1
|
Fu R, Chen J, Fang Y, Wu Q, Zhang X, Wang Z. Impact of dipeptidyl peptidase-4 inhibitors on incidence of colorectal cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Ther Adv Drug Saf 2025; 16:20420986251318842. [PMID: 39974280 PMCID: PMC11837066 DOI: 10.1177/20420986251318842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
Background The association between dipeptidyl peptidase-4 inhibitors (DPP-4i) exposure and the risk of colorectal cancer (CRC) in patients with type 2 diabetes mellitus (T2DM) is unclear. Objectives This meta-analysis aims to investigate the relationship between DPP-4i exposure and the incidence of CRC in patients with T2DM. Design A systematic review and meta-analysis. Methods A comprehensive search of electronic databases, including PubMed, Web of Science, EMBASE, and ScienceDirect, was conducted up to March 2024. The studies including randomized clinical trials (RCTs), cohort studies, and case-control studies were retrieved. The odds ratio (OR) was calculated using Stata 12.0 statistical software. The primary outcome assessed was the incidence of CRC. Results This meta-analysis incorporated six retrospective cohort studies and two case-control studies. The findings indicate that the incidence of CRC in the DPP-4i exposure group was significantly higher than that in the control group (OR = 1.11, 95% CI: 1.02-1.21, p = 0.013). Subgroup analysis revealed that both male (OR = 2.07, p < 0.001) and female participants (OR = 1.49, p = 0.05) in the DPP-4i exposure group exhibited a significantly higher incidence of CRC compared to the control group. Among participants younger than 65 years, the incidence of CRC was markedly elevated in the exposure group (OR = 2.81, p < 0.001). Furthermore, when the exposure duration was less than 1 year, the CRC incidence in the exposure group surpassed that of the control group (OR = 1.24, p = 0.005). When sulfonylureas (SU) were used as control drugs, the incidence of CRC was higher in the exposure group (OR = 1.10, p = 0.017). Conclusion There is a potential correlation between DPP-4i exposure and increased incidence of CRC in T2DM patients. This association appears to be influenced by gender, age, duration of exposure, and the choice of control medications. Therefore, attention should be paid to colorectal diseases when DPP-4i is employed in the clinic. Trial registration The meta-analysis has been registered with the International Prospective Register of Systematic Reviews (PROSPERO). The registration number is CRD42024535292.
Collapse
Affiliation(s)
- Rongrong Fu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jingqi Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yingying Fang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qingping Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoming Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhiyan Wang
- Department of General Surgery, Ningbo Yinzhou No. 2 Hospital, 998 North Qianhe Road, Ningbo, Yinzhou District, Zhejiang 315100, China
| |
Collapse
|
2
|
Yip JMX, Chiang GSH, Lee ICJ, Lehming-Teo R, Dai K, Dongol L, Wang LYT, Teo D, Seah GT, Lehming N. Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits. Int J Mol Sci 2025; 26:364. [PMID: 39796218 PMCID: PMC11719901 DOI: 10.3390/ijms26010364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2. Metformin leads to the phosphorylation of the AMP-activated protein kinase AMPK, which accelerates the import of glucose into cells via the glucose transporter GLUT4 and switches the cells to the starvation mode, counteracting the virus. Diabetes drugs also stimulate the unfolded protein response and thus mitophagy, which is beneficial for healthy aging and mental health. Diabetes drugs were also found to mimic exercise and help to reduce body weight.
Collapse
Affiliation(s)
- Joyce Mei Xin Yip
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Grace Shu Hui Chiang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
| | - Ian Chong Jin Lee
- NUS High School of Mathematics and Science, Singapore 129957, Singapore
| | - Rachel Lehming-Teo
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Kexin Dai
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Lokeysh Dongol
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Laureen Yi-Ting Wang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore 119074, Singapore
- Division of Cardiology, Department of Medicine, Alexandra Hospital, National University Health System, Singapore 159964, Singapore
| | - Denise Teo
- Chi Longevity, Camden Medical Centre #10-04, 1 Orchard Blvd, Singapore 248649, Singapore
| | - Geok Teng Seah
- Clifford Dispensary, 77 Robinson Rd #06-02, Singapore 068896, Singapore
| | - Norbert Lehming
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| |
Collapse
|
3
|
Ceci C, Ruffini F, Falconi M, Atzori MG, Falzon A, Lozzi F, Iacovelli F, D'Atri S, Graziani G, Lacal PM. Pharmacological inhibition of PDGF-C/neuropilin-1 interaction: A novel strategy to reduce melanoma metastatic potential. Biomed Pharmacother 2024; 176:116766. [PMID: 38788599 DOI: 10.1016/j.biopha.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Activation of neuropilin-1 (NRP-1) by platelet derived growth factor (PDGF)-C sustains melanoma invasiveness. Therefore, in the search of novel agents capable of reducing melanoma spreading, PDGF-C/NRP-1 interaction was investigated as a potential druggable target. Since the PDGF-C region involved in NRP-1 binding is not yet known, based on the sequence and structural homology between PDGF-C and vascular endothelial growth factor-A (VEGF-A), we hypothesized that the NRP-1 b1 domain region involved in the interaction with VEGF-A might also be required for PDGF-C binding. Hence, this region was selected from the protein crystal structure and used as target in the molecular docking procedure. In the following virtual screening, compounds from a DrugBank database were used as query ligands to identify agents potentially capable of disrupting NRP-1/PDGF-C interaction. Among the top 45 candidates with the highest affinity, five drugs were selected based on the safety profile, lack of hormonal effects, and current availability in the market: the antipsychotic pimozide, antidiabetic gliclazide, antiallergic cromolyn sodium, anticancer tyrosine kinase inhibitor entrectinib, and antihistamine azelastine. Analysis of drug influence on PDGF-C in vitro binding to NRP-1 and PDGF-C induced migration of human melanoma cells expressing NRP-1, indicated gliclazide and entrectinib as the most specific agents that were active at clinically achievable and non-toxic concentrations. Both drugs also reverted PDGF-C ability to stimulate extracellular matrix invasion by melanoma cells resistant to BRAF inhibitors. The inhibitory effect on tumor cell motility involved a decrease of p130Cas phosphorylation, a signal transduction pathway activated by PDGF-C-mediated stimulation of NRP-1.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Andrea Falzon
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Lozzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
4
|
Li S, Wang Y, Zhang D, Wang H, Cui X, Zhang C, Xin Y. Gliclazide Reduces Colitis-Associated Colorectal Cancer Formation by Deceasing Colonic Inflammation and Regulating AMPK-NF-κB Signaling Pathway. Dig Dis Sci 2024; 69:453-462. [PMID: 38103106 PMCID: PMC10861754 DOI: 10.1007/s10620-023-08211-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Gliclazide is a potential anti-cancer drug candidate for preventing carcinogenesis. However, the effect of gliclazide on colitis-associated colorectal cancer remains unknown. AIMS We aimed to evaluate whether gliclazide plays a protective role in colitis-associated colorectal cancer and the underlying molecular mechanism. METHODS The administration of azoxymethane (AOM) followed by dextran sulfate sodium (DSS) aimed to induce colitis-associated colorectal cancer in mice. C57BL mice were gavaged with gliclazide (6 mg/kg by gavage 5 days a week) for 12 weeks immediately following AOM administration. After sacrificing the mice, colon tissues were measured for tumor number and tumor burden. The proliferation- and inflammation-related molecular mechanisms were explored. RESULTS The administration of gliclazide significantly reduced the tumor number and tumor burden in mice. Cell proliferation decreased in the gliclazide group compared with the control group, as indicated by reduced Ki-67 expression. Furthermore, gliclazide alleviated colonic inflammation, significantly decreased pro-inflammatory factor TNF-α levels and increased anti-inflammatory factor IL-10 levels in vivo. In vivo and vitro, it was shown that gliclazide increased the level of phospho-AMPK (p-AMPK) and inhibited NF-κB activity. Further studies demonstrated that the inhibition of NF-κB activity induced by gliclazide was mediated by p-AMPK in vitro. CONCLUSIONS Gliclazide effectively alleviated colonic inflammation and prevented colonic carcinogenesis in an AOM-DSS mouse model by modulating the AMPK-NF-κB signaling pathway. Thus, gliclazide holds potential as a chemopreventive agent for colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Shuai Li
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yanan Wang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Dongdong Zhang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Hongjuan Wang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiujie Cui
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Chenchen Zhang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yu Xin
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
- The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Cheng Y, Hou K, Wang Y, Chen Y, Zheng X, Qi J, Yang B, Tang S, Han X, Shi D, Wang X, Liu Y, Hu X, Che X. Identification of Prognostic Signature and Gliclazide as Candidate Drugs in Lung Adenocarcinoma. Front Oncol 2021; 11:665276. [PMID: 34249701 PMCID: PMC8264429 DOI: 10.3389/fonc.2021.665276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, with high incidence and mortality. To improve the curative effect and prolong the survival of patients, it is necessary to find new biomarkers to accurately predict the prognosis of patients and explore new strategy to treat high-risk LUAD. METHODS A comprehensive genome-wide profiling analysis was conducted using a retrospective pool of LUAD patient data from the previous datasets of Gene Expression Omnibus (GEO) including GSE18842, GSE19188, GSE40791 and GSE50081 and The Cancer Genome Atlas (TCGA). Differential gene analysis and Cox proportional hazard model were used to identify differentially expressed genes with survival significance as candidate prognostic genes. The Kaplan-Meier with log-rank test was used to assess survival difference. A risk score model was developed and validated using TCGA-LUAD and GSE50081. Additionally, The Connectivity Map (CMAP) was used to predict drugs for the treatment of LUAD. The anti-cancer effect and mechanism of its candidate drugs were studied in LUAD cell lines. RESULTS We identified a 5-gene signature (KIF20A, KLF4, KRT6A, LIFR and RGS13). Risk Score (RS) based on 5-gene signature was significantly associated with overall survival (OS). Nomogram combining RS with clinical pathology parameters could potently predict the prognosis of patients with LUAD. Moreover, gliclazide was identified as a candidate drug for the treatment of high-RS LUAD. Finally, gliclazide was shown to induce cell cycle arrest and apoptosis in LUAD cells possibly by targeting CCNB1, CCNB2, CDK1 and AURKA. CONCLUSION This study identified a 5-gene signature that can predict the prognosis of patients with LUAD, and Gliclazide as a potential therapeutic drug for LUAD. It provides a new direction for the prognosis and treatment of patients with LUAD.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Kezuo Hou
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
| | - Yizhe Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Yang Chen
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Xueying Zheng
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
| | - Jianfei Qi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| | - Bowen Yang
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
| | - Shiying Tang
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
| | - Xu Han
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
| | - Dongyao Shi
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ximing Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Anastasiou IA, Eleftheriadou I, Tentolouris A, Koliaki C, Kosta OA, Tentolouris N. CDATA[The Effect of Oxidative Stress and Antioxidant Therapies on Pancreatic β-cell Dysfunction: Results from in Vitro and in Vivo Studies. Curr Med Chem 2021; 28:1328-1346. [PMID: 32452321 DOI: 10.2174/0929867327666200526135642] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/07/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxidative stress is a hallmark of many diseases. A growing body of evidence suggests that hyperglycemia-induced oxidative stress plays an important role in pancreatic β-cells dysfunction and apoptosis, as well as in the development and progression of diabetic complications. Considering the vulnerability of pancreatic β-cells to oxidative damage, the induction of endogenous antioxidant enzymes or exogenous antioxidant administration has been proposed to protect pancreatic β-cells from damage. OBJECTIVES The present review aims to provide evidence of the effect of oxidative stress and antioxidant therapies on pancreatic β-cell function, based on in vitro and in vivo studies. METHODS The MEDLINE and EMBASE databases were searched to retrieve available data. RESULTS Due to poor endogenous antioxidant mechanisms, pancreatic β-cells are extremely sensitive to Reactive Oxygen Species (ROS). Many natural extracts have been tested in vitro in pancreatic β-cell lines in terms of their antioxidant and diabetes mellitus ameliorating effects, and the majority of them have shown a dose-dependent protective role. On the other hand, there is relatively limited evidence regarding the in vitro antioxidant effects of antidiabetic drugs on pancreatic β -cells. Concerning in vivo studies, several natural extracts have shown beneficial effects in the setting of diabetes by decreasing blood glucose and lipid levels, increasing insulin sensitivity, and by up-regulating intrinsic antioxidant enzyme activity. However, there is limited evidence obtained from in vivo studies regarding antidiabetic drugs. CONCLUSION Antioxidants hold promise for developing strategies aimed at the prevention or treatment of diabetes mellitus associated with pancreatic β-cells dysfunction, as supported by in vitro and in vivo studies. However, more in vitro studies are required for drugs.
Collapse
Affiliation(s)
- Ioanna A Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Anastasios Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Chrysi Koliaki
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Ourania A Kosta
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 AgiouThoma St., 11527 Athens, Greece
| |
Collapse
|
7
|
Taghizadeh F, Hosseinimehr SJ, Zargari M, Karimpour Malekshah A, Mirzaei M, Talebpour Amiri F. Alleviation of cisplatin-induced hepatotoxicity by gliclazide: Involvement of oxidative stress and caspase-3 activity. Pharmacol Res Perspect 2021; 9:e00788. [PMID: 34003600 PMCID: PMC8130655 DOI: 10.1002/prp2.788] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
AIMS Cisplatin (CP), as an effective alkylating agent, is widely used in cancer treatment, while hepatotoxicity is one of its side effects. Gliclazide (GLZ), as an oral hypoglycemic drug, has antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effect of GLZ against CP-induced hepatotoxicity in mice. METHODS In this experimental study, 64 adult male mice randomly were allocated into eight groups (8 mice/group). Control, GLZ (5, 10, and 25 mg/kg, orally), CP (10 mg/kg, single dose, intraperitoneally), and CP+GLZ (in three doses). GLZ was administrated for 10 consecutive days. CP was injected on the 7th day of the study. At the end of the experiment, hepatotoxicity was evaluated by serum and tissue biochemical, histopathological, and immunohistochemical assessments. RESULTS The data were revealed that CP increased oxidative stress (increased MDA and reduced GSH), liver damage enzymes (ALT, AST, and ALP), and immunoreactivity of caspase-3 in liver tissue of CP-injected mice. Also, CP induced histopathological changes such as eosinophilic of hepatocytes, dilatation of sinusoids, congestion, and proliferation of Kupffer cells. GLZ administration significantly ameliorated serum functional enzyme and hepatic oxidative stress markers in CP-injected mice. In addition, the histological and immunohistochemical alterations were ameliorated in GLZ-treated mice. Of the three doses, 10 and 25 mg/kg were more effective. CONCLUSIONS In conclusion, GLZ with its antioxidant, anti-inflammatory, and anti-apoptotic activities, can be suggested as a promising drug in the treatment of CP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh
- Department of AnatomyFaculty of MedicineMolecular and Cell Biology Research CenterMazandaran University of Medical SciencesSariIran
- Student Research CommitteeFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | | | - Mehryar Zargari
- Department of BiochemistryFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Abbasali Karimpour Malekshah
- Department of AnatomyFaculty of MedicineMolecular and Cell Biology Research CenterMazandaran University of Medical SciencesSariIran
| | - Mansoureh Mirzaei
- Department of AnatomyFaculty of MedicineMolecular and Cell Biology Research CenterMazandaran University of Medical SciencesSariIran
| | - Fereshteh Talebpour Amiri
- Department of AnatomyFaculty of MedicineMolecular and Cell Biology Research CenterMazandaran University of Medical SciencesSariIran
| |
Collapse
|
8
|
Szymczak-Pajor I, Fleszar K, Kasznicki J, Gralewska P, Śliwińska A. A potential role of calpains in sulfonylureas (SUs) -mediated death of human pancreatic cancer cells (1.2B4). Toxicol In Vitro 2021; 73:105128. [PMID: 33652124 DOI: 10.1016/j.tiv.2021.105128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
Sulfonylureas (SUs) are suggested to accelerate the pancreatic β-cells mass loss via apoptosis. However, little is known whether calpains mediate this process. The aim of the present study is to evaluate the involvement of calpains in SUs-induced death of human pancreatic cancer (PC) cell line 1.2B4. The cells were exposed to: glibenclamide, glimepiride and gliclazide for 72 h. The expression analysis of caspase-3 (CASP-3), TP53, calpain 1 (CAPN-1), calpain 2 (CAPN-2) and calpain 10 (CAPN-10) was detected using RT-PCR method. Intracellular Ca2+ concentrations, CASP-3 activity and total calpain activity were also evaluated. Our results have shown that glibenclamide and glimepiride decrease 1.2B4 cells viability with accompanied increase in intracellular Ca2+ concentration and increased expression of apoptosis-related CASP-3 and TP53. Gliclazide did not affect 1.2B4 cell viability and Ca2+ concentration, however, it downregulated CASP-3 and upregulated TP53. Interestingly, 50 μM glimepiride increased expression of CAPN-1, CAPN-2 and CAPN-10 whereas 50 μM glibenclamide solely upregulated CAPN-2 expression. We have shown that 10 μM and 50 μM glibenclamide and glimepiride increased the activity of CASP-3, but decreased total calpain activity. Our results suggest that calpains may be involved in glibenclamide- and glimepiride-induced death of PC cells. However, further investigation is required to confirm the engagement of calpains in SUs-mediated death of PC cells, especially studies on protein level of particular isoforms of calpains should be conducted.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland.
| | - Krzysztof Fleszar
- Student Scientific Society of Civilization Diseases, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland.
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland.
| | - Patrycja Gralewska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland.
| |
Collapse
|
9
|
Aldayel TS, Alshammari GM, Omar UM, Grace MH, Lila MA, Yahya MA. Hypoglycaemic, insulin releasing, and hepatoprotective effect of the aqueous extract of Aloe perryi Baker resin (Socotran Aloe) in streptozotocin-induced diabetic rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1855859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Ulfat Mohammed Omar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University; Immunology Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| | - Mary H. Grace
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mohammed A. Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Ding Z, Wei Q, Zhang C, Zhang H, Huang F. Influence of oxidation on heat shock protein 27 translocation, caspase-3 and calpain activities and myofibrils degradation in postmortem beef muscles. Food Chem 2020; 340:127914. [PMID: 32889207 DOI: 10.1016/j.foodchem.2020.127914] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/25/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
The objective of this study was to investigate the influence of oxidation on heat shock protein 27 (HSP27) and cytochrome c translocation, myofibrils degradation and endogenous enzymes activities, perfecting tenderization mechanism after slaughter. Bovine muscle (longissimus thoracis) was obtained at 30 min postmortem. Bovine muscle was cut and exposed to saline solution with or without H2O2 at 4 °C for 0.25, 1, 3 and 5 days, followed by detection of proteins degradation, location and enzymes activities. Results showed that oxidation promoted the translocation of HSP27 and cytochrome c from the cytoplasm to the cell membrane, which reduced µ-calpain activity, but increased caspase-3 activity through mediating the interaction with the two enzymes. Oxidation retarded troponin-T degradation, but accelerated desmin degradation, which is probably because oxidative modification of myofibrils induced different susceptibility to proteolysis. Therefore, oxidation leads to different regulatory mechanism on µ-calpain and caspase-3, as well as the degree of degradation of myofibrillar proteins, possibly through mediating HSP27 and cytochrome c.
Collapse
Affiliation(s)
- Zhenjiang Ding
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qichao Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Chunjiang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Hong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
11
|
Taghizadeh F, Hosseinimehr SJ, Zargari M, Karimpour Malekshah A, Talebpour Amiri FB. Gliclazide attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and caspase-3 activity. IUBMB Life 2020; 72:2024-2033. [PMID: 32687680 DOI: 10.1002/iub.2342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
Cisplatin (CP), as a chemotherapeutic drug, causes nephrotoxicity that has limited the clinical utility of CP. Gliclazide (GLZ), as an antihyperglycemic drug, at low dose has antioxidant property. In this study, we aimed to investigate the protective effect of GLZ against CP-induced acute renal injury. Sixty-four BALB/c mice were randomly divided into eight groups. The groups were included as control, GLZ (5, 10, and 25 mg/kg), CP, and GLZ (5, 10, and 25 mg/kg) + CP. Renal function markers (serum creatinine and blood urea nitrogen), oxidative stress markers (malondialdehyde and glutathione), apoptotic marker (caspase-3), and NF-κB were histopathologically evaluated. The results of our study showed that increased urea and creatinine were evidence of CP-induced nephrotoxicity. Histopathological examination revealed tubular epithelial and Bowman degeneration, edema, and cytoplasmic vacuolation in renal tissue structure. Administration of GLZ reduced oxidative stress, caspase-3, and NF-κB activity, and improved kidney function markers in CP-treated mice compared with CP alone group. Also, we observed that the histological tissue structure of the kidney was maintained. GLZ at dose of 25 mg/kg had higher protective effect as compared with other doses. Overall, our study suggests that GLZ with antioxidant, antiapoptotic, and anti-inflammatory properties may be a promising new therapeutic agent to prevent CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|
12
|
Du J, Kleefstra N, Schrijnders D, Groenier KH, de Bock GH, Landman GWD. Is Gliclazide Associated with a Lower Obesity-Related Cancer Risk Compared to Other Sulfonylureas? A Long-term Prospective Cohort Study. Cancer Epidemiol Biomarkers Prev 2020; 29:1596-1605. [PMID: 32404443 DOI: 10.1158/1055-9965.epi-19-1517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/08/2020] [Accepted: 05/05/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gliclazide has been suspected to be associated with a lower obesity-related cancer risk; however, current evidence is limited by important methodologic shortcomings. This study aimed to evaluate whether gliclazide is preferred over other sulfonylureas regarding obesity-related cancer risk. METHODS In this prospective cohort study, an annual benchmarking database in Dutch primary care (Zwolle Outpatient Diabetes project Integrating Available CareZODIAC, 1998-2014) was linked to the Netherlands Cancer Registry and the Dutch Personal Record Database. Of the 71,648 patients with type 2 diabetes, we included 26,207 who used sulfonylureas and had no history of cancer or insulin use at baseline. Obesity-related cancer was defined using the latest definition of the World Cancer Research Fund. Cox regression analyses were used to estimate HRs, with both baseline sulfonylurea and cumulative exposure modeled and corrected for baseline covariates. RESULTS During follow-up for 167,692 person-years, there were 1,111 obesity-related cancer events. For males, the adjusted HRs [95% confidence interval (CI)] for baseline sulfonylurea compared with gliclazide were as follows: glibenclamide, 1.10 (0.92-2.69); glimepiride, 1.13 (0.68-1.84); and tolbutamide, 0.93 (0.59-1.48). For females, these were as follows: glibenclamide, 1.49 (0.72-3.13); glimepiride, 0.96 (0.59-1.54); and tolbutamide, 0.84 (0.54-1.28). The adjusted HRs (95% CI) for one more year of cumulative exposure compared with gliclazide were as follows: glibenclamide, 0.90 (0.71-1.14); glimepiride, 0.96 (0.87-1.06); and tolbutamide, 1.00 (0.92-1.09). For females, these were as follows: glibenclamide, 0.93 (0.77-1.13); glimepiride, 0.99 (0.90-1.10); and tolbutamide, 1.04 (0.96-1.13). CONCLUSIONS Obesity-related cancer risk was comparable between gliclazide and other sulfonylureas. IMPACT Gliclazide is not preferred over other sulfonylureas regarding obesity-related cancer risk.
Collapse
Affiliation(s)
- Jing Du
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Nanno Kleefstra
- Langerhans Medical Research Group, Ommen, the Netherlands
- GGZ Drenthe Mental Health Institute, High and Intensive Care, Assen, the Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | - Geertruida H de Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gijs W D Landman
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Langerhans Medical Research Group, Ommen, the Netherlands
- Department of Internal Medicine, Gelre Hospital, Apeldoorn, the Netherlands
| |
Collapse
|
13
|
Amin EF, Rifaai RA, Abdel-Latif RG. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol 2020; 34:548-558. [PMID: 32068294 DOI: 10.1111/fcp.12548] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Hyperglycemia is one of the ischemic neuronal damage triggers that exacerbate the response to oxidative stress, inflammation, and apoptosis induced by cerebral ischemia/reperfusion (I/R) injury. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT 2) inhibitor, was shown to effectively reduce hyperglycemia and glucotoxicity besides improving glycemic control in diabetics. Therefore, the present study was conducted to investigate the neuroprotective effect of empagliflozin against cerebral I/R injury in hyperglycemic rats. Hyperglycemia was induced by streptozotocin (55 mg/kg), and transient cerebral I/R was induced by bilateral common carotid occlusion for 30 min followed by 24-h reperfusion. Either empagliflozin (10 mg/kg; i.p.) or gliclazide (2 mg/kg, p.o.) was administered at 1 and 24 h after reperfusion. Treatment with empagliflozin showed a significant amelioration of behavioral/neurological functions and histopathological changes observed in brain tissues of hyperglycemic rats subjected to cerebral I/R injury. Comparable to gliclazide, empagliflozin decreased cerebral infarct volume along with suppression of cerebral oxidative stress, inflammatory, and apoptotic markers in brain tissues of hyperglycemic I/R-injured rats. These findings suggested that empagliflozin can significantly alleviate neuronal damage resulting from global I/R injury induced in hyperglycemic rats. The proposed neuroprotective effect of empagliflozin may be attributed to its glycemic control effect and related antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Entesar F Amin
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Rehab A Rifaai
- Department of Histology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Rania G Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt
| |
Collapse
|
14
|
Gliclazide attenuates acetic acid-induced colitis via the modulation of PPARγ, NF-κB and MAPK signaling pathways. Toxicol Appl Pharmacol 2020; 391:114919. [PMID: 32045587 DOI: 10.1016/j.taap.2020.114919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Ulcerative Colitis is a universal autoimmune disease with high incidence rates worldwide. It is characterized by the existence of many other concurrent immune-associated ailments, including diabetes. The used strategies for the management of this highly costing and complicated disease face great challenges. Therefore, the urge for new medication with fewer side effects and high efficacy is growing. The peroxisome proliferator-activated receptor-gamma (PPARγ) and nuclear factor Kappa-B (NF-κB) can be considered as crucial targets for the treatment of ulcerative colitis. Several studies reported the antioxidants, anti-inflammatory, and antiapoptotic actions of gliclazide and evaluated its cardioprotective and renoprotective effects. However, its impact on ulcerative colitis has never been investigated. This study delineated the effect of gliclazide administration on ulcerative colitis induced by acetic acid in rats and the underlying molecular mechanisms. Gliclazide (10 mg/kg; p.o) prominently decreased colon tissue injury as assessed by the histopathological analysis as well as myeloperoxidase, and intercellular adhesion molecule-1 levels. Gliclazide significantly alleviated the proinflammatory mediator, IL-6, promoted the anti-inflammatory cytokine, IL-10 and, withheld oxidative stress in the injured colon tissues. The protective effect of gliclazide was mediated through the upregulation of PPARγ and downregulation of NF-κB expression. The diminution of ulcerative colitis was also accompanied by an inhibition of the elevated activity and expression of mitogen-activated protein kinases and caspase-3 as assessed by Western blot and immunohistochemistry, respectively. Our findings spotlight, for the first time, the potential of the antidiabetic agent, gliclazide, to attenuate the experimentally induced ulcerative colitis. Therefore, gliclazide might be a propitious agent for the management of ulcerative colitis in diabetic patients.
Collapse
|
15
|
Anti-diabetic medications and the risk for colorectal cancer: A population-based nested case-control study. Cancer Epidemiol 2020; 64:101658. [DOI: 10.1016/j.canep.2019.101658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
|
16
|
Pouri M, Shaghaghi Z, Ghasemi A, Hosseinimehr SJ. Radioprotective Effect of Gliclazide as an Anti-Hyperglycemic Agent Against Genotoxicity Induced by Ionizing Radiation on Human Lymphocytes. Cardiovasc Hematol Agents Med Chem 2019; 17:40-46. [PMID: 31124426 PMCID: PMC6865074 DOI: 10.2174/1871525717666190524092918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 11/22/2022]
Abstract
Objectives: Gliclazide (GL) is widely used to reduce hyperglycemia in diabetic patients. The aim of this study was to investigate the protective effect of GL against chromosome damage induced by ionizing radiation in human blood lymphocytes. Methods: In this experimental study, peripheral blood samples were collected from human volunteers and treated with GL at various concentrations (5, 25, 50 or 100 μM) for three hours. Then samples were irradiated to X-ray (1.5 Gy). Blood samples were cultured with mitogenic stimulation. The frequencies of micronuclei in cytokinesis-blocked binucleated lymphocytes were determined in the different samples. The antioxidant activities of GL were assayed by two different methods as 1,1-diphenyl-2-picryl hydrazyl radical (DPPH) free radical scavenging and reducing antioxidant power assays. Results: GL significantly reduced the percentage of micronuclei in lymphocytes which were irradiated. The maximum radioprotection in the reduction of percentage of micronuclei in lymphocytes was observed at 100 μM of GL with 52% efficacy. GL exhibited excellent free radical scavenging activity and reducing power at concentration dependent activities. The IC50 values of GL were lower than ascorbic acid. Higher potencies were observed in the antioxidant activities for GL than ascorbic acid in both methods. Conclusion: This data exhibits that GL is a powerful radioprotective agent that could protect healthy cells against the chromosome damage induced by ionizing radiation through antioxidant activity. The radioprotective effect is new indication of GL for patients' protection against side effect induced by ionizing radiation.
Collapse
Affiliation(s)
- Maysa Pouri
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Shaghaghi
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Ghasemi
- Department of Radiology and Radiation Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Abstract
The present study investigated the effect of cladribine (CLA) and six of its derivatives containing a formamidine group at position 6 (CLA-FDM, CLA-FPAZ, CLA-FPIR, CLA-FPIP, CLA-FHEX, and CLA-FMOR) on acute promyelocytic, lymphoblastic, and acute monocytic leukemia cells. The role of ATR kinase in deoxycytidine kinase (dCK) activation in response to DNA damage was assessed. The presence of DNA lesions was assessed by measurement phosphorylation of H2AX and by using the alkaline comet assay with proteinase K post-treatment following assessment of the cell cycle. Apoptotic events such as alterations in intracellular calcium concentration, caspase-3/7 activity and increased sub-G1 cell population were measured. CLA derivatives were highly effective against leukemic cells, showing high cytotoxicity, causing DNA fragmentation, and inducing DNA-protein cross-links in leukemic cells. CLA-FMOR showed the highest efficacy. CLA derivatives increased the levels of intracellular calcium ions, caspase-3/7 and the percentage of sub-G1 apoptotic cells and blocked cells in the S phase of the cell cycle to a greater extent than free CLA. The selective ATR inhibitor VE-821 significantly suppressed the increase in dCK activity and decreased basal dCK activity. The present results suggested that ATR kinase controls dCK activity in response to synthetic CLA derivatives.
Collapse
|
18
|
Hendriks AM, Schrijnders D, Kleefstra N, de Vries EGE, Bilo HJG, Jalving M, Landman GWD. Sulfonylurea derivatives and cancer, friend or foe? Eur J Pharmacol 2019; 861:172598. [PMID: 31408647 DOI: 10.1016/j.ejphar.2019.172598] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with a higher risk of cancer and cancer-related mortality. Increased blood glucose and insulin levels in T2DM patients may be, at least in part, responsible for this effect. Indeed, lowering glucose and/or insulin levels pharmacologically appears to reduce cancer risk and progression, as has been demonstrated for the biguanide metformin in observational studies. Studies investigating the influence of sulfonylurea derivatives (SUs) on cancer risk have provided conflicting results, partly due to comparisons with metformin. Furthermore, little attention has been paid to within-class differences in systemic and off-target effects of the SUs. The aim of this systematic review is to discuss the available preclinical and clinical evidence on how the different SUs influence cancer development and risk. Databases including PubMed, Cochrane, Database of Abstracts on Reviews and Effectiveness, and trial registries were systematically searched for available clinical and preclinical evidence on within-class differences of SUs and cancer risk. The overall preclinical and clinical evidence suggest that the influence of SUs on cancer risk in T2DM patients differs between the various SUs. Potential mechanisms include differing affinities for the sulfonylurea receptors and thus differential systemic insulin exposure and off-target anti-cancer effects mediated for example through potassium transporters and drug export pumps. Preclinical evidence supports potential anti-cancer effects of SUs, which are of interest for further studies and potentially repurposing of SUs. At this time, the evidence on differences in cancer risk between SUs is not strong enough to guide clinical decision making.
Collapse
Affiliation(s)
- Anne M Hendriks
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dennis Schrijnders
- Langerhans Medical Research Group, Zwolle, the Netherlands; Diabetes Center, Isala Hospital, Zwolle, the Netherlands
| | | | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henk J G Bilo
- Diabetes Center, Isala Hospital, Zwolle, the Netherlands; Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mathilde Jalving
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Gijs W D Landman
- Langerhans Medical Research Group, Zwolle, the Netherlands; Department of Internal Medicine, Gelre Hospital, Apeldoorn, the Netherlands
| |
Collapse
|
19
|
Mafra CADCC, Vasconcelos RC, de Medeiros CACX, Leitão RFDC, Brito GADC, Costa DVDS, Guerra GCB, de Araújo RF, Medeiros AC, de Araújo AA. Gliclazide Prevents 5-FU-Induced Oral Mucositis by Reducing Oxidative Stress, Inflammation, and P-Selectin Adhesion Molecules. Front Physiol 2019; 10:327. [PMID: 30971955 PMCID: PMC6445135 DOI: 10.3389/fphys.2019.00327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 12/27/2022] Open
Abstract
Oral mucositis (OM) is one of the main side effects of the head and neck cancer treatment, particularly radiotherapy and/or chemotherapy. OM is characterized by ulcers, erythema, dysphagia, xerostomia, and increased susceptibility to opportunistic infections. In the perspective of finding pharmacological therapies to prevent inflammation and ulceration of OM, the investigation of the pleiotropic effect of commercial drugs is needed, among them gliclazide, an antidiabetic drug. This study aimed to evaluate the effect of gliclazide in an experimental OM model induced by 5-fluorouracil. Male hamsters were pre-treated with oral gliclazide (1, 5, or 10 mg/kg) for 10 days. Cheek pouch samples were subjected to histopathological and immunohistochemical analysis (COX2, iNOS, MMP-2, NFκB P65, GPx) and imunofluorescence (P-selectin). IL-1β and TNF-α levels, Myeloperoxidase activity (MPO) and malondialdehyde (MDA) levels were investigated by ultraviolet-visible spectroscopy analysis. NFκB NLS P50 protein levels were analyzed by western blotting. The group treated with gliclazide at a dose of 10 mg/kg showed presence of erythema, no evidence of erosion, and absence of mucosal ulceration with a score of 1 (1–2) (p < 0.01). Histopathological data for the group treated with gliclazide 10 mg/kg showed re-epithelialization, discrete mononuclear inflammatory infiltrate and absence of hemorrhage, edema, ulcers and abscesses with a score of 1 (1–1) (p < 0.01). Treatment with gliclazide 10 mg/kg reduced MPO activity (p < 0.001), MDA levels (p < 0.001) and NFκB NLS P50 (p < 0.05) protein levels, resulting in low immunostaining to Cox-2, iNOS (p < 0.05), NFκB P65 (p < 0.05), and negative immunoreaction to MMP-2 (p < 0.001). However, it appeared that for Gpx1, the staining was restored in the GLI 10-FUT group compared with 5FUT/saline (p < 0.05). Immunofluorescence revealed decreased levels of P-selectin (p < 0.001) after treatment with gliclazide 10 mg/kg (p < 0.05). In summary, gliclazide accelerated mucosal recovery and reduced oxidative stress and inflammation in the 5-FU-induced OM in hamsters.
Collapse
Affiliation(s)
| | | | - Caroline Addison Carvalho Xavier de Medeiros
- Department of Biophysics and Pharmacology, UFRN, Natal, Brazil.,Postgraduate Program in Biological Science and Rede Nordeste de Biotecnologia/Renorbio, Federal University of Rio Grande Norte, Natal, Brazil
| | - Renata Ferreira de Carvalho Leitão
- Postgraduate Programs in Pharmacology and Morphology, Department of Morphology/Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Gerly Anne de Castro Brito
- Postgraduate Programs in Pharmacology and Morphology, Department of Morphology/Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Deiziane Viana da Silva Costa
- Postgraduate Programs in Pharmacology and Morphology, Department of Morphology/Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Gerlane Coelho Bernardo Guerra
- Postgraduate Programs in Postgraduate Program in Biological Science/Pharmaceutical Science, Department of Biophysical and Pharmacology, UFRN, Natal, Brazil
| | - Raimundo Fernandes de Araújo
- Postgraduate Programs in Functional and Structural Biology and Health Science, Department of Morphology, UFRN, Natal, Brazil
| | - Aldo Cunha Medeiros
- Postgraduate Programs in Health Science, Department of Surgery, UFRN, Natal, Brazil
| | - Aurigena Antunes de Araújo
- Postgraduate Oral Science, Postgraduate Programs in Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande Norte, Natal, Brazil
| |
Collapse
|
20
|
Wen W, Gong J, Wu P, Zhao M, Wang M, Chen H, Sun J. Mutations in gliclazide-associated genes may predict poor bladder cancer prognosis. FEBS Open Bio 2019; 9:457-467. [PMID: 30868054 PMCID: PMC6396154 DOI: 10.1002/2211-5463.12583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/22/2018] [Accepted: 12/13/2018] [Indexed: 01/07/2023] Open
Abstract
In recent years, an increasing number of patients have had diabetes and cancer simultaneously; thus, it is crucial for physicians to select hypoglycemic drugs with the lowest risk of inducing cancer. Gliclazide is a widely used sulfonylurea hypoglycemic drug, but its cancer risk remains controversial. Here, we explored the primary targets of gliclazide and its associated genes by querying an available database to construct a biological network. By using DrugBank and STRING, we found two primary targets of gliclazide and 50 gliclazide-associated genes, which were then enrolled for Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using WebGestalt. From this analysis, we obtained the top 15 KEGG pathways. Accurate analysis of these KEGG pathways revealed that two pathways, one linked to bladder cancer and the other linked to the phosphoinositide 3-kinase-AKT signaling pathway, are functionally associated with gliclazide, and from these we identified four overlapping genes. Finally, genomic analysis using cBioPortal showed that genomic alterations of these four overlapping genes predict poor prognosis for patients with bladder cancer. In conclusion, gliclazide should be used with caution as a hypoglycemic drug for diabetic patients with cancer, especially bladder cancer. In addition, this study provides a functional network analysis to flexibly explore drug interaction systems and estimate their safety.
Collapse
Affiliation(s)
- Weiheng Wen
- Department of Endocrinology Zhujiang Hospital Southern Medical University Guangzhou China
| | - Jinru Gong
- State Key Laboratory of Respiratory Disease The First Affiliated Hospital of Guangzhou Medical University China
| | - Peili Wu
- Department of Endocrinology Zhujiang Hospital Southern Medical University Guangzhou China
| | - Min Zhao
- Department of Endocrinology Zhujiang Hospital Southern Medical University Guangzhou China
| | - Ming Wang
- Department of Traditional Chinese Medicine Zhujiang Hospital Southern Medical University Guangzhou China
| | - Hong Chen
- Department of Endocrinology Zhujiang Hospital Southern Medical University Guangzhou China
| | - Jia Sun
- Department of Endocrinology Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
21
|
Chen YT, Xie JY, Sun Q, Mo WJ. Novel drug candidates for treating esophageal carcinoma: A study on differentially expressed genes, using connectivity mapping and molecular docking. Int J Oncol 2018; 54:152-166. [PMID: 30387840 PMCID: PMC6254996 DOI: 10.3892/ijo.2018.4618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Patients with esophageal carcinoma (ESCA) have a poor prognosis and high mortality rate. Although standard therapies have had effect, there is an urgent requirement to develop novel options, as increasing drug tolerance has been identified in clinical practice. In the present study, differentially expressed genes (DEGs) of ESCA were identified in The Cancer Genome Atlas and Genotype-Tissue Expression databases. Functional and protein-protein interaction (PPI) analyses were performed. The Connectivity Map (CMAP) was selected to predict drugs for the treatment of ESCA, and their target genes were acquired from the Search Tool for Interactions of Chemicals (STITCH) by uploading the Simplified Molecular-Input Line-Entry System structure. Additionally, significant target genes and ESCA-associated hub genes were extracted using another PPI analysis, and the corresponding drugs were added to construct a network. Furthermore, the binding affinity between predicted drug candidates and ESCA-associated hub genes was calculated using molecular docking. Finally, 827 DEGs (|log2 fold-change|≥2; q-value <0.05), which are principally involved in protein digestion and absorption (P<0.005), the plasminogen-activating cascade (P<0.01), as well as the ‘biological regulation’ of the Biological Process, ‘membrane’ of the Cellular Component and ‘protein binding’ of the Molecular Function categories, were obtained. Additionally, 11 hub genes were obtained from the PPI network (all degrees ≥30). Furthermore, the 15 first screen drugs were extracted from CMAP (score <−0.85) and the 9 second screen drugs with 70 target genes were extracted from STITCH. Furthermore, another PPI analysis extracted 51 genes, and apigenin, baclofen, Prestwick-685, menadione, butyl hydroxybenzoate, gliclazide and valproate were selected as drug candidates for ESCA. Those molecular docking results with a docking score of >5.52 indicated the significance of apigenin, Prestwick-685 and menadione. The results of the present study may lead to novel drug candidates for ESCA, among which Prestwick-685 and menadione were identified to be significant new drug candidates.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jia-Yi Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Sun
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
22
|
Zhang R, Zhou X, Shen X, Xie T, Xu C, Zou Z, Dong J, Liao L. Different sulfonylureas induce the apoptosis of proximal tubular epithelial cell differently via closing K ATP channel. Mol Med 2018; 24:47. [PMID: 30180807 PMCID: PMC6122448 DOI: 10.1186/s10020-018-0042-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sulfonylureas (SUs) are widely prescribed for the treatment of type 2 diabetes (T2DM). Sulfonylurea receptors (SURs) are their main functional receptors. These receptors are also found in kidney, especially the tubular cells. However, the effects of SUs on renal proximal tubular epithelial cells (PTECs) were unclear. METHODS Three commonly used SUs were included in this study to investigate if different SUs have different effects on the apoptosis of PTECs. HK-2 cells were exposed to SUs for 24 h prior to exposure to 30 mM glucose, the apoptosis rate was evaluated by Annexin/PI flow cytometry. Bcl-2, Bax and the ratio of LC3II to LC3I were also studied by western blot in vitro. Diazoxide was used to evaluate the role of KATP channel in SUs-induced apoptosis of PTECs. A Student's t-test was used to assess significance for data within two groups. RESULTS Treatment with glibenclamide aggravated the apoptosis of HK-2 cells in high-glucose, as indicated by a significant decrease in the expression of Bcl-2 and increase in Bax. Additionally, the decreased LC3II/LC3I reflects that the autophagy was inhibited by glibenclamide. Similar but less pronounced change was found in glimepiride group, however, nearly opposite effects were found in gliclazide group. Further, the effects of glibenclamide on apoptosis promotion and the decreased LC3II/LC3I were ameliorated obviously by treatment with 100uM diazoxide. The potential protection effect of gliclazide was also inhibited after opening the KATP channel. CONCLUSION Our results suggest that, the effects of glibenclamide and glimepiride on PTECs apoptosis, especially the former, were achieved in part by closing the KATP channel. In contrast to glibenclamide and glimepiride, therapeutic concentrations of gliclazide showed an inhibitory effect on apoptosis of PTECs, which may have a benefit in the preservation of functional PTECs mass.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaojun Zhou
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Xue Shen
- Division of Endocrinology, Department of Internal Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Tianyue Xie
- Division of Endocrinology, Department of Internal Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chunmei Xu
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Zhiwei Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Department of Internal Medicine, Division of Endocrinology, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, Shandong, China.
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
- Department of Internal Medicine, Division of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, Shandong, China.
| |
Collapse
|
23
|
Tuccori M, Convertino I, Galiulo MT, Marino A, Capogrosso-Sansone A, Blandizzi C. Diabetes drugs and the incidence of solid cancers: a survey of the current evidence. Expert Opin Drug Saf 2017; 16:1133-1148. [PMID: 28748718 DOI: 10.1080/14740338.2017.1361401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The evaluation of the relationship between the use of antidiabetic drug and the occurrence of cancer is extremely challenging, both from the clinical and pharmacoepidemiological standpoint. This narrative review described the current evidence supporting a relationship between the use of antidiabetic drugs and the incidence of solid cancers. Areas covered: Data from pharmacoepidemiological studies on cancer incidence were presented for the main antidiabetic drugs and drug classes, including human insulin and insulin analogues, metformin, sulfonylureas, glinides, alpha-glucosidase inhibitors, thiazolidinediones, incretin mimetics, and sodium glucose co-transporter 2 inhibitors. The relationship between the use of antidiabetics and the incidence of solid cancer was described in strata by any cancer and by organ-specific cancer and by drug and by drug classes. Information supporting biological evidence and putative mechanisms were also provided. Expert opinion: The history of exploration of the relationship between antidiabetic drugs and the risk of solid cancers has showed several issues. Unrecognized biases and misinterpretations of study results have had important consequences that delayed the identification of actual risk and benefits of the use of antidiabetic drugs associated with cancer occurrence or progression. The lesson learned from the past should address the future research in this area, since in the majority of cases findings are controversial and confirmatory studies are warranted.
Collapse
Affiliation(s)
- Marco Tuccori
- a Unit of Adverse Drug Reaction Monitoring , University Hospital of Pisa , Pisa , Italy
| | - Irma Convertino
- b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Maria Teresa Galiulo
- b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Alessandra Marino
- b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | | | - Corrado Blandizzi
- a Unit of Adverse Drug Reaction Monitoring , University Hospital of Pisa , Pisa , Italy.,b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| |
Collapse
|
24
|
Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Zarghami N. New insights into antidiabetic drugs: Possible applications in cancer treatment. Chem Biol Drug Des 2017; 90:1056-1066. [DOI: 10.1111/cbdd.13013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/27/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Vahid Shafiei-Irannejad
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Roya Salehi
- Department of Medical Nanotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
25
|
Gao R, Yang T, Xu W. Enemies or weapons in hands: investigational anti-diabetic drug glibenclamide and cancer risk. Expert Opin Investig Drugs 2017; 26:853-864. [PMID: 28541801 DOI: 10.1080/13543784.2017.1333104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological evidence suggests that diabetes is associated with elevated cancer risk through the actions of hyperglycemia, hyperinsulinemia and chronic inflammation. Metformin, a first-line medication for type 2 diabetes mellitus, arouses growing concerns on its anti-cancer effect. However, data regarding the effect of glibenclamide on tumor growth and cancer risk are less consistent, which may be a potential anti-cancer drug. Areas covered: In this review, we clarified probable underlying mechanisms in preclinical studies and reviewed epidemiological evidence on glibenclamide's cancer risk in clinical studies. Glibenclamide inhibited carcinogenesis through ATP-binding cassette protein super-family and ATP-sensitive potassium channels, while majority of clinical researches reported an increased or non-significant elevated cancer risk of glibenclamide users compared with metformin users. Other sulfonylureas and diarylsulfonylureas were also briefly introduced. Expert opinion: The inconsistency between the results of studies was probably ascribed to undiscovered mechanisms, confounding factors, inconsistent comparators and publication bias. Existing clinical trials were prone to be afflicted by time-related bias including immortal time bias, time-window bias, and time-lag bias. Glibenclimiade could be a promising and well-tolerated anti-neoplastic drug targeting ATP-binding cassette protein super-family and KATP channels, but its efficacy still needs to be proven in well-designed long-term randomized controlled clinical trials.
Collapse
Affiliation(s)
- Rui Gao
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing , China
- b Department of Hematology , The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing , China
| | - Tao Yang
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing , China
| | - Wei Xu
- b Department of Hematology , The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing , China
| |
Collapse
|
26
|
Abstract
Gliclazide is a second-generation oral hypoglycemic drug used for the treatment of noninsulin-dependent diabetes mellitus. It belongs to the sulfonylurea class that stimulates insulin secretion from pancreatic β-cells by inhibiting ATP-dependent potassium channels. Gliclazide also possesses unique antioxidant properties and other beneficial hemobiological effects. This profile represents a comprehensive description of the physical properties, chemical synthesis, spectroscopic characterization (FTIR, 1H NMR, 13C NMR, UV, and single-crystal X-ray), methods of analysis, pharmacological actions, and pharmacokinetic and pharmacodynamic properties of the title drug.
Collapse
|
27
|
Pieniazek A, Gwozdzinski K. Carbamylation and oxidation of proteins lead to apoptotic death of lymphocytes. Chem Biol Interact 2017; 270:24-32. [PMID: 28400100 DOI: 10.1016/j.cbi.2017.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 11/18/2022]
Abstract
The apoptotic/necrotic changes in isolated human peripheral blood mononuclear cells (MNCs) subjected to hydrogen peroxide (H2O2), cyanate (NaOCN) and their combination were examined. The mitochondrial potential (ΔΨm), the activities of caspases (-2, -3, -6, -8 and -9) and the level of carbonyls and amino groups in proteins were determined and DNA fragmentation. Apoptotic or necrotic cells were identified by fluorescence microscopy using double staining with Hoechst 33258/propidium iodide. Treatment of MNCs with NaOCN (1 mmol/L and 2 mmol/L), alone and in combination with H2O2 (100 μmol/L), led to a significant decrease in the content of amine groups and a significant increase in the carbonyl level of MNCs in comparison with the control. Measurements taken at three time points (30, 60 and 150 min) showed a significant decrease in ΔΨm in MNCs incubated with H2O2, cyanate and their combination. The highest decrease in ΔΨm was observed after 150 min, when a combination of NaOCN and H2O2 was applied. We observed significant increases in the activities of caspases-2 and -3 in cells exposed to H2O2 and the combination of NaOCN and H2O2. An increase in caspase-2 but not in caspase-3 activity was noted in cells incubated with cyanate. A significant increase in caspase-9 activity in MNCs was observed in all arrangements of tested compounds in comparison with the control. In H2O2-treated cells, a higher level of necrotic cells was noted in comparison to apoptotic cells, whereas carbamylation led mainly to apoptotic cell death. The combination of cyanate and H2O2 increased the population of necrotic cells.
Collapse
Affiliation(s)
- Anna Pieniazek
- Department of Molecular Biophysics, Faculty of Biology and Envirommental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Envirommental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
28
|
Singh AK, Singh R. Is gliclazide a sulfonylurea with difference? A review in 2016. Expert Rev Clin Pharmacol 2016; 9:839-851. [PMID: 26924475 DOI: 10.1586/17512433.2016.1159512] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/25/2016] [Indexed: 02/05/2023]
Abstract
Sulfonylureas (SUs) remain the most commonly prescribed drug after metformin in the treatment of type 2 diabetes (T2DM), despite the availability of several newer agents. The primary reason of SUs being most popular is their quick glycemic response, time-tested experience and least cost. Although SUs are one amongst the several other second line agents after metformin in all major guidelines, the new Dutch type 2 guidelines specifically advise gliclazide as the preferred second line drug instead of SUs as a class. The World Health Organization (WHO) has also included gliclazide in their Model List of Essential Medicines 2013 motivated by its safety data in elderly patients. Specifically advising gliclazide may have been based on emerging evidence suggesting cardiovascular neutrality of gliclazide over other SUs. This prompted us to do a literature review of gliclazide efficacy and safety data compared to other SUs as well as oral anti-diabetic drugs.
Collapse
Affiliation(s)
| | - Ritu Singh
- a G.D Hospital & Diabetes Institute , Kolkata , West Bengal , India
| |
Collapse
|
29
|
Berezin A. Metabolic memory phenomenon in diabetes mellitus: Achieving and perspectives. Diabetes Metab Syndr 2016; 10:S176-S183. [PMID: 27025794 DOI: 10.1016/j.dsx.2016.03.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/05/2016] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) exhibits raised prevalence worldwide. There is a large body of evidence regarding the incidence of DM closely associates with cardiovascular (CV) complications. In this context, hyperglycaemia, oxidant stress, and inflammation are key factors that contribute in CV events and disease in type1 and type 2 DM, even when metabolic control was optimal and/or intensive glycemic control was implemented. It has been suggested that the effect of poor metabolic control or even transient episodes of hyperglycemia in DM associates in particularly with worsening ability of endogenous vasoreparative systems that are mediated epigenetic changes in several cells (progenitor cells, stem cells, mononuclears, immune cells), and thereby lead to so called "vascular glycemic memory" or "metabolic memory". Both terms are emphasized the fact that prior glucose control has sustained effects that persist even after return to more usual glycemic control. The mechanisms underlying the cellular "metabolic memory" induced by high glucose remain unclear. The review is discussed pathophysiology and clinical relevance of "metabolic" memory phenomenon in DM. The role of oxidative stress, inflammation, and epigenetics in DM and its vascular complications are highlighted. The effects of several therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Alexander Berezin
- Internal Medicine Department, State Medical University of Zaporozhye, 26, Mayakovsky Av., Zaporozhye 69035, Ukraine.
| |
Collapse
|
30
|
Antiglycation and cell protective actions of metformin and glipizide in erythrocytes and monocytes. Mol Biol Rep 2016; 43:195-205. [DOI: 10.1007/s11033-016-3947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 02/07/2016] [Indexed: 02/07/2023]
|
31
|
Abbasi MM, Valizadeh H, Hamishehkar H, Zakeri-Milani P. Inhibition of P-glycoprotein expression and function by anti-diabetic drugs gliclazide, metformin, and pioglitazone in vitro and in situ. Res Pharm Sci 2016; 11:177-86. [PMID: 27499787 PMCID: PMC4962298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
P-glycoprotein (P-gp) is a trans-membrane drug efflux pump. Several drugs are P-gp substrates. Some drugs may affect the activity of P-gp by inhibiting its function, resulting in significant drug-drug interactions (DDIs). It is critical to understand which drugs are inhibitors of P-gp so that adverse DDIs can be minimized or avoided. This study investigated the effects of gliclazide, metformin, and pioglitazone on the function and expression of P-gp. Rhodamine 123 (Rh 123) efflux assays in Caco-2 cells and western blot testing were used to study in vitro the effect of the drugs on P-gp function and expression. The in situ rat single-pass intestinal permeability model was developed to study the effect of the drugs on P-gp function. Digoxin and verapamil were used as a known substrate and inhibitor of P-gp, respectively. Digoxin levels in intestinal perfusion samples were analyzed by high-performance liquid chromatography. Intestinal effective permeability (Peff) of digoxin in the presence of 0.1, 10, and 500 μM gliclazide, 100 and 7000 μM metformin, and 50 and 300 μM pioglitazone was significantly increased relative to the digoxin treated cells (P < 0.01). P-gp expression was decreased by gliclazide, metformin and pioglitazone. Intracellular accumulation of Rh 123 by the drugs increased, but the differences were not significant relative to the control cells (P > 0.05). It was found that gliclazide, metformin, and pioglitazone inhibited P-gp efflux activity in situ and down-regulated P-gp expression in vitro. Further investigations are necessary to confirm the obtained results and to define the mechanism underlying P-gp inhibition by the drugs.
Collapse
Affiliation(s)
- Mehran Mesgari Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Hadi Valizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R.Iran,Corresponding author: Parvin Zakeri Milani Tel: 0098 41 33392593, Fax:0098 41 33344798 E-mail:
| |
Collapse
|
32
|
Singh P, Sharma B, Gupta S, Sharma BM. In vivo and in vitro attenuation of naloxone-precipitated experimental opioid withdrawal syndrome by insulin and selective KATP channel modulator. Psychopharmacology (Berl) 2015; 232:465-75. [PMID: 25059539 DOI: 10.1007/s00213-014-3680-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/02/2014] [Indexed: 12/01/2022]
Abstract
RATIONALE Opiate exposure for longer duration develops state of dependence in humans and animals, which is revealed by signs and symptoms of withdrawal precipitated by opioid receptor antagonists. The sudden withdrawal of opioids produces a withdrawal syndrome in opioid-dependent subjects. Insulin and ATP-sensitive potassium (KATP) channel-mediated glucose homeostasis have been shown to modulate morphine withdrawal. OBJECTIVE Present study has been structured to investigate the role of insulin and pharmacological modulator of KATP channel (gliclazide) in experimental morphine withdrawal syndrome, both invivo and invitro. METHODS In this study, naloxone-precipitated morphine withdrawal syndrome in mice (invivo) as well as in rat ileum (invitro) were utilized to assess opioid withdrawal phenomenon. Morphine withdrawal syndromes like jumping and rearing frequency, forepaw licking, circling, fore paw tremor, wet dog shake, sneezing, overall morphine withdrawal severity (OMWS), serum glucose, brain malondialdehyde (MDA), glutathione (GSH), nitrite/nitrate, and calcium (Ca(+2)) were assessed. RESULTS Naloxone has significantly increased morphine withdrawal syndrome, both invivo and invitro. Insulin and gliclazide have significantly attenuated, naloxone induced behavioral changes like jumping and rearing frequency, forepaw licking, wet dog shake, sneezing, straightening, circling, OMWS, and various biochemical impairments such as serum glucose, brain MDA, GSH, nitrite/nitrate, and Ca(+2) in morphine-dependent animals (invivo). In vitro, insulin and gliclazide have significantly reduced naloxone-induced contraction in morphine-withdrawn rat ileum preparation. CONCLUSIONS Insulin and gliclazide (KATP channel blocker) have attenuated naloxone-precipitated morphine withdrawal syndrome, both invivo and invitro. Thus, insulin and KATP channel modulation may provide new avenues for research in morphine withdrawal.
Collapse
Affiliation(s)
- Prabhat Singh
- Neuropharmacology Laboratory, Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, 250103, Uttar Pradesh, India
| | | | | | | |
Collapse
|
33
|
Pasello G, Urso L, Conte P, Favaretto A. Effects of sulfonylureas on tumor growth: a review of the literature. Oncologist 2013; 18:1118-25. [PMID: 24043597 DOI: 10.1634/theoncologist.2013-0177] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes mellitus patients are at higher cancer risk, probably because of hyperinsulinemia and insulin growth factor 1 pathway activation. The effects of antidiabetic drugs on cancer risk have been described and discussed in several studies suggesting opposite effects of the biguanide metformin and sulfonylureas on cancer incidence and mortality. The anticancer mechanisms of metformin have been clarified, and some clinical studies, particularly in breast cancer patients, have been published or are currently ongoing; however, data about the effects of sulfonylureas on cancer growth are less consistent. The aims of this work are to review preclinical evidence of second-generation sulfonylureas effects on tumor growth, to clarify the potential mechanisms of action, and to identify possible metabolic targets for patient selection. Most evidence is on the adenosine triphosphate-sensitive potassium channels inhibitor glibenclamide, which interacts with reactive oxygen species production thus inducing cancer cell death. Among diarylsulfonylureas, next-generation DW2282 derivatives are particularly promising because of the proapoptotic activity in multidrug-resistant cells.
Collapse
Affiliation(s)
- Giulia Pasello
- Second Medical Oncology Unit, Istituto Oncologico Veneto, Padua, Italy
| | | | | | | |
Collapse
|
34
|
Bo S, Castiglione A, Ghigo E, Gentile L, Durazzo M, Cavallo-Perin P, Ciccone G. Mortality outcomes of different sulphonylurea drugs: the results of a 14-year cohort study of type 2 diabetic patients. Eur J Endocrinol 2013; 169:117-26. [PMID: 23660643 DOI: 10.1530/eje-13-0299] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Available data about mortality of type 2 diabetic patients treated with different sulphonylureas are scarce and contradictory. DESIGN We evaluated the associations between all-cause and cause-specific mortality and treatments with different sulphonylureas in a retrospective cohort of type 2 diabetic patients from a diabetes clinic. METHODS All 1277 patients treated with sulphonylureas during 19961997 were enrolled: 159 patients were treated with tolbutamide, 977 glibenclamide and 141 gliclazide. The baseline data (centralised laboratory parameters, anthropometric data and presence of chronic complications) were abstracted from the clinical records. Information on vital status was collected from demographic files after 14-year follow-up. Adjusted hazard ratios (HR) were estimated with Cox (all-cause mortality) or Fine and Gray models (cause-specific mortality), including several potential confounders. RESULTS Five hundred and fifty-six patients died during the follow-up: 262 from cardiovascular causes, 158 from cancer and 136 from other causes. When compared with the glibenclamide users, the gliclazide and tolbutamide users showed a significantly lower cancer mortality (HR=0.30; 95% CI 0.16-0.55, and HR=0.48; 95% CI 0.29-0.79 respectively). These results were strongly confirmed in the 555 patients on sulphonylurea monotherapy. None of the patients who were treated with gliclazide monotherapy died from cancer during the follow-up, and the patients on tolbutamide treatment exhibited a lower cancer mortality than the glibenclamide users (HR=0.40; 95% CI 0.22-0.71). Data did not change after stratification for the duration of sulphonylurea treatment from diabetes diagnosis to the study enrollment. CONCLUSIONS Cancer mortality was markedly reduced in the patients on gliclazide and tolbutamide treatment. These results suggest additional benefits for these drugs beyond their blood glucose-lowering effect and strongly advocate for further investigation.
Collapse
Affiliation(s)
- Simona Bo
- Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The importance of K(ATP) channels in stimulus-secretion coupling of β-cells is well established, although they are not indispensable for the maintenance of glycaemic control. This review article depicts a new role for K(ATP) channels by showing that genetic or pharmacological ablation of these channels protects β-cells against oxidative stress. Increased production of oxidants is a crucial factor in the pathogenesis of type 2 diabetes mellitus (T2DM). T2DM develops when β-cells can no longer compensate for the high demand of insulin resulting from excess fuel intake. Instead β-cells start to secrete less insulin and β-cell mass is diminished by apoptosis. Both, reduction of insulin secretion and β-cell mass induced by oxidative stress, are prevented by deletion or inhibition of K(ATP) channels. These findings may open up new insights into the early treatment of T2DM.
Collapse
Affiliation(s)
- G Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
36
|
Affiliation(s)
- Alice P S Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, SAR, China.
| | | |
Collapse
|