Substrate inhibition occurred at DON concentrations above 2 mM (Ki = 24 mM DON), and UDP strongly inhibited the enzyme. Cu2+ and Zn2+ (1 mM) inhibited the enzyme completely. Sucrose synthase AtSUS1 was employed to regenerate UDP-glucose during the glucosylation reaction. With this approach, optimal conversion rates can be obtained at limited concentrations of the costly co-factor UDP-glucose. D3G can now be synthesized in sufficient quantity and purity. Similar strategies may be of interest to produce β-glucosides of other toxins.
Collapse
Affiliation(s)
- Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 24, 3430 Tulln, Austria.
| | - Alexandra Malachová
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Elisabeth Varga
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Jana Kleinová
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic.
| | - Marc Lemmens
- Biotechnology in Plant Production, Department IFA-Tulln, BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Sean Newmister
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI 53706, USA.
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI 53706, USA.
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 24, 3430 Tulln, Austria.
| |
Collapse
|
32
|
Kosaka A, Manickavelu A, Kajihara D, Nakagawa H, Ban T. Altered gene expression profiles of wheat genotypes against Fusarium head blight. Toxins (Basel) 2015; 7:604-20. [PMID: 25690694 PMCID: PMC4344645 DOI: 10.3390/toxins7020604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 11/19/2022] Open
Abstract
Fusarium graminearum is responsible for Fusarium head blight (FHB), which is a destructive disease of wheat that makes its quality unsuitable for end use. To understand the temporal molecular response against this pathogen, microarray gene expression analysis was carried out at two time points on three wheat genotypes, the spikes of which were infected by Fusarium graminearum. The greatest number of genes was upregulated in Nobeokabouzu-komugi followed by Sumai 3, whereas the minimum expression in Gamenya was at three days after inoculation (dai). In Nobeokabouzu-komugi, high expression of detoxification genes, such as multidrug-resistant protein, multidrug resistance-associated protein, UDP-glycosyltransferase and ABC transporters, in addition to systemic defense-related genes, were identified at the early stage of infection. This early response of the highly-resistant genotype implies a different resistance response from the other resistant genotype, Sumai 3, primarily containing local defense-related genes, such as cell wall defense genes. In Gamenya, the expression of all three functional groups was minimal. The differences in these molecular responses with respect to the time points confirmed the variation in the genotypes. For the first time, we report the nature of gene expression in the FHB-highly resistant cv. Nobeokabouzu-komugi during the disease establishment stage and the possible underlying molecular response.
Collapse
Affiliation(s)
- Ayumi Kosaka
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka, Yokohama 244-0813, Japan.
| | - Alagu Manickavelu
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka, Yokohama 244-0813, Japan.
| | - Daniela Kajihara
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka, Yokohama 244-0813, Japan.
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo, School of Medicine, Av. Eneas C Aguiar, 44-Annex 2, 9th floor, Sao Paulo 05403-900, Brazil.
| | - Hiroyuki Nakagawa
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Japan.
| | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka, Yokohama 244-0813, Japan.
| |
Collapse
|
33
|
Ravensdale M, Rocheleau H, Wang L, Nasmith C, Ouellet T, Subramaniam R. Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2014; 15:948-56. [PMID: 24751103 PMCID: PMC6638912 DOI: 10.1111/mpp.12145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two mutants (tri6Δ and noxABΔ) of the fungal pathogen Fusarium graminearum were assessed for their ability to prime immune responses in wheat (cv. Roblin) against challenge with pathogenic F. graminearum. Priming treatments generated Fusarium head blight (FHB)-resistant wheat phenotypes and reduced the accumulation of fungal mycotoxins in infected tissues. Microarray analysis identified 260 transcripts that were differentially expressed during the priming period. Expression changes were observed in genes associated with immune surveillance systems, signalling cascades, antimicrobial compound production, oxidative burst, secondary metabolism, and detoxification and transport. Specifically, genes related to jasmonate, gibberellin and ethylene biosynthesis exhibited differential expression during priming. In addition, the induction of the phenylpropanoid pathways that lead to flavonoid, coumarin and hydroxycinnamic acid amide accumulation was also observed. This study highlights the utility of nonpathogenic mutants to both elicit and delineate stages of defence responses in wheat.
Collapse
Affiliation(s)
- Michael Ravensdale
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada, K1A 0C6
| | | | | | | | | | | |
Collapse
|
34
|
Lu YC, Zhang S, Yang H. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:806-814. [PMID: 25464323 DOI: 10.1016/j.jhazmat.2014.10.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/10/2014] [Accepted: 10/19/2014] [Indexed: 06/04/2023]
Abstract
Isoproturon (IPU) is a herbicide widely used to prevent weeds in cereal production. Due to its extensive use in agriculture, residues of IPU are often detected in soils and crops. Overload of IPU to crops is associated with human health risks. Hence, there is an urgent need to develop an approach to mitigate its accumulation in crops. In this study, the IPU residues and its degradation products in wheat were characterized using ultra performance liquid chromatography-time of fight tandem-mass spectrometer/mass spectrometer (UPLC-TOF-MS/MS). Most detected IPU-derivatives were sugar-conjugated. Degradation and glycosylation of IPU-derivatives could be enhanced by applying salicylic acid (SA). While more sugar-conjugated IPU-derivatives were identified in wheat with SA application, lower levels of IPU were detected, indicating that SA is able to accelerate intracellular IPU catabolism. All structures of IPU-derivatives and sugar-conjugated products were characterized. Comparative data were provided with specific activities and gene expression of certain glucosyltransferases. A pathway with IPU degradation and glucosylation was discussed. Our work indicates that SA-accelerated degradation is practically useful for wheat crops growing in IPU-contaminated soils because such crops with SA application can potentially lower or minimize IPU accumulation in levels below the threshold for adverse effects.
Collapse
Affiliation(s)
- Yi Chen Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shuang Zhang
- State key laboratory of food science and technology, Jiangnan University, Wuxi 214122, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Identification and differential induction of ABCG transporter genes in wheat cultivars challenged by a deoxynivalenol-producing Fusarium graminearum strain. Mol Biol Rep 2014; 41:6181-94. [PMID: 24973883 DOI: 10.1007/s11033-014-3497-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Fusarium head blight (FHB), predominantly caused by Fusarium graminearum, is a devastating disease that poses a serious threat to wheat (Triticum aestivum L.) production worldwide. A suppression subtractive hybridization cDNA library was constructed from F. graminearum infected spikes of a resistant Belgian winter wheat, Centenaire, exhibiting Type II resistance to FHB in order to identify differentially expressed members of full-size ABCG family. Members of the ABCG family are pleiotropic drug transporters allowing the movement of structurally unrelated metabolites, including pathogens-derived virulent compounds, across biological membranes and could be potentially involved in resistance to plant pathogens. In this study, five new full-size ABCG transporter expressed sequence tags TaABCG2, TaABCG3, TaABCG4, TaABCG5 and TaABCG6 have been identified. Time-course gene expression profiling between the FHB resistant Centenaire and the susceptible Robigus genotype showed that the newly isolated transcripts were differentially expressed up to 72 h-post inoculation. The respective genes encoding these transcripts were mapped to corresponding wheat chromosomes or chromosomal arms known to harbor quantitative trait loci for FHB resistance. Interestingly, these ABCG transcripts were also induced by deoxynivalenol (DON) treatment of germinating wheat seeds and the toxin treatment inhibited root and hypocotyl growth. However, the hypocotyl of the FHB resistant cultivar Centenaire was less affected than that of the susceptible cultivar Robigus, reflecting more likely the genotype-dependent differential expression pattern of the identified ABCG genes. This work emphasizes the potential involvement of ABCG transporters in wheat resistance to FHB, at least in part through the detoxification of the pathogen-produced DON.
Collapse
|
36
|
Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 2013; 536:254-64. [PMID: 24368332 DOI: 10.1016/j.gene.2013.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 01/15/2023]
Abstract
The present study aims to investigate small RNA interactions with putative disease response genes in the model grass species Brachypodium distachyon. The fungal pathogen Fusarium culmorum (Fusarium herein) and phytohormone salicylic acid treatment were used to induce the disease response in Brachypodium. Initially, 121 different putative disease response genes were identified using bioinformatic and homology based approaches. Computational prediction was used to identify 33 candidate new miRNA coding sequences, of which 9 were verified by analysis of small RNA sequence libraries. Putative Brachypodium miRNA target sites were identified in the disease response genes, and a subset of which were screened for expression and possible miRNA interactions in 5 different Brachypodium lines infected with Fusarium. An NBS-LRR family gene, 1g34430, was polymorphic among the lines, forming two major genotypes, one of which has its miRNA target sites deleted, resulting in altered gene expression during infection. There were siRNAs putatively involved in regulation of this gene, indicating a role of small RNAs in the B. distachyon disease response.
Collapse
|
37
|
Kugler KG, Siegwart G, Nussbaumer T, Ametz C, Spannagl M, Steiner B, Lemmens M, Mayer KFX, Buerstmayr H, Schweiger W. Quantitative trait loci-dependent analysis of a gene co-expression network associated with Fusarium head blight resistance in bread wheat (Triticum aestivum L.). BMC Genomics 2013; 14:728. [PMID: 24152241 PMCID: PMC4007557 DOI: 10.1186/1471-2164-14-728] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/14/2013] [Indexed: 01/04/2023] Open
Abstract
Background Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe is one of the most prevalent diseases of wheat (Triticum aestivum L.) and other small grain cereals. Resistance against the fungus is quantitative and more than 100 quantitative trait loci (QTL) have been described. Two well-validated and highly reproducible QTL, Fhb1 and Qfhs.ifa-5A have been widely investigated, but to date the underlying genes have not been identified. Results We have investigated a gene co-expression network activated in response to F. graminearum using RNA-seq data from near-isogenic lines, harboring either the resistant or the susceptible allele for Fhb1 and Qfhs.ifa-5A. The network identified pathogen-responsive modules, which were enriched for differentially expressed genes between genotypes or different time points after inoculation with the pathogen. Central gene analysis identified transcripts associated with either QTL within the network. Moreover, we present a detailed gene expression analysis of four gene families (glucanases, NBS-LRR, WRKY transcription factors and UDP-glycosyltransferases), which take prominent roles in the pathogen response. Conclusions A combination of a network-driven approach and differential gene expression analysis identified genes and pathways associated with Fhb1 and Qfhs.ifa-5A. We find G-protein coupled receptor kinases and biosynthesis genes for jasmonate and ethylene earlier induced for Fhb1. Similarly, we find genes involved in the biosynthesis and metabolism of riboflavin more abundant for Qfhs.ifa-5A.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wolfgang Schweiger
- Institute for Biotechnology in Plant Production, IFA-Tulln, University of Natural Resources and Life Sciences, A-3430 Tulln, Austria.
| |
Collapse
|
38
|
Schweiger W, Pasquet JC, Nussbaumer T, Paris MPK, Wiesenberger G, Macadré C, Ametz C, Berthiller F, Lemmens M, Saindrenan P, Mewes HW, Mayer KFX, Dufresne M, Adam G. Functional characterization of two clusters of Brachypodium distachyon UDP-glycosyltransferases encoding putative deoxynivalenol detoxification genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:781-92. [PMID: 23550529 DOI: 10.1094/mpmi-08-12-0205-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant small-molecule UDP-glycosyltransferases (UGT) glycosylate a vast number of endogenous substances but also act in detoxification of metabolites produced by plant-pathogenic microorganisms. The ability to inactivate the Fusarium graminearum mycotoxin deoxynivalenol (DON) into DON-3-O-glucoside is crucial for resistance of cereals. We analyzed the UGT gene family of the monocot model species Brachypodium distachyon and functionally characterized two gene clusters containing putative orthologs of previously identified DON-detoxification genes from Arabidopsis thaliana and barley. Analysis of transcription showed that UGT encoded in both clusters are highly inducible by DON and expressed at much higher levels upon infection with a wild-type DON-producing F. graminearum strain compared with infection with a mutant deficient in DON production. Expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae revealed that only two B. distachyon UGT encoded by members of a cluster of six genes homologous to the DON-inactivating barley HvUGT13248 were able to convert DON into DON-3-O-glucoside. Also, a single copy gene from Sorghum bicolor orthologous to this cluster and one of three putative orthologs of rice exhibit this ability. Seemingly, the UGT genes undergo rapid evolution and changes in copy number, making it difficult to identify orthologs with conserved substrate specificity.
Collapse
Affiliation(s)
- Wolfgang Schweiger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, A-3430 Tulln, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xiao J, Jin X, Jia X, Wang H, Cao A, Zhao W, Pei H, Xue Z, He L, Chen Q, Wang X. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics 2013; 14:197. [PMID: 23514540 PMCID: PMC3616903 DOI: 10.1186/1471-2164-14-197] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fusarium head blight (FHB), caused mainly by Fusarium graminearum (Fg) Schwabe (teleomorph: Gibberellazeae Schwble), brings serious damage to wheat production. Chinese wheat landrace Wangshuibai is one of the most important resistance sources in the world. The knowledge of mechanism underlying its resistance to FHB is still limited. RESULTS To get an overview of transcriptome characteristics of Wangshuibai during infection by Fg, a high-throughput RNA sequencing based on next generation sequencing (NGS) technology (Illumina) were performed. Totally, 165,499 unigenes were generated and assigned to known protein databases including NCBI non-redundant protein database (nr) (82,721, 50.0%), Gene Ontology (GO) (38,184, 23.1%), Swiss-Prot (50,702, 30.6%), Clusters of orthologous groups (COG) (51,566, 31.2%) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (30,657, 18.5%), as determined by Blastx search. With another NGS based platform, a digital gene expression (DGE) system, gene expression in Wangshuibai and its FHB susceptible mutant NAUH117 was profiled and compared at two infection stages by inoculation of Fg at 24 and 48 hour, with the aim of identifying genes involved in FHB resistance. CONCLUSION Pathogen-related proteins such as PR5, PR14 and ABC transporter and JA signaling pathway were crucial for FHB resistance, especially that mediated by Fhb1. ET pathway and ROS/NO pathway were not activated in Wangshuibai and may be not pivotal in defense to FHB. Consistent with the fact that in NAUH117 there presented a chromosome fragment deletion, which led to its increased FHB susceptibility, in Wangshuibai, twenty out of eighty-nine genes showed changed expression patterns upon the infection of Fg. The up-regulation of eight of them was confirmed by qRT-PCR, revealing they may be candidate genes for Fhb1 and need further functional analysis to confirm their roles in FHB resistance.
Collapse
Affiliation(s)
- Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gottwald S, Samans B, Lück S, Friedt W. Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat? BMC Genomics 2012; 13:369. [PMID: 22857656 PMCID: PMC3533685 DOI: 10.1186/1471-2164-13-369] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/21/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Fusarium head blight (FHB) caused by Fusarium species like F. graminearum is a devastating disease of wheat (Triticum aestivum) worldwide. Mycotoxins such as deoxynivalenol produced by the fungus affect plant and animal health, and cause significant reductions of grain yield and quality. Resistant varieties are the only effective way to control this disease, but the molecular events leading to FHB resistance are still poorly understood. Transcriptional profiling was conducted for the winter wheat cultivars Dream (moderately resistant) and Lynx (susceptible). The gene expressions at 32 and 72 h after inoculation with Fusarium were used to trace possible defence mechanisms and associated genes. A comparative qPCR was carried out for selected genes to analyse the respective expression patterns in the resistant cultivars Dream and Sumai 3 (Chinese spring wheat). RESULTS Among 2,169 differentially expressed genes, two putative main defence mechanisms were found in the FHB-resistant Dream cultivar. Both are defined base on their specific mode of resistance. A non-specific mechanism was based on several defence genes probably induced by jasmonate and ethylene signalling, including lipid-transfer protein, thionin, defensin and GDSL-like lipase genes. Additionally, defence-related genes encoding jasmonate-regulated proteins were up-regulated in response to FHB. Another mechanism based on the targeted suppression of essential Fusarium virulence factors comprising proteases and mycotoxins was found to be an essential, induced defence of general relevance in wheat. Moreover, similar inductions upon fungal infection were frequently observed among FHB-responsive genes of both mechanisms in the cultivars Dream and Sumai 3. CONCLUSIONS Especially ABC transporter, UDP-glucosyltransferase, protease and protease inhibitor genes associated with the defence mechanism against fungal virulence factors are apparently active in different resistant genetic backgrounds, according to reports on other wheat cultivars and barley. This was further supported in our qPCR experiments on seven genes originating from this mechanism which revealed similar activities in the resistant cultivars Dream and Sumai 3. Finally, the combination of early-stage and steady-state induction was associated with resistance, while transcript induction generally occurred later and temporarily in the susceptible cultivars. The respective mechanisms are attractive for advanced studies aiming at new resistance and toxin management strategies.
Collapse
Affiliation(s)
- Sven Gottwald
- Department of Plant Breeding, Justus-Liebig University, Institute of Agronomy and Plant Breeding I, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Birgit Samans
- Biometry and Population Genetics, Justus-Liebig University, Institute of Agronomy and Plant Breeding II, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Stefanie Lück
- Department of Plant Breeding, Justus-Liebig University, Institute of Agronomy and Plant Breeding I, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Wolfgang Friedt
- Department of Plant Breeding, Justus-Liebig University, Institute of Agronomy and Plant Breeding I, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| |
Collapse
|
41
|
Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl Microbiol Biotechnol 2011; 91:491-504. [PMID: 21691789 PMCID: PMC3136691 DOI: 10.1007/s00253-011-3401-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 01/20/2023]
Abstract
Deoxynivalenol (DON) is the major mycotoxin produced by Fusarium fungi in grains. Food and feed contaminated with DON pose a health risk to humans and livestock. The risk can be reduced by enzymatic detoxification. Complete mineralization of DON by microbial cultures has rarely been observed and the activities turned out to be unstable. The detoxification of DON by reactions targeting its epoxide group or hydroxyl on carbon 3 is more feasible. Microbial strains that de-epoxidize DON under anaerobic conditions have been isolated from animal digestive system. Feed additives claimed to de-epoxidize trichothecenes enzymatically are on the market but their efficacy has been disputed. A new detoxification pathway leading to 3-oxo-DON and 3-epi-DON was discovered in taxonomically unrelated soil bacteria from three continents; the enzymes involved remain to be identified. Arabidopsis, tobacco, wheat, barley, and rice were engineered to acetylate DON on carbon 3. In wheat expressing DON acetylation activity, the increase in resistance against Fusarium head blight was only moderate. The Tri101 gene from Fusarium sporotrichioides was used; Fusarium graminearum enzyme which possesses higher activity towards DON would presumably be a better choice. Glycosylation of trichothecenes occurs in plants, contributing to the resistance of wheat to F. graminearum infection. Marker-assisted selection based on the trichothecene-3-O-glucosyltransferase gene can be used in breeding for resistance. Fungal acetyltransferases and plant glucosyltransferases targeting carbon 3 of trichothecenes remain promising candidates for engineering resistance against Fusarium head blight. Bacterial enzymes catalyzing oxidation, epimerization, and less likely de-epoxidation of DON may extend this list in future.
Collapse
|
42
|
Bischof M, Eichmann R, Hückelhoven R. Pathogenesis-associated transcriptional patterns in Triticeae. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:9-19. [PMID: 20674077 DOI: 10.1016/j.jplph.2010.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 05/08/2023]
Abstract
The Triticeae tribe of the plant Poaceae family contains some of the most important cereal crop plants for nutrition of humans and livestock such as wheat and barley. Despite the agronomical relevance of plant immunity, knowledge on mechanisms of disease or resistance in Triticeae is limited. It is hardly understood what actually stops a microbial invader when restricted by the plant and in how far a susceptible host plant contributes to pathogenesis. Transcriptional reprogramming of the host plant may be involved in both immunity and disease. This paper gives an overview about recent analyses of global pathogenesis-related transcriptional patterns in response of Triticeae to biotrophic or non-biotrophic fungal pathogens and their toxins. It highlights enriched biological functions in association with successful plant defence or disease as well as experiments that successfully translated gene expression data into analysis of gene functions.
Collapse
Affiliation(s)
- Melanie Bischof
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
43
|
Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H. Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. MOLECULAR PLANT PATHOLOGY 2010; 11:769-82. [PMID: 21029322 PMCID: PMC6640360 DOI: 10.1111/j.1364-3703.2010.00643.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Quantitative resistance is generally controlled by several genes. More than 100 resistance quantitative trait loci (QTLs) have been identified in wheat and barley against Fusarium head blight (FHB), caused by Gibberella zeae (anamorph: Fusarium graminearum), implying the possible occurrence of several resistance mechanisms. The objective of this study was to apply metabolomics to identify the metabolites in barley that are related to resistance against FHB. Barley genotypes, Chevron and Stander, were inoculated with mock or pathogen during the anthesis stage. The disease severity was assessed as the proportion of spikelets diseased. The genotype Chevron (0.33) was found to have a higher level of quantitative resistance than Stander (0.88). Spikelet samples were harvested at 48 h post-inoculation; metabolites were extracted and analysed using an LC-ESI-LTQ-Orbitrap (Thermo Fisher, Waltham, MA, USA). The output was imported to an XCMS 1.12.1 platform, the peaks were deconvoluted and the adducts were sieved. Of the 1826 peaks retained, a t-test identified 496 metabolites with significant treatment effects. Among these, 194 were resistance-related (RR) constitutive metabolites, whose abundance was higher in resistant mock-inoculated than in susceptible mock-inoculated genotypes. Fifty metabolites were assigned putative names on the basis of accurate mass, fragmentation pattern and number of carbons in the formula. The RR metabolites mainly belonged to phenylpropanoid, flavonoid, fatty acid and terpenoid metabolic pathways. Selected RR metabolites were assayed in vitro for antifungal activity on the basis of fungal biomass production. The application of these RR metabolites as potential biomarkers for screening and the potential of mass spectrometry-based metabolomics for the identification of gene functions are discussed.
Collapse
Affiliation(s)
- Venkatesh Bollina
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Schweiger W, Boddu J, Shin S, Poppenberger B, Berthiller F, Lemmens M, Muehlbauer GJ, Adam G. Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:977-86. [PMID: 20521959 DOI: 10.1094/mpmi-23-7-0977] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Resistance to the virulence factor deoxynivalenol (DON) due to formation of DON-3-O-glucoside (D3G) is considered to be an important component of resistance against Fusarium spp. which produce this toxin. Multiple candidate UDP-glycosyltransferase (UGT) genes from different crop plants that are either induced by Fusarium spp. or differentially expressed in cultivars varying in Fusarium disease resistance have been described. However, UGT are encoded by a very large gene family in plants. The study of candidate plant UGT is highly warranted because of the potential relevance for developing Fusarium-spp.-resistant crops. We tested Arabidopsis thaliana genes closely related to a previously identified DON-glucosyltransferase gene by heterologous expression in yeast and showed that gene products with very high sequence similarity can have pronounced differences in detoxification capabilities. We also tested four candidate barley glucosyltransferases, which are highly DON inducible. Upon heterologous expression of full-length cDNAs, only one gene, HvUGT13248, conferred DON resistance. The conjugate D3G accumulated in the supernatant of DON-treated yeast transformants. We also present evidence that the product of the TaUGT3 gene recently proposed to encode a DON-detoxification enzyme of wheat does not protect yeast against DON.
Collapse
Affiliation(s)
- Wolfgang Schweiger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gardiner SA, Boddu J, Berthiller F, Hametner C, Stupar RM, Adam G, Muehlbauer GJ. Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:962-76. [PMID: 20521958 DOI: 10.1094/mpmi-23-7-0962] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Trichothecenes are a major group of toxins produced by phytopathogenic fungi, including Fusarium graminearum. Trichothecenes inhibit protein synthesis in eukaryotic cells and are toxicologically relevant mycotoxins for humans and animals. Because they promote plant disease, the role of host responses to trichothecene accumulation is considered to be an important aspect of plant defense and resistance to fungal infection. Our overall objective was to examine the barley response to application of the type B trichothecene deoxynivalenol (DON). We found that DON is diluted by movement from the application site to acropetal and basipetal florets. A susceptible barley genotype converted DON to DON-3-O-glucoside, indicating that UDP-glucosyltransferases capable of detoxifying DON must exist in barley. RNA profiling of DON-treated barley spikes revealed strong upregulation of gene transcripts encoding ABC transporters, UDP-glucosyltransferases, cytochrome P450s, and glutathione-S-transferases. We noted that transcripts encoding cysteine synthases were dramatically induced by DON, and that toxin-sensitive yeast on glutathione- or cysteine-supplemented media or carrying a gene that encodes a cysteine biosynthetic enzyme exhibit DON resistance, suggesting that preventing glutathione depletion by increasing cysteine supply could play a role in ameliorating the impact of DON. Evidence for nonenzymatic formation of DON-glutathione adducts in vitro was found using both liquid chromatography-mass spectrometry and nuclear magnetic resonance analysis, indicating that the formation of DON-glutathione conjugates in vivo may reduce the impact of trichothecenes. Our results indicate that barley exhibits multiple defense mechanisms against trichothecenes.
Collapse
Affiliation(s)
- Stephanie A Gardiner
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|