1
|
Bhowal B, Hasija Y, Singla-Pareek SL. Tracing the intraspecies expansion of glyoxalase genes and their expanding roles across the genus Oryza. Funct Integr Genomics 2024; 24:220. [PMID: 39586889 DOI: 10.1007/s10142-024-01492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
The genus Oryza is of utmost importance to human civilization as two of its species became agronomically productive and widely cultivated, and also because wild rice is a treasure trove of beneficial alleles that can be used for crop improvement. Most of the wild rice genotypes are known for their stress tolerance several times more than the domesticated rice varieties. In this study, we aimed to carry out an exhaustive genomic survey to identify glyoxalase I (GLYI) and glyoxalase II (GLYII) genes across the 11 rice genomes sequenced so far. Notably, we found the putatively functional metal-dependent GLYI and GLYII enzymes to be conserved throughout domestication and a few homologous pairs to have undergone beneficial mutations to drive positive selection, and thus, acquire newer functions. Interestingly, we also report four newly identified GLYII members in O. sativa subsp. japonica in addition to the three previously reported GLYII genes. The presence of different types of cis-elements in the promoter region of the glyoxalase genes gives insights into their role and regulation under various developmental processes besides stress adaptation. Publicly available data suggests the role of glyoxalase genes particularly in salinity stress in both wild and cultivated rice as is also confirmed through qRT-PCR. Interestingly, we found less accumulation of MG and concurrently higher enzymatic activity of GLYI and GLYII proteins in stressed seedlings of selected wild rice genotypes indicating that glyoxalases indeed contribute to the intrinsic stress tolerance of wild rice.
Collapse
Affiliation(s)
- Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad, Daulatpur, Delhi, 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad, Daulatpur, Delhi, 110042, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
Arman MS, Bhuya AR, Shuvo MRK, Rabbi MA, Ghosh A. Genomic identification, characterization, and stress-induced expression profiling of glyoxalase and D-lactate dehydrogenase gene families in Capsicum annuum. BMC PLANT BIOLOGY 2024; 24:990. [PMID: 39428463 PMCID: PMC11492504 DOI: 10.1186/s12870-024-05612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Capsicum annuum, a significant agricultural and nutritional crop, faces production challenges due to its sensitivity to various abiotic stresses. Glyoxalase (GLY) and D-lactate dehydrogenase (D-LDH) enzymes play vital roles in mitigating these stresses by detoxifying the stress-induced cytotoxin, methylglyoxal (MG). METHODS A genome-wide study was conducted to identify and characterize glyoxalase I (GLYI), glyoxalase II (GLYII), unique glyoxalase III or DJ-1 (GLYIII), and D-LDH gene candidates in Capsicum annuum. The identified members were evaluated based on their evolutionary relationships with known orthologues, as well as their gene and protein features. Their expression patterns were examined in various tissues, developmental stages, and in response to abiotic stress conditions using RNA-seq data and qRT-PCR. RESULTS A total of 19 GLYI, 9 GLYII, 3 DJ-1, and 11 D-LDH members were identified, each featuring characteristic domains: glyoxalase, metallo-β-lactamase, DJ-1_PfpI, and FAD_binding_4, respectively. Phylogenetic analysis revealed distinct clades depending on functional diversification. Expression profiling demonstrated significant variability under stress conditions, underscoring their potential roles in stress modulation. Notably, gene-specific responses were observed with CaGLYI-2, CaGLYI-7, CaGLYII-6, CaDJ-1 A, and CaDLDH-1 showed upregulation under salinity, drought, oxidative, heat, and cold stresses, while downregulation were shown for CaGLYI-3, CaGLYII-1, CaDJ-1B, and CaDJ-1 C. Remarkably, CaGLYI-1 presented a unique expression pattern, upregulated against drought and salinity but downregulated under oxidative, heat, and cold stress. CONCLUSION The identified GLY and D-LDH gene families in Capsicum annuum exhibited differential expression patterns under different abiotic stresses. Specifically, CaGLYI-2, CaGLYI-7, CaGLYII-6, CaDJ-1 A, and CaDLDH-1 were upregulated in response to all five analyzed abiotic stressors, highlighting their critical role in stress modulation amidst climate change. This study enhances our understanding of plant stress physiology and opens new avenues for developing stress-resilient crop varieties, crucial for sustainable agriculture.
Collapse
Affiliation(s)
- Md Sakil Arman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Asifur Rob Bhuya
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Rihan Kabir Shuvo
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
3
|
Yu T, Dong W, Hou X, Sun A, Li X, Yu S, Zhang J. The Maize Gene ZmGLYI-8 Confers Salt and Drought Tolerance in Transgenic Arabidopsis Plants. Int J Mol Sci 2024; 25:10937. [PMID: 39456719 PMCID: PMC11507017 DOI: 10.3390/ijms252010937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Methylglyoxal (MG), a highly reactive and cytotoxic α-oxoaldehyde compound, can over-accumulate under abiotic stress, consequently injuring plants or even causing death. Glyoxalase I (GLYI), the first enzyme of the glyoxalase pathway, plays multiple roles in the detoxification of MG and in abiotic stress responses. However, the GLY1 gene in maize has been little studied in response to abiotic stress. In this study, we screened a glyoxalase I gene (ZmGLYI-8) and overexpressed in Arabidopsis. This gene was localized in the cytoplasm and can be induced in maize seedlings under multiple stress treatments, including salt, drought, MG, ABA, H2O2 and high temperature stress. Phenotypic analysis revealed that after MG, salt and drought stress treatments, overexpression of ZmGLYI-8 increased the tolerance of transgenic Arabidopsis to MG, salt and drought stress. Furthermore, we demonstrated that the overexpression of ZmGLYI-8 scavenges accumulated reactive oxygen species, detoxifies MG and enhances the activity of antioxidant enzymes to improve the resistance of transgenic Arabidopsis plants to salt and drought stress. In summary, this study preliminarily elucidates the molecular mechanism of the maize ZmGLYI-8 gene in transgenic Arabidopsis and provides new insight into the breeding of salt- and drought-tolerant maize varieties.
Collapse
Affiliation(s)
- Ting Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Wei Dong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Xinwei Hou
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Aiqing Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China;
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Jiedao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| |
Collapse
|
4
|
Zheng Q, Xin J, Zhao C, Tian R. Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress. PLANT CELL REPORTS 2024; 43:103. [PMID: 38502356 DOI: 10.1007/s00299-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
KEY MESSAGE Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
5
|
Alam NB, Jain M, Mustafiz A. Pyramiding D-lactate dehydrogenase with the glyoxalase pathway enhances abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108391. [PMID: 38309183 DOI: 10.1016/j.plaphy.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Methylglyoxal is a common cytotoxic metabolite produced in plants during multiple biotic and abiotic stress. To mitigate the toxicity of MG, plants utilize the glyoxalase pathway comprising glyoxalase I (GLYI), glyoxalase II (GLYII), or glyoxalase III (GLYIII). GLYI and GLYII are the key enzymes of glyoxalase pathways that play an important role in abiotic stress tolerance. Earlier research showed that MG level is lower when both GLYI and GLYII are overexpressed together, compared to GLYI or GLYII single gene overexpressed transgenic plants. D-lactate dehydrogenase (D-LDH) is an integral part of MG detoxification which metabolizes the end product (D-lactate) of the glyoxalase pathway. In this study, two Arabidopsis transgenic lines were constructed using gene pyramiding technique: GLYI and GLYII overexpressed (G-I + II), and GLYI, GLYII, and D-LDH overexpressed (G-I + II + D) plants. G-I + II + D exhibits lower MG and D-lactate levels and enhanced abiotic stress tolerance than the G-I + II and wild-type plants. Further study explores the stress tolerance mechanism of G-I + II + D plants through the interplay of different regulators and plant hormones. This, in turn, modulates the expression of ABA-dependent stress-responsive genes like RAB18, RD22, and RD29B to generate adaptive responses during stress. Therefore, there might be a potential correlation between ABA and MG detoxification pathways. Furthermore, higher STY46, GPX3, and CAMTA1 transcripts were observed in G-I + II + D plants during abiotic stress. Thus, our findings suggest that G-I + II + D has significantly improved MG detoxification, reduced oxidative stress-induced damage, and provided a better protective mechanism against abiotic stresses than G-I + II or wild-type plants.
Collapse
Affiliation(s)
- Nazmir Binta Alam
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Muskan Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India.
| |
Collapse
|
6
|
Mohanan MV, Thelakat Sasikumar SP, Jayanarayanan AN, Selvarajan D, Ramanathan V, Shivalingamurthy SG, Raju G, Govind H, Chinnaswamy A. Transgenic sugarcane overexpressing Glyoxalase III improved germination and biomass production at formative stage under salinity and water-deficit stress conditions. 3 Biotech 2024; 14:52. [PMID: 38274846 PMCID: PMC10805895 DOI: 10.1007/s13205-023-03856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/15/2023] [Indexed: 01/27/2024] Open
Abstract
The glyoxalase system, involving Glyoxalase I (GlyI) and Glyoxalase II (Gly II), plays a vital role in abiotic stress tolerance in plants. A novel enzyme Glyoxalase III (Gly III) was found recently from bacteria, yeast, and plant species. This enzyme provides a new way to detoxify Methylglyoxal (MG), a cytotoxic α-oxoaldehyde, which, in excess, can cause complete cell destruction by forming Reactive Oxygen Species (ROS) and Advanced Glycation End products (AGEs) or DNA/RNA mutation. In this background, the current study examined sugarcane transgenic events that exhibit an increase in expression of EaGly III, to assess their performance in terms of germination and biomass production during formative stage under stress conditions. Southern blot analysis outcomes confirmed the integration of transgene in the transgenic plants. The results from quantitative RT-PCR analyses confirmed high expression levels of EaGly III in transgenic events compared to wild type (WT) under salinity (100 and 200 mM NaCl) and drought (withholding watering) conditions. Transgenic events exhibited enhanced biomass productivity ranged between 0.141 Kg/pot and 0.395 Kg/pot under 200 mM salinity and 0.262 Kg/pot and 0.666 Kg/pot under drought stress. Further, transgenic events observed significantly higher germination rates under salinity and drought conditions compared to that of WT. Subcellular localization prediction by EaGlyIII-GFP fusion expression in sugarcane callus showed that it is distributed across the cytoplasm, thus indicating its widespread activity within the cell. These results strongly suggest that enhancing EaGly III activity is a useful strategy to improve the salinity and drought-tolerance in sugarcane as well as other crops.
Collapse
Affiliation(s)
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Valarmathi Ramanathan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | | | - Gomathi Raju
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Hemaprabha Govind
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| |
Collapse
|
7
|
Gambhir P, Raghuvanshi U, Parida AP, Kujur S, Sharma S, Sopory SK, Kumar R, Sharma AK. Elevated methylglyoxal levels inhibit tomato fruit ripening by preventing ethylene biosynthesis. PLANT PHYSIOLOGY 2023; 192:2161-2184. [PMID: 36879389 PMCID: PMC10315284 DOI: 10.1093/plphys/kiad142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Methylglyoxal (MG), a toxic compound produced as a by-product of several cellular processes, such as respiration and photosynthesis, is well known for its deleterious effects, mainly through glycation of proteins during plant stress responses. However, very little is known about its impact on fruit ripening. Here, we found that MG levels are maintained at high levels in green tomato (Solanum lycopersicum L.) fruits and decline during fruit ripening despite a respiratory burst during this transition. We demonstrate that this decline is mainly mediated through a glutathione-dependent MG detoxification pathway and primarily catalyzed by a Glyoxalase I enzyme encoded by the SlGLYI4 gene. SlGLYI4 is a direct target of the MADS-box transcription factor RIPENING INHIBITOR (RIN), and its expression is induced during fruit ripening. Silencing of SlGLYI4 leads to drastic MG overaccumulation at ripening stages of transgenic fruits and interferes with the ripening process. MG most likely glycates and inhibits key enzymes such as methionine synthase and S-adenosyl methionine synthase in the ethylene biosynthesis pathway, thereby indirectly affecting fruit pigmentation and cell wall metabolism. MG overaccumulation in fruits of several nonripening or ripening-inhibited tomato mutants suggests that the tightly regulated MG detoxification process is crucial for normal ripening progression. Our results underpin a SlGLYI4-mediated regulatory mechanism by which MG detoxification controls fruit ripening in tomato.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Stuti Kujur
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shweta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
8
|
Balparda M, Schmitz J, Duemmel M, Wuthenow IC, Schmidt M, Alseekh S, Fernie AR, Lercher MJ, Maurino VG. Viridiplantae-specific GLXI and GLXII isoforms co-evolved and detoxify glucosone in planta. PLANT PHYSIOLOGY 2023; 191:1214-1233. [PMID: 36423222 PMCID: PMC9922399 DOI: 10.1093/plphys/kiac526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Reactive carbonyl species (RCS) such as methylglyoxal (MGO) and glyoxal (GO) are highly reactive, unwanted side-products of cellular metabolism maintained at harmless intracellular levels by specific scavenging mechanisms.MGO and GO are metabolized through the glyoxalase (GLX) system, which consists of two enzymes acting in sequence, GLXI and GLXII. While plant genomes encode a number of different GLX isoforms, their specific functions and how they arose during evolution are unclear. Here, we used Arabidopsis (Arabidopsis thaliana) as a model species to investigate the evolutionary history of GLXI and GLXII in plants and whether the GLX system can protect plant cells from the toxicity of RCS other than MGO and GO. We show that plants possess two GLX systems of different evolutionary origins and with distinct structural and functional properties. The first system is shared by all eukaryotes, scavenges MGO and GO, especially during seedling establishment, and features Zn2+-type GLXI proteins with a metal cofactor preference that were present in the last eukaryotic common ancestor. GLXI and GLXII of the second system, featuring Ni2+-type GLXI, were acquired by the last common ancestor of Viridiplantae through horizontal gene transfer from proteobacteria and can together metabolize keto-D-glucose (KDG, glucosone), a glucose-derived RCS, to D-gluconate. When plants displaying loss-of-function of a Viridiplantae-specific GLXI were grown in KDG, D-gluconate levels were reduced to 10%-15% of those in the wild type, while KDG levels showed an increase of 48%-67%. In contrast to bacterial GLXI homologs, which are active as dimers, plant Ni2+-type GLXI proteins contain a domain duplication, are active as monomers, and have a modified second active site. The acquisition and neofunctionalization of a structurally, biochemically, and functionally distinct GLX system indicates that Viridiplantae are under strong selection to detoxify diverse RCS.
Collapse
Affiliation(s)
- Manuel Balparda
- Molekulare Pflanzenphysiologie, Institut für Zelluläre und Molekulare Botanik, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Jessica Schmitz
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Martin Duemmel
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Isabell C Wuthenow
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marc Schmidt
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Martin J Lercher
- Institute for Computer Science and Department of Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Molekulare Pflanzenphysiologie, Institut für Zelluläre und Molekulare Botanik, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Gambhir P, Singh V, Raghuvanshi U, Parida AP, Pareek A, Roychowdhury A, Sopory SK, Kumar R, Sharma AK. A glutathione-independent DJ-1/PfpI domain-containing tomato glyoxalaseIII2, SlGLYIII2, confers enhanced tolerance under salt and osmotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:518-548. [PMID: 36377315 DOI: 10.1111/pce.14493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In plants, glyoxalase enzymes are activated under stress conditions to mitigate the toxic effects of hyperaccumulated methylglyoxal (MG), a highly reactive carbonyl compound. Until recently, a glutathione-dependent bi-enzymatic pathway involving glyoxalase I (GLYI) and glyoxalase II (GLYII) was considered the primary MG-detoxification system. Recently, a new glutathione-independent glyoxalase III (GLYIII) mediated direct route was also reported in plants. However, the physiological significance of this new pathway remains to be elucidated across plant species. This study identified the full complement of 22 glyoxalases in tomato. Based on their strong induction under multiple abiotic stresses, SlGLYI4, SlGLYII2 and SlGLYIII2 were selected candidates for further functional characterisation. Stress-inducible overexpression of both glutathione-dependent (SlGLYI4 + SlGLYII2) and independent (SlGLYIII2) pathways led to enhanced tolerance in both sets of transgenic plants under abiotic stresses. However, SlGLYIII2 overexpression (OE) plants outperformed the SlGLYI4 + SlGLYII2 OE counterparts for their stress tolerance under abiotic stresses. Further, knockdown of SlGLYIII2 resulted in plants with exacerbated stress responses than those silenced for both SlGLYI4 and SlGLYII2. The superior performance of SlGLYIII2 OE tomato plants for better growth and yield under salt and osmotic treatments could be attributed to better GSH/GSSG ratio, lower reactive oxygen species levels, and enhanced antioxidant potential, indicating a prominent role of GLYIII MG-detoxification pathway in abiotic stress mitigation in this species.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Vijendra Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Amit Pareek
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Sudhir K Sopory
- Department of Plant Molecular Biology, Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
10
|
Yan G, Zhang M, Guan W, Zhang F, Dai W, Yuan L, Gao G, Xu K, Chen B, Li L, Wu X. Genome-Wide Identification and Functional Characterization of Stress Related Glyoxalase Genes in Brassica napus L. Int J Mol Sci 2023; 24:ijms24032130. [PMID: 36768459 PMCID: PMC9916435 DOI: 10.3390/ijms24032130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Rapeseed (Brassica napus L.) is not only one of the most important oil crops in the world, but it is also an important vegetable crop with a high value nutrients and metabolites. However, rapeseed is often severely damaged by adverse stresses, such as low temperature, pathogen infection and so on. Glyoxalase I (GLYI) and glyoxalase II (GLYII) are two enzymes responsible for the detoxification of a cytotoxic metabolite methylglyoxal (MG) into the nontoxic S-D-lactoylglutathione, which plays crucial roles in stress tolerance in plants. Considering the important roles of glyoxalases, the GLY gene families have been analyzed in higher plans, such as rice, soybean and Chinese cabbage; however, little is known about the presence, distribution, localizations and expression of glyoxalase genes in rapeseed, a young allotetraploid. In this study, a total of 35 BnaGLYI and 30 BnaGLYII genes were identified in the B. napus genome and were clustered into six and eight subfamilies, respectively. The classification, chromosomal distribution, gene structure and conserved motif were identified or predicted. BnaGLYI and BnaGLYII proteins were mainly localized in chloroplast and cytoplasm. By using publicly available RNA-seq data and a quantitative real-time PCR analysis (qRT-PCR), the expression profiling of these genes of different tissues was demonstrated in different developmental stages as well as under stresses. The results indicated that their expression profiles varied among different tissues. Some members are highly expressed in specific tissues, BnaGLYI11 and BnaGLYI27 expressed in flowers and germinating seed. At the same time, the two genes were significantly up-regulated under heat, cold and freezing stresses. Notably, a number of BnaGLY genes showed responses to Plasmodiophora brassicae infection. Overexpression of BnGLYI11 gene in Arabidopsis thaliana seedlings confirmed that this gene conferred freezing tolerance. This study provides insight of the BnaGLYI and BnaGLYII gene families in allotetraploid B. napus and their roles in stress resistance, and important information and gene resources for developing stress resistant vegetable and rapeseed oil.
Collapse
|
11
|
Rai GK, Kumar P, Choudhary SM, Kosser R, Khanday DM, Choudhary S, Kumar B, Magotra I, Kumar RR, Ram C, Rouphael Y, Corrado G, Behera TK. Biomimetic Strategies for Developing Abiotic Stress-Tolerant Tomato Cultivars: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 12:86. [PMID: 36616215 PMCID: PMC9823378 DOI: 10.3390/plants12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The tomato is one of the most important vegetables in the world. The demand for tomatoes is high in virtually any country, owing to their gastronomic versatility and nutritional and aromatic value. Drought, salinity, and inadequate temperature can be major factors in diminishing yield, affecting physiological and biochemical processes and altering various metabolic pathways, from the aggregation of low molecular-weight substances to the transcription of specific genes. Various biotechnological tools can be used to alter the tomato genes so that this species can more rapidly or better adapt to abiotic stress. These approaches range from the introgression of genes coding for specific enzymes for mitigating a prevailing stress to genetic modifications that alter specific metabolic pathways to help tomato perceive environmental cues and/or withstand adverse conditions. In recent years, environmental and social concerns and the high complexity of the plant response may increase the attention of applied plant biotechnology toward biomimetic strategies, generally defined as all the approaches that seek to develop more sustainable and acceptable strategies by imitating nature's time-tested solutions. In this review, we provide an overview of some of the genetic sequences and molecules that were the objects of biotechnological intervention in tomato as examples of approaches to achieve tolerance to abiotic factors, improving existing nature-based mechanisms and solutions (biomimetic biotechnological approaches (BBA)). Finally, we discuss implications and perspectives within the GMO debate, proposing that crops modified with BBA should receive less stringent regulation.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Sadiya Maryam Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Danish Mushtaq Khanday
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Shallu Choudhary
- Division of Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Bupesh Kumar
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Ranjit Ranjan Kumar
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
| | - Chet Ram
- Division of Crop Improvement, ICAR—Central Institute for Arid Horticulture, Bikaner 334006, India
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Tusar Kanti Behera
- ICAR—Indian Institute of Vegetable Research, Jakhini (Shahanshapur), Varanasi 221305, India
| |
Collapse
|
12
|
Biotechnological Interventions in Tomato ( Solanum lycopersicum) for Drought Stress Tolerance: Achievements and Future Prospects. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040048. [PMID: 36278560 PMCID: PMC9624322 DOI: 10.3390/biotech11040048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Tomato production is severely affected by abiotic stresses (drought, flood, heat, and salt) and causes approximately 70% loss in yield depending on severity and duration of the stress. Drought is the most destructive abiotic stress and tomato is very sensitive to the drought stress, as cultivated tomato lack novel gene(s) for drought stress tolerance. Only 20% of agricultural land worldwide is irrigated, and only 14.51% of that is well-irrigated, while the rest is rain fed. This scenario makes drought very frequent, which restricts the genetically predetermined yield. Primarily, drought disturbs tomato plant physiology by altering plant–water relation and reactive oxygen species (ROS) generation. Many wild tomato species have drought tolerance gene(s); however, their exploitation is very difficult because of high genetic distance and pre- and post-transcriptional barriers for embryo development. To overcome these issues, biotechnological methods, including transgenic technology and CRISPR-Cas, are used to enhance drought tolerance in tomato. Transgenic technology permitted the exploitation of non-host gene/s. On the other hand, CRISPR-Cas9 technology facilitated the editing of host tomato gene(s) for drought stress tolerance. The present review provides updated information on biotechnological intervention in tomato for drought stress management and sustainable agriculture.
Collapse
|
13
|
Wu Q, Su Y, Pan YB, Xu F, Zou W, Que B, Lin P, Sun T, Grisham MP, Xu L, Que Y. Genetic identification of SNP markers and candidate genes associated with sugarcane smut resistance using BSR-Seq. FRONTIERS IN PLANT SCIENCE 2022; 13:1035266. [PMID: 36311133 PMCID: PMC9608552 DOI: 10.3389/fpls.2022.1035266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 06/01/2023]
Abstract
Sugarcane smut caused by Sporisorium scitamineum is one of the most severe fungal diseases worldwide. In this study, a cross was made between a smut-resistant variety YT93-159 and a smut-susceptible variety ROC22, and 312 progenies were obtained. Two bulks of progenies were then constructed, one consisted of 27 highly smut resistant progenies and the other 24 smut susceptible progenies. Total RNAs of the progenies of each bulk, were pooled and subject to bulked segregant RNA-sequence analysis (BSR-Seq). A total of 164.44 Gb clean data containing 2,341,449 SNPs and 64,999 genes were obtained, 7,295 of which were differentially expressed genes (DEGs). These DEGs were mainly enriched in stress-related metabolic pathways, including carbon metabolism, phenylalanine metabolism, plant hormone signal transduction, glutathione metabolism, and plant-pathogen interactions. Besides, 45,946 high-quality, credible SNPs, a 1.27 Mb region at Saccharum spontaneum chromosome Chr5B (68,904,827 to 70,172,982), and 129 candidate genes were identified to be associated with smut resistance. Among them, twenty-four genes, either encoding key enzymes involved in signaling pathways or being transcription factors, were found to be very closely associated with stress resistance. RT-qPCR analysis demonstrated that they played a positive role in smut resistance. Finally, a potential molecular mechanism of sugarcane and S. scitamineum interaction is depicted that activations of MAPK cascade signaling, ROS signaling, Ca2+ signaling, and PAL metabolic pathway and initiation of the glyoxalase system jointly promote the resistance to S. scitamineum in sugarcane. This study provides potential SNP markers and candidate gene resources for smut resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong-Bao Pan
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA, United States
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Beibei Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- International College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michael P. Grisham
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA, United States
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Guo M, Wang XS, Guo HD, Bai SY, Khan A, Wang XM, Gao YM, Li JS. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:949541. [PMID: 36186008 PMCID: PMC9515470 DOI: 10.3389/fpls.2022.949541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
One of the most significant environmental factors affecting plant growth, development and productivity is salt stress. The damage caused by salt to plants mainly includes ionic, osmotic and secondary stresses, while the plants adapt to salt stress through multiple biochemical and molecular pathways. Tomato (Solanum lycopersicum L.) is one of the most widely cultivated vegetable crops and a model dicot plant. It is moderately sensitive to salinity throughout the period of growth and development. Biotechnological efforts to improve tomato salt tolerance hinge on a synthesized understanding of the mechanisms underlying salinity tolerance. This review provides a comprehensive review of major advances on the mechanisms controlling salt tolerance of tomato in terms of sensing and signaling, adaptive responses, and epigenetic regulation. Additionally, we discussed the potential application of these mechanisms in improving salt tolerance of tomato, including genetic engineering, marker-assisted selection, and eco-sustainable approaches.
Collapse
Affiliation(s)
- Meng Guo
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Xin-Sheng Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Hui-Dan Guo
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Sheng-Yi Bai
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Xiao-Min Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Yan-Ming Gao
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Jian-She Li
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| |
Collapse
|
15
|
Akbudak MA, Filiz E, Çetin D. Genome-wide identification and characterization of high-affinity nitrate transporter 2 (NRT2) gene family in tomato (Solanum lycopersicum) and their transcriptional responses to drought and salinity stresses. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153684. [PMID: 35349936 DOI: 10.1016/j.jplph.2022.153684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The high-affinity nitrate transporter 2 (NRT2) proteins play vital roles in both nitrate (NO3-) uptake and translocation in plants. Although the gene families coding the NRT2 proteins have been identified and functionally characterized in many plant species, the systematic identification of NRT2 gene family members has not previously been reported in tomato (Solanum lycopersicum). Moreover, little is known about their expression profiles in response to different environmental stresses. The present study sought to identify the NRT2 gene family members within the tomato genome, and then to characterize them in detail by means of bioinformatics, physiological and expression analyses. Four novel NRT2 genes were identified in the tomato genome, all of which contained the same domain belonging to the major facilitator superfamily (PF07690). The co-expression network of the SlNRT2 genes revealed that they were co-expressed with several other genes in a number of different molecular pathways, including the transport, photosynthesis, fatty acid metabolism and amino acid catabolism pathways. Several phosphorylation sites were predicted in the NRT2 proteins. The SlNRT2 genes interact with many other genes that perform various functions in many crucial pathways within the tomato genome. The sequence variations observed at the gene and protein levels indicate the dynamic regulation of the SlNRT2 gene family members in relation to cell metabolism, particularly with regard to the nitrogen assimilation pathway. The responses of the SlNRT2 genes to drought and salinity stresses are diverse, and they are neither stress- nor tissue-specific. The findings of this study should provide a useful scientific basis for future studies concerning the roles of the NRT2 gene family in plants.
Collapse
Affiliation(s)
- M Aydın Akbudak
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey.
| | - Ertugrul Filiz
- Duzce University, Department of Crop and Animal Production, Cilimli Vocational School, 81750, Cilimli, Duzce, Turkey.
| | - Durmuş Çetin
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
| |
Collapse
|
16
|
Raja V, Wani UM, Wani ZA, Jan N, Kottakota C, Reddy MK, Kaul T, John R. Pyramiding ascorbate-glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress. PLANT CELL REPORTS 2022; 41:619-637. [PMID: 34383122 DOI: 10.1007/s00299-021-02764-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Stacking Glutathione-Ascorbate pathway genes (PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR) under stress inducible promoter RD29A imparts significant tolerance to drought and salinity stress in Solanum lycopersicum. Although the exposure of plants to different environmental stresses results in overproduction of reactive oxygen species (ROS), many plants have developed some unique systems to alleviate the ROS production and mitigate its deleterious effect. One of the key pathways that gets activated in plants is ascorbate glutathione (AsA-GSH) pathway. To demonstrate the effect of this pathway in tomato, we developed the AsA-GSH overexpression lines by stacking the genes of the AsA-GSH pathway genes isolated from Pennisetum glaucoma (Pg) including PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR under stress inducible promoter RD29A. The overexpression lines have an improved germination and seedling growth with concomitant elevation in the survival rate. The exposure of transgenic seedlings to varying stress regiments exhibited escalation in the antioxidant enzyme activity and lesser membrane damage as reflected by decreased electrolytic leakage and little accumulation of malondialdehyde and H2O2. Furthermore, the transgenic lines accumulated high levels of osmoprotectants with increase in the relative water content. The increased photosynthetic activity and enhanced gaseous exchange parameters further confirmed the enhanced tolerance of AsA-GSH overexpression lines. We concluded that pyramiding of AsA-GSH pathway genes is an effective strategy for developing stress resistant crops.
Collapse
Affiliation(s)
- Vaseem Raja
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Umer Majeed Wani
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Zubair Ahmad Wani
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Nelofer Jan
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Chandrasekhar Kottakota
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Malireddy K Reddy
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Tanushri Kaul
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
17
|
Kumar D, Rajwanshi R, Singh P, Yusuf MA, Sarin NB. Pyramiding of γ-TMT and gly I transgenes in Brassica juncea enhances salinity and drought stress tolerance. PHYSIOLOGIA PLANTARUM 2022; 174:e13618. [PMID: 35199363 DOI: 10.1111/ppl.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
We previously generated Brassica juncea lines overexpressing either glyoxalase I (gly I) or γ-tocopherol methyltransferase (γ-TMT) involved in the glyoxalase system and tocopherol biosynthesis, respectively. These transgenic plants showed tolerance to multiple abiotic stresses. As tolerance is a complex trait that can be improved by pyramiding of several characteristics in a single genotype, we generated in this study B. juncea plants coexpressing gly I and γ-TMT by crossing the previously generated stable transgenic lines. The performance of the newly generated B. juncea lines coexpressing gly I and γ-TMT was compared with that of wild-type and the single transgenic lines under non-stressed and NaCl and mannitol stress conditions. Our results show a more robust antioxidant response of B. juncea plants coexpressing gly I and γ-TMT compared to the other lines in terms of higher chlorophyll retention, relative water content, antioxidant enzyme and proline levels, and photosynthetic efficiency and lower oxidative damage. The differences in response to the stress of the different lines were reflected in their yield parameters. Overall, we demonstrate that the pyramiding of multiple genes involved in antioxidant pathways could be a viable and useful approach for achieving higher abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ravi Rajwanshi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Preeti Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Aslam Yusuf
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Bioengineering, Integral University, Lucknow, India
| | | |
Collapse
|
18
|
Wahid I, Rani P, Kumari S, Ahmad R, Hussain SJ, Alamri S, Tripathy N, Khan MIR. Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. CHEMOSPHERE 2022; 287:132142. [PMID: 34826894 DOI: 10.1016/j.chemosphere.2021.132142] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 05/15/2023]
Abstract
Green synthesis of nanoparticles (NPs) is competent in inducing physiological responses in plants for combating the abiotic stresses. Considering this, salt stress is one of the most alarming conditions that exerts complex and polygenic impacts on morph-physiological functioning of plants; resulting in reduced crop productivity and yield. Therefore, understanding the salt responses and tolerance mechanisms are important for sustaining crop productivity. In the current study, we have examined the effects of biosynthesized gold nanoparticles (AuNPs) on wheat (Triticum aestivum) plants under salt stress. Green-synthesized AuNPs were found beneficial in modulating the K+/Na+ ratio, chlorophyll concentration, defense systems, nitrogen assimilation, stomatal dynamics and growth traits under salt stress condition. Furthermore, the excessive accumulation of oxidative stress markers including reactive oxygen/nitrogen species was controlled in response of AuNPs treatment under salt stress. Overall, modulation of these traits commanded to induce salt stress tolerance in wheat plants.
Collapse
Affiliation(s)
- Iram Wahid
- Department of Biosciences, Integral University, Lucknow, India
| | - Pratibha Rani
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Rafiq Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sofi J Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
| | - Nirmalya Tripathy
- Department of Pharmacy, Oregon State University, Corvallis, United States
| | | |
Collapse
|
19
|
Krishna R, Ansari WA, Jaiswal DK, Singh AK, Prasad R, Verma JP, Singh M. Overexpression of AtDREB1 and BcZAT12 genes confers drought tolerance by reducing oxidative stress in double transgenic tomato (Solanum lycopersicum L.). PLANT CELL REPORTS 2021. [PMID: 34091725 DOI: 10.1016/j.envexpbot.2021.104396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Double transgenic tomato developed by AtDREB1A and BcZAT12 genes pyramiding showed significant drought tolerance by reducing oxidative stress with enhanced yield. Although a large number of efforts have been made by different researchers to develop abiotic stress tolerance tomato for improving yield using single gene, however, no reports are available which targets AtDREB1 and BcZAT12 genes together. Hence, in the present study, double transgenic plants were developed using AtDREB1 and BcZAT12 genes to improve yield potential with better drought tolerance. Double transgenic (DZ1-DZ5) tomato lines showed enhanced drought tolerance than their counterpart non-transgenic and single transgenic plants at 0, 07, 14, and 21 days of water deficit, respectively. Double transgenic plants showed increased activity of antioxidant enzymes, like catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and guaiacol peroxidase (POD), and accumulation of non-enzymatic antioxidants like ascorbic acid, glutathione as compared to non-transgenic and single transgenic. Additionally, the transcript analysis of antioxidant enzymes revealed the increased level of gene expression in double transgenic tomato lines. Developed double-transgenic tomato plants co-over-expressing both genes exhibited more enzymatic and non-enzymatic anti-oxidative activities as compared to the non-transgenic and single transgenic control, respectively. This is the preliminary report in tomato, which forms the basis for a multigene transgenic approach to cope with drought stress.
Collapse
Affiliation(s)
- Ram Krishna
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Waquar Akhter Ansari
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Durgesh Kumar Jaiswal
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Achuit Kumar Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, India.
| |
Collapse
|
20
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
21
|
Li T, Cheng X, Wang X, Li G, Wang B, Wang W, Zhang N, Han Y, Jiao B, Wang Y, Liu G, Xu T, Xu Y. Glyoxalase I-4 functions downstream of NAC72 to modulate downy mildew resistance in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:394-410. [PMID: 34318550 DOI: 10.1111/tpj.15447] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 05/09/2023]
Abstract
Glyoxalase I (GLYI) is part of the glyoxalase system; its major function is the detoxification of α-ketoaldehydes, including the potent and cytotoxic methylglyoxal (MG). Methylglyoxal disrupts mitochondrial respiration and increases production of reactive oxygen species (ROS), which also increase during pathogen infection of plant tissues; however, there have been few studies relating the glyoxalase system to the plant pathogen response. We used the promoter of VvGLYI-4 to screen the upstream transcription factors and report a NAC (NAM/ATAF/CUC) domain-containing transcription factor VvNAC72 in grapevine, which is localized to the nucleus. Our results show that VvNAC72 expression is induced by downy mildew, Plasmopara viticola, while the transcript level of VvGLYI-4 decreases. Further analysis revealed that VvNAC72 can bind directly to the promoter region of VvGLYI-4 via the CACGTG element, leading to inhibition of VvGLYI-4 transcription. Stable overexpression of VvNAC72 in grapevine and tobacco showed a decreased expression level of VvGLYI-4 and increased content of MG and ROS, as well as stronger resistance to pathogen stress. Taken together, these results demonstrate that grapevine VvNAC72 negatively modulates detoxification of MG through repression of VvGLYI-4, and finally enhances resistance to downy mildew, at least in part, via the modulation of MG-associated ROS homeostasis through a salicylic acid-mediated defense pathway.
Collapse
Affiliation(s)
- Tiemei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xiaowei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Guanggui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Bianbian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Wenyuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Na Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yulei Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Bolei Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Tengfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
22
|
Mbinda W, Mukami A. A Review of Recent Advances and Future Directions in the Management of Salinity Stress in Finger Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:734798. [PMID: 34603359 PMCID: PMC8481900 DOI: 10.3389/fpls.2021.734798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress is a major environmental impediment affecting the growth and production of crops. Finger millet is an important cereal grown in many arid and semi-arid areas of the world characterized by erratic rainfall and scarcity of good-quality water. Finger millet salinity stress is caused by the accumulation of soluble salts due to irrigation without a proper drainage system, coupled with the underlying rocks having a high salt content, which leads to the salinization of arable land. This problem is projected to be exacerbated by climate change. The use of new and efficient strategies that provide stable salinity tolerance across a wide range of environments can guarantee sustainable production of finger millet in the future. In this review, we analyze the strategies that have been used for salinity stress management in finger millet production and discuss potential future directions toward the development of salt-tolerant finger millet varieties. This review also describes how advanced biotechnological tools are being used to develop salt-tolerant plants. The biotechnological techniques discussed in this review are simple to implement, have design flexibility, low cost, and highly efficient. This information provides insights into enhancing finger millet salinity tolerance and improving production.
Collapse
Affiliation(s)
- Wilton Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Asunta Mukami
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
23
|
Mohanan MV, Pushpanathan A, Padmanabhan S, Sasikumar T, Jayanarayanan AN, Selvarajan D, Ramalingam S, Ram B, Chinnaswamy A. Overexpression of Glyoxalase III gene in transgenic sugarcane confers enhanced performance under salinity stress. JOURNAL OF PLANT RESEARCH 2021; 134:1083-1094. [PMID: 33886006 DOI: 10.1007/s10265-021-01300-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
The glyoxalase pathway is a check point to monitor the elevation of methylglyoxal (MG) level in plants and is mediated by glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes in the presence of glutathione. Recent studies established the presence of unique DJ-1/PfpI domain containing protein named glyoxalase III (Gly III) in prokaryotes, involved in the detoxification of MG into D-lactic acid through a single step process. In the present study, eleven transgenic sugarcane events overexpressing EaGly III were assessed for salinity stress (100 mM and 200 mM NaCl) tolerance. Lipid peroxidation as well as cell membrane injury remained very minimal in all the transgenic events indicating reduced oxidative damage. Transgenic events exhibited significantly higher plant water status, gas exchange parameters, chlorophyll, carotenoid, and proline content, total soluble sugars, SOD and POD activity compared to wild type (WT) under salinity stress. Histological studies by taking the cross section showed a highly stable root system in transgenic events upon exposure to salinity stress. Results of the present study indicate that transgenic sugarcane events overexpressing EaGly III performed well and exhibited improved salinity stress tolerance.
Collapse
Affiliation(s)
| | - Anunanthini Pushpanathan
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641041, India
| | - Sarath Padmanabhan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Thelakat Sasikumar
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641041, India
| | - Bakshi Ram
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India.
| |
Collapse
|
24
|
Shailani A, Joshi R, Singla-Pareek SL, Pareek A. Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice. PHYSIOLOGIA PLANTARUM 2021; 172:1352-1362. [PMID: 33180968 DOI: 10.1111/ppl.13270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 05/02/2023]
Abstract
Abiotic stresses, such as drought and salinity, adversely affect rice production and cause a severe threat to food security. Conventional crop breeding techniques alone are inadequate for achieving drought stress tolerance in crop plants. Using transgenic technology, incremental improvements in tolerance to drought and salinity have been successfully attained via manipulation of gene(s) in several crop species. However, achieving the goal via pyramiding multiple genes from the same or different tolerance mechanisms has received little attention. Pyramiding of multiple genes can be achieved either through breeding, by using marker-assisted selection, or by genetic engineering through molecular stacking co-transformation or re-transformation. Transgene stacking into a single locus has added advantages over breeding or re-transformation since the former assures co-inheritance of genes, contributing to more effective tolerance in transgenic plants for generations. Drought, being a polygenic trait, the potential candidate genes for gene stacking are those contributing to cellular detoxification, osmolyte accumulation, antioxidant machinery, and signaling pathways. Since cellular dehydration is inbuilt in salinity stress, manipulation of these genes results in improving tolerance to salinity along with drought in most of the cases. In this review, attempts have been made to provide a critical assessment of transgenic plants developed through transgene stacking and approaches to achieve the same. Identification and functional validation of more such candidate genes is needed for research programs targeting the gene stacking for developing crop plants with high precision in the shortest possible time to ensure sustainable crop productivity under marginal lands.
Collapse
Affiliation(s)
- Anjali Shailani
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
25
|
Ahmad P, Alyemeni MN, Wijaya L, Ahanger MA, Ashraf M, Alam P, Paray BA, Rinklebe J. Nitric oxide donor, sodium nitroprusside, mitigates mercury toxicity in different cultivars of soybean. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124852. [PMID: 33383453 DOI: 10.1016/j.jhazmat.2020.124852] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The present study reveals the effect of mercury (Hg) and sodium nitroprusside (SNP) on plant growth and metabolism in soybean cultivars (Pusa-24, Pusa-37and Pusa-40). Mercury stress decreased growth and biomass yield, and gas exchange attributes in all soybean cultivars. External supplementation of SNP mitigated Hg toxicity by improving growth and gas exchange parameters. Electrolyte leakage (EL) increased accompanied with elevated levels of malondialdehyde (MDA) and H2O2 under Hg stress, however, they were found to be reduced in all cultivars upon the exogenous application of SNP. The activities of anti-oxidative enzymes, superoxide dismutase and catalase (SOD and CAT) and those enzymes involved in the ascorbate-glutathione pathway were impaired by Hg stress, but they were regulated by the application of SNP. Accumulation of Hg and NO in the shoots and roots were also regulated by the application of NO. Although, all three cultivars were affected by Hg stress, Pusa-37 was relatively less affected. Mercury stress affected the growth and development of different soybean cultivars, but Pusa-37 being tolerant was less affected. Pusa-37 was found to be more responsive to SNP than Pusa-24, Pusa-40 under Hg toxicity. The external supplementation of SNP could be a sustainable approach to economically utilize Hg affected soils.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
26
|
Jana GA, Yaish MW. Functional characterization of the Glyoxalase-I ( PdGLX1) gene family in date palm under abiotic stresses. PLANT SIGNALING & BEHAVIOR 2020; 15:1811527. [PMID: 32835595 PMCID: PMC7588186 DOI: 10.1080/15592324.2020.1811527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Methylglyoxal (MG), a cytotoxic oxygenated short aldehyde, is a by-product of various metabolic reactions in plants, including glycolysis. The basal level of MG in plants is low, whereby it acts as an essential signaling molecule regulating multiple cellular processes. However, hyperaccumulation of MG under stress conditions is detrimental for plants as it inhibits multiple developmental processes, including seed germination, photosynthesis, and root growth. The evolutionarily conserved glyoxalase system is critical for MG detoxification, and it comprises of two-enzymes, the glyoxalase-I and glyoxalase-II. Here, we report the functional characterization of six putative glyoxalase-I genes from date palm (Phoenix dactylifera L.) (PdGLX1), by studying their gene expression under various environmental stress conditions and investigating their function in bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) mutant cells. The putative PdGLX1 genes were initially identified using computational methods and cloned using molecular tools. The PdGLX1 gene expression analysis using quantitative PCR (qPCR) revealed differential expression under various stress conditions such as salinity, oxidative stress, and exogenous MG stress in a tissue-specific manner. Further, in vivo functional characterization indicated that overexpression of the putative PdGLX1 genes in E. coli enhanced their growth and MG detoxification ability. The putative PdGLX1 genes were also able to complement the loss-of-function MG hypersensitive GLO1 (YML004C) yeast mutants and promote growth by enhancing MG detoxification and reducing the accumulation of reactive oxygen species (ROS) under stress conditions as indicated by flow cytometry. These findings denote the potential importance of PdGLX1 genes in MG detoxification under stress conditions in the date palm.
Collapse
Affiliation(s)
- Gerry Aplang Jana
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
27
|
Mohanan MV, Pushpanathan A, Sasikumar SPT, Selvarajan D, Jayanarayanan AN, R AK, Ramalingam S, Karuppasamy SN, Subbiah R, Ram B, Chinnaswamy A. Ectopic expression of DJ-1/PfpI domain containing Erianthus arundinaceus Glyoxalase III (EaGly III) enhances drought tolerance in sugarcane. PLANT CELL REPORTS 2020; 39:1581-1594. [PMID: 32876807 DOI: 10.1007/s00299-020-02585-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Sugarcane transgenic overexpressing EaGly III from Erianthus arundinaceus showed enhanced water deficit stress tolerance. Methylglyoxal (MG), an α-ketoaldehyde formed from either glycolysis or TCA cycle, is capable of causing total cellular damage via the generation of reactive oxygen species (ROS), advanced glycation end products (AGEs) and nucleic acid degradation. Glyoxalase pathway is a ubiquitous pathway known for detoxification of MG, involving key enzymes glyoxalase I (Gly I) and glyoxalase II (Gly II). Recently, a novel and an additional enzyme in glyoxalase pathway, viz., glyoxalase III (Gly III), has been discovered which possesses DJ-1/PfpI domain recognized for detoxifying MG in a single step process without requirement of any coenzyme. In the present study, a Gly III gene isolated from Erianthus arundinaceus, a wild relative of sugarcane, overexpressed in commercially cultivated sugarcane hybrid Co 86032 was assessed for drought tolerance. Morphometric observations revealed that transgenic sugarcane overexpressing EaGly III acquired drought tolerance trait. Oxidative damage caused by triggering generation of ROS has been determined to be low in transgenic plants as compared to wild type (WT). Transgenics resulted in higher relative water content, chlorophyll content, gas exchange parameters, photosynthetic efficiency, proline content and soluble sugars upon water deficit stress. In addition, higher and stable level of superoxide dismutase and peroxidase activities were observed along with minimal lipid peroxidation during drought stress signifying the tolerance mechanism exhibited by transgenic events. There was no significant structural change observed in the root anatomy of transgenic plants. Altogether, EaGly III gene could be considered as a potential candidate for conferring water deficit stress tolerance for sugarcane and other agricultural crops.
Collapse
Affiliation(s)
| | - Anunanthini Pushpanathan
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641041, Tamil Nadu, India
| | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, Tamil Nadu, India
| | | | - Arun Kumar R
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, Tamil Nadu, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641041, Tamil Nadu, India
| | | | - Ramanathan Subbiah
- Agro Climate Research Center, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Bakshi Ram
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, Tamil Nadu, India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, Tamil Nadu, India.
| |
Collapse
|
28
|
Meera SP, Augustine A. De novo transcriptome analysis of Rhizophora mucronata Lam. furnishes evidence for the existence of glyoxalase system correlated to glutathione metabolic enzymes and glutathione regulated transporter in salt tolerant mangroves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:683-696. [PMID: 32861035 DOI: 10.1016/j.plaphy.2020.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The accumulation of a metabolic by product - methylglyoxal above a minimal range can be highly toxic in all organisms. Stress induced elevation in methylglyoxal inactivates proteins and nucleic acids. Glutathione dependent glyoxalase enzymes like glyoxalase I and glyoxalase II together with glutathione independent glyoxalase III play inevitable role in methylglyoxal detoxification. Glyoxalase genes are generally conserved but with obvious exceptions. Mangroves being potent harsh land inhabitants, their internal organelles are constantly been exposed to elevated levels of methylglyoxal. First and foremost it is important to detect the presence of glyoxalases in mangroves. De novo transcriptome analysis of mangrove species Rhizophora mucronata Lam., identified eleven putative glyoxalase proteins (RmGLYI-1 to 5, RmGLYII-1 to 5 and RmGLYIII). Molecular characterization proposed PLN02300 or PLN02367 as the key domains of RmGLYI proteins. They possess molecular weight ranging from 26.45 to 32.53 kDa and may localize in cytosol or chloroplast. RmGLYII proteins of molecular weight 28.64-36 kDa, carrying PLN02398 or PLN02469 domains are expected to be localized in diverse cellular compartments. Cytosolic RmGLYIII with DJ-1/PfpI domain carries a molecular weight 26.4 kDa. Detailed structural analysis revealed monomeric nature of RmGLYI-1 and RmGLYII-1 whereas RmGLYIII is found to be homodimer. Molecular phylogenetic analysis and multiple sequence alignment specified conserved metal ion/substrate binding residues of RmGLY proteins. Estimation of relative expression of glyoxalases under salt stress indicated the prominence of RmGLYI and RmGLYII over RmGLYIII. The aforementioned prominence is supported by salt induced expression difference of glutathione metabolic enzymes and glutathione regulated transporter protein.
Collapse
Affiliation(s)
- S P Meera
- Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Palayad P.O., Kannur, 670661, Kerala, India
| | - Anu Augustine
- Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Palayad P.O., Kannur, 670661, Kerala, India.
| |
Collapse
|
29
|
Huang JQ, Lin JL, Guo XX, Tian X, Tian Y, Shangguan XX, Wang LJ, Fang X, Chen XY. RES transformation for biosynthesis and detoxification. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1297-1302. [PMID: 32519031 DOI: 10.1007/s11427-020-1729-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/09/2020] [Indexed: 12/25/2022]
Abstract
The reactive electrophilic species (RES), typically the molecules bearing α,β-unsaturated carbonyl group, are widespread in living organisms and notoriously known for their damaging effects. Many of the mycotoxins released from phytopathogenic fungi are RES and their contamination to cereals threatens food safety worldwide. However, due to their high reactivity, RES are also used by host organisms to synthesize specific metabolites. The evolutionary conserved glyoxalase (GLX) system scavenges the cytotoxic α-oxoaldehydes that bear RES groups, which cause host disorders and diseases. In cotton, a specialized enzyme derived from glyoxalase I (GLXI) through gene duplications and named as specialized GLXI (SPG), acts as a distinct type of aromatase in the gossypol pathway to transform the RES intermediates into the phenolic products. In this review, we briefly introduce the research progress in understanding the RES, especially the RES-type mycotoxins, the GLX system and SPG, and discuss their application potential in detoxification and synthetic biology.
Collapse
Affiliation(s)
- Jin-Quan Huang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jia-Ling Lin
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Xiao-Xiang Guo
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiu Tian
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye Tian
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Xia Shangguan
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China. .,Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
30
|
Khan MIR, Jahan B, AlAjmi MF, Rehman MT, Khan NA. Ethephon mitigates nickel stress by modulating antioxidant system, glyoxalase system and proline metabolism in Indian mustard. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1201-1213. [PMID: 32549683 PMCID: PMC7266911 DOI: 10.1007/s12298-020-00806-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/22/2019] [Accepted: 03/27/2020] [Indexed: 05/09/2023]
Abstract
The role of ethylene (through application of ethephon) in the regulation of nickel (Ni) stress tolerance was investigated in this study. Ethephon at concentration of 200 µl l-1 was applied to mustard (Brassica juncea) plants grown without and with 200 mg kg-1 soil Ni to study the increased growth traits, biochemical attributes, photosynthetic efficiency, nutrients content, activities of antioxidants such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, and glutathione peroxidase, glyoxalase systems and enhanced the proline metabolism. In the absence of ethephon, Ni increased oxidative stress with a concomitant decrease in photosynthesis, growth and nutrients content. However, application of ethephon positively increased growth traits, photosynthetic parameters, nutrients content and also elevated the generation of antioxidants enzymes and glyoxalase systems, proline production to combat oxidative stress. Plants water relations and cellular homeostasis were maintained through increased photosynthetic efficiency and proline production. This signifies the role of ethylene in mediating Ni tolerance via regulating proline production and photosynthetic capacity. Ethephon can be used as an exogenous supplement on plants to confer Ni tolerance. The results can be exploited to develop tolerance in plants via gene editing technology encoding enzymes responsible for proline synthesis, antioxidant defence, glyoxalase systems and photosynthetic effectiveness.
Collapse
Affiliation(s)
- M. Iqbal R. Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
- Department of Botany, Jamia Hamdard, New Delhi, 110062 India
| | - Badar Jahan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
31
|
Sun X, Li H, Thapa S, Reddy Sangireddy S, Pei X, Liu W, Jiang Y, Yang S, Hui D, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. HORTICULTURE RESEARCH 2020; 7:43. [PMID: 32257229 PMCID: PMC7109090 DOI: 10.1038/s41438-020-0264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. Transgenic tomato 'Money Maker' plants overexpressing tomato SlGlyI gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.1) were generated and homozygous lines were obtained after four generations of self-pollination. In this study, SlGlyI-overepxressing line (GlyI), wild type (WT, negative control) and plants transformed with empty vector (ECtr, positive control), were subjected to Al-treatment by growing in Magnavaca's nutrient solution (pH 4.5) supplemented with 20 µM Al3+ ion activity. After 30 days of treatments, the fresh and dry weight of shoots and roots of plants from Al-treated conditions decreased significantly compared to the non-treated conditions for all the three lines. When compared across the three lines, root fresh and dry weight of GlyI was significant higher than WT and ECtr, whereas there was no difference in shoot tissues. The basal 5 mm root-tips of GlyI plants expressed a significantly higher level of glyoxalase activity under both non-Al-treated and Al-treated conditions compared to the two control lines. Under Al-treated condition, there was a significant increase in MG content in ECtr and WT lines, but not in GlyI line. Quantitative proteomics analysis using tandem mass tags mass spectrometry identified 4080 quantifiable proteins and 201 Al-induced differentially expressed proteins (DEPs) in root-tip tissues from GlyI, and 4273 proteins and 230 DEPs from ECtr. The Al-down-regulated DEPs were classified into molecular pathways of gene transcription, RNA splicing and protein biosynthesis in both GlyI and ECtr lines. The Al-induced DEPs in GlyI associated with tolerance to Al3+ and MG toxicity are involved in callose degradation, cell wall components (xylan acetylation and pectin degradation), oxidative stress (antioxidants) and turnover of Al-damaged epidermal cells, repair of damaged DNA, epigenetics, gene transcription, and protein translation. A protein-protein association network was constructed to aid the selection of proteins in the same pathway but differentially regulated in GlyI or ECtr lines. Proteomics data are available via ProteomeXchange with identifiers PXD009456 under project title '25Dec2017_Suping_XSexp2_ITAG3.2' for SlGlyI-overexpressing tomato plants and PXD009848 under project title '25Dec2017_Suping_XSexp3_ITAG3.2' for positive control ECtr line transformed with empty vector.
Collapse
Affiliation(s)
- Xudong Sun
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
- College of Horticulture, Shandong Agricultural University, Taian, Shandong P.R. China
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Xiaobo Pei
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Wei Liu
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yuping Jiang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Shaolan Yang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Dafeng Hui
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sarabjit Bhatti
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yong Yang
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Theodore W. Thannhauser
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
32
|
Bhowal B, Singla-Pareek SL, Sopory SK, Kaur C. From methylglyoxal to pyruvate: a genome-wide study for the identification of glyoxalases and D-lactate dehydrogenases in Sorghum bicolor. BMC Genomics 2020; 21:145. [PMID: 32041545 PMCID: PMC7011430 DOI: 10.1186/s12864-020-6547-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/31/2020] [Indexed: 12/03/2022] Open
Abstract
Background The glyoxalase pathway is evolutionarily conserved and involved in the glutathione-dependent detoxification of methylglyoxal (MG), a cytotoxic by-product of glycolysis. It acts via two metallo-enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), to convert MG into D-lactate, which is further metabolized to pyruvate by D-lactate dehydrogenases (D-LDH). Since D-lactate formation occurs solely by the action of glyoxalase enzymes, its metabolism may be considered as the ultimate step of MG detoxification. By maintaining steady state levels of MG and other reactive dicarbonyl compounds, the glyoxalase pathway serves as an important line of defence against glycation and oxidative stress in living organisms. Therefore, considering the general role of glyoxalases in stress adaptation and the ability of Sorghum bicolor to withstand prolonged drought, the sorghum glyoxalase pathway warrants an in-depth investigation with regard to the presence, regulation and distribution of glyoxalase and D-LDH genes. Result Through this study, we have identified 15 GLYI and 6 GLYII genes in sorghum. In addition, 4 D-LDH genes were also identified, forming the first ever report on genome-wide identification of any plant D-LDH family. Our in silico analysis indicates homology of putatively active SbGLYI, SbGLYII and SbDLDH proteins to several functionally characterised glyoxalases and D-LDHs from Arabidopsis and rice. Further, these three gene families exhibit development and tissue-specific variations in their expression patterns. Importantly, we could predict the distribution of putatively active SbGLYI, SbGLYII and SbDLDH proteins in at least four different sub-cellular compartments namely, cytoplasm, chloroplast, nucleus and mitochondria. Most of the members of the sorghum glyoxalase and D-LDH gene families are indeed found to be highly stress responsive. Conclusion This study emphasizes the role of glyoxalases as well as that of D-LDH in the complete detoxification of MG in sorghum. In particular, we propose that D-LDH which metabolizes the specific end product of glyoxalases pathway is essential for complete MG detoxification. By proposing a cellular model for detoxification of MG via glyoxalase pathway in sorghum, we suggest that different sub-cellular organelles are actively involved in MG metabolism in plants.
Collapse
Affiliation(s)
- Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
33
|
Kamran M, Xie K, Sun J, Wang D, Shi C, Lu Y, Gu W, Xu P. Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109877. [PMID: 31704320 DOI: 10.1016/j.ecoenv.2019.109877] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 05/07/2023]
Abstract
Salinity represents a serious environmental threat to crop production and by extension, to world food supply, social and economic prosperity of the developing world. Salicylic acid (SA) is an endogenous plant signal molecule involved in regulating various plant responses to stress. In the present study, we characterized the regulatory role of exogenous SA for their ability to ameliorate deleterious effects of salt stress (0, 100, 150, 200 mM NaCl) in choysum plants through coordinated induction of antioxidants, ascorbate glutathione (AsA-GSH) cycle, and the glyoxalase enzymes. An increase in salt stress dramatically declined root and shoot growth, leaf chlorophyll and relative water content (RWC), subsequently increased electrolyte leakage (EL) and osmolytes accumulation in choysum plants. Salt stress disrupted the antioxidant and glyoxalase defense systems which persuaded oxidative damages and carbonyl toxicity, indicated by increased H2O2 generation, lipid peroxidation, and methylglyoxal (MG) content. However, application of SA had an additive effect on the growth of salt-affected choysum plants, which enhanced root length, plant biomass, chlorophyll contents, leaf area, and RWC. Moreover, SA application effectively eliminated the oxidative and carbonyl stress by improving AsA and GSH pool, upregulating the activities of antioxidant enzymes and the enzymes associated with AsA-GSH cycle and glyoxalase system. Overall, SA application completely counteracted the salinity-induced deleterious effects of 100 and 150 mM NaCl and partially mediated that of 200 mM NaCl stress. Therefore, we concluded that SA application induced tolerance to salinity stress in choysum plants due to the synchronized increase in activities of enzymatic and non-enzymatic antioxidants, enhanced efficiency of AsA-GSH cycle and the MG detoxification systems.
Collapse
Affiliation(s)
- Muhammad Kamran
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Kaizhi Xie
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Jie Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Chaohong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China.
| | - Peizhi Xu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China.
| |
Collapse
|
34
|
Rohman MM, Islam MR, Monsur MB, Amiruzzaman M, Fujita M, Hasanuzzaman M. Trehalose Protects Maize Plants from Salt Stress and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2019; 8:E568. [PMID: 31817132 PMCID: PMC6963808 DOI: 10.3390/plants8120568] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
This study is undertaken to elucidate the role of trehalose (Tre) in mitigating oxidative stress under salinity and low P in maize. Eight-day-old maize seedlings of two maize varieties, BARI Hybrid Maize-7 and BARI Hybrid Maize-9, were subjected to salinity (150 mM NaCl), low P (5 µM KH2PO4) and their combined stress with or without 10 mM Tre for 15 d. Salinity and combined stress significantly inhibited the shoot length, root length, and root volume, whereas low P increased the root length and volume in both genotypes. Exogenous Tre in the stress treatments increased all of the growth parameters as well as decreased the salinity, low P, and combined stress-mediated Na+/K+, reactive oxygen species (ROS), malondialdehyde (MDA), lipoxygenase (LOX) activity, and methylglyoxal (MG) in both genotypes. Individually, salinity and low P increased superoxide dismutase (SOD) activity in both genotypes, but combined stress decreased the activity. Peroxidase (POD) activity increased in all stress treatments. Interestingly, Tre application enhanced the SOD activity in all the stress treatments but inhibited the POD activity. Both catalase (CAT) and glutathione peroxidase (GPX) activity were increased by saline and low P stress while the activities inhibited in combined stress. Similar results were found for ascorbate peroxidase (APX), glutathione peroxidase (GR), and dehydroascorbate reductase (DHAR) activities in both genotypes. However, monodehydroascorbate reductase (MDHAR) activity was inhibited in all the stresses. Interestingly, Tre enhanced CAT, APX, GPX, GR, MDHAR, and DHAR activities suggesting the amelioration of ROS scavenging in maize under all the stresses. Conversely, increased glyoxalase activities in saline and low P stress in BHM-9 suggested better MG detoxification system because of the down-regulation of glyoxalase-I (Gly-I) activity in BHM-7 in those stresses. Tre also increased the glyoxalase activities in both genotypes under all the stresses. Tre improved the growth in maize seedlings by decreasing Na+/K+, ROS, MDA, and MG through regulating antioxidant and glyoxalase systems.
Collapse
Affiliation(s)
- Md. Motiar Rohman
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Md. Robyul Islam
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Mahmuda Binte Monsur
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Mohammad Amiruzzaman
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress responses, Faculty of Agriculture, Kagawa University, Kagawa 7610795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
35
|
Khan MIR, Jahan B, Alajmi MF, Rehman MT, Khan NA. Exogenously-Sourced Ethylene Modulates Defense Mechanisms and Promotes Tolerance to Zinc Stress in Mustard ( Brassica juncea L.). PLANTS (BASEL, SWITZERLAND) 2019; 8:E540. [PMID: 31775257 PMCID: PMC6963746 DOI: 10.3390/plants8120540] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022]
Abstract
Heavy metal (HM) contamination of agricultural soil is primarily related to anthropogenic perturbations. Exposure to high concentration of HMs causes toxicity and undesirable effects in plants. In this study, the significance of ethylene was studied in response of mustard (Brassica juncea) to a high level (200 mg kg-1 soil) of zinc (Zn) exposure. Plants with high Zn showed inhibited photosynthesis and growth with the increase in oxidative stress. Application of ethylene (as ethephon) to Zn-grown plants restored photosynthesis and growth by inhibiting oxidative stress through increased antioxidant activity, the proline metabolism glyoxalase system, and nutrient homoeostasis. The results suggested that ethylene played a role in modulating defense mechanisms for tolerance of plants to Zn stress.
Collapse
Affiliation(s)
- M. Iqbal R. Khan
- Plant Systems Biology Laboratory, Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110065, India
| | - Badar Jahan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (N.A.K.)
| | - Mohamed F Alajmi
- Department of Pharmacognosy, King Saud University, Riyadh 11362, Kingdom of Saudi Arabia; (M.F.A.); (M.T.R.)
| | - Md Tabish Rehman
- Department of Pharmacognosy, King Saud University, Riyadh 11362, Kingdom of Saudi Arabia; (M.F.A.); (M.T.R.)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (N.A.K.)
| |
Collapse
|
36
|
Proietti S, Falconieri GS, Bertini L, Baccelli I, Paccosi E, Belardo A, Timperio AM, Caruso C. GLYI4 Plays A Role in Methylglyoxal Detoxification and Jasmonate-Mediated Stress Responses in Arabidopsis thaliana. Biomolecules 2019; 9:biom9100635. [PMID: 31652571 PMCID: PMC6843518 DOI: 10.3390/biom9100635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Plant hormones play a central role in various physiological functions and in mediating defense responses against (a)biotic stresses. In response to primary metabolism alteration, plants can produce also small molecules such as methylglyoxal (MG), a cytotoxic aldehyde. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I (GLYI) and glyoxalase II (GLYII) that make up the glyoxalase system. Recently, by a genome-wide association study performed in Arabidopsis, we identified GLYI4 as a novel player in the crosstalk between jasmonate (JA) and salicylic acid (SA) hormone pathways. Here, we investigated the impact of GLYI4 knock-down on MG scavenging and on JA pathway. In glyI4 mutant plants, we observed a general stress phenotype, characterized by compromised MG scavenging, accumulation of reactive oxygen species (ROS), stomatal closure, and reduced fitness. Accumulation of MG in glyI4 plants led to lower efficiency of the JA pathway, as highlighted by the increased susceptibility of the plants to the pathogenic fungus Plectospherella cucumerina. Moreover, MG accumulation brought about a localization of GLYI4 to the plasma membrane, while MeJA stimulus induced a translocation of the protein into the cytoplasmic compartment. Collectively, the results are consistent with the hypothesis that GLYI4 is a hub in the MG and JA pathways.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | | | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy.
| | - Elena Paccosi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Antonio Belardo
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
37
|
de Freitas GM, Thomas J, Liyanage R, Lay JO, Basu S, Ramegowda V, do Amaral MN, Benitez LC, Bolacel Braga EJ, Pereira A. Cold tolerance response mechanisms revealed through comparative analysis of gene and protein expression in multiple rice genotypes. PLoS One 2019; 14:e0218019. [PMID: 31181089 PMCID: PMC6557504 DOI: 10.1371/journal.pone.0218019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/24/2019] [Indexed: 11/25/2022] Open
Abstract
Due to its tropical origin and adaptation, rice is significantly impacted by cold stress, and consequently sustains large losses in growth and productivity. Currently, rice is the second most consumed cereal in the world and production losses caused by extreme temperature events in the context of "major climatic changes" can have major impacts on the world economy. We report here an analysis of rice genotypes in response to low-temperature stress, studied through physiological gas-exchange parameters, biochemical changes in photosynthetic pigments and antioxidants, and at the level of gene and protein expression, towards an understanding and identification of multiple low-temperature tolerance mechanisms. The first effects of cold stress were observed on photosynthesis among all genotypes. However, the tropical japonica genotypes Secano do Brazil and Cypress had a greater reduction in gas exchange parameters like photosynthesis and water use efficiency in comparison to the temperate japonica Nipponbare and M202 genotypes. The analysis of biochemical profiles showed that despite the impacts of low temperature on tolerant plants, they quickly adjusted to maintain their cellular homeostasis by an accumulation of antioxidants and osmolytes like phenolic compounds and proline. The cold tolerant and sensitive genotypes showed a clear difference in gene expression at the transcript level for OsGH3-2, OsSRO1a, OsZFP245, and OsTPP1, as well as for expression at the protein level for LRR-RLKs, bHLH, GLYI, and LTP1 proteins. This study exemplifies the cold tolerant features of the temperate japonica Nipponbare and M202 genotypes, as observed through the analysis of physiological and biochemical responses and the associated changes in gene and protein expression patterns. The genes and proteins showing differential expression response are notable candidates towards understanding the biological pathways affected in rice and for engineering cold tolerance, to generate cultivars capable of maintaining growth, development, and reproduction under cold stress. We also propose that the mechanisms of action of the genes analyzed are associated with the tolerance response.
Collapse
Affiliation(s)
- Gabriela Moraes de Freitas
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Department of Botany, Federal University of Pelotas, Pelotas, Brazil
| | - Julie Thomas
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Jackson O. Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Supratim Basu
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Venkategowda Ramegowda
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | | | | | | | - Andy Pereira
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
38
|
Manoj VM, Anunanthini P, Swathik PC, Dharshini S, Ashwin Narayan J, Manickavasagam M, Sathishkumar R, Suresha GS, Hemaprabha G, Ram B, Appunu C. Comparative analysis of glyoxalase pathway genes in Erianthus arundinaceus and commercial sugarcane hybrid under salinity and drought conditions. BMC Genomics 2019; 19:986. [PMID: 30999852 PMCID: PMC7402403 DOI: 10.1186/s12864-018-5349-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/03/2018] [Indexed: 11/26/2022] Open
Abstract
Background Glyoxalase pathway is a reactive carbonyl species (RCS) scavenging mechanism involved in the detoxification of methylglyoxal (MG), which is a reactive α-ketoaldehyde. In plants under abiotic stress, the cellular toxicity is reduced through glyoxalase pathway genes, i.e. Glyoxalase I (Gly I), Glyoxalase II (Gly II) and Glyoxalase III (Gly III). Salinity and water deficit stresses produce higher amounts of endogenous MG resulting in severe tissue damage. Thus, characterizing glyoxalase pathway genes that govern the MG metabolism should provide new insights on abiotic stress tolerance in Erianthus arundinaceus, a wild relative of sugarcane and commercial sugarcane hybrid (Co 86032). Results In this study, three glyoxalase genes (Glyoxalase I, II and III) from E. arundinaceus (a wild relative of sugarcane) and commercial sugarcane hybrid (Co 86032) were characterized. Comparative gene expression profiles (qRT-PCR) of Glyoxalase I, II and III under salinity and water deficit stress conditions revealed differential transcript expression with higher levels of Glyoxalase III in both the stress conditions. Significantly, E. arundinaceus had a higher expression level of glyoxalase genes compared to commercial sugarcane hybrid. On the other hand, gas exchange parameters like stomatal conductance and transpiration rate were declined to very low levels under both salt and drought induced stresses in commercial sugarcane hybrid when compared to E. arundinaceus. E. arundinaceus maintained better net photosynthetic rate compared to commercial sugarcane hybrid. The phylogenetic analysis of glyoxalase proteins showed its close evolutionary relationship with Sorghum bicolor and Zea mays. Glyoxalase I and II were predicted to possess 9 and 7 isoforms respectively whereas, Glyoxalase III couldn’t be identified as it comes under uncharacterized protein identified in recent past. Chromosomal mapping is also carried out for glyoxalase pathway genes and its isoforms. Docking studies revealed the binding affinities of glyoxalase proteins in both E. arundinaceus and commercial sugarcane hybrid with their substrate molecules. Conclusions This study emphasizes the role of Glyoxalase pathway genes in stress defensive mechanism which route to benefit in progressive plant adaptations and serves as potential candidates for development of salt and drought tolerant crops. Electronic supplementary material The online version of this article (10.1186/s12864-018-5349-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Peter Clarancia Swathik
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Selvarajan Dharshini
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | | | - Markandan Manickavasagam
- Department of Biotechnology, Bharathidasan University, Tiruchirapalli, Tamil Nadu, 620024, India
| | | | | | - Govind Hemaprabha
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Bakshi Ram
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India.
| |
Collapse
|
39
|
Bhuyan MHMB, Hasanuzzaman M, Mahmud JA, Hossain MS, Bhuiyan TF, Fujita M. Unraveling Morphophysiological and Biochemical Responses of Triticum aestivum L. to Extreme pH: Coordinated Actions of Antioxidant Defense and Glyoxalase Systems. PLANTS (BASEL, SWITZERLAND) 2019; 8:E24. [PMID: 30669317 PMCID: PMC6359243 DOI: 10.3390/plants8010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022]
Abstract
Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat (Triticum aestivum L. cv. BARI Gom-25) grown under different pH regimes. Eight-day-old seedlings were exposed to growing media with different pH levels (4.0, 5.5, 7.0, and 8.5). Seedlings grown in pH 4.0 and in pH 8.5 showed reductions in biomass, water, and chlorophyll contents; whereas plants grown at pH 7.0 (neutral) exhibited a better performance. Extremely acidic (pH 4.0) and/or strongly alkaline (pH 8.5)-stress also increased oxidative damage in wheat by excess reactive oxygen species (ROS) generation and methylglyoxal (MG) production, which increased lipid peroxidation and disrupted the redox state. In contrary, the lowest oxidative damage was observed at a neutral condition, followed by a strong acidic condition (pH 5.5), which was mainly attributed to the better performance of the antioxidant defense and glyoxalase systems. Interestingly, seedlings grown at pH 5.5 showed a significant increase in morphophysiological attributes compared with extreme acidic (pH 4.0)- and strong alkaline (pH 8.5)-stress treatments, which indicates the tolerance of wheat to the acidic condition.
Collapse
Affiliation(s)
- M H M Borhannuddin Bhuyan
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
- Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Jubayer Al Mahmud
- Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
40
|
Ahmed IM, Nadira UA, Qiu CW, Cao F, Zhang G, Holford P, Wu F. Tolerance to Drought, Low pH and Al Combined Stress in Tibetan Wild Barley Is Associated with Improvement of ATPase and Modulation of Antioxidant Defense System. Int J Mol Sci 2018; 19:ijms19113553. [PMID: 30423885 PMCID: PMC6274725 DOI: 10.3390/ijms19113553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/30/2022] Open
Abstract
Aluminum (Al) toxicity and drought are two major constraints on plant growth in acidic soils, negatively affecting crop performance and yield. Genotypic differences in the effects of Al/low pH and polyethyleneglycol (PEG) induced drought stress, applied either individually or in combination, were studied in Tibetan wild (XZ5, drought-tolerant; XZ29, Al-tolerant) and cultivated barley (Al-tolerant Dayton; drought-tolerant Tadmor). Tibetan wild barley XZ5 and XZ29 had significantly higher H+-ATPase, Ca2+Mg2+-ATPase, and Na+K+-ATPase activities at pH 4.0+Al+PEG than Dayton and Tadmor. Moreover, XZ5 and XZ29 possessed increased levels in reduced ascorbate and glutathione under these conditions, and antioxidant enzyme activities were largely stimulated by exposure to pH 4.0+PEG, pH 4.0+Al, and pH 4.0+Al+PEG, compared to a control and to Dayton and Tadmor. The activity of methylglyoxal (MG) was negatively correlated with increased levels of glyoxalase (Gly) I and Gly II in wild barley. Microscopic imaging of each genotype revealed DNA damage and obvious ultrastructural alterations in leaf cells treated with drought or Al alone, and combined pH 4.0+Al+PEG stress; however, XZ29 and XZ5 were less affected than Dayton and Tadmor. Collectively, the authors findings indicated that the higher tolerance of the wild barley to combined pH 4.0+Al+PEG stress is associated with improved ATPase activities, increased glyoxalase activities, reduced MG, and lower reactive oxygen species levels (like O2− and H2O2) due to increased antioxidant enzyme activities. These results offer a broad comprehension of the mechanisms implicated in barley’s tolerance to the combined stress of Al/low pH and drought, and may provide novel insights into the potential utilization of genetic resources, thereby facilitating the development of barley varieties tolerant to drought and Al/low pH stress.
Collapse
Affiliation(s)
- Imrul Mosaddek Ahmed
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Plant Physiology Division, Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh.
| | - Umme Aktari Nadira
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Cheng-Wei Qiu
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Fangbin Cao
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Guoping Zhang
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Paul Holford
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Feibo Wu
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
41
|
Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujita M, Tran LSP. Methylglyoxal - a signaling molecule in plant abiotic stress responses. Free Radic Biol Med 2018; 122:96-109. [PMID: 29545071 DOI: 10.1016/j.freeradbiomed.2018.03.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Abiotic stresses are the most common harmful factors, adversely affecting all aspects of plants' life. Plants have to elicit appropriate responses against multifaceted effects of abiotic stresses by reprogramming various cellular processes. Signaling molecules play vital roles in sensing environmental stimuli to modulate gene expression, metabolism and physiological processes in plants to cope with the adverse effects. Methylglyoxal (MG), a dicarbonyl compound, is known to accumulate in cells as a byproduct of various metabolic pathways, including glycolysis. Several works in recent years have demonstrated that MG could play signaling roles via Ca2+, reactive oxygen species (ROS), K+ and abscisic acid. Recently, global gene expression profiling has shown that MG could induce signaling cascades, and an overlap between MG-responsive and stress-responsive signaling events might exist in plants. Once overaccumulated in cells, MG can provoke detrimental effects by generating ROS, forming advanced glycation end products and inactivating antioxidant systems. Plants are also equipped with MG-detoxifying glyoxalase system to save cellular organelles from MG toxicity. Since MG has regulatory functions in plant growth and development, and glyoxalase system is an integral component of abiotic stress adaptation, an in-depth understanding on MG metabolism and glyoxalase system will help decipher mechanisms underlying plant responses to abiotic stresses. Here, we provide a comprehensive update on the current knowledge of MG production and detoxification in plants, and highlight the putative functions of glyoxalase system in mediating plant defense against abiotic stresses. We particularly emphasize on the dual roles of MG and its connection with glutathione-related redox regulation, which is crucial for plant defense and adaptive responses under changing environmental conditions.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming 650500, PR China.
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
42
|
Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL. Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. PLANT, CELL & ENVIRONMENT 2018; 41:1186-1200. [PMID: 28425127 DOI: 10.1111/pce.12968] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 05/05/2023]
Abstract
Crop plants face a multitude of diverse abiotic and biotic stresses in the farmers' fields. Although there now exists a considerable knowledge of the underlying mechanisms of response to individual stresses, the crosstalk between response pathways to various abiotic and biotic stresses remains enigmatic. Here, we investigated if the cytotoxic metabolite methylglyoxal (MG), excess of which is generated as a common consequence of many abiotic and biotic stresses, may serve as a key molecule linking responses to diverse stresses. For this, we generated transgenic rice plants overexpressing the entire two-step glyoxalase pathway for MG detoxification. Through assessment of various morphological, physiological and agronomic parameters, we found that glyoxalase-overexpression imparts tolerance towards abiotic stresses like salinity, drought and heat and also provides resistance towards damage caused by the sheath blight fungus (Rhizoctonia solani) toxin phenylacetic acid. We show that the mechanism of observed tolerance of the glyoxalase-overexpressing plants towards these diverse abiotic and biotic stresses involves improved MG detoxification and reduced oxidative damage leading to better protection of chloroplast and mitochondrial ultrastructure and maintained photosynthetic efficiency under stress conditions. Together, our findings indicate that MG may serve as a key link between abiotic and biotic stress response in plants.
Collapse
Affiliation(s)
- Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Khirod K Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ajit Ghosh
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Amit K Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Das
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anil K Singh
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir K Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
43
|
Islam T, Ghosh A. Genome-wide dissection and expression profiling of unique glyoxalase III genes in soybean reveal the differential pattern of transcriptional regulation. Sci Rep 2018; 8:4848. [PMID: 29555947 PMCID: PMC5859077 DOI: 10.1038/s41598-018-23124-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/02/2018] [Indexed: 11/28/2022] Open
Abstract
Reactive carbonyl species, such as methylglyoxal and glyoxal are very toxic in nature and can inactivate various cellular macromolecules such as DNA, RNA, and protein by forming advanced glycation end products. Conventional glyoxalase pathway with two enzymes- glyoxalase I and glyoxalase II, detoxify MG into D-lactate with the help of reduced glutathione. However, DJ-1/PfpI domain(s) containing DJ-1/ Hsp31 proteins do the same in a single step, and thus termed as "glyoxalase III". A comprehensive genome-wide analysis of soybean identified eleven putative glyoxalase III proteins with DJ-1/PfpI domain encoded by seven genes. Most of these proteins are predicted to be mitochondria and chloroplast localized. In spite of similar function, a differential evolution pattern was observed between Hsp31 and DJ-1 proteins. Expression of GmDJ-1A, GmDJ-1B, and GmDJ-1D2 transcripts was found to be constitutive in different tissues and developmental stages. Transcript profiling revealed the strong substrate-specific upregulation of GmDJ-1 genes in response to exogenous methylglyoxal exposure. Out of seven genes, GmDJ-1D1 and GmDJ-1D2 showed maximum upregulation against salinity, dehydration, and oxidative stresses. Moreover, GmDJ-1D2 showed functional glyoxalase III enzyme activity by utilizing MG as a substrate. Overall, this study identifies some novel tissue-specific and abiotic stress-responsive GmDJ-1 genes that could be investigated further.
Collapse
Affiliation(s)
- Tahmina Islam
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, 50829, Germany.
| |
Collapse
|
44
|
Yan G, Xiao X, Wang N, Zhang F, Gao G, Xu K, Chen B, Qiao J, Wu X. Genome-wide analysis and expression profiles of glyoxalase gene families in Chinese cabbage (Brassica rapa L). PLoS One 2018; 13:e0191159. [PMID: 29324881 PMCID: PMC5764358 DOI: 10.1371/journal.pone.0191159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
The glyoxalase pathway is composed of glyoxalase I (GLYI) and glyoxalase II (GLYII) and is responsible for the detoxification of a cytotoxic metabolite methylglyoxal (MG) into the nontoxic S-D-lactoylglutathione. The two glyoxalase enzymes play a crucial role in stress tolerance in various plant species. Recently, the GLY gene families have well been analyzed in Arabidopsis, rice and soybean, however, little is known about them in Chinese cabbage (Brassica rapa). Here, 16 BrGLYI and 15 BrGLYII genes were identified in the B. rapa genome, and the BrGLYI and BrGLYII proteins were both clustered into five subfamilies. The classifications, chromosomal distributions, gene duplications, exon–intron structures, localizations, conserved motifs and promoter cis-elements were also predicted and analyzed. In addition, the expression pattern of these genes in different tissues and their response to biotic and abiotic stresses were analyzed using publicly available data and a quantitative real-time PCR analysis (RT-qPCR). The results indicated that the expression profiles of BrGLY genes varied among different tissues. Notably, a number of BrGLY genes showed responses to biotic and abiotic stress treatments, including Plasmodiophora brassicae infection and various heavy metal stresses. Taken together, this study identifies BrGLYI and BrGLYII gene families in B. rapa and offers insight into their roles in plant development and stress resistance, especially in heavy metal stress tolerance and pathogen resistance.
Collapse
Affiliation(s)
- Guixin Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Xin Xiao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Nian Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Fugui Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Guizhen Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Kun Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Biyun Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Jiangwei Qiao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Xiaoming Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
45
|
An B, Lan J, Deng X, Chen S, Ouyang C, Shi H, Yang J, Li Y. Silencing of D-Lactate Dehydrogenase Impedes Glyoxalase System and Leads to Methylglyoxal Accumulation and Growth Inhibition in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2071. [PMID: 29259615 PMCID: PMC5723347 DOI: 10.3389/fpls.2017.02071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/20/2017] [Indexed: 05/24/2023]
Abstract
D-Lactate is oxidized by two classes of D-lactate dehydrogenase (D-LDH), namely, NAD-dependent and NAD-independent D-LDHs. Little is known about the characteristics and biological functions of D-LDHs in rice. In this study, a functional NAD-independent D-LDH (LOC_Os07g06890) was identified in rice, as a result of alternative splicing events. Characterization of the expression profile, subcellular localization, and enzymatic properties of the functional OsD-LDH revealed that it is a mitochondrial cytochrome-c-dependent D-LDH with high affinity and catalytic efficiency. Functional analysis of OsD-LDH RNAi transgenic rice demonstrated that OsD-LDH participates in methylglyoxal metabolism by affecting the activity of the glyoxalase system and aldo-keto reductases. Under methylglyoxal treatment, silencing of OsD-LDH in rice resulted in the accumulation of methylglyoxal and D-lactate, the decrease of reduced glutathione in leaves, and ultimately severe growth inhibition. Moreover, the detached leaves of OsD-LDH RNAi plants were more sensitive to salt stress. However, the silencing of OsD-LDH did not affect the growth under photorespiration conditions. Our results provide new insights into the role of NAD-independent D-LDHs in rice.
Collapse
Affiliation(s)
- Baoguang An
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Jie Lan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolong Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Silan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Chao Ouyang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Huiyun Shi
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Wani SH, Dutta T, Neelapu NRR, Surekha C. Transgenic approaches to enhance salt and drought tolerance in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, Wang T, Spiegel D, Samuel MA. Glyoxalase Goes Green: The Expanding Roles of Glyoxalase in Plants. Int J Mol Sci 2017; 18:ijms18040898. [PMID: 28441779 PMCID: PMC5412477 DOI: 10.3390/ijms18040898] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous glyoxalase enzymatic pathway is involved in the detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis. The glyoxalase system has been more extensively studied in animals versus plants. Plant glyoxalases have been primarily associated with stress responses and their overexpression is known to impart tolerance to various abiotic stresses. In plants, glyoxalases exist as multigene families, and new roles for glyoxalases in various developmental and signaling pathways have started to emerge. Glyoxalase-based MG detoxification has now been shown to be important for pollination responses. During self-incompatibility response in Brassicaceae, MG is required to target compatibility factors for proteasomal degradation, while accumulation of glyoxalase leads to MG detoxification and efficient pollination. In this review, we discuss the importance of glyoxalase systems and their emerging biological roles in plants.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Muhammad Jamshed
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Abhinandan Kumar
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Logan Skori
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Sabine Scandola
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Tina Wang
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06511, USA.
| | - David Spiegel
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06511, USA.
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| |
Collapse
|
48
|
Kaur C, Tripathi AK, Nutan KK, Sharma S, Ghosh A, Tripathi JK, Pareek A, Singla-Pareek SL, Sopory SK. A nuclear-localized rice glyoxalase I enzyme, OsGLYI-8, functions in the detoxification of methylglyoxal in the nucleus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:565-576. [PMID: 27797431 DOI: 10.1111/tpj.13407] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 05/07/2023]
Abstract
The cellular levels of methylglyoxal (MG), a toxic byproduct of glycolysis, rise under various abiotic stresses in plants. Detoxification of MG is primarily through the glyoxalase pathway. The first enzyme of the pathway, glyoxalase I (GLYI), is a cytosolic metalloenzyme requiring either Ni2+ or Zn2+ for its activity. Plants possess multiple GLYI genes, of which only some have been partially characterized; hence, the precise molecular mechanism, subcellular localization and physiological relevance of these diverse isoforms remain enigmatic. Here, we report the biochemical properties and physiological role of a putative chloroplast-localized GLYI enzyme, OsGLYI-8, from rice, which is strikingly different from all hitherto studied GLYI enzymes in terms of its intracellular localization, metal dependency and kinetics. In contrast to its predicted localization, OsGLYI-8 was found to localize in the nucleus along with its substrate, MG. Further, OsGLYI-8 does not show a strict requirement for metal ions for its activity, is functional as a dimer and exhibits unusual biphasic steady-state kinetics with a low-affinity and a high-affinity substrate-binding component. Loss of AtGLYI-2, the closest Arabidopsis ortholog of OsGLYI-8, results in severe germination defects in the presence of MG and growth retardation under salinity stress conditions. These defects were rescued upon complementation with AtGLYI-2 or OsGLYI-8. Our findings thus provide evidence for the presence of a GLYI enzyme and MG detoxification in the nucleus.
Collapse
Affiliation(s)
- Charanpreet Kaur
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit K Tripathi
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kamlesh K Nutan
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shweta Sharma
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajit Ghosh
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jayant K Tripathi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
49
|
Hoque TS, Uraji M, Hoque MA, Nakamura Y, Murata Y. Methylglyoxal induces inhibition of growth, accumulation of anthocyanin, and activation of glyoxalase I and II in Arabidopsis thaliana. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Tahsina Sharmin Hoque
- Department of Soil Science; Bangladesh Agricultural University; Mymensingh 2202 Bangladesh
- Graduate School of Natural Science and Technology; Okayama University; Okayama 700-8530 Japan
| | - Misugi Uraji
- Graduate School of Natural Science and Technology; Okayama University; Okayama 700-8530 Japan
| | - Md. Anamul Hoque
- Department of Soil Science; Bangladesh Agricultural University; Mymensingh 2202 Bangladesh
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| |
Collapse
|
50
|
Ghosh A. Genome-Wide Identification of Glyoxalase Genes in Medicago truncatula and Their Expression Profiling in Response to Various Developmental and Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2017; 8:836. [PMID: 28620395 PMCID: PMC5452422 DOI: 10.3389/fpls.2017.00836] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/04/2017] [Indexed: 05/13/2023]
Abstract
Glyoxalase is an evolutionary highly conserved pathway present in all organisms. Conventional glyoxalase pathway has two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII) that act sequentially to detoxify a highly cytotoxic compound methylglyoxal (MG) to D-lactate with the help of reduced glutathione. Recently, proteins with DJ-1/PfpI domain have been reported to perform the same conversion in a single step without the help of any cofactor and thus termed as "unique glyoxalase III" enzyme. Genome-wide analysis of glyoxalase genes have been previously conducted in Arabidopsis, rice and Soybean plants, but no such study was performed for one of the agricultural important model legume species, Medicago truncatula. A comprehensive genome-wide analysis of Medicago identified a total of putative 29 GLYI, 14 GLYII genes, and 5 glyoxalase III (DJ-1) genes. All these identified genes and their corresponding proteins were analyzed in detail including their chromosomal distribution, gene duplication, phylogenetic relationship, and the presence of conserved domain(s). Expression of all these genes was analyzed in different tissues as well as under two devastating abiotic stresses- salinity and drought using publicly available transcript data. This study revealed that MtGLYI-4, MtGLYII-6, and MtDJ-1A are the constitutive members with a high level of expression at all 17 analyzed tissues; while MtGLYI-1, MtGLYI-11, MtGLYI-5, MtGLYI-7, and MtGLYII-13 showed tissue-specific expression. Moreover, most of the genes displayed similar pattern of expression in response to both salinity and drought stress, irrespective of stress duration and tissue type. MtGLYI-8, MtGLYI-11, MtGLYI-6, MtGLYI-16, MtGLYI-21, and MtGLYII-9 showed up-regulation, while MtGLYI-17 and MtGLYI-7/9 showed down-regulation in response to both stresses. Interestingly, MtGLYI-14/15 showed completely opposite pattern of expression in these two stresses. This study provides an initial basis about the physiological significance of glyoxalase genes in plant development and stress response of Medicago that could be explored further.
Collapse
|