1
|
Wang YH, Zhao BY, Ye X, Du J, Song JL, Wang WJ, Huang XL, Ouyang KX, Zhang XQ, Liao FX, Zhong TX. Genome-wide analysis of the AP2/ERF gene family in Pennisetum glaucum and the negative role of PgRAV_01 in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109112. [PMID: 39265240 DOI: 10.1016/j.plaphy.2024.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
APETALA2/ethylene-responsive (AP2/ERF) plays crucial roles in resisting diverse stresses and in regulating plant growth and development. However, little is known regarding the structure and function of the AP2/ERF genes in pearl millet (Pennisetum glaucum). The AP2/ERF gene family may be involved in the development and maintenance of P. glaucum resilience to abiotic stresses, central to its role as a vital forage and cereal crop. In this study, PgAP2/ERF family members were identified and comprehensive bioinformatics analyses were performed, including determination of phylogenetic relationships, gene structures, conserved motifs, chromosomal localization, gene duplication, expression pattern, protein interaction network, and functional characterization of PgRAV_01 (Related to ABI3/VP1). In total, 78 PgAP2/ERF members were identified in the P. glaucum genome and classified into five subfamilies: AP2, ERF, DREB, RAV, and soloist. Members within the same clade of the PgAP2/ERF family showed similar gene structures and motif compositions. Six duplication events were identified in the PgAP2/ERF family; calculation of Ka/Ks values showed that purification selection dominated the evolution of PgAP2/ERFs. Subsequently, a potential interaction network of PgAP2/ERFs was generated to predict the interaction relationships. Additionally, abiotic stress expression analysis showed that most PgAP2/ERFs were induced in response to drought and heat stresses. Furthermore, overexpression of PgRAV_01 negatively regulated drought tolerance in Nicotiana benthamiana by reducing its antioxidant capacity and osmotic adjustment. Taken together, these results provide valuable insights into the characteristics and functions of PgAP2/ERF genes, with implications for abiotic stress tolerance, and will ultimately contribute to the genetic improvement of cereal crop breeding.
Collapse
Affiliation(s)
- Yin-Hua Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Bi-Yao Zhao
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Xing Ye
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Juan Du
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Jian-Ling Song
- College of biology and chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, China
| | - Wen-Jing Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ling Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Kun-Xi Ouyang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiang-Qian Zhang
- College of Food Science and Engineering, Foshan University, Foshan, 528000, China
| | - Fei-Xiong Liao
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Tian-Xiu Zhong
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Zhou Y, Zheng R, Peng Y, Chen J, Zhu X, Xie K, Su Q, Huang R, Zhan S, Peng D, Zhao K, Liu ZJ. Bioinformatic Assessment and Expression Profiles of the AP2/ERF Superfamily in the Melastoma dodecandrum Genome. Int J Mol Sci 2023; 24:16362. [PMID: 38003550 PMCID: PMC10671166 DOI: 10.3390/ijms242216362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
AP2/ERF transcription factors play crucial roles in various biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, limited research has been conducted on the AP2/ERF genes of Melastoma dodecandrum for breeding of this potential fruit crop. Leveraging the recently published whole genome sequence, we conducted a comprehensive assessment of this superfamily and explored the expression patterns of AP2/ERF genes at a genome-wide level. A significant number of genes, totaling 218, were discovered to possess the AP2 domain sequence and displayed notable structural variations among five subfamilies. An uneven distribution of these genes was observed on 12 pseudochromosomes as the result of gene expansion facilitated by segmental duplications. Analysis of cis-acting elements within promoter sites and 87.6% miRNA splicing genes predicted their involvement in multiple hormone responses and abiotic stresses through transcriptional and post-transcriptional regulations. Transcriptome analysis combined with qRT-PCR results indicated that certain candidate genes are involved in tissue formation and the response to developmental changes induced by IAA hormones. Overall, our study provides valuable insights into the evolution of ERF genes in angiosperms and lays a solid foundation for future breeding investigations aimed at improving fruit quality and enhancing adaptation to barren land environments.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Qiuli Su
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Ruiliu Huang
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Suying Zhan
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| |
Collapse
|
3
|
Li J, Song C, Li H, Wang S, Hu L, Yin Y, Wang Z, He W. Comprehensive analysis of cucumber RAV family genes and functional characterization of CsRAV1 in salt and ABA tolerance in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1115874. [PMID: 36818828 PMCID: PMC9933981 DOI: 10.3389/fpls.2023.1115874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The RAV (related to ABI3 and VP1) transcription factors are specific and exist in plants, which contain a B3 DNA binding domain and/or an APETALA2 (AP2) DNA binding domain. RAVs have been extensively studied in plants, and more and more evidences show that RAVs are involved in various aspects of plant growth and development, stress resistance and hormone signal transduction. However, the systematic analysis of RAV family in cucumber is rarely reported. In this study, eight CsRAV genes were identified in cucumber genome and we further comprehensively analyzed their protein physicochemical properties, conserved domains, gene structure and phylogenetic relationships. The synteny analysis and gene duplications of CsRAV genes were also analysed. Cis-element analysis revealed that the CsRAVs promoter contained several elements related to plant hormones and abiotic stress. Expression analysis showed that NaCl and ABA could significantly induce CsRAV genes expression. Subcellular localization revealed that all CsRAVs were localized in the nucleus. In addition, 35S:CsRAV1 transgenic Arabidopsis and cucumber seedlings enhanced NaCl and ABA tolerance, revealing CsRAV1 may be an important regulator of abiotic stress response. In conclusion, comprehensive analysis of CsRAVs would provide certain reference for understanding the evolution and function of the CsRAV genes.
Collapse
Affiliation(s)
- Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chunying Song
- Xilin Gol League Agricultural and Animal Product Quality and Safety Monitoring Center, Xilinhot, China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Siqi Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Linyue Hu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yanlei Yin
- Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Zenghui Wang
- Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
4
|
Genome-Wide Analysis of the RAV Gene Family in Wheat and Functional Identification of TaRAV1 in Salt Stress. Int J Mol Sci 2022; 23:ijms23168834. [PMID: 36012100 PMCID: PMC9408559 DOI: 10.3390/ijms23168834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
RAV transcription factors (TFs) are unique to higher plants and contain both B3 and APETALA2 (AP2) DNA binding domains. Although sets of RAV genes have been identified from several species, little is known about this family in wheat. In this study, 26 RAV genes were identified in the wheat genome. These wheat RAV TFs were phylogenetically clustered into three classes based on their amino acid sequences. A TaRAV gene located on chromosome 1D was cloned and named TaRAV1. TaRAV1 was expressed in roots, stems, leaves, and inflorescences, and its expression was up-regulated by heat while down-regulated by salt, ABA, and GA. Subcellular localization analysis revealed that the TaRAV1 protein was localized in the nucleus. The TaRAV1 protein showed DNA binding activity in the EMSA assay and transcriptional activation activity in yeast cells. Overexpressing TaRAV1 enhanced the salt tolerance of Arabidopsis and upregulated the expression of SOS genes and other stress response genes. Collectively, our data suggest that TaRAV1 functions as a transcription factor and is involved in the salt stress response by regulating gene expression in the SOS pathway.
Collapse
|
5
|
Hu P, Zhang K, Yang C. Functional roles of the birch BpRAV1 transcription factor in salt and osmotic stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111131. [PMID: 35067301 DOI: 10.1016/j.plantsci.2021.111131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
RAV (Related to ABI3/VP1) transcription factors play vital roles in regulating plant response to abiotic stresses; however, the regulatory mechanisms underlying stress response are still poorly understood for most of the RAVgenes. In this study, a novel gene BpRAV1 was cloned from white birch (Betula platyphylla). BpRAV1 protein is localized in the nucleus and serves as a transcriptional activator. The expression of BpRAV1 was induced by salt and osmotic stress treatments. BpRAV1-overexpression birch seedlings exhibited dramatically less ROS accumulation and reduced cell death in response to salt and osmotic stresses. BpRAV1 can specifically bind to the known RAV1A element. In addition, a novel cis-acting element (termed RBS1) bound by BpRAV1 was identified by transcription factor (TF)- centered Y1H assay. BpRAV1 activated the RAV1A and RBS1 elements to induce the expression of SOD and POD genes, resulting in increased SOD and POD activities to enhance ROS scavenging ability, thus improving salt and osmotic stress tolerance. These results indicate that BpRAV1 is a positive regulator governing abiotic stress response.
Collapse
Affiliation(s)
- Ping Hu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Kaimin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Kabir N, Lin H, Kong X, Liu L, Qanmber G, Wang Y, Zhang L, Sun Z, Yang Z, Yu Y, Zhao N. Identification, evolutionary analysis and functional diversification of RAV gene family in cotton (G. hirsutum L.). PLANTA 2021; 255:14. [PMID: 34862931 DOI: 10.1007/s00425-021-03782-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Genome wide analysis, expression pattern analysis, and functional characterization of RAV genes highlight their roles in roots, stem development and hormonal response. RAV (Related to ABI3 and VP1) gene family members have been involved in tissues/organs growth and hormone signaling in various plant species. Here, we identified 247 RAVs from 12 different species with 33 RAV genes from G. hirsutum. Phylogenetic analysis classified RAV genes into four distinct groups. Analysis of gene structure showed that most GhRAVs lack introns. Motif distribution pattern and protein sequence logos indicated that GhRAV genes were highly conserved during the process of evolution. Promotor cis-acting elements revealed that promotor regions of GhRAV genes encode numerous elements related to plant growth, abiotic stresses and phytohormones. Chromosomal location information showed uneven distribution of 33 GhRAV genes on different chromosomes. Collinearity analysis identified 628 and 52 orthologous/ paralogous gene pairs in G. hirsutum and G. barbadense, respectively. Ka/Ks values indicated that GhRAV and GbRAV genes underwent strong purifying selection pressure. Selecton model and codon model selection revealed that GhRAV amino acids were under purifying selection and adaptive evolution exists among GhRAV proteins. Three dimensional structure of GhRAVs indicated the presence of numerous alpha helix and beta-barrels. Expression level revealed that some GhRAV genes exhibited high expression in roots (GhRAV3, GhRAV4, GhRAV11, GhRAV18, GhRAV20 and GhRAV30) and stem (GhRAV3 and GhRAV18), indicating their potential role in roots and stem development. GhRAV genes can be regulated by phytohormonal stresses (BL, JA and IAA). Our study provides a reference for future studies related to the functional analysis of GhRAVs in cotton.
Collapse
Affiliation(s)
- Nosheen Kabir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hai Lin
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Xianhui Kong
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Le Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - YuXuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lian Zhang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Zhuojing Sun
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100122, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Yu Yu
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China.
| | - Na Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
7
|
Wang S, Guo T, Shen Y, Wang Z, Kang J, Zhang J, Yi F, Yang Q, Long R. Overexpression of MtRAV3 enhances osmotic and salt tolerance and inhibits growth of Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:154-165. [PMID: 33845331 DOI: 10.1016/j.plaphy.2021.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/01/2021] [Indexed: 05/23/2023]
Abstract
Related to ABI3/VP1 (RAV) transcription factors play important roles in regulating plant growth and stress tolerance, which have been studied in many plant species, but have remained largely unidentified in legumes. To functionally characterize RAV in legumes, MtRAV3 from legume model plant Medicago truncatula was isolated and its function was investigated by overexpressing MtRAV3 in M. truncatula. Expression analysis demonstrated that MtRAV3 was markedly induced by NaCl and polyethylene glycol (PEG). MtRAV3 overexpression enhanced tolerance of transgenic M. truncatula to mannitol, drought and salt stresses, and induced the expression of adversity-related genes, including MtWRKY76, MtMYB61, cold-acclimation specific protein 31 (MtCAS31), alternative oxidase 1 (MtAOX1) and ethylene response factor 1 (MtERF1). There were lower relative electrolyte leakage and higher chlorophyll content of leaves in the MtRAV3 overexpression plants than in wild type plants under both salt and drought stress. MtRAV3 overexpression M. truncatula were featured by some phenotypes of dwarfing, late flowering, more branches, smaller flower and leaf organs. Further investigations showed that the expression levels of DWARF14 (MtD14), CAROTENOID CLEAVAGE DIOXYGENASES 7 (MtCCD7) and GA3-oxidase1 (MtGA3ox1), which related to dwarf and branch phenotype, were obviously reduced, as well as MtGA3ox1' (MTR_1g011580), GA20-oxidase1 (MtGA20ox1), MtGA20ox1' (MTR_1g102070) and GA20-oxidase2 (MtGA20ox2) involved in gibberellins (GAs) pathway. Overall, our results revealed that MtRAV3 exerted an important role in adversity response and plant growth, was a multifunctional gene in M. truncatula, which provided reference for genetic improvement of alfalfa (Medicago sativa).
Collapse
Affiliation(s)
- Shumin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Shen
- College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaju Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengyan Yi
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010000, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Yan Y, Wang P, Wei Y, Bai Y, Lu Y, Zeng H, Liu G, Reiter RJ, He C, Shi H. The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:785-800. [PMID: 33128298 PMCID: PMC8051611 DOI: 10.1111/pbi.13505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Accepted: 09/27/2020] [Indexed: 05/05/2023]
Abstract
Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) seriously affects cassava yield. Nitrate reductase (NR) plays an important role in plant nitrogen metabolism in plants. However, the in vivo role of NR and the corresponding signalling pathway remain unclear in cassava. In this study, we isolated MeNR1/2 and revealed their novel upstream transcription factor MeRAV5. We also identified MeCatalase1 (MeCAT1) as the interacting protein of MeRAV5. In addition, we investigated the role of MeCatalase1 and MeRAV5-MeNR1/2 module in cassava defence response. MeNRs positively regulates cassava disease resistance against CBB through modulation of nitric oxide (NO) and extensive transcriptional reprogramming especially in mitogen-activated protein kinase (MAPK) signalling. Notably, MeRAV5 positively regulates cassava disease resistance through the coordination of NO and hydrogen peroxide (H2 O2 ) level. On the one hand, MeRAV5 directly activates the transcripts of MeNRs and NO level by binding to CAACA motif in the promoters of MeNRs. On the other hand, MeRAV5 interacts with MeCAT1 to inhibit its activity, so as to negatively regulate endogenous H2 O2 level. This study highlights the precise coordination of NR activity and CAT activity by MeRAV5 through directly activating MeNRs and interacting with MeCAT1 in plant immunity.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Russel J. Reiter
- Department of Anatomy and Cell SystemUT Health San AntonioSan AntonioTXUSA
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| |
Collapse
|
9
|
Gao Y, Han D, Jia W, Ma X, Yang Y, Xu Z. Molecular characterization and systematic analysis of NtAP2/ERF in tobacco and functional determination of NtRAV-4 under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:420-435. [PMID: 33011644 DOI: 10.1016/j.plaphy.2020.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The APETALA2/ethylene response factor (AP2/ERF) transcription factor (TF) superfamily play crucial roles in plant growth and development as well as biotic and abiotic stresses response. Here, we systematically characterized 375 AP2/ERF TFs in the Nicotiana tabacum genome. Phylogenetic tree topology and conserved domain number allowed TF classifications into three families of 29 AP2, 341 ERF, and 5 RAV genes, which were unevenly distributed throughout 24 tobacco chromosomes. Gene family expansions were retained from whole genome or segmental duplications followed by tandem duplication. Gene structure and motif analysis revealed intra-group conservation. MicroRNA target site prediction identified nine miR172 family members targeting six NtAP2-family genes; 41 NtAP2/ERFs participated in protein co-regulatory networks. NtAP2/ERF gene global expression profiles ascertained by RNA-seq displayed diverse expression patterns across tissues and under different abiotic and biotic stresses (including drought, cold, and Phytopthora parasitica inoculation). As determined by qRT-PCR, the expression of NtAP2/ERF were induced by five hormone and four abiotic stress. RNA interference of NtRAV-4 in tobacco accelerates seed germination, enhance root development and leaf photosynthetic ability. Suppression of NtRAV-4 increases drought tolerance by improving antioxidant defense ability and reduced relative electrolyte leakage under drought stress. These results enhance understanding of NtAP2/ERF gene function and will facilitate genetic improvement of tobacco stress tolerance.
Collapse
Affiliation(s)
- Yun Gao
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Dan Han
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wei Jia
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiaohan Ma
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zicheng Xu
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
10
|
Fan G, Liu X, Sun S, Shi C, Du X, Han K, Yang B, Fu Y, Liu M, Seim I, Zhang H, Xu Q, Wang J, Su X, Shao L, Zhu Y, Shao Y, Zhao Y, Wong AKC, Zhuang D, Chen W, Zhang G, Yang H, Xu X, Tsui SKW, Liu X, Lee SMY. The Chromosome Level Genome and Genome-wide Association Study for the Agronomic Traits of Panax Notoginseng. iScience 2020; 23:101538. [PMID: 33083766 PMCID: PMC7509215 DOI: 10.1016/j.isci.2020.101538] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 11/28/2022] Open
Abstract
The Chinese ginseng Panax notoginseng is a domesticated herb with significant medicinal and economic value. Here we report a chromosome-level P. notoginseng genome assembly with a high (∼79%) repetitive sequence content. The juxtaposition with the widely distributed, closely related Korean ginseng (Panax ginseng) genome revealed contraction of plant defense genes (in particular R-genes) in the P. notoginseng genome. We also investigated the reasons for the larger genome size of Panax species, revealing contributions from two Panax-specific whole-genome duplication events and transposable element expansion. Transcriptome data and comparative genome analysis revealed the candidate genes involved in the ginsenoside synthesis pathway. We also performed a genome-wide association study on 240 cultivated P. notoginseng individuals and identified the associated genes with dry root weight (63 genes) and stem thickness (168 genes). The P. notoginseng genome represents a critical step toward harnessing the full potential of an economically important and enigmatic plant.
Collapse
Affiliation(s)
- Guangyi Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | | | - Shuai Sun
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
- System Design Engineering, University of Waterloo, Ontario, N2L 3G1 Canada
| | | | - Xiao Du
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Kai Han
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Binrui Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yuanyuan Fu
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Minghua Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4102, Australia
| | - He Zhang
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Qiwu Xu
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Jiahao Wang
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Xiaoshan Su
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Libin Shao
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Yuanfang Zhu
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | | | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Andrew KC. Wong
- System Design Engineering, University of Waterloo, Ontario, N2L 3G1 Canada
| | - Dennis Zhuang
- System Design Engineering, University of Waterloo, Ontario, N2L 3G1 Canada
| | | | - Gengyun Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | | | - Xin Liu
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- BGI-Fuyang, BGI-Shenzhen, Fuyang 236009, China
| | - Simon Ming-Yue Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
11
|
Wang S, Guo T, Wang Z, Kang J, Yang Q, Shen Y, Long R. Expression of Three Related to ABI3/VP1 Genes in Medicago truncatula Caused Increased Stress Resistance and Branch Increase in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:611. [PMID: 32523590 PMCID: PMC7261895 DOI: 10.3389/fpls.2020.00611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/21/2020] [Indexed: 05/18/2023]
Abstract
Related to ABSCISIC ACID INSENSITIVE3 (ABI3)/VIVIPAROUS1(VP1)(RAV) transcription factors, which encode a B3 domain and an APETALA2(AP2) domain, belong to the APETALA2/ethylene-responsive element binding factor(AP2/ERF) or B3 superfamily and play an important role in regulating plant growth and development and responding to abiotic stress. Although there have been many functional studies on RAV, the functional differences between RAVs are not clear. Therefore, in this study, the functional differences of RAVs of Medicago truncatula were analyzed. Based on sequence data from the plant transcription factor database and the M. truncatula genome database, we cloned three RAV genes from M. truncatula, named MtRAV1, MtRAV2, and MtRAV3. The cis-acting elements of these genes promoters were predicted, and the expression patterns of MtRAVs under exogenous conditions (4°C, NaCl, Polyethylene Glycol, Abscisic acid) were analyzed. MtRAVs transgenic Arabidopsis thaliana were obtained and subjected to adversity treatment. Subcellular localization results indicated that MtRAVs were located in the nucleus. A much lower expression level was observed for MtRAV3 than the levels of MtRAV1 and MtRAV2 in M. truncatula for growth in normal conditions, but under 4°C or PEG and NaCl treatment, the expression level of MtRAV3 was significantly increased. Only the MtRAV3 overexpression transgenic plants showed strong cold resistance, but the overexpressed MtRAV1 and MtRAV2 transgenic plants showed no difference from wild type plants. MtRAV transgenic plants exhibited similar response to exogenous mannitol, NaCl, and ABA, and the expression of some adverse-related marker genes were up-regulated, such as COLD REGULATED 414 THYLAKOID MEMBRANE 1 (COR414-TM1), Arabidopsis thaliana drought-induced 21 (AtDI21), and Arabidopsis thaliana phosphatidylinositol-specific phospholipase C (ATPLC). MtRAVs transgenic Arabidopsis thaliana exhibited increasing of branch number. These results indicated that there was some function redundancy during MtRAVs proteins of M. truncatula, and MtRAV3 has increased function compared to the other two genes. The results of this study should provide the foundation for future application of MtRAVs in legumes.
Collapse
Affiliation(s)
- Shumin Wang
- College of Agro-Grassland Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yixin Shen
- College of Agro-Grassland Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yixin Shen,
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Ruicai Long,
| |
Collapse
|
12
|
Zhao L, Zhang F, Liu B, Yang S, Xiong X, Hassani D, Zhang Y. CmRAV1 shows differential expression in two melon (Cucumis melo L.) cultivars and enhances salt tolerance in transgenic Arabidopsis plants. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1123-1133. [PMID: 31620769 DOI: 10.1093/abbs/gmz107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 11/15/2022] Open
Abstract
The growth and development of melon (Cucumis melo L.) are severely affected by soil salinization in many areas of the world, but the understanding of the molecular mechanisms underlying salt tolerance in melon remains limited. In this study, a new RAV (related to ABI3/VP1) gene, CmRAV1, was identified in melon. Protein structure homology analysis revealed that CmRAV1 contains an AP2 domain and a B3 domain, and subcellular localization assay revealed that CmRAV1 is localized in the nucleus. The transcript level of CmRAV1 was closely correlated with NaCl treatment, and the expression pattern of CmRAV1 differed between two cultivars (salt-tolerant and salt-sensitive cultivars) under NaCl treatment. In addition, yeasts transformed with CmRAV1 showed notably improved growth on medium containing 200 mM NaCl compared with wild-type ones. The overexpression of CmRAV1 in transgenic Arabidopsis thaliana resulted in enhanced salt tolerance at the seed germination and seedling growth stages. This study demonstrated that the expression of CmRAV1 was associated with saline stress and can potentially be utilized to improve plant salt tolerance.
Collapse
Affiliation(s)
- Lina Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Furong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Senlin Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danial Hassani
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
13
|
Yang Q, Liu S, Han X, Ma J, Deng W, Wang X, Guo H, Xia X. Integrated transcriptome and miRNA analysis uncovers molecular regulators of aerial stem-to-rhizome transition in the medical herb Gynostemma pentaphyllum. BMC Genomics 2019; 20:865. [PMID: 31730459 PMCID: PMC6858658 DOI: 10.1186/s12864-019-6250-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gynostemma pentaphyllum is an important perennial medicinal herb belonging to the family Cucurbitaceae. Aerial stem-to-rhizome transition before entering the winter is an adaptive regenerative strategy in G. pentaphyllum that enables it to survive during winter. However, the molecular regulation of aerial stem-to-rhizome transition is unknown in plants. Here, integrated transcriptome and miRNA analysis was conducted to investigate the regulatory network of stem-to-rhizome transition. RESULTS Nine transcriptome libraries prepared from stem/rhizome samples collected at three stages of developmental stem-to-rhizome transition were sequenced and a total of 5428 differentially expressed genes (DEGs) were identified. DEGs associated with gravitropism, cell wall biosynthesis, photoperiod, hormone signaling, and carbohydrate metabolism were found to regulate stem-to-rhizome transition. Nine small RNA libraries were parallelly sequenced, and seven significantly differentially expressed miRNAs (DEMs) were identified, including four known and three novel miRNAs. The seven DEMs targeted 123 mRNAs, and six pairs of miRNA-target showed significantly opposite expression trends. The GpmiR166b-GpECH2 module involved in stem-to-rhizome transition probably promotes cell expansion by IBA-to-IAA conversion, and the GpmiR166e-GpSGT-like module probably protects IAA from degradation, thereby promoting rhizome formation. GpmiR156a was found to be involved in stem-to-rhizome transition by inhibiting the expression of GpSPL13A/GpSPL6, which are believed to negatively regulate vegetative phase transition. GpmiR156a and a novel miRNA Co.47071 co-repressed the expression of growth inhibitor GpRAV-like during stem-to-rhizome transition. These miRNAs and their targets were first reported to be involved in the formation of rhizomes. In this study, the expression patterns of DEGs, DEMs and their targets were further validated by quantitative real-time PCR, supporting the reliability of sequencing data. CONCLUSIONS Our study revealed a comprehensive molecular network regulating the transition of aerial stem to rhizome in G. pentaphyllum. These results broaden our understanding of developmental phase transitions in plants.
Collapse
Affiliation(s)
- Qi Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Shibiao Liu
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Xiaoning Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Jingyi Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Wenhong Deng
- Analytical and Testing Center, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Huihong Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China.
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
14
|
Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Mol Biol Rep 2018; 45:1111-1124. [DOI: 10.1007/s11033-018-4262-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
15
|
Owji H, Hajiebrahimi A, Seradj H, Hemmati S. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis. Comput Biol Chem 2017; 71:32-56. [PMID: 28961511 DOI: 10.1016/j.compbiolchem.2017.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
Abstract
Using homology and domain authentication, 321 putative AP2/ERF transcription factors were identified in Brassica napus, called BnAP2/ERF TFs. BnAP2/ERF TFs were classified into five major subfamilies, including DREB, ERF, AP2, RAV, and BnSoloist. This classification is based on phylogenetic analysis, motif identification, gene structure analysis, and physiochemical characterization. These TFs were annotated based on phylogenetic relationship with Brassica rapa. BnAP2/ERF TFs were located on 19 chromosomes of B. napus. Orthologs and paralogs were identified using synteny-based methods Ks calculation within B. napus genome and between B. napus with other species such as B. rapa, Brassica oleracea, and Arabidopsis thaliana indicated that BnAP2/ERF TFs were formed through duplication events occurred before B. napus formation. Kn/Ks values were between 0 and 1, suggesting the purifying selection among BnAP2/ERF TFs. Gene ontology annotation, cis-regulatory elements and functional interaction networks suggested that BnAP2/ERF TFs participate in response to stressors, including drought, high salinity, heat and cold as well as developmental processes particularly organ specification and embryogenesis. The identified cis-regulatory elements in the upstream of BnAP2/ERF TFs were responsive to abscisic acid. Analysis of the expression data derived from Illumina Hiseq 2000 RNA sequencing revealed that BnAP2/ERF genes were highly expressed in the roots comparing to flower buds, leaves, and stems. Also, the ERF subfamily was over-expressed under salt and fungal treatments. BnERF039 and BnERF245 are candidates for salt-tolerant B. napus. BnERF253-256 and BnERF260-277 are potential cytokinin response factors. BnERF227, BnERF228, BnERF234, BnERF134, BnERF132, BnERF176, and BnERF235 were suggested for resistance against Leptosphaeria maculan and Leptosphaeria biglobosa.
Collapse
Affiliation(s)
- Hajar Owji
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hajiebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Zhao SP, Xu ZS, Zheng WJ, Zhao W, Wang YX, Yu TF, Chen M, Zhou YB, Min DH, Ma YZ, Chai SC, Zhang XH. Genome-Wide Analysis of the RAV Family in Soybean and Functional Identification of GmRAV-03 Involvement in Salt and Drought Stresses and Exogenous ABA Treatment. FRONTIERS IN PLANT SCIENCE 2017; 8:905. [PMID: 28634481 PMCID: PMC5459925 DOI: 10.3389/fpls.2017.00905] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/15/2017] [Indexed: 05/21/2023]
Abstract
Transcription factors play vital roles in plant growth and in plant responses to abiotic stresses. The RAV transcription factors contain a B3 DNA binding domain and/or an APETALA2 (AP2) DNA binding domain. Although genome-wide analyses of RAV family genes have been performed in several species, little is known about the family in soybean (Glycine max L.). In this study, a total of 13 RAV genes, named as GmRAVs, were identified in the soybean genome. We predicted and analyzed the amino acid compositions, phylogenetic relationships, and folding states of conserved domain sequences of soybean RAV transcription factors. These soybean RAV transcription factors were phylogenetically clustered into three classes based on their amino acid sequences. Subcellular localization analysis revealed that the soybean RAV proteins were located in the nucleus. The expression patterns of 13 RAV genes were analyzed by quantitative real-time PCR. Under drought stresses, the RAV genes expressed diversely, up- or down-regulated. Following NaCl treatments, all RAV genes were down-regulated excepting GmRAV-03 which was up-regulated. Under abscisic acid (ABA) treatment, the expression of all of the soybean RAV genes increased dramatically. These results suggested that the soybean RAV genes may be involved in diverse signaling pathways and may be responsive to abiotic stresses and exogenous ABA. Further analysis indicated that GmRAV-03 could increase the transgenic lines resistance to high salt and drought and result in the transgenic plants insensitive to exogenous ABA. This present study provides valuable information for understanding the classification and putative functions of the RAV transcription factors in soybean.
Collapse
Affiliation(s)
- Shu-Ping Zhao
- College of Agronomy/College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Wei-Jun Zheng
- College of Agronomy/College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
| | - Wan Zhao
- College of Agronomy/College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of HebeiShijiazhuang, China
| | - Tai-Fei Yu
- College of Agronomy/College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Yong-Bin Zhou
- College of Agronomy/College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
| | - Dong-Hong Min
- College of Agronomy/College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Shou-Cheng Chai
- College of Agronomy/College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
- *Correspondence: Xiao-Hong Zhang, Shou-Cheng Chai,
| | - Xiao-Hong Zhang
- College of Agronomy/College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
- *Correspondence: Xiao-Hong Zhang, Shou-Cheng Chai,
| |
Collapse
|
17
|
Yang S, Luo C, Song Y, Wang J. Two Groups of Thellungiella salsuginea RAVs Exhibit Distinct Responses and Sensitivity to Salt and ABA in Transgenic Arabidopsis. PLoS One 2016; 11:e0153517. [PMID: 27093611 PMCID: PMC4836749 DOI: 10.1371/journal.pone.0153517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/30/2016] [Indexed: 11/23/2022] Open
Abstract
Containing both AP2 domain and B3 domain, RAV (Related to ABI3/VP1) transcription factors are involved in diverse functions in higher plants. A total of eight TsRAV genes were isolated from the genome of Thellungiella salsuginea and could be divided into two groups (A- and B-group) based on their sequence similarity. The mRNA abundance of all Thellungiella salsuginea TsRAVs followed a gradual decline during seed germination. In Thellungiella salsuginea seedling, transcripts of TsRAVs in the group A (A-TsRAVs) were gradually and moderately reduced by salt treatment but rapidly and severely repressed by ABA treatment. In comparison, with a barely detectable constitutive expression, the transcriptional level of TsRAVs in the group B (B-TsRAVs) exhibited a moderate induction in cotyledons when confronted with ABA. We then produced the “gain-of-function” transgenic Arabidopsis plants for each TsRAV gene and found that only 35S:A-TsRAVs showed weak growth retardation including reduced root elongation, suggesting their roles in negatively controlling plant growth. Under normal conditions, the germination process of all TsRAVs overexpressing transgenic seeds was inhibited with a stronger effect observed in 35S:A-TsRAVs seeds than in 35S:B-TsRAVs seeds. With the presence of NaCl, seed germination and seedling root elongation of all plants including wild type and 35S:TsRAVs plants were retarded and a more severe inhibition occurred to the 35S:A-TsRAV transgenic plants. ABA treatment only negatively affected the germination rates of 35S:A-TsRAV transgenic seeds but not those of 35S:B-TsRAV transgenic seeds. All 35S:TsRAVs transgenic plants showed a similar degree of reduction in root growth compared with untreated seedlings in the presence of ABA. Furthermore, the cotyledon greening/expansion was more severely inhibited 35S:A-TsRAVs than in 35S:B-TsRAVs seedlings. Upon water deficiency, with a wider opening of stomata, 35S:A-TsRAVs plants experienced a faster transpirational water loss than wild type and 35S:B-TsRAVs lines. Taken together, our results suggest that two groups of TsRAVs perform distinct regulating roles during plant growth and abiotic defense including drought and salt, and A-TsRAVs are more likely than B-TsRAVs to act as negative regulators in the above-mentioned biological processes.
Collapse
Affiliation(s)
- Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cui Luo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- * E-mail:
| |
Collapse
|
18
|
Chen Y, Huang L, Yan H, Zhang X, Xu B, Ma X. Cloning and characterization of an ABA-independent DREB transcription factor gene, HcDREB2, in Hemarthria compressa. Hereditas 2016; 153:3. [PMID: 28096765 PMCID: PMC5224587 DOI: 10.1186/s41065-016-0008-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/01/2016] [Indexed: 11/28/2022] Open
Abstract
Background Hemarthria compressa is a stoloniferous perennial tropical forage grass with a wide geographic distribution; however, environmental stress has a great influence on its growth. The DREB transcription factor family genes contains candidate genes for improving plant stress tolerance. Results From cold-treated H. compressa plants, a putative DREB2 gene (HcDREB2) was cloned using the RACE-PCR method. HcDREB2 was 1296 bp in length and encoded a putative protein 264 amino acid residues long. HcDREB2 shared the highest sequence identity with DREB2 in sorghum. The expression of HcDREB2 was independent of ABA treatment, but inducible by low temperatures as well as drought and high salinity treatments. Yeast one-hybrid assays showed that HcDREB2 directly bound the DRE cis-acting element to transactivate the expression of the downstream reporter genes. Conclusions HcDREB2, a stress-inducible but ABA-independent transcription factor gene, can transactivate downstream genes by binding to the DRE cis-element. The current results are a foundation for making use of this stress tolerance gene in future H. compressa studies. Electronic supplementary material The online version of this article (doi:10.1186/s41065-016-0008-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongxia Chen
- Animal Science Department, Xichang college, Xichang, 615000 China.,Grassland Science Department, Sichuan Agricultural University, Ya'an, 625014 China
| | - Linkai Huang
- Grassland Science Department, Sichuan Agricultural University, Ya'an, 625014 China
| | - Haidong Yan
- Grassland Science Department, Sichuan Agricultural University, Ya'an, 625014 China
| | - Xinquan Zhang
- Grassland Science Department, Sichuan Agricultural University, Ya'an, 625014 China
| | - Bin Xu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiao Ma
- Grassland Science Department, Sichuan Agricultural University, Ya'an, 625014 China
| |
Collapse
|
19
|
Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. PLANT MOLECULAR BIOLOGY 2016; 90:49-62. [PMID: 26482477 DOI: 10.1007/s11103-015-0393-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/14/2015] [Indexed: 05/21/2023]
Abstract
Salt is a major environmental stress factor that can affect rice growth and yields. Recent studies suggested that members of the AP2/ERF domain-containing RAV (related to ABI3/VP1) TF family are involved in abiotic stress adaptation. However, the transcriptional response of rice RAV genes (OsRAVs) to salt has not yet been fully characterized. In this study, the expression patterns of all five OsRAVs were examined under salt stress. Only one gene, OsRAV2, was stably induced by high-salinity treatment. Further expression profile analyses indicated that OsRAV2 is transcriptionally regulated by salt, but not KCl, osmotic stress, cold or ABA (abscisic acid) treatment. To elucidate the regulatory mechanism of the stress response at the transcriptional level, we isolated and characterized the promoter region of OsRAV2 (P OsRAV2 ). Transgenic analysis indicated that P OsRAV2 is induced by salt stress but not osmotic stress or ABA treatment. Serial 5' deletions and site-specific mutations in P OsRAV2 revealed that a GT-1 element located at position -664 relative to the putative translation start site is essential for the salt induction of P OsRAV2 . The regulatory function of the GT-1 element in the salt induction of OsRAV2 was verified in situ in plants with targeted mutations generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system. Taken together, our results indicate that the GT-1 element directly controls the salt response of OsRAV2. This study provides a better understanding of the putative functions of OsRAVs and the molecular regulatory mechanisms of plant genes under salt stress.
Collapse
Affiliation(s)
- Yong-Bo Duan
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Rui-Ying Qin
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Rong-Fang Xu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ya-Chun Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Hui Ma
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Li Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Peng-Cheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Jian-Bo Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
20
|
Song X, Wang J, Ma X, Li Y, Lei T, Wang L, Ge W, Guo D, Wang Z, Li C, Zhao J, Wang X. Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1186. [PMID: 27570529 PMCID: PMC4982375 DOI: 10.3389/fpls.2016.01186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/22/2016] [Indexed: 05/03/2023]
Abstract
The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance.
Collapse
Affiliation(s)
- Xiaoming Song
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Jinpeng Wang
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Xiao Ma
- Library, North China University of Science and TechnologyTangshan, China
| | - Yuxian Li
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Tianyu Lei
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Li Wang
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Weina Ge
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Di Guo
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Zhenyi Wang
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Chunjin Li
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Agricultural University of HebeiBaoding, China
- Jianjun Zhao
| | - Xiyin Wang
- Department of Life Sciences, North China University of Science and TechnologyTangshan, China
- *Correspondence: Xiyin Wang
| |
Collapse
|
21
|
Fu M, Kang HK, Son SH, Kim SK, Nam KH. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. PLANT & CELL PHYSIOLOGY 2014; 55:1892-904. [PMID: 25189341 DOI: 10.1093/pcp/pcu118] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arabidopsis RAV1, RAV1L and RAV2/TEM2 are Related to ABI3/VP1 (RAV) transcription factors that contain both plant-specific B3 and AP2 domains. RAV1 was known to be a negative regulator of growth and its transcript level was repressed by brassinolide (BL). In this study, we found that the expressions of RAV1, and its closest homologs RAV1L and RAV2 were also regulated by other plant hormones, and especially repressed significantly by BL and abscisic acid (ABA), which mediate various abiotic stress responses in plants. Therefore, to further investigate the physiological functions of RAV1, RAV1L and RAV2 in abiotic stress responses, we isolated T-DNA insertional knockout mutants of each gene and produced transgenic plants overexpressing the RAVs. Under normal conditions, each single mutant showed slightly promoted growth patterns only at an early stage of development. In comparison, the RAV1-overexpressing plants exhibited strong growth retardation with semi-dwarfed stature. In drought conditions, RAVs-overexpressing transgenic plants exhibited higher transpirational water loss than the wild type. In salt conditions, seed germination of the RAVs-overexpressing transgenic plants was more inhibited than that of the wild type, while ravs mutants showed promoted seed germination. We also found that RAVs expressions were reduced by dryness and salt. RAV1-overexpressing plants showed the same patterns of increased expression as stress-inducible genes such as RD29A, RD29B and the genes encoding ABA biosynthetic enzymes, as did the wild type and rav1 mutant. However, the RAV1-overexpressing transgenic plants were insensitive to ABA, regardless of the higher accumulation of ABA even in normal conditions. Taken together, these results suggest that RAVs are versatile negative regulators for growth and abiotic stresses, drought and salt, and that negative regulatory effects of RAVs on abiotic stresses are likely to be operated independently of ABA.
Collapse
Affiliation(s)
- Minjie Fu
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Korea These authors contributed equally to this article
| | - Hyun Kyung Kang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Korea These authors contributed equally to this article
| | - Seung-Hyun Son
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Kyoung Hee Nam
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Korea Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Korea
| |
Collapse
|
22
|
Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S. RAV genes: regulation of floral induction and beyond. ANNALS OF BOTANY 2014; 114:1459-70. [PMID: 24812253 PMCID: PMC4204781 DOI: 10.1093/aob/mcu069] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/12/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Transcription factors of the RAV (RELATED TO ABI3 AND VP1) family are plant-specific and possess two DNA-binding domains. In Arabidopsis thaliana, the family comprises six members, including TEMPRANILLO 1 (TEM1) and TEM2. Arabidopsis RAV1 and TEM1 have been shown to bind bipartite DNA sequences, with the consensus motif C(A/C/G)ACA(N)2-8(C/A/T)ACCTG. Through direct binding to DNA, RAV proteins act as transcriptional repressors, probably in complexes with other co-repressors. SCOPE AND CONCLUSIONS In this review, a summary is given of current knowledge of the regulation and function of RAV genes in diverse plant species, paying particular attention to their roles in the control of flowering in arabidopsis. TEM1 and TEM2 delay flowering by repressing the production of two florigenic molecules, FLOWERING LOCUS T (FT) and gibberellins. In this way, TEM1 and TEM2 prevent precocious flowering and postpone floral induction until the plant has accumulated enough reserves or has reached a growth stage that ensures survival of the progeny. Recent results indicate that TEM1 and TEM2 are regulated by genes acting in several flowering pathways, suggesting that TEMs may integrate information from diverse pathways. However, flowering is not the only process controlled by RAV proteins. Family members are involved in other aspects of plant development, such as bud outgrowth in trees and leaf senescence, and possibly in general growth regulation. In addition, they respond to pathogen infections and abiotic stresses, including cold, dehydration, high salinity and osmotic stress.
Collapse
Affiliation(s)
- Luis Matías-Hernández
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | | | - Esther Marín-González
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Paula Suárez-López
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| |
Collapse
|
23
|
Li MY, Tan HW, Wang F, Jiang Q, Xu ZS, Tian C, Xiong AS. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum). PLoS One 2014; 9:e108977. [PMID: 25268141 PMCID: PMC4182582 DOI: 10.1371/journal.pone.0108977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/27/2014] [Indexed: 01/14/2023] Open
Abstract
Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hua-Wei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Zhuang J, Zhu B. Analysis of Brassica napus ESTs: gene discovery and expression patterns of AP2/ERF-family transcription factors. Mol Biol Rep 2013; 41:45-56. [PMID: 24186851 DOI: 10.1007/s11033-013-2836-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 10/26/2013] [Indexed: 12/23/2022]
Abstract
Starting from expressed sequence tag sequences and using the conserved amino acid sequence of the Arabidopsis thaliana AP2/ERF domain as a probe, we used in silico cloning to identify 87 genes that encode putative AP2/ERF transcription factors (TFs) from the Brassica napus. Almost all of the putative AP2/ERF factors from B. napus were similar to genes previously defined as AP2/ERF genes from A. thaliana. Based on the number of AP2-domains and the function of the genes, the AP2/ERF TFs from B. napus were classified into four subfamilies, named the AP2, DREB, ERF, and RAV subfamilies. We then predicted and analyzed cDNA sequences and amino acid sequences, amino acid compositions, physical and chemical characteristics, phylogenetic trees, conserved domain sequences, functional domains, molecular models, and folding states of the proteins they are predicted to encode. Expression analysis showed that four factors, which belonged to the ERF and DREB subfamilies, were induced by abiotic stresses, as well as by hormone treatment. This suggests that those AP2/ERF factors may be involved in signaling pathways responsive to abiotic and biotic stresses. The results from this study, reported herein, form a basis for future functional analyses of B. napus TFs that belong to the AP2/ERF family.
Collapse
Affiliation(s)
- Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China,
| | | |
Collapse
|
25
|
Song X, Li Y, Hou X. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 2013; 14:573. [PMID: 23972083 PMCID: PMC3765354 DOI: 10.1186/1471-2164-14-573] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/22/2013] [Indexed: 02/04/2023] Open
Abstract
Background Chinese cabbage (Brassica rapa ssp. pekinensis) is a member of one of the most important leaf vegetables grown worldwide, which has experienced thousands of years in cultivation and artificial selection. The entire Chinese cabbage genome sequence, and more than forty thousand proteins have been obtained to date. The genome has undergone triplication events since its divergence from Arabidopsis thaliana (13 to 17 Mya), however a high degree of sequence similarity and conserved genome structure remain between the two species. Arabidopsis is therefore a viable reference species for comparative genomics studies. Variation in the number of members in gene families due to genome triplication may contribute to the broad range of phenotypic plasticity, and increased tolerance to environmental extremes observed in Brassica species. Transcription factors are important regulators involved in plant developmental and physiological processes. The AP2/ERF proteins, one of the most important families of transcriptional regulators, play a crucial role in plant growth, and in response to biotic and abiotic stressors. Our analysis will provide resources for understanding the tolerance mechanisms in Brassica rapa ssp. pekinensis. Results In the present study, 291 putative AP2/ERF transcription factor proteins were identified from the Chinese cabbage genome database, and compared with proteins from 15 additional species. The Chinese cabbage AP2/ERF superfamily was classified into four families, including AP2, ERF, RAV, and Soloist. The ERF family was further divided into DREB and ERF subfamilies. The AP2/ERF superfamily was subsequently divided into 15 groups. The identification, classification, phylogenetic reconstruction, conserved motifs, chromosome distribution, functional annotation, expression patterns, and interaction networks of the AP2/ERF transcription factor superfamily were predicted and analyzed. Distribution mapping results showed AP2/ERF superfamily genes were localized on the 10 Chinese cabbage chromosomes. AP2/ERF transcription factor expression levels exhibited differences among six tissue types based on expressed sequence tags (ESTs). In the AP2/ERF superfamily, 214 orthologous genes were identified between Chinese cabbage and Arabidopsis. Orthologous gene interaction networks were constructed, and included seven CBF and four AP2 genes, primarily involved in cold regulatory pathways and ovule development, respectively. Conclusions The evolution of the AP2/ERF transcription factor superfamily in Chinese cabbage resulted from genome triplication and tandem duplications. A comprehensive analysis of the physiological functions and biological roles of AP2/ERF superfamily genes in Chinese cabbage is required to fully elucidate AP2/ERF, which provides us with rich resources and opportunities to understand crop stress tolerance mechanisms.
Collapse
Affiliation(s)
- Xiaoming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
26
|
Rashid M, Guangyuan H, Guangxiao Y, Hussain J, Xu Y. AP2/ERF Transcription Factor in Rice: Genome-Wide Canvas and Syntenic Relationships between Monocots and Eudicots. Evol Bioinform Online 2012; 8:321-55. [PMID: 22807623 PMCID: PMC3396566 DOI: 10.4137/ebo.s9369] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The transcription factor family intimately regulates gene expression in response to hormones, biotic and abiotic factors, symbiotic interactions, cell differentiation, and stress signalling pathways in plants. In this study, 170 AP2/ERF family genes are identified by phylogenetic analysis of the rice genome (Oryza sativa l. japonica) and they are divided into a total of 11 groups, including four major groups (AP2, ERF, DREB, and RAV), 10 subgroups, and two soloists. Gene structure analysis revealed that, at position-6, the amino acid threonine (Thr-6) is conserved in the double domain AP2 proteins compared to the amino acid arginine (Arg-6), which is preserved in the single domain of ERF proteins. In addition, the histidine (His) amino acid is found in both domains of the double domain AP2 protein, which is missing in single domain ERF proteins. Motif analysis indicates that most of the conserved motifs, apart from the AP2/ERF domain, are exclusively distributed among the specific clades in the phylogenetic tree and regulate plausible functions. Expression analysis reveals a widespread distribution of the rice AP2/ERF family genes within plant tissues. In the vegetative organs, the transcripts of these genes are found most abundant in the roots followed by the leaf and stem; whereas, in reproductive tissues, the gene expression of this family is observed high in the embryo and lemma. From chromosomal localization, it appears that repetition and tandem-duplication may contribute to the evolution of new genes in the rice genome. In this study, interspecies comparisons between rice and wheat reveal 34 rice loci and unveil the extent of collinearity between the two genomes. It was subsequently ascertained that chromosome-9 has more orthologous loci for CRT/DRE genes whereas chromosome-2 exhibits orthologs for ERF subfamily members. Maximum conserved synteny is found in chromosome-3 for AP2 double domain subfamily genes. Macrosynteny between rice and Arabidopsis, a distant, related genome, uncovered 11 homologs/orthologs loci in both genomes. The distribution of AP2/ERF family gene paralogs in Arabidopsis was most frequent in chromosome-1 followed by chromosome-5. In Arabidopsis, ERF subfamily gene orthologs are found on chromosome-1, chromosome-3, and chromosome-5, whereas DRE subfamily genes are found on chromosome-2 and chromosome-5. Orthologs for RAV and AP2 with double domains in Arabidopsis are located on chromosome-1 and chromosome-3, respectively. In conclusion, the data generated in this survey will be useful for conducting genomic research to determine the precise role of the AP2/ERF gene during stress responses with the ultimate goal of improving crops.
Collapse
Affiliation(s)
- Muhammad Rashid
- China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, International Science and Technology Cooperation Base (Genetic Engineering) of Chinese Ministry of Science and Technology, The key laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - He Guangyuan
- China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, International Science and Technology Cooperation Base (Genetic Engineering) of Chinese Ministry of Science and Technology, The key laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Yang Guangxiao
- China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, International Science and Technology Cooperation Base (Genetic Engineering) of Chinese Ministry of Science and Technology, The key laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Javeed Hussain
- China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, International Science and Technology Cooperation Base (Genetic Engineering) of Chinese Ministry of Science and Technology, The key laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| | - Yan Xu
- China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, International Science and Technology Cooperation Base (Genetic Engineering) of Chinese Ministry of Science and Technology, The key laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China
| |
Collapse
|
27
|
Padmalatha KV, Dhandapani G, Kanakachari M, Kumar S, Dass A, Patil DP, Rajamani V, Kumar K, Pathak R, Rawat B, Leelavathi S, Reddy PS, Jain N, Powar KN, Hiremath V, Katageri IS, Reddy MK, Solanke AU, Reddy VS, Kumar PA. Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. PLANT MOLECULAR BIOLOGY 2012; 78:223-46. [PMID: 22143977 DOI: 10.1007/s11103-011-9857-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/08/2011] [Indexed: 05/06/2023]
Abstract
Cotton is an important source of natural fibre used in the textile industry and the productivity of the crop is adversely affected by drought stress. High throughput transcriptomic analyses were used to identify genes involved in fibre development. However, not much information is available on cotton genome response in developing fibres under drought stress. In the present study a genome wide transcriptome analysis was carried out to identify differentially expressed genes at various stages of fibre growth under drought stress. Our study identified a number of genes differentially expressed during fibre elongation as compared to other stages. High level up-regulation of genes encoding for enzymes involved in pectin modification and cytoskeleton proteins was observed at fibre initiation stage. While a large number of genes encoding transcription factors (AP2-EREBP, WRKY, NAC and C2H2), osmoprotectants, ion transporters and heat shock proteins and pathways involved in hormone (ABA, ethylene and JA) biosynthesis and signal transduction were up-regulated and genes involved in phenylpropanoid and flavonoid biosynthesis, pentose and glucuronate interconversions and starch and sucrose metabolism pathways were down-regulated during fibre elongation. This study showed that drought has relatively less impact on fibre initiation but has profound effect on fibre elongation by down-regulating important genes involved in cell wall loosening and expansion process. The comprehensive transcriptome analysis under drought stress has provided valuable information on differentially expressed genes and pathways during fibre development that will be useful in developing drought tolerant cotton cultivars without compromising fibre quality.
Collapse
|
28
|
Computational identification of Chinese cabbage anthocyaninspecific genes. BIOCHIP JOURNAL 2011. [DOI: 10.1007/s13206-011-5212-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|