1
|
Yan Y, Li C, Jie Q, Zhang J, Liu Y, Li Y, Cui D, Hua D, Huang J. 3β-hydroxysteroid-Δ24 reductase integrates cholesterol metabolism and innate immune to promote PRRSV replication. Int J Biol Macromol 2025; 309:142867. [PMID: 40203946 DOI: 10.1016/j.ijbiomac.2025.142867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Cholesterol metabolism is a strategy used by PRRSV to inhibit host antiviral innate immunity. However, the key enzymes or the natural products and mechanisms involved have not been well elucidated. Here, we show that PRRSV infection upregulated DHCR24, the rate-limiting enzyme in the cholesterol synthesis pathway, to increase virus proliferation. We further elucidated that PRRSV Nsp4 interacts with the FAD domain of DHCR24, promoting its expression and increasing cellular cholesterol levels. In addition, U18666A treatment inhibited DHCR24 enzyme activity, significantly reduced cell cholesterol content and PRRSV replication, and exogenous cholesterol supplementation could rescued this effect. We also found that DHCR24 is a negative regulator of type I interferon (IFN-I) production upon viral infection. Mechanistically, DHCR24 interacts with TBK1 and disrupts the interaction of TBK1-IRF3, thereby inhibiting IRF3 phosphorylation and nuclear translocation. Taken together, these findings elucidate that DHCR24 is utilized by PRRSV to regulate host cholesterol content, inhibit the innate immune response, and promote virus proliferation.
Collapse
Affiliation(s)
- Yuchao Yan
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Changyan Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Qun Jie
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Junyang Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yijia Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yong Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Daqing Cui
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Deping Hua
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Falero-Diaz G, Barboza CDA, Kaiser K, Tallman KA, Montoya C, Patel SB, Hutcheson JD, Lassance-Soares RM. The Systemic Effect of Ischemia Training and Its Impact on Bone Marrow-Derived Monocytes. Cells 2024; 13:1602. [PMID: 39404366 PMCID: PMC11475150 DOI: 10.3390/cells13191602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Monocytes are innate immune cells that play a central role in inflammation, an essential component during neovascularization. Our recent publication demonstrated that ischemia training by 24 h unilateral occlusion of the femoral artery (FA) can modify bone marrow-derived monocytes (BM-Mono), allowing them to improve collateral remodeling in a mouse model of hindlimb ischemia. Here, we expand on our previous findings, investigating a potential systemic effect of ischemia training and how this training can impact BM-Mono. METHODS AND RESULTS BM-Mono from mice exposed to ischemia training (24 h) or Sham (same surgical procedure without femoral artery occlusion-ischemia training) procedures were used as donors in adoptive transfer experiments where recipients were subjected to hindlimb ischemia. Donor cells were divided corresponding to the limb from which they were isolated (left-limb previously subjected to 24 h ischemia and right-contralateral limb). Recipients who received 24 h ischemic-trained monocytes isolated from either limb had remarkable blood flow recovery compared to recipients with Sham monocytes (monocytes isolated from Sham group-no ischemia training). Since these data suggested a systemic effect of ischemic training, circulating extracellular vesicles (EVs) were investigated as potential players. EVs were isolated from both groups, 24 h-trained and Sham, and the former showed increased expression of histone deacetylase 1 (HDAC1), which is known to downregulate 24-dehydrocholesterol reductase (Dhcr24) gene expression. Since we previously revealed that ischemia training downregulates Dhcr24 in BM-Mono, we incubated EVs from 24 h-trained and Sham groups with wild-type (WT) BM-Mono and demonstrated that WT BM-Mono incubated with 24 h-trained EVs had lower gene expression of Dhcr24 and an HDAC1 inhibitor blunted this effect. Next, we repeated the adoptive transfer experiment using Dhcr24 KO mice as donors of BM-Mono for WT mice subjected to hindlimb ischemia. Recipients who received Dhcr24 KO BM-Mono had greater limb perfusion than those who received WT BM-Mono. Further, we focused on the 24 h-trained monocytes (which previously showed downregulation of Dhcr24 gene expression and higher desmosterol) to test the expression of a few genes downstream of the desmosterol pathway, confirm the Dhcr24 protein level and assess its differentiation in M2-like macrophage phenotype. We found that 24 h-trained BM-Mono had greater expression of key genes in the desmosterol pathway, such as liver X receptors (LXRs) and ATP-binding cassette transporter (ABCA1), and we confirmed low protein expression of Dhcr24. Further, we demonstrated that ischemic-trained BM-Mono polarized towards an anti-inflammatory M2 macrophage phenotype. Finally, we demonstrated that 24 h-trained monocytes adhere less to endothelial cells, and the same pattern was shown by WT BM-Mono treated with Dhcr24 inhibitor. CONCLUSIONS Ischemia training leads to a systemic effect that, at least in part, involves circulating EVs and potential epigenetic modification in BM-Mono. These ischemic-trained BM-Mono demonstrated an anti-inflammatory phenotype towards M2 macrophage differentiation and less ability to adhere to endothelial cells, which is associated with the downregulation of Dhcr24 in those cells. These data together suggest that Dhcr24 might be an important target within monocytes to improve the outcomes of hindlimb ischemia.
Collapse
Affiliation(s)
- Gustavo Falero-Diaz
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| | - Catarina de A. Barboza
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Katherine Kaiser
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (K.K.); (J.D.H.)
| | - Keri A. Tallman
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA;
| | - Christopher Montoya
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| | - Shailendra B. Patel
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (K.K.); (J.D.H.)
| | - Roberta M. Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| |
Collapse
|
3
|
Fu X, Wang Z. DHCR24 in Tumor Diagnosis and Treatment: A Comprehensive Review. Technol Cancer Res Treat 2024; 23:15330338241259780. [PMID: 38847653 PMCID: PMC11162140 DOI: 10.1177/15330338241259780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
As an important nutrient in the human body, cholesterol can not only provide structural components for the body's cells, but also can be transformed into a variety of active substances to regulate cell signaling pathways. As an important cholesterol synthase, DHCR24 participates in important regulatory processes in the body. The application of DHCR24 in tumor clinical diagnosis and treatment also attracts much attention. This article reviews the structure and regulatory characteristics of DHCR24, and the research of DHCR24 on tumor progression. We summarize the possible mechanisms of DHCR24 promoting tumor progression through reactive oxygen species (ROS), p53, Ras and PI3K-AKT pathways. Through our review, we hope to provide more research ideas and reference value for the application of DHCR24 in tumor prevention and treatment.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaosong Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
4
|
Li H, Shen J, Ma S, Zhao F, Zhao W, Chen F, Fu Y, Li B, Cheng J, Deng Y. TGF-β1 suppresses de novo cholesterol biosynthesis in granulosa-lutein cells by down-regulating DHCR24 expression via the GSK-3β/EZH2/H3K27me3 signaling pathway. Int J Biol Macromol 2022; 224:1118-1128. [DOI: 10.1016/j.ijbiomac.2022.10.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
5
|
Ma Y, Wang L, Jiang X, Yao X, Huang X, Zhou K, Yang Y, Wang Y, Sun X, Guan X, Xu Y. Integrative Transcriptomics and Proteomics Analysis Provide a Deep Insight Into Bovine Viral Diarrhea Virus-Host Interactions During BVDV Infection. Front Immunol 2022; 13:862828. [PMID: 35371109 PMCID: PMC8966686 DOI: 10.3389/fimmu.2022.862828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the causative agent of bovine viral diarrhea-mucosal disease (BVD-MD), an important viral disease in cattle that is responsible for extensive economic losses to the cattle industry worldwide. Currently, several underlying mechanisms involved in viral replication, pathogenesis, and evading host innate immunity of BVDV remain to be elucidated, particularly during the early stage of virus infection. To further explore the mechanisms of BVDV-host interactions, the transcriptomics and proteomics profiles of BVDV-infected MDBK cells were sequenced using RNA-seq and iTRAQ techniques, respectively, and followed by an integrative analysis. Compared with mock-infected MDBK cells, a total of 665 differentially expressed genes (DEGs) (391 down-regulated, 274 up-regulated) and 725 differentially expressed proteins (DEPs) (461 down-regulated, 264 up-regulated) were identified. Among these, several DEGs and DEPs were further verified using quantitative RT-PCR and western blot. Following gene ontology (GO) annotation and KEGG enrichment analysis, we determined that these DEGs and DEPs were significantly enriched in multiple important cellular signaling pathways including NOD-like receptor, Toll-like receptor, TNF, NF-κB, MAPK, cAMP, lysosome, protein processing in endoplasmic reticulum, lipid metabolism, and apoptosis signaling pathways. Significantly, the down-regulated DEGs and DEPs were predominantly associated with apoptosis-regulated elements, inflammatory factors, and antiviral elements that were involved in innate immunity, thus, indicating that BVDV could inhibit apoptosis and the expression of host antiviral genes to facilitate viral replication. Meanwhile, up-regulated DEGs and DEPs were primarily involved in metabolism and autophagy signaling pathways, indicating that BVDV could utilize the host metabolic resources and cell autophagy to promote replication. However, the potential mechanisms BVDV-host interactions required further experimental validation. Our data provide an overview of changes in transcriptomics and proteomics profiles of BVDV-infected MDBK cells, thus, providing an important basis for further exploring the mechanisms of BVDV-host interactions.
Collapse
Affiliation(s)
- Yingying Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoxia Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinning Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kun Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yaqi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yixin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaobo Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Bai X, Mai M, Yao K, Zhang M, Huang Y, Zhang W, Guo X, Xu Y, Zhang Y, Qurban A, Duan L, Bu J, Zhang J, Wu J, Zhao Y, Yuan X, Zu H. The role of DHCR24 in the pathogenesis of AD: re-cognition of the relationship between cholesterol and AD pathogenesis. Acta Neuropathol Commun 2022; 10:35. [PMID: 35296367 PMCID: PMC8925223 DOI: 10.1186/s40478-022-01338-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies show that 3β-hydroxysterol-Δ24 reductase (DHCR24) has a remarked decline in the brain of AD patients. In brain cholesterol synthetic metabolism, DHCR24 is known as the heavily key synthetase in cholesterol synthesis. Moreover, mutations of DHCR24 gene result in inhibition of the enzymatic activity of DHCR24, causing brain cholesterol deficiency and desmosterol accumulation. Furthermore, in vitro studies also demonstrated that DHCR24 knockdown lead to the inhibition of cholesterol synthesis, and the decrease of plasma membrane cholesterol and intracellular cholesterol level. Obviously, DHCR24 could play a crucial role in maintaining cholesterol homeostasis via the control of cholesterol synthesis. Over the past two decades, accumulating data suggests that DHCR24 activity is downregulated by major risk factors for AD, suggesting a potential link between DHCR24 downregulation and AD pathogenesis. Thus, the brain cholesterol loss seems to be induced by the major risk factors for AD, suggesting a possible causative link between brain cholesterol loss and AD. According to previous data and our study, we further found that the reduced cholesterol level in plasma membrane and intracellular compartments by the deficiency of DHCR24 activity obviously was involved in β-amyloid generation, tau hyperphosphorylation, apoptosis. Importantly, increasing evidences reveal that the brain cholesterol loss and lipid raft disorganization are obviously linked to neuropathological impairments which are associated with AD pathogenesis. Therefore, based on previous data and research on DHCR24, we suppose that the brain cholesterol deficiency/loss might be involved in the pathogenesis of AD.
Collapse
|
7
|
Saxena N, Chandra NC. Cholesterol: A Prelate in Cell Nucleus and its Serendipity. Curr Mol Med 2020; 20:692-707. [PMID: 32282300 DOI: 10.2174/1566524020666200413112030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/22/2022]
Abstract
Cholesterol is a chameleon bio-molecule in cellular multiplex. It acts as a prelate in almost every cellular compartment with its site specific characteristics viz. regulation of structural veracity and scaffold fluidity of bio-membranes, insulation of electrical transmission in nerves, controlling of genes by making steroid endocrines, acting as precursors of metabolic regulators and many more with its emerging prophecy in the cell nucleus to drive new cell formation. Besides the crucial legacy in cellular functionality, cholesterol is ostracized as a member of LDL particle, which has been proved responsible to clog blood vessels. LDL particles get deposited in the blood vessels because of their poor clearance owing to the non-functioning LDL receptor on the vessel wall and surrounding tissues. Blocking of blood vessel promotes heart attack and stroke. On the other hand, cholesterol has been targeted as pro-cancerous molecule. At this phase again cholesterol is biphasic. Although cholesterol is essential to construct nuclear membrane and its lipid-rafts; in cancer tumour cells, cholesterol is not under the control of intracellular feedback regulation and gets accumulated within cell nucleus by crossing nuclear membrane and promoting cell proliferation. In precancerous stage, the immune cells also die because of the lack of requisite concentration of intracellular and intranuclear cholesterol pool. The existence of cholesterol within the cell nucleus has been found in the nuclear membrane, epichromosomal location and nucleoplasm. The existence of cholesterol in the microdomain of nuclear raft has been reported to be linked with gene transcription, cell proliferation and apoptosis. Hydrolysis of cholesterol esters in chromosomal domain is linked with new cell generation. Apparently, Cholesterol is now a prelate in cell nucleus too ------ A serendipity in cellular haven.
Collapse
Affiliation(s)
- Nimisha Saxena
- Department of Biochemistry, KDMCH & Research Center, Akbarpur, Mathura - 281406, India
| | - Nimai Chand Chandra
- Department of Biochemistry, All India Institute of Medical Sciences, Phulwarisharif, Patna - 801507, India
| |
Collapse
|
8
|
Bekkering I, Leeuwerke M, Tanis JC, Schoots MH, Verkaik-Schakel RN, Plösch T, Bilardo CM, Eijsink JJH, Bos AF, Scherjon SA. Differential placental DNA methylation of VEGFA and LEP in small-for-gestational age fetuses with an abnormal cerebroplacental ratio. PLoS One 2019; 14:e0221972. [PMID: 31469872 PMCID: PMC6716778 DOI: 10.1371/journal.pone.0221972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background In Fetal Growth Restriction ‘fetal programming’ may take place via DNA methylation, which has implications for short-term and long-term health outcomes. Small-for-gestational age fetuses are considered fetal growth restricted, characterized by brain-sparing when fetal Doppler hemodynamics are abnormal, expressed as a cerebroplacental ratio (CPR) <1. We aimed to determine whether brain-sparing is associated with altered DNA methylation of selected genes. Methods We compared DNA methylation of six genes in 41 small-for-gestational age placentas with a normal or abnormal CPR. We selected EPO, HIF1A, VEGFA, LEP, PHLDA2, and DHCR24 for their role in angiogenesis, immunomodulation, and placental and fetal growth. DNA methylation was analyzed by pyrosequencing. Results Growth restricted fetuses with an abnormal CPR showed hypermethylation of the VEGFA gene at one CpG (VEGFA-309, p = .001) and an overall hypomethylation of the LEP gene, being significant at two CpGs (LEP-123, p = .049; LEP-51, p = .020). No differences in methylation were observed for the other genes. Conclusions VEGFA and LEP genes are differentially methylated in placentas of small-for-gestational age fetuses with brain-sparing. Hypermethylation of VEGFA-309 in abnormal CPR-placentas could indicate successful compensatory mechanisms. Methylation of LEP-51 is known to suppress LEP expression. Hypomethylation in small-for-gestational age placentas with abnormal CPR may result in hyperleptinemia and predispose to leptin-resistance later in life.
Collapse
Affiliation(s)
- Iris Bekkering
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Mariëtte Leeuwerke
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jozien C. Tanis
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mirthe H. Schoots
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Caterina M. Bilardo
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jasper J. H. Eijsink
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arend F. Bos
- Department of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sicco A. Scherjon
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Campanella G, Gunter MJ, Polidoro S, Krogh V, Palli D, Panico S, Sacerdote C, Tumino R, Fiorito G, Guarrera S, Iacoviello L, Bergdahl IA, Melin B, Lenner P, de Kok TMCM, Georgiadis P, Kleinjans JCS, Kyrtopoulos SA, Bueno-de-Mesquita HB, Lillycrop KA, May AM, Onland-Moret NC, Murray R, Riboli E, Verschuren M, Lund E, Mode N, Sandanger TM, Fiano V, Trevisan M, Matullo G, Froguel P, Elliott P, Vineis P, Chadeau-Hyam M. Epigenome-wide association study of adiposity and future risk of obesity-related diseases. Int J Obes (Lond) 2018; 42:2022-2035. [PMID: 29713043 DOI: 10.1038/s41366-018-0064-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Obesity is an established risk factor for several common chronic diseases such as breast and colorectal cancer, metabolic and cardiovascular diseases; however, the biological basis for these relationships is not fully understood. To explore the association of obesity with these conditions, we investigated peripheral blood leucocyte (PBL) DNA methylation markers for adiposity and their contribution to risk of incident breast and colorectal cancer and myocardial infarction. METHODS DNA methylation profiles (Illumina Infinium® HumanMethylation450 BeadChip) from 1941 individuals from four population-based European cohorts were analysed in relation to body mass index, waist circumference, waist-hip and waist-height ratio within a meta-analytical framework. In a subset of these individuals, data on genome-wide gene expression level, biomarkers of glucose and lipid metabolism were also available. Validation of methylation markers associated with all adiposity measures was performed in 358 individuals. Finally, we investigated the association of obesity-related methylation marks with breast, colorectal cancer and myocardial infarction within relevant subsets of the discovery population. RESULTS We identified 40 CpG loci with methylation levels associated with at least one adiposity measure. Of these, one CpG locus (cg06500161) in ABCG1 was associated with all four adiposity measures (P = 9.07×10-8 to 3.27×10-18) and lower transcriptional activity of the full-length isoform of ABCG1 (P = 6.00×10-7), higher triglyceride levels (P = 5.37×10-9) and higher triglycerides-to-HDL cholesterol ratio (P = 1.03×10-10). Of the 40 informative and obesity-related CpG loci, two (in IL2RB and FGF18) were significantly associated with colorectal cancer (inversely, P < 1.6×10-3) and one intergenic locus on chromosome 1 was inversely associated with myocardial infarction (P < 1.25×10-3), independently of obesity and established risk factors. CONCLUSION Our results suggest that epigenetic changes, in particular altered DNA methylation patterns, may be an intermediate biomarker at the intersection of obesity and obesity-related diseases, and could offer clues as to underlying biological mechanisms.
Collapse
Affiliation(s)
- Gianluca Campanella
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Vittorio Krogh
- Fondazione IRCCS-Istituto Nazionale dei Tumori, Milan, Italy
| | - Domenico Palli
- Istituto per lo Studio e la Prevenzione Oncologica (ISPO Toscana), Florence, Italy
| | - Salvatore Panico
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carlotta Sacerdote
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Piedmont Reference Centre for Epidemiology and Cancer Prevention (CPO Piemonte), Turin, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, Azienda Ospedaliera "Civile-M.P. Arezzo", Ragusa, Italy
| | - Giovanni Fiorito
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (IS), Italy
| | | | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Per Lenner
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Theo M C M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Panagiotis Georgiadis
- Institute of Biology, Medicinal Chemistry, and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Soterios A Kyrtopoulos
- Institute of Biology, Medicinal Chemistry, and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - H Bas Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Social and Preventive Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Karen A Lillycrop
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Anne M May
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - N Charlotte Onland-Moret
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Robert Murray
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Monique Verschuren
- Centre for Prevention and Health Services Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Eiliv Lund
- Department of Community Medicine, University of Tromsø (UiT)-The Artic University of Norway, Tromsø, Norway
| | - Nicolle Mode
- Department of Community Medicine, University of Tromsø (UiT)-The Artic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, University of Tromsø (UiT)-The Artic University of Norway, Tromsø, Norway
| | - Valentina Fiano
- Department of Medical Sciences, Unit of Cancer Epidemiology-CERMS, University of Turin, Turin, Italy
| | - Morena Trevisan
- Department of Medical Sciences, Unit of Cancer Epidemiology-CERMS, University of Turin, Turin, Italy
| | - Giuseppe Matullo
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Philippe Froguel
- CNRS UMR8199, Pasteur Institute of Lille, Lille University, Lille, France
- Department of Genomics of Common Disease, Imperial College London, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.
| |
Collapse
|
10
|
Yoon G, Zheng Y, Zhang Z, Zhang H, Gao T, Joyce B, Zhang W, Guan W, Baccarelli AA, Jiang W, Schwartz J, Vokonas PS, Hou L, Liu L. Ultra-high dimensional variable selection with application to normative aging study: DNA methylation and metabolic syndrome. BMC Bioinformatics 2017; 18:156. [PMID: 28264653 PMCID: PMC5340011 DOI: 10.1186/s12859-017-1568-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 02/24/2017] [Indexed: 01/02/2023] Open
Abstract
Background Metabolic syndrome has become a major public health challenge worldwide. The association between metabolic syndrome and DNA methylation is of great research interest. Results We constructed a binomial model to investigate the association between a metabolic syndrome index and DNA methylation in the Normative Aging Study. We applied the Iterative Sure Independence Screening (ISIS) method with elastic net penalty to DNA methylation levels at 484,548 CpG markers from 659 human subjects, and demonstrated that the screening step in ISIS can significantly improve the performance of the elastic net. Conclusion The proposed method identifies four CpGs which can be mapped to two biologically relevant and functional genes. Identification of significant CpG markers may potentially have practical implications for disease prevention and treatment.
Collapse
Affiliation(s)
- Grace Yoon
- Department of Statistics, Northwestern University, 2006 Sheridan Road, Evanston, 60201, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University, 680 N Lake Shore Drive, Chicago, 60611, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University, 680 N Lake Shore Drive, Chicago, 60611, USA
| | - Haixiang Zhang
- Center for Applied Mathematics, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Tao Gao
- Department of Preventive Medicine, Northwestern University, 680 N Lake Shore Drive, Chicago, 60611, USA
| | - Brian Joyce
- Department of Preventive Medicine, Northwestern University, 680 N Lake Shore Drive, Chicago, 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University, 680 N Lake Shore Drive, Chicago, 60611, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, 420 Delaware, Minneapolis, 55455, USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard University, 677 Huntington Avenue, Boston, 02115, USA
| | - Wenxin Jiang
- Department of Statistics, Northwestern University, 2006 Sheridan Road, Evanston, 60201, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard University, 677 Huntington Avenue, Boston, 02115, USA
| | - Pantel S Vokonas
- Department of Preventive Medicine and Epidemiology, Boston University, 801 Massachusetts Avenue, Boston, 02118, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, 680 N Lake Shore Drive, Chicago, 60611, USA
| | - Lei Liu
- Department of Preventive Medicine, Northwestern University, 680 N Lake Shore Drive, Chicago, 60611, USA.
| |
Collapse
|
11
|
Braun KVE, Dhana K, de Vries PS, Voortman T, van Meurs JBJ, Uitterlinden AG, Hofman A, Hu FB, Franco OH, Dehghan A. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin Epigenetics 2017; 9:15. [PMID: 28194238 PMCID: PMC5297218 DOI: 10.1186/s13148-016-0304-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND DNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid levels. We aimed to identify CpG sites at which DNA methylation levels are associated with blood levels of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol in 725 participants of the Rotterdam Study, a population-based cohort study. Subsequently, we sought replication in a non-overlapping set of 760 participants. RESULTS Genome-wide methylation levels were measured in whole blood using the Illumina Methylation 450 array. Associations between lipid levels and DNA methylation beta values were examined using linear mixed-effect models. All models were adjusted for sex, age, smoking, white blood cell proportions, array number, and position on array. A Bonferroni-corrected p value lower than 1.08 × 10-7 was considered statistically significant. Five CpG sites annotated to genes including DHCR24, CPT1A, ABCG1, and SREBF1 were identified and replicated. Four CpG sites were associated with triglycerides, including CpG sites annotated to CPT1A (cg00574958 and cg17058475), ABCG1 (cg06500161), and SREBF1 (cg11024682). Two CpG sites were associated with HDL-C, including ABCG1 (cg06500161) and DHCR24 (cg17901584). No significant associations were observed with LDL-C or total cholesterol. CONCLUSIONS We report an association of HDL-C levels with methylation of a CpG site near DHCR24, a protein-coding gene involved in cholesterol biosynthesis, which has previously been reported to be associated with other metabolic traits. Furthermore, we confirmed previously reported associations of methylation of CpG sites within CPT1A, ABCG1, and SREBF1 and lipids. These results provide insight in the mechanisms that are involved in lipid metabolism.
Collapse
Affiliation(s)
- Kim V E Braun
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Paul S de Vries
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands.,Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,The Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden/Rotterdam, The Netherlands
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,The Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden/Rotterdam, The Netherlands
| | | | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
12
|
Huin V, Deramecourt V, Caparros-Lefebvre D, Maurage CA, Duyckaerts C, Kovari E, Pasquier F, Buée-Scherrer V, Labreuche J, Behal H, Buée L, Dhaenens CM, Sablonnière B. TheMAPTgene is differentially methylated in the progressive supranuclear palsy brain. Mov Disord 2016; 31:1883-1890. [DOI: 10.1002/mds.26820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023] Open
Affiliation(s)
- Vincent Huin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; Lille France
| | - Vincent Deramecourt
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; Lille France
| | | | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; Lille France
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Escourolle, AP-HP, Hôpital de la Pitié Salpêtrière; Paris France
| | - Eniko Kovari
- Department of Mental Health and Psychiatry; University Hospitals and University of Geneva; Geneva Switzerland
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, U1171 - CNR-MAJ, DISTALZ; Lille France
| | - Valérie Buée-Scherrer
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; Lille France
| | - Julien Labreuche
- Univ. Lille, CHU Lille, EA 2694 - Santé publique : épidémiologie et qualité des soins, Département de Statistiques; Lille France
| | - Hélène Behal
- Univ. Lille, CHU Lille, EA 2694 - Santé publique : épidémiologie et qualité des soins, Département de Statistiques; Lille France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; Lille France
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; Lille France
| | - Bernard Sablonnière
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; Lille France
| |
Collapse
|
13
|
Sayols-Baixeras S, Irvin MR, Arnett DK, Elosua R, Aslibekyan SW. Epigenetics of Lipid Phenotypes. CURRENT CARDIOVASCULAR RISK REPORTS 2016; 10:31. [PMID: 28496562 PMCID: PMC5421987 DOI: 10.1007/s12170-016-0513-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dyslipidemia is a well-established risk factor for cardiovascular disease, the main cause of death worldwide. Blood lipid profiles are patterned by both genetic and environmental factors. In recent years, epigenetics has emerged as a paradigm that unifies these influences. In this review, we have summarized the latest evidence implicating epigenetic mechanisms-DNA methylation, histone modification, and regulation by RNAs-in lipid homeostasis. Key findings have emerged in a number of novel epigenetic loci located in biologically plausible genes (e.g. CPT1A, ABCG1, SREBF1, and others), as well as microRNA-33a/b. Evidence from animal and cell culture models suggests a complex interplay between different classes of epigenetic processes in the lipid-related genomic regions. While epigenetic findings hold the potential to explain the interindividual variability in lipid profiles as well as the underlying mechanisms, they have yet to be translated into effective therapies for dyslipidemia.
Collapse
Affiliation(s)
- Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Group, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader, 88, Barcelona 08003, Spain, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain, (tel) 34-93-316-07-27, (fax) 34-93-316-04-10
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 220F, Birmingham, AL 35205, USA, (tel) 1-205-975-7672, (fax)1-205-975-3329
| | - Donna K Arnett
- College of Public Health, University of Kentucky, 111 Washington Avenue, Lexington, KY 40536, USA, (tel) 1-859-257-5678, (fax) 1-859-257-8811
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Group, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader, 88, Barcelona 08003, Spain, (tel) 34-93-316-08-00, (fax) 34-93-316-04-10
| | - Stella W Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35205, USA, (tel) 1-205-975-7675, (fax) 1-205-975-3329
| |
Collapse
|
14
|
Lu X, Wang L, Yu C, Yu D, Yu G. Histone Acetylation Modifiers in the Pathogenesis of Alzheimer's Disease. Front Cell Neurosci 2015; 9:226. [PMID: 26136662 PMCID: PMC4468862 DOI: 10.3389/fncel.2015.00226] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023] Open
Abstract
It is becoming more evident that histone acetylation, as one of the epigenetic modifications or markers, plays a key role in the etiology of Alzheimer’s disease (AD). Histone acetylases and histone deacetylases (HDACs) are the well-known covalent enzymes that modify the reversible acetylation of lysine residues in histone amino-terminal domains. In AD, however, the roles of these enzymes are controversial. Some recent studies indicate that HDAC inhibitors are neuroprotective by regulating memory and synaptic dysfunctions in cellular and animal models of AD; while on the other hand, increase of histone acetylation have been implicated in AD pathology. In this review, we focus on the recent advances on the roles of histone acetylation covalent enzymes in AD and discuss how targeting these enzymes can ultimately lead to therapeutic approaches for treating AD.
Collapse
Affiliation(s)
- Xi Lu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Li Wang
- Department of Biotherapy and Hemato-oncology, Chongqing Cancer Institute , Chongqing , China
| | - Caijia Yu
- The Commonwealth Medical College , Scranton, PA , USA
| | - Daohai Yu
- Department of Clinical Sciences, Temple Clinical Research Institute, Temple University School of Medicine , Philadelphia, PA , USA
| | - Gang Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| |
Collapse
|
15
|
Meaney S. Epigenetic regulation of cholesterol homeostasis. Front Genet 2014; 5:311. [PMID: 25309573 PMCID: PMC4174035 DOI: 10.3389/fgene.2014.00311] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/20/2014] [Indexed: 01/15/2023] Open
Abstract
Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.
Collapse
Affiliation(s)
- Steve Meaney
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology Dublin, Ireland ; Environmental Sustainability and Health Institute, Dublin Institute of Technology Dublin, Ireland
| |
Collapse
|
16
|
Tint GS, Pan L, Shang Q, Sharpe LJ, Brown AJ, Li M, Yu H. Desmosterol in brain is elevated because DHCR24 needs REST for Robust Expression but REST is poorly expressed. Dev Neurosci 2014; 36:132-42. [PMID: 24861183 DOI: 10.1159/000362363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/19/2014] [Indexed: 11/19/2022] Open
Abstract
Cholesterol synthesis in the fetal brain is inhibited because activity of DHCR24 (24-dehydrocholesterol reductase) is insufficient, causing concentrations of the precursor desmosterol to increase temporarily to 15-25% of total sterols at birth. We demonstrate that failure of DHCR24 to be adequately upregulated during periods of elevated cholesterol synthesis in the brain results from the presence in its promoter of the repressor element 1 (RE1) nucleotide sequence that binds the RE1-silencing transcription factor (REST) and that REST, generally reduced in neural tissues, uncharacteristically but not without precedent, enhances DHCR24 transcription. DHCR24 and REST mRNA levels are reduced 3- to 4-fold in fetal mouse brain compared to liver (p < 0.001). Chromatin immunoprecipitation assays suggested that REST binds to the human DHCR24 promoter in the vicinity of the predicted human RE1 sequence. Luminescent emission from a human DHCR24 promoter construct with a mutated RE1 sequence was reduced 2-fold compared to output from a reporter with wild-type RE1 (p < 0.005). Silencing REST in HeLa cells resulted in significant reductions of DHCR24 mRNA (2-fold) and DHCR24 protein (4-fold). As expected, relative concentrations of Δ(24)-cholesterol precursor sterols increased 3- to 4-fold, reflecting the inhibition of DHCR24 enzyme activity. In contrast, mRNA levels of DHCR7 (sterol 7-dehydrocholesterol reductase), a gene essential for cholesterol synthesis lacking an RE1 sequence, and concentrations of HMGR (3-hydroxy-3-methyl-glutaryl-CoA reductase) enzyme protein were both unaffected. Surprisingly, a dominant negative fragment of REST consisting of just the DNA binding domain (about 20% of the protein) and full-length REST enhanced DHCR24 expression equally well. Furthermore, RE1 and the sterol response element (SRE), the respective binding sites for REST and the SRE binding protein (SREBP), are contiguous. These observations led us to hypothesize that REST acts because it is bound in close proximity to SREBP, thus amplifying its ability to upregulate DHCR24. It is likely that modulation of DHCR24 expression by REST persisted in the mammalian genome either because it does no harm or because suppressing metabolically active DHCR24 while providing abundant quantities of the multifunctional sterol desmosterol during neural development proved useful.
Collapse
Affiliation(s)
- G S Tint
- Research Service, Department of Veterans Affairs Medical Center, East Orange, N.J., USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Luu W, Zerenturk EJ, Kristiana I, Bucknall MP, Sharpe LJ, Brown AJ. Signaling regulates activity of DHCR24, the final enzyme in cholesterol synthesis. J Lipid Res 2013; 55:410-20. [PMID: 24363437 DOI: 10.1194/jlr.m043257] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The role of signaling in regulating cholesterol homeostasis is gradually becoming more widely recognized. Here, we explored how kinases and phosphorylation sites regulate the activity of the enzyme involved in the final step of cholesterol synthesis, 3β-hydroxysterol Δ24-reductase (DHCR24). Many factors are known to regulate DHCR24 transcriptionally, but little is known about its posttranslational regulation. We developed a system to specifically test human ectopic DHCR24 activity in a model cell-line (Chinese hamster ovary-7) using siRNA targeted only to hamster DHCR24, thus ensuring that all activity could be attributed to the human enzyme. We determined the effect of known phosphorylation sites and found that mutating certain residues (T110, Y299, and Y507) inhibited DHCR24 activity. In addition, inhibitors of protein kinase C ablated DHCR24 activity, although not through a known phosphorylation site. Our data indicate a novel mechanism whereby DHCR24 activity is regulated by signaling.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis. Prog Lipid Res 2013; 52:666-80. [PMID: 24095826 DOI: 10.1016/j.plipres.2013.09.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/25/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023]
Abstract
3β-Hydroxysterol Δ(24)-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer's disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ(24)-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ(24)-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.
Collapse
|
19
|
Promoter analysis of the DHCR24 (3β-hydroxysterol Δ(24)-reductase) gene: characterization of SREBP (sterol-regulatory-element-binding protein)-mediated activation. Biosci Rep 2012; 33:57-69. [PMID: 23050906 PMCID: PMC3522477 DOI: 10.1042/bsr20120095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DHCR24 (3β-hydroxysterol Δ24-reductase) catalyses the reduction of the C-24 double bond of sterol intermediates during cholesterol biosynthesis. DHCR24 has also been involved in cell growth, senescence and cellular response to oncogenic and oxidative stress. Despite its important roles, little is known about the transcriptional mechanisms controlling DHCR24 gene expression. We analysed the proximal promoter region and the cholesterol-mediated regulation of DHCR24. A putative SRE (sterol-regulatory element) at −98/−90 bp of the transcription start site was identified. Other putative regulatory elements commonly found in SREBP (SRE-binding protein)-targeted genes were also identified. Sterol responsiveness was analysed by luciferase reporter assays of approximately 1 kb 5′-flanking region of the human DHCR24 gene in HepG2 and SK-N-MC cells. EMSAs (electrophoretic mobility-shift assays) and ChIP (chromatin immunoprecipitation) assays demonstrated cholesterol-dependent recruitment and binding of SREBPs to the putative SRE. Given the presence of several CACCC-boxes in the DHCR24 proximal promoter, we assessed the role of KLF5 (Krüppel-like factor 5) in androgen-regulated DHCR24 expression. DHT (dihydrotestosterone) increased DHCR24 expression synergistically with lovastatin. However, DHT was unable to activate the DHCR24 proximal promoter, whereas KLF5 did, indicating that this mechanism is not involved in the androgen-induced stimulation of DHCR24 expression. The results of the present study allow the elucidation of the mechanism of regulation of the DHCR24 gene by cholesterol availability and identification of other putative cis-acting elements which may be relevant for the regulation of DHCR24 expression.
Collapse
|
20
|
Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1350-60. [PMID: 22809995 DOI: 10.1016/j.bbalip.2012.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/25/2012] [Accepted: 07/09/2012] [Indexed: 01/28/2023]
Abstract
3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs.
Collapse
|
21
|
Sui X, Wang D, Geng S, Zhou G, He C, Hu X. Methylated promoters of genes encoding protocadherins as a new cancer biomarker family. Mol Biol Rep 2011; 39:1105-11. [PMID: 21598112 DOI: 10.1007/s11033-011-0837-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 05/05/2011] [Indexed: 12/15/2022]
|