1
|
He J, Dai Y, Liu J, Lin H, Gao F, Chen Z, Wu Y. Construction of competing endogenous RNA networks in systemic lupus erythematosus by integrated analysis. Front Med (Lausanne) 2024; 11:1383186. [PMID: 38835801 PMCID: PMC11149421 DOI: 10.3389/fmed.2024.1383186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Objective Systemic lupus erythematosus (SLE) is a disease characterised by immune inflammation and damage to multiple organs. Recent investigations have linked competing endogenous RNAs (ceRNAs) to lupus. However, the exact mechanism through which the ceRNAs network affects SLE is still unclear. This study aims to investigate the regulatory functions of the ceRNAs network, which are important pathways that control the pathophysiological processes of SLE. Methods CircRNA microarray for our tested assays were derived from bone marrow samples from three healthy individuals and three SLE patients in our hospital. The other sequencing data of circRNA, miRNA and mRNA were obtained from Gene Expression Omnibus (GEO) datasets. Using the limma package of R program, the differential expression of mRNA and miRNA in the GEO database was discovered. Then predicted miRNA-mRNA and circRNA-miRNA were established using miRMap, miRanda, miRDB, TargetScan, and miTarBase. CircRNA-miRNA-mRNA ceRNA network was constructed using Cytoscape, and hub genes were screened using a protein-protein interaction network. Immune infiltration analysis of the hub gene was also performed by CIBERSORT and GSEA. Results 230 overlapped circRNAs, 86 DEmiRNAs and 2083 DEmRNAs were identified in SLE patients as compared to healthy controls. We constructed a circRNA-miRNA-mRNA ceRNAs network contained 11 overlapped circRNAs, 9 miRNAs and 51 mRNAs. ESR1 and SIRT1 were the most frequently associated protein-protein interactions in the PPI network. KEGG analysis showed that DEGs was enriched in FoxO signaling pathway as well as lipids and atherosclerosis. We constructed a novel circRNA-miRNA-mRNA ceRNA network (HSA circ 0000345- HSA miR-22-3-P-ESR1/SIRT1) that may have a major impact on SLE. Conclusion Through this bioinformatics and integrated analysis, we suggest a regulatory role for ceRNA network in the pathogenesis and treatment of SLE.
Collapse
Affiliation(s)
- Juanjuan He
- Fujian Medical University Shengli Clinical Medical College, Fuzhou, China
- Department of Rheumatology, Fujian Provincial Hospital, Fuzhou, China
| | - Yunfeng Dai
- Fujian Medical University Shengli Clinical Medical College, Fuzhou, China
- Department of Rheumatology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianwen Liu
- Fujian Medical University Shengli Clinical Medical College, Fuzhou, China
- Department of Rheumatology, Fujian Provincial Hospital, Fuzhou, China
| | - He Lin
- Fujian Medical University Shengli Clinical Medical College, Fuzhou, China
- Department of Rheumatology, Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Fujian Medical University Shengli Clinical Medical College, Fuzhou, China
- Department of Rheumatology, Fujian Provincial Hospital, Fuzhou, China
| | - Zhihan Chen
- Fujian Medical University Shengli Clinical Medical College, Fuzhou, China
- Department of Rheumatology, Fujian Provincial Hospital, Fuzhou, China
| | - Yanfang Wu
- Fujian Medical University Shengli Clinical Medical College, Fuzhou, China
- Department of Rheumatology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
He L, Liao W, Wang X, Wang L, Liang Q, Jiang L, Yi W, Luo S, Liu Y, Qiu X, Li Y, Liu J, Wu H, Zhao M, Long H, Lu Q. Sirtuin 1 overexpression contributes to the expansion of follicular helper T cells in systemic lupus erythematosus and may serve as an accessible therapeutic target. Rheumatology (Oxford) 2024; 63:1699-1709. [PMID: 37665721 DOI: 10.1093/rheumatology/kead453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
OBJECTIVE SIRT1, an NAD+-dependent deacetylase, is upregulated in CD4+ T cells from SLE patients and MRL/lpr lupus-like mice. This study aimed to explore the role of SIRT1 in follicular helper T (Tfh) cell expansion and its potential value as a therapeutic target for SLE. METHODS Frequencies of CD4+CXCR5+PD-1+ Tfh cells in peripheral blood from SLE patients and their expression of SIRT1 and B cell lymphoma 6 (BCL-6) were determined with flow cytometry. Naïve CD4+ T cells were transfected with SIRT1-expressing lentivirus and small interfering RNA (siRNA) targeting SIRT1, respectively, and then cultured under Tfh-polarizing conditions to study the impact of SIRT1 on Tfh cell differentiation. This impact was also evaluated in both CD4+ T cells and naïve CD4+ T cells by treatment with SIRT1 inhibitors (EX527 and nicotinamide) in vitro. MRL/lpr mice and pristane-induced lupus mice were treated with continuous daily intake of nicotinamide, and their lupus phenotypes (including skin rash, arthritis, proteinuria and serum anti-dsDNA autoantibodies) were compared with those of controls. RESULTS Expression of SIRT1 was elevated in Tfh cells from SLE patients and was positively correlated with Tfh cell frequencies. SIRT1 expression gradually increased during Tfh cell differentiation. Overexpression of SIRT1 by lentiviral vectors significantly promoted Tfh cell differentiation/proliferation. Reciprocally, suppressing expression of SIRT1 by siRNA and inhibiting SIRT1 activity by EX-527 or nicotinamide hindered Tfh cell expansion. Continuous daily intake of nicotinamide alleviated lupus-like phenotypes and decreased serum CXCL13 in the two mouse models. CONCLUSION SIRT1 overexpression contributed to the expansion of Tfh cells in SLE and may serve as a potential target for treatment.
Collapse
Affiliation(s)
- Liting He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Dermatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Xin Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Wang
- Department of Stomatology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Qing Liang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Jiang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanyu Yi
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Dermatology, The First People's Hospital of Changde City, Changde, Hunan, China
| | - Shuaihantian Luo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangning Qiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaping Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Liu
- Department of Radiology, Clinical Research Center for Medical Imaging in Hunan Province, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Hai Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Hunan Provincial Clinical Medicine Research Center for Major Skin Diseases and Skin Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Abstract
Sirtuins (SIRTs) are putative regulators of lifespan in model organisms. Since the initial discovery that SIRTs could promote longevity in nematodes and flies, the identification of additional properties of these proteins has led to understanding of their roles as exquisite sensors that link metabolic activity to oxidative states. SIRTs have major roles in biological processes that are important in kidney development and physiological functions, including mitochondrial metabolism, oxidative stress, autophagy, DNA repair and inflammation. Furthermore, altered SIRT activity has been implicated in the pathophysiology and progression of acute and chronic kidney diseases, including acute kidney injury, diabetic kidney disease, chronic kidney disease, polycystic kidney disease, autoimmune diseases and renal ageing. The renoprotective roles of SIRTs in these diseases make them attractive therapeutic targets. A number of SIRT-activating compounds have shown beneficial effects in kidney disease models; however, further research is needed to identify novel SIRT-targeting strategies with the potential to treat and/or prevent the progression of kidney diseases and increase the average human healthspan.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| |
Collapse
|
4
|
Li J, Yang Y, Xia Y, Luo S, Lin J, Xiao Y, Li X, Huang G, Yang L, Xie Z, Zhou Z. Effect of SIRT1 gene single-nucleotide polymorphisms on susceptibility to type 1 diabetes in a Han Chinese population. J Endocrinol Invest 2024; 47:819-826. [PMID: 37695462 DOI: 10.1007/s40618-023-02190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
AIMS SIRT1 deficiency has been associated with diabetes, and a variant of the SIRT1 gene has been found to be involved in human autoimmune diabetes; however, it is unclear whether this genetic variation exists in Han Chinese with type 1 diabetes (T1D) and whether it contributes to development of T1D. Therefore, we aimed to explore the association of the SIRT1 gene single-nucleotide polymorphisms (SNPs) rs10997866 and rs3818292 in a Han Chinese population with T1D. METHODS This study recruited 2653 unrelated Han Chinese individuals, of whom 1289 had T1D and 1364 were healthy controls. Allelic and genotypic distributions of SIRT1 polymorphisms (rs10997866 and rs3818292) were determined by MassARRAY. Basic characteristics, genotype and allele frequencies of selected SNPs were compared between the T1D patients and healthy controls. Further genotype-phenotype association analysis of the SNPs was performed on the T1D patients divided into three groups according to genotype. Statistical analyses included the chi-square test, Mann‒Whitney U test, Kruskal‒Wallis H test and logistic regression. RESULTS The allelic (G vs. A) and genotypic (GA vs. AA) distributions of SIRT1 rs10997866 were significantly different in T1D patients and healthy controls (P = 0.039, P = 0.027), and rs10997866 was associated with T1D susceptibility under dominant, overdominant and additive models (P = 0.026, P = 0.030 and P = 0.027, respectively). Moreover, genotype-phenotype association analysis showed the GG genotype of rs10997866 and the GG genotype of rs3818292 to be associated with higher titers of IA-2A (P = 0.013 and P = 0.038, respectively). CONCLUSION SIRT1 rs10997866 is significantly associated with T1D susceptibility, with the minor allele G conferring a higher risk of T1D. Moreover, SIRT1 gene rs10997866 and rs3818292 correlate with the titer of IA-2A in Han Chinese individuals with T1D.
Collapse
Affiliation(s)
- J Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes, Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Y Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Y Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes, Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - S Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes, Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - J Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes, Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Y Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes, Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - X Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes, Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - G Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes, Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - L Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes, Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Z Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes, Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Z Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes, Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
5
|
Tao Z, Jin Z, Wu J, Cai G, Yu X. Sirtuin family in autoimmune diseases. Front Immunol 2023; 14:1186231. [PMID: 37483618 PMCID: PMC10357840 DOI: 10.3389/fimmu.2023.1186231] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, epigenetic modifications have been widely researched. As humans age, environmental and genetic factors may drive inflammation and immune responses by influencing the epigenome, which can lead to abnormal autoimmune responses in the body. Currently, an increasing number of studies have emphasized the important role of epigenetic modification in the progression of autoimmune diseases. Sirtuins (SIRTs) are class III nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases and SIRT-mediated deacetylation is an important epigenetic alteration. The SIRT family comprises seven protein members (namely, SIRT1-7). While the catalytic core domain contains amino acid residues that have remained stable throughout the entire evolutionary process, the N- and C-terminal regions are structurally divergent and contribute to differences in subcellular localization, enzymatic activity and substrate specificity. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are predominantly found in the nucleus. SIRTs are key regulators of various physiological processes such as cellular differentiation, apoptosis, metabolism, ageing, immune response, oxidative stress, and mitochondrial function. We discuss the association between SIRTs and common autoimmune diseases to facilitate the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhengjie Tao
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Zihan Jin
- Clinical Lab, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiabiao Wu
- Department of Immunology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Gaojun Cai
- Cardiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
6
|
DNA methylation regulates Sirtuin 1 expression in osteoarthritic chondrocytes. Adv Med Sci 2023; 68:101-110. [PMID: 36913826 DOI: 10.1016/j.advms.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 03/13/2023]
Abstract
PURPOSE Sirtuin 1 (SIRT1) comprises a major anti-aging longevity factor with multiple protective effects on chondrocyte homeostasis. Previous studies have reported that downregulation of SIRT1 is linked to osteoarthritis (OA) progression. In this study, we aimed to investigate the role of DNA methylation on SIRT1 expression regulation and deacetylase activity in human OA chondrocytes. MATERIALS AND METHODS Methylation status of SIRT1 promoter was analyzed in normal and OA chondrocytes using bisulfite sequencing analysis. CCAAT/enhancer binding protein alpha (C/EBPα) binding to SIRT1 promoter was assessed by chromatin immunoprecipitation (ChIP) assay. Subsequently, C/EBPα's interaction with SIRT1 promoter and SIRT1 expression levels were evaluated after treatment of OA chondrocytes with 5-Aza-2'-Deoxycytidine (5-AzadC). Acetylation and nuclear levels of nuclear factor kappa-B p65 subunit (NF-κΒp65) and expression levels of selected OA-related inflammatory mediators, interleukin 1β (IL-1β) and IL-6 and catabolic genes (metalloproteinase-1 (MMP-1) and MMP-9) were evaluated in 5-AzadC-treated OA chondrocytes with or without subsequent transfection with siRNA against SIRT1. RESULTS Hypermethylation of specific CpG dinucleotides on SIRT1 promoter was associated with downregulation of SIRT1 expression in OA chondrocytes. Moreover, we found decreased binding affinity of C/EBPα on the hypermethylated SIRT1 promoter. 5-AzadC treatment restored C/EBPα's transcriptional activity inducing SIRT1 upregulation in OA chondrocytes. Deacetylation of NF-κΒp65 in 5-AzadC-treated OA chondrocytes was prevented by siSIRT1 transfection. Similarly, 5-AzadC-treated OA chondrocytes exhibited decreased expression of IL-1β, IL-6, MMP-1 and MMP-9 which was reversed following 5-AzadC/siSIRT1 treatment. CONCLUSIONS Our results suggest the impact of DNA methylation on SIRT1 suppression in OA chondrocytes contributing to OA pathogenesis.
Collapse
|
7
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Yang C, Li R, Xu W, Huang A. Increased levels of sirtuin‐1 in systemic lupus erythematosus. Int J Rheum Dis 2022; 25:869-876. [DOI: 10.1111/1756-185x.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Chan Yang
- Department of Evidence‐Based Medicine Southwest Medical University Luzhou China
| | - Rong Li
- Department of Evidence‐Based Medicine Southwest Medical University Luzhou China
| | - Wang‐Dong Xu
- Department of Evidence‐Based Medicine Southwest Medical University Luzhou China
| | - An‐Fang Huang
- Department of Rheumatology and Immunology Affiliated Hospital of Southwest Medical University Luzhou China
| |
Collapse
|
9
|
Ke JY, Liu ZY, Wang YH, Chen SM, Lin J, Hu F, Wang YF. Gypenosides regulate autophagy through Sirt1 pathway and the anti-inflammatory mechanism of mitochondrial autophagy in systemic lupus erythematosus. Bioengineered 2022; 13:13384-13397. [PMID: 36700474 PMCID: PMC9275881 DOI: 10.1080/21655979.2022.2066749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To study the mechanism of gynostemma pentaphyllum saponins (GpS) regulating mitochondrial autophagy and anti-inflammatory through Sirtuin 1 (Sirt1) pathway in systemic lupus erythematosus (SLE). JURKAT cells were cultured in vitro, RT-PCR and western blotting (WB) were utilized to identify the expression of related-proteins in Sirt1 pathway and global autophagy and mitochondrial autophagy markers in JURKAT before and after GpS treatment induced by ultraviolet B (UVB), and the related-mechanism of GpS regulation of autophagy was analyzed. The SLE model was established to analyze the alleviating effects of GpS on various symptoms of lupus mice. Sirt1/AMPK/mTOR pathway was activated in UVB induced JURKAT cells. After the addition of GpS, WB revealed that the phosphorylation of AMPK decreased, the phosphorylation of mTOR increased, the expression of Sirt1 protein decreased, and the activation of the pathway was inhibited. Moreover, autophagy of JURKAT cells wasinhibited. In order to further verify the role of Sirt1 pathway, we activated Sirt1 expression in cells by constructing lentiviral vectors, and the therapeutic effect of GpS was significantly reduced. These results indicate GpS can exert autophagy regulation by inhibiting the activity of Sirt1 pathway. To treat SLE. GpS can significantly reduce the level of autoantibodies, kidney inflammation, immune complex deposition and urinary protein excretion, improve kidney function in lupus-prone mice. GpS can regulate autophagy and mitochondrial autophagy through Sirt1 pathway, which may be a potential mechanism for GpS to reduce the level of autoantibodies, kidney inflammation, immune complex deposition and urinary protein excretion, improve kidney function in lupus-prone mice.
Collapse
Affiliation(s)
- Jin-Yong Ke
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatism Immunity, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Yu-Fang Wang Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, 435000, Hubei, China
| | - Zhi-Yong Liu
- Department of Rheumatism Immunity, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun-Han Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shi-Ming Chen
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China
| | - Jing Lin
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China
| | - Fang Hu
- Department of Clinical Laboratory, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,CONTACT Fang Hu
| | - Yu-Fang Wang
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Yu-Fang Wang Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, 435000, Hubei, China
| |
Collapse
|
10
|
Vaiciulis P, Liutkeviciene R, Liutkevicius V, Vilkeviciute A, Gedvilaite G, Uloza V. Association of SIRT1 single gene nucleotide polymorphisms and serum SIRT1 levels with laryngeal squamous cell carcinoma patient survival rate. Cancer Biomark 2022; 34:175-188. [PMID: 34719479 PMCID: PMC9198736 DOI: 10.3233/cbm-210264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND SIRT1 is a multifunctional protein, possibly essential in tumorigenesis pathways, which can act both as a tumor promoter and tumor suppressor depending on the oncogenes, specific to particular tumors. Pathogenesis of laryngeal cancer is multifactorial and the association of SIRT1 expression with the clinical characteristics and prognosis of LSCC has not been fully identified. OBJECTIVES The study aimed to evaluate associations between single gene nucleotide polymorphisms (SNPs) of SIRT1 (rs3818292, rs3758391, and rs7895833), serum SIRT1 levels, and 5-year survival rate in patients with laryngeal squamous cell carcinoma (LSCC). METHODS The study involved 302 patients with LSCC and 409 healthy control subjects. The genotyping of SNPs was performed using RT-PCR, and serum SIRT1 levels were determined by the ELISA method. RESULTS Our study found significant differences in genotype distributions of SIRT1 rs3758391 polymorphisms between the study groups. SIRT1 rs3758391 T/T genotype was associated with the increased LSCC development odds (OR = 1.960 95% CI = 1.028-3.737; p= 0.041). Carriers of SIRT1 rs3758391 T/T genotype had statistically significantly increased odds of LSCC development into advanced stages under the codominant and recessive genetic models (OR = 2.387 95% CI = 1.091-5.222; p= 0.029 and OR = 2.287 95% CI = 1.070-4.888; p= 0.033, respectively). There were no statistically significant differences in serum SIRT1 levels between the LSCC and control groups. However, LSCC patients with SIRT1 rs3818292 AG genotype demonstrated a tendency to significantly lower SIRT1 serum levels than controls (p= 0.034). No statistically significant associations between SIRT1 (rs3818292, rs3758391, and rs7895833) SNPs and the 5-year survival rate of LSCC patients were found. CONCLUSION The present study indicated a statistically significant association between the SIRT1 rs3758391 T/T genotype and increased LSCC development odds. LSCC patients with SIRT1 rs3818292 AG genotype showed a tendency to manifest with lower SIRT1 serum levels. No associations between SIRT1 SNPs and the 5-year survival rate of LSCC patients were detected.
Collapse
Affiliation(s)
- Paulius Vaiciulis
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
11
|
Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y, Huang Y, Li T, Yan J, Tu S. SIRT1: A Potential Therapeutic Target in Autoimmune Diseases. Front Immunol 2021; 12:779177. [PMID: 34887866 PMCID: PMC8650132 DOI: 10.3389/fimmu.2021.779177] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
The morbidity and mortality of autoimmune diseases (Ads) have been increasing worldwide, and the identification of novel therapeutic strategies for prevention and treatment is urgently needed. Sirtuin 1 (SIRT1), a member of the class III family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in the progression of several diseases. SIRT1 also regulates inflammation, oxidative stress, mitochondrial function, immune responses, cellular differentiation, proliferation and metabolism, and its altered functions are likely involved in Ads. Several inhibitors and activators have been shown to affect the development of Ads. SIRT1 may represent a novel therapeutic target in these diseases, and small molecules or natural products that modulate the functions of SIRT1 are potential therapeutic agents. In the present review, we summarize current studies of the biological functions of SIRT1 and its role in the pathogenesis and treatment of Ads.
Collapse
Affiliation(s)
- Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Klumb EM, Scheinberg M, de Souza VA, Xavier RM, Azevedo VF, McElwee E, Restrepo MR, Monticielo OA. The landscape of systemic lupus erythematosus in Brazil: An expert panel review and recommendations. Lupus 2021; 30:1684-1695. [PMID: 34255586 PMCID: PMC8489682 DOI: 10.1177/09612033211030008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE The objective of this review is to address the barriers limiting access to diagnosis and treatment of systemic lupus erythematosus (SLE) and lupus nephritis (LN) in Brazil, specifically for patients in the public healthcare system, arguably those with the least access to innovation. DESIGN A selected panel of Brazilian experts in SLE/LN were provided with a series of relevant questions to address in a multi-day conference. During the conference, responses were discussed and edited by the entire group through numerous drafts and rounds of discussion until a consensus was achieved. RESULTS The authors propose specific and realistic recommendations for implementing access to innovative diagnostic tools and treatment alternatives for SLE/LN in Brazil. Moreover, in creating these recommendations, the authors strived to address barriers and impediments for technology adoption. The multidisciplinary care required for SLE/LN necessitates the collective participation of all involved stakeholders. CONCLUSION A great need exists to expand the adoption of innovative diagnostic tools and treatments for SLE/LN not only in Brazil but also in most countries, as access issues remain an urgent demand. The recommendations presented in this article can serve as a strategy for new technology adoption in other countries in a similar situation.
Collapse
Affiliation(s)
- Evandro Mendes Klumb
- Rheumatology Department, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang S, Zhang X, Leng S, Zhang Y, Li J, Peng J, Zhou Z, Feng Q, Hu X. SIRT1 single-nucleotide polymorphisms are associated with corticosteroid sensitivity in primary immune thrombocytopenia patients. Ann Hematol 2021; 100:2453-2462. [PMID: 34269838 DOI: 10.1007/s00277-021-04583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized by decreased platelet count. While corticosteroids are a useful first-line therapy for ITP patients, their long-term effectiveness is limited, and the determinants of corticosteroid sensitivity in ITP patients remain largely unknown. Sirtuin 1 (SIRT1), a member of the mammalian sirtuin family, is related to the anti-inflammatory effects of corticosteroids. Here, we investigate the contribution of the SIRT1 single-nucleotide polymorphisms (SNPs) rs12778366 and rs4746720 to ITP susceptibility. METHODS We recruited 330 ITP patients and 309 healthy controls from Han population, and performed genotyping of SIRT1 rs12778366 and rs4746720 using a MassARRAY system. The results were validated in another 55 ITP patients from ethnic minorities. RESULTS Using clinical data of patients and controls from Han polulation, including corticosteroid sensitivity, susceptibility, refractoriness, and severity, our results revealed that the CC/TC genotypes of SIRT1 rs12778366 were associated with a 2.034-fold increased risk of corticosteroid resistance compared to the homozygous major TT genotype (dominant, CC/TC vs. TT, OR = 2.034, 95% CI = 1.039-3.984, p = 0.038). In contrast, the CC/CT genotype of SIRT1 rs4746720 showed a 0.560-fold decreased risk of corticosteroid resistance (dominant, 95% CI = 0.321-0.976, OR = 0.560, p = 0.041). The C allele substitute in SIRT1 rs12778366 was significantly associated with the corticosteroid sensitivity of ITP patients (p = 0.021). The similar results were obtained in minority ITP patients. CONCLUSION This study indicates that SIRT1 rs12778366 and rs4746720 may be genetic factors related to corticosteroid sensitivity in ITP patients.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanqi Zhang
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ju Li
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zeping Zhou
- Department of Hematology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiang Hu
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
14
|
Qiu Y, Zhou X, Liu Y, Tan S, Li Y. The Role of Sirtuin-1 in Immune Response and Systemic Lupus Erythematosus. Front Immunol 2021; 12:632383. [PMID: 33981300 PMCID: PMC8110204 DOI: 10.3389/fimmu.2021.632383] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal multisystem inflammatory chronic disorder, the etiology and pathogenesis of which remain unclear. The loss of immune tolerance in SLE patients contributes to the production of autoantibodies that attack multiple organs and tissues, such as the skin, joints, and kidneys. Immune cells play important roles in the occurrence and progression of SLE through amplified immune responses. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, has been shown to be a pivotal regulator in various physiological processes, including cell differentiation, apoptosis, metabolism, aging, and immune responses, via modulation of different signaling pathways, such as the nuclear factor κ-light-chain-enhancer of activated B cells and activator protein 1 pathways. Recent studies have provided evidence that SIRT1 could be a regulatory element in the immune system, whose altered functions are likely relevant to SLE development. This review aims to illustrate the functions of SIRT1 in different types of immune cells and the potential roles of SIRT1 in the SLE pathogenesis and its therapeutic perspectives.
Collapse
Affiliation(s)
- Yueqi Qiu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Zhou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaping Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Zhao L, Zhang J, Hu C, Wang T, Lu J, Wu C, Chen L, Jin M, Ji G, Cao Q, Jiang Y. Apigenin Prevents Acetaminophen-Induced Liver Injury by Activating the SIRT1 Pathway. Front Pharmacol 2020; 11:514. [PMID: 32425778 PMCID: PMC7212374 DOI: 10.3389/fphar.2020.00514] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/01/2020] [Indexed: 01/29/2023] Open
Abstract
Acetaminophen (APAP) overdose is the main cause of acute liver failure. Apigenin (API) is a natural dietary flavonol with high antioxidant capacity. Herein, we investigated protection by API against APAP-induced liver injury in mice, and explored the potential mechanism. Cell viability assays and mice were used to evaluate the effects of API against APAP-induced liver injury. Western blotting, immunofluorescence staining, RT-PCR, and Transmission Electron Microscope were carried out to determine the signalling pathways affected by API. Analysis of mouse serum levels of alanine/aspartate aminotransferase (ALT/AST), malondialdehyde (MDA), liver myeloperoxidase (MPO) activity, glutathione (GSH), and reactive oxygen species (ROS) revealed that API (80 mg/kg) owned protective effect on APAP-induced liver injury. Meanwhile, API ameliorated the decreased cell viability in L-02 cells incubated by APAP with a dose dependent. Furthermore, API promoted SIRT1 expression and deacetylated p53. Western blotting showed that API promoted APAP-induced autophagy, activated the NRF2 pathway, and inhibited the transcriptional activation of nuclear p65 in the presence of APAP. Furthermore, SIRT1 inhibitor EX-527 reduced protection by API against APAP-induced hepatotoxicity. Molecular docking results indicate potential interaction between API and SIRT1. API prevents APAP-induced liver injury by regulating the SIRT1-p53 axis, thereby promoting APAP-induced autophagy and ameliorating APAP-induced inflammatory responses and oxidative stress injury.
Collapse
Affiliation(s)
- Licong Zhao
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Second Clinical College, China Medical University, Shenyang, China
| | - Jiaqi Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan Lu
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenqu Wu
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingming Jin
- Shanghai University of Medicine & Health Sciences of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Cao
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Gan H, Shen T, Chupp DP, Taylor JR, Sanchez HN, Li X, Xu Z, Zan H, Casali P. B cell Sirt1 deacetylates histone and non-histone proteins for epigenetic modulation of AID expression and the antibody response. SCIENCE ADVANCES 2020; 6:eaay2793. [PMID: 32270032 PMCID: PMC7112761 DOI: 10.1126/sciadv.aay2793] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/09/2020] [Indexed: 05/27/2023]
Abstract
Activation-induced cytidine deaminase (AID) mediates immunoglobulin class switch DNA recombination (CSR) and somatic hypermutation (SHM), critical processes for maturation of the antibody response. Epigenetic factors, such as histone deacetylases (HDACs), would underpin B cell differentiation stage-specific AID expression. Here, we showed that NAD+-dependent class III HDAC sirtuin 1 (Sirt1) is highly expressed in resting B cells and down-regulated by stimuli inducing AID. B cell Sirt1 down-regulation, deprivation of NAD+ cofactor, or genetic Sirt1 deletion reduced deacetylation of Aicda promoter histones, Dnmt1, and nuclear factor-κB (NF-κB) p65 and increased AID expression. This promoted class-switched and hypermutated T-dependent and T-independent antibody responses or led to generation of autoantibodies. Genetic Sirt1 overexpression, Sirt1 boost by NAD+, or allosteric Sirt1 enhancement by SRT1720 repressed AID expression and CSR/SHM. By deacetylating histone and nonhistone proteins (Dnmt1 and NF-κB p65), Sirt1 transduces metabolic cues into epigenetic changes to play an important B cell-intrinsic role in modulating antibody and autoantibody responses.
Collapse
Affiliation(s)
| | | | - Daniel P. Chupp
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Julia R. Taylor
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Helia N. Sanchez
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Xin Li
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | | |
Collapse
|
17
|
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by multiple system involvement and positive serum autoantibodies. Lupus nephritis (LN) is the most common and serious complication of SLE, and it is the main cause of death in patients with SLE. Abnormalities in the immune system lead to LN and involve a variety of cells (T cells, B cells, macrophages, NK cells, etc.), cytokines (interleukin, tumor necrosis factor α, etc.) and their related pathways. Previous studies have shown that the interactions of genetic, epigenetic and environmental factors contribute to the pathogenesis and development of LN. In recent years, one genome-wide association study (GWAS) and a number of gene association studies have explored the susceptibility genes of LN, including immunization-, inflammation-, adhesion- and other pathway-related genes. These genes participate in or suggest the pathogenesis and progression of LN. In this review, we summarize the genetic susceptibility of LN and discuss the possible mechanism underlying the susceptibility genes of LN.
Collapse
|
18
|
Ramírez Á, Hernández M, Suárez-Sánchez R, Ortega C, Peralta J, Gómez J, Valladares A, Cruz M, Vázquez-Moreno MA, Suárez-Sánchez F. Type 2 diabetes-associated polymorphisms correlate with SIRT1 and TGF-β1 gene expression. Ann Hum Genet 2019; 84:185-194. [PMID: 31799723 DOI: 10.1111/ahg.12363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/08/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022]
Abstract
The polymorphisms rs3758391 and rs1800470 located in SIRT1 and TGF-β1 have been associated with type 2 diabetes in different populations but its functional effect is not clear. In this study, we evaluated their effect on the expression of SIRT1 and TGF-β1 in peripheral blood as well as their participation in the formation of DNA-protein complexes in a pancreas-derived cell line. It has been described that SIRT1 and TGF-β1 participate in cell growth and regulation of production and secretion of insulin in the pancreas. Anthropometric and biochemical profiles of 127 adults were measured. Genotypes for rs3758391 and rs1800470 were determined using TaqMan assays. Expression analysis of SIRT1 and TGF-β1 were performed using real-time PCR. Gene expression of these genes increased 1.8 ± 0.6- and 1.3 ± 0.6-fold in patients carrying the TT genotype of rs3758391 and rs1800470 when compared to carriers of the CC genotype. Then, we tested whether these single-nucleotide polymorphisms (SNPs) (and rs932658, which is in linkage disequilibrium with rs3758391) are located in regulatory DNA-protein binding sites by electrophoretic mobility shift assays using nuclear extract from the pancreas-derived cell line BxPC-3. The electrophoretic mobility shift assay showed no binding of nuclear proteins to DNA. In conclusion, the genotypes of rs3758391 and rs1800470 are associated with modifications in the expression of the genes SIRT1 and TGF-β1, respectively, but none of the tested SNPs are located in regulatory DNA-protein binding sites.
Collapse
Affiliation(s)
- Ángeles Ramírez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Miriam Hernández
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Rocío Suárez-Sánchez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación LGII, Ciudad de México
| | - Clara Ortega
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Jesús Peralta
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Jaime Gómez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Adán Valladares
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | | | - Fernando Suárez-Sánchez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| |
Collapse
|
19
|
Song K, Liu L, Zhang X, Chen X. An update on genetic susceptibility in lupus nephritis. Clin Immunol 2019; 210:108272. [PMID: 31683055 DOI: 10.1016/j.clim.2019.108272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by multiple system involvement and positive serum autoantibodies. Lupus nephritis (LN) is the most common and serious complication of SLE, and it is the main cause of death in patients with SLE. Abnormalities in the immune system lead to LN and involve a variety of cells (T cells, B cells, macrophages, NK cells, etc.), cytokines (interleukin, tumor necrosis factor α, etc.) and their related pathways. Previous studies have shown that the interactions of genetic, epigenetic and environmental factors contribute to the pathogenesis and development of LN. In recent years, one genome-wide association study (GWAS) and a number of gene association studies have explored the susceptibility genes of LN, including immunization-, inflammation-, adhesion- and other pathway-related genes. These genes participate in or suggest the pathogenesis and progression of LN. In this review, we summarize the genetic susceptibility of LN and discuss the possible mechanism underlying the susceptibility genes of LN.
Collapse
Affiliation(s)
- Kangkang Song
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Lu Liu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Key Laboratory of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Key Laboratory of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China; Institute of Dermatology and Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, 28 Fuxing Road, Beijing, China.
| |
Collapse
|
20
|
Kan Y, Ge P, Wang X, Xiao G, Zhao H. SIRT1 rs3758391 polymorphism and risk of diffuse large B cell lymphoma in a Chinese population. Cancer Cell Int 2018; 18:163. [PMID: 30377410 PMCID: PMC6196412 DOI: 10.1186/s12935-018-0659-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background The aim of the study was to explore the association between the SIRT1 single nucleotide polymorphism (SNP) rs3758391 and diffuse large B cell lymphoma (DLBCL) in a Chinese Han population. Methods 206 patients diagnosed with DLBCL and 219 healthy individuals were recruited in the present study. The genotyping of SIRT1 rs3758391 polymorphism was detected by polymerase chain reaction–restriction fragment length polymorphism. The SIRT1 mRNA expression was detected by the Taqman real-time quantitative PCR. Results Our study showed that the genotype TT and allele T frequency were significantly higher in DLBCL patients than that of controls (p = 0.02 and 0.01, respectively). No statistical differences were observed between SIRT1 rs3758391 and clinical characteristics of DLBCL patients. Analysis of the polymorphism revealed an increased risk of DLBCL associated with TC and TT genotype when compared with CC genotype [odds ratio = 2.621 and 3.518, respectively; 95% confidence interval (CI) 1.249–5.501 and 1.675–7.390, respectively; p = 0.011 and 0.001, respectively]. The survival analysis indicated that the patients with C allele had higher overall survival rate than those with genotype TT (p = 0.005). Furthermore, multivariate Cox regression analysis showed that the TT genotype of SIRT1 SNP rs3758391 was an independent poor prognostic factor for DLBCL patients (p = 0.006, HR 1.981, 95% CI 1.215–3.231). The SIRT1 mRNA expression was significantly upregulated in DLBCL patients than that of controls (p < 0.001). In addition, the SIRT1 mRNA expression of TT subgroup was upregulated compared with TC/CC subgroup in DLBCL patients (p < 0.001). Conclusion These results suggest that the SIRT1 rs3758391 polymorphism is associated with the risk and survival rate of DLBCL in Chinese Han population.
Collapse
Affiliation(s)
- Yutian Kan
- 1Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, 300060 People's Republic of China
| | - Peng Ge
- 2Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xinyuan Wang
- 1Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, 300060 People's Republic of China
| | - Gangfeng Xiao
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, Ningbo Medical University, Ningbo, Zhejiang People's Republic of China
| | - Haifeng Zhao
- 1Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, 300060 People's Republic of China
| |
Collapse
|
21
|
Peng Y, Zhang G, Tang H, Dong L, Gao C, Yang X, Peng Y, Xu Y. Influence of SIRT1 polymorphisms for diabetic foot susceptibility and severity. Medicine (Baltimore) 2018; 97:e11455. [PMID: 29995800 PMCID: PMC6076161 DOI: 10.1097/md.0000000000011455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to explore the influence of sirtuin 1 (SIRT1) polymorphisms (rs12778366 and rs3758391) on diabetic foot (DF) susceptibility and severity in patients with type 2 diabetes mellitus (T2DM).This case-control study recruited 142 patients with DF, 148 patients with T2DM, and 148 healthy controls. SIRT1 gene polymorphisms were sequenced by polymerase chain reaction (PCR) and direct sequencing method. The relative expression of SIRT1 mRNA was estimated using quantitative real-time PCR (qRT-PCR) assay. Odds ratio (OR) with 95% confidence interval (95% CI) were used to represent the association of SIRT1 polymorphisms with DF susceptibility and severity. The results were adjusted using logistic regression analysis.C allele of rs12778366 polymorphism was significantly correlated with reduced DF susceptibility which deriving from healthy controls (adjusted OR = 0.364, 95% CI = 0.158-0.835) so was patients with T2DM (P = .047, OR = 0.591, 95%CI = 0.349-0.998), but the results became nonsignificant adjusted by clinical features (adjusted OR = 0.654, 95% CI = 0.391-1.094). We failed to find any significant association between rs3758391 polymorphisms and T2DM, DF susceptibility. No significant association has been discovered between SIRT1 polymorphisms and DF severity or characteristics. In addition, compared to healthy control and T2DM cases, patients with DF exhibited significant downregulation of SIRT1. The 2 studied polymorphisms had no effects on its gene expression (P > .05 for all).SIRT1 rs12778366 polymorphism C allele might act as a protective factor for DF onset.
Collapse
|
22
|
Amadio P, Colombo GI, Tarantino E, Gianellini S, Ieraci A, Brioschi M, Banfi C, Werba JP, Parolari A, Lee FS, Tremoli E, Barbieri SS. BDNFVal66met polymorphism: a potential bridge between depression and thrombosis. Eur Heart J 2018; 38:1426-1435. [PMID: 26705390 DOI: 10.1093/eurheartj/ehv655] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022] Open
Abstract
Aims Epidemiological studies strongly suggest a link between stress, depression, and cardiovascular diseases (CVDs); the mechanistic correlation, however, is poorly understood. A single-nucleotide polymorphism in the BDNF gene (BDNFVal66Met), associated with depression and anxiety, has been proposed as a genetic risk factor for CVD. Using a knock-in mouse carrying the BDNFVal66Met human polymorphism, which phenocopies psychiatric-related symptoms found in humans, we investigated the impact of this SNP on thrombosis. Methods and results BDNFMet/Met mice displayed a depressive-like phenotype concomitantly with hypercoagulable state and platelet hyperreactivity. Proteomic analysis of aorta secretome from BDNFMet/Met and wild-type (WT) mice showed differential expression of proteins involved in the coagulation and inflammatory cascades. The BDNF Met allele predisposed to carotid artery thrombosis FeCl3-induced and to death after collagen/epinephrine injection. Interestingly, transfection with BDNFMet construct induced a prothrombotic/proinflammatory phenotype in WT cells. SIRT1 activation, using resveratrol and/or CAY10591, prevented thrombus formation and restored the physiological levels of coagulation and of platelet markers in BDNFMet/Met mice and/or cells transfected with the Met allele. Conversely, inhibition of SIRT1 by sirtinol and/or by specific siRNA induced the prothrombotic/proinflammatory phenotype in WT mice and cells. Finally, we found that BDNF Met homozygosity is associated with increased risk of acute myocardial infarction (AMI) in humans. Conclusion Activation of platelets, alteration in coagulation pathways, and changes in vessel wall protein expression in BDNFMet/Met mice recapitulate well the features occurring in the anxiety/depression condition. Furthermore, our data suggest that the BDNFVal66Met polymorphism contribute to the individual propensity for arterial thrombosis related to AMI.
Collapse
Affiliation(s)
- Patrizia Amadio
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy
| | | | - Eva Tarantino
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Sara Gianellini
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy
| | - Alessandro Ieraci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Maura Brioschi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy
| | - José P Werba
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy
| | - Alessandro Parolari
- Department of Cardiac Surgery, Operative Unit of Cardiac Surgery and Translational Research, Policlinico San Donato IRCCS, Milan, Italy
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, Milan 20138, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
23
|
Urinary levels of sirtuin-1 associated with disease activity in lupus nephritis. Clin Sci (Lond) 2018; 132:569-579. [PMID: 29440621 DOI: 10.1042/cs20171410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 02/09/2018] [Indexed: 12/26/2022]
Abstract
Identifying new markers of disease flares in lupus nephritis (LN) that facilitate patient stratification and prognosis is important. Therefore, the aim of the present study was to analyze whether urinary SIRT1 expression was altered in LN and whether SIRT1 values in urine could be valuable biomarker of disease activity. In a cohort study, urinary pellets from 40 patients diagnosed with systemic lupus erythematosus (SLE) were analyzed. Clinical measures of lupus activity were assessed. The expression of SIRT1 was quantified by quantitative PCR (qRT-PCR) and immunoblot, then compared between patients with active lupus nephritis, in remission and healthy controls. Association with lupus activity and renal histological features was also analyzed. A significant increase in SIRT1 mRNA levels in patients with active LN was observed compared with those in remission (P=0.02) or healthy controls (P=0.009). In addition, SIRT-1 protein levels were also augmented in LN group than remission (P=0.029) and controls (P=0.001). A strong association was found between SIRT1 expression with anti-dsDNA in SLE and in patients with LN. In addition, histological features in LN biopsies were related with SIRT1, increasing its expression in proliferative forms. Finally, SIRT1 expression values showed a strong discriminatory power of renal injury in SLE. Our study demonstrated an altered urinary expression of SIRT1 and a strong association with disease activity in LN patients, being a valuable marker of renal injury. These results showed the role of the SIRT1 pathway in the SLE pathogenesis.
Collapse
|
24
|
Beezhold K, Byersdorfer CA. Targeting immuno-metabolism to improve anti-cancer therapies. Cancer Lett 2017; 414:127-135. [PMID: 29126914 DOI: 10.1016/j.canlet.2017.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/23/2017] [Accepted: 11/04/2017] [Indexed: 01/07/2023]
Abstract
The immunology community has made significant strides in recent years in using the immune system to target and eliminate cancer. Therapies such as hematopoietic stem cell transplantation (HSCT) are the standard of care treatment for several malignancies, while therapies incorporating chimeric antigen receptor (CAR) T cells or checkpoint molecule blockade have been revolutionary. However, these approaches are not optimal for all cancers and in some cases, have failed outright. The greatest obstacle to making these therapies more effective may be rooted in one of the most basic concepts of cell biology, metabolism. Research over the last decade has revealed that T cell proliferation and differentiation is intimately linked to robust changes in metabolic activity, delineation of which may provide ways to manipulate the immuno-oncologic responses to our advantage. Here, we provide a basic overview of T cell metabolism, discuss what is known about metabolic regulation of T cells during allogeneic HSCT, point to evidence on the importance of T cell metabolism during CAR T cell and solid tumor therapies, and speculate about the role for compounds that might have dual-action on both immune cells and tumor cells simultaneously.
Collapse
Affiliation(s)
- Kevin Beezhold
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| |
Collapse
|
25
|
Jhou JP, Chen SJ, Huang HY, Lin WW, Huang DY, Tzeng SJ. Upregulation of FcγRIIB by resveratrol via NF-κB activation reduces B-cell numbers and ameliorates lupus. Exp Mol Med 2017; 49:e381. [PMID: 28960214 PMCID: PMC5628277 DOI: 10.1038/emm.2017.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
Resveratrol, an anti-inflammatory agent, can inhibit pro-inflammatory mediators by activating Sirt1, which is a class III histone deacetylase. However, whether resveratrol can regulate inhibitory or anti-inflammatory molecules has been less studied. FcγRIIB, a receptor for IgG, is an essential inhibitory receptor of B cells for blocking B-cell receptor-mediated activation and for directly inducing apoptosis of B cells. Because mice deficient in either Sirt1 or FcγRIIB develop lupus-like diseases, we investigated whether resveratrol can alleviate lupus through FcγRIIB. We found that resveratrol enhanced the expression of FcγRIIB in B cells, resulting in a marked depletion of plasma cells in the spleen and notably in the bone marrow, thereby decreasing serum autoantibody titers in MRL/lpr mice. The upregulation of FcγRIIB by resveratrol involved an increase of Sirt1 protein and deacetylation of p65 NF-κB (K310). Moreover, increased binding of phosphor-p65 NF-κB (S536) but decreased association of acetylated p65 NF-κB (K310) and phosphor-p65 NF-κB (S468) to the −480 promoter region of Fcgr2b gene was responsible for the resveratrol-mediated enhancement of FcγRIIB gene transcription. Consequently, B cells, especially plasma cells, were considerably reduced in MRL/lpr mice, leading to improvement of nephritis and prolonged survival. Taken together, we provide evidence that pharmacological upregulation of FcγRIIB expression in B cells via resveratrol can selectively reduce B cells, decrease serum autoantibodies and ameliorate lupus nephritis. Our findings lead us to propose FcγRIIB as a new target for therapeutic exploitation, particularly for lupus patients whose FcγRIIB expression levels in B cells are downregulated.
Collapse
Affiliation(s)
- Jyun-Pei Jhou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Se-Jie Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ho-Yin Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiang-Jong Tzeng
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Razi S, Cogger VC, Kennerson M, Benson VL, McMahon AC, Blyth FM, Handelsman DJ, Seibel MJ, Hirani V, Naganathan V, Waite L, de Cabo R, Cumming RG, Le Couteur DG. SIRT1 Polymorphisms and Serum-Induced SIRT1 Protein Expression in Aging and Frailty: The CHAMP Study. J Gerontol A Biol Sci Med Sci 2017; 72:870-876. [PMID: 28329314 DOI: 10.1093/gerona/glx018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/21/2017] [Indexed: 01/02/2023] Open
Abstract
The nutrient sensing protein, SIRT1 influences aging and nutritional interventions such as caloric restriction in animals, however, the role of SIRT1 in human aging remains unclear. Here, the role of SIRT1 single-nucleotide polymorphisms (SNPs) and serum-induced SIRT1 protein expression (a novel assay that detects circulating factors that influence SIRT1 expression in vitro) were studied in the Concord Health and Ageing in Men Project (CHAMP), a prospective cohort of community dwelling men aged 70 years and older. Serum-induced SIRT1 expression was not associated with age or mortality, however participants within the lowest quintile were less likely to be frail (odds ratio (OR) 0.34, 95% confidence interval (CI) 0.17-0.69, N = 1,309). Serum-induced SIRT1 expression was associated with some markers of body composition and nutrition (height, weight, body fat and lean % mass, albumin, and cholesterol) but not disease. SIRT1 SNPs rs2273773, rs3740051, and rs3758391 showed no association with age, frailty, or mortality but were associated with weight, height, body fat and lean, and albumin levels. There were some weak associations between SIRT1 SNPs and arthritis, heart attack, deafness, and cognitive impairment. There was no association between SIRT1 SNPs and the serum-induced SIRT1 assay. SIRT1 SNPs and serum-induced SIRT1 expression in older men may be more closely associated with nutrition and body composition than aging and age-related conditions.
Collapse
Affiliation(s)
- Shajjia Razi
- Centre for Education and Research on Ageing and the Ageing and Alzheimers Institute, University of Sydney and Concord Hospital, New South Wales, Australia.,ANZAC Research Institute and
| | - Victoria C Cogger
- Centre for Education and Research on Ageing and the Ageing and Alzheimers Institute, University of Sydney and Concord Hospital, New South Wales, Australia.,ANZAC Research Institute and.,Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | | | - Vicky L Benson
- Department of Physiology, University of Auckland, New Zealand
| | - Aisling C McMahon
- Centre for Education and Research on Ageing and the Ageing and Alzheimers Institute, University of Sydney and Concord Hospital, New South Wales, Australia.,Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Fiona M Blyth
- Centre for Education and Research on Ageing and the Ageing and Alzheimers Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | | | | | - Vasant Hirani
- Centre for Education and Research on Ageing and the Ageing and Alzheimers Institute, University of Sydney and Concord Hospital, New South Wales, Australia.,Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Vasikaran Naganathan
- Centre for Education and Research on Ageing and the Ageing and Alzheimers Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Louise Waite
- Centre for Education and Research on Ageing and the Ageing and Alzheimers Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Robert G Cumming
- School of Public Health, University of Sydney, New South Wales, Australia
| | - David G Le Couteur
- Centre for Education and Research on Ageing and the Ageing and Alzheimers Institute, University of Sydney and Concord Hospital, New South Wales, Australia.,ANZAC Research Institute and.,Charles Perkins Centre, University of Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Wang Q, Yan C, Xin M, Han L, Zhang Y, Sun M. Sirtuin 1 (Sirt1) Overexpression in BaF3 Cells Contributes to Cell Proliferation Promotion, Apoptosis Resistance and Pro-Inflammatory Cytokine Production. Med Sci Monit 2017; 23:1477-1482. [PMID: 28346398 PMCID: PMC5380195 DOI: 10.12659/msm.900754] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background B lymphocyte hyperactivity is a main characteristic of systemic lupus erythematosus (SLE), and B lymphocytes play a prominent pathogenic role in the development and progression of SLE. The aim of this study was to investigate the role of Sirtuin 1 (Sirt1) in B lymphocytes. Material/Methods Mouse B lymphocytes BaF3 was transfected with Sirt1 vector or shRNA against Sirt1. Then the transfected cells viability and apoptosis were respectively determined by MTT assay and flow cytometry. In addition, the mRNA levels of three pro-inflammatory cytokines and p53 were detected by RT-PCR. Furthermore, the expression levels of nuclear factor-kappa B (NF-κB) pathway proteins were measured by Western blot. Results Overexpression of Sirt1 significantly increased cell proliferation (p<0.05 or p<0.01) and significantly suppressed apoptosis (p<0.05). The mRNA level expressions of interleukin 1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α) were significantly upregulated (p<0.05 or p<0.01), whereas p53 was significantly downregulated (p<0.05) by Sirt1 overexpression. In addition, the inhibitory subunit of NF-κB (IκBα) and p65 were significantly activated and phosphorylated (p<0.01 or p<0.001), and B-Cell CLL/Lymphoma 3 (Bcl-3) was significantly upregulated (p<0.05) by Sirt1 overexpression. Conclusions These results suggested that Sirt1 overexpression could promote BaF3 cell proliferation, inhibit apoptosis, and upregulate pro-inflammatory cytokines. The NF-κB pathway might be involved in these effects of Sirt1 on BaF3 cells, and Sirt1 might be a potential risk factor of SLE.
Collapse
Affiliation(s)
- Qian Wang
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Chao Yan
- Department of Rheumatology, Qilu Hospital of Shandong University (Qingdao Branch), Qingdao, Shandong, China (mainland)
| | - Miaomiao Xin
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Li Han
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yunqing Zhang
- Department of Rheumatology, Qilu Hospital of Shandong University (Qingdao Branch), Qingdao, Shandong, China (mainland)
| | - Mingshu Sun
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
28
|
Buler M, Andersson U, Hakkola J. Who watches the watchmen? Regulation of the expression and activity of sirtuins. FASEB J 2016; 30:3942-3960. [PMID: 27591175 DOI: 10.1096/fj.201600410rr] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023]
Abstract
Sirtuins (SIRT1-7) are a family of nicotine adenine dinucleotide (NAD+)-dependent enzymes that catalyze post-translational modifications of proteins. Together, they regulate crucial cellular functions and are traditionally associated with aging and longevity. Dysregulation of sirtuins plays an important role in major diseases, including cancer and metabolic, cardiac, and neurodegerative diseases. They are extensively regulated in response to a wide range of stimuli, including nutritional and metabolic challenges, inflammatory signals or hypoxic and oxidative stress. Each sirtuin is regulated individually in a tissue- and cell-specific manner. The control of sirtuin expression involves all the major points of regulation, including transcriptional and post-translational mechanisms and microRNAs. Collectively, these mechanisms control the protein levels, localization, and enzymatic activity of sirtuins. In many cases, the regulators of sirtuin expression are also their substrates, which lead to formation of intricate regulatory networks and extensive feedback loops. In this review, we highlight the mechanisms mediating the physiologic and pathologic regulation of sirtuin expression and activity. We also discuss the consequences of this regulation on sirtuin function and cellular physiology.-Buler, M., Andersson, U., Hakkola, J. Who watches the watchmen? Regulation of the expression and activity of sirtuins.
Collapse
Affiliation(s)
- Marcin Buler
- Drug Safety and Metabolism, AstraZeneca R&D, Göteborg, Sweden
| | - Ulf Andersson
- Drug Safety and Metabolism, AstraZeneca R&D, Göteborg, Sweden
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; and .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
29
|
Rizk SM, Shahin NN, Shaker OG. Association between SIRT1 Gene Polymorphisms and Breast Cancer in Egyptians. PLoS One 2016; 11:e0151901. [PMID: 26999517 PMCID: PMC4801365 DOI: 10.1371/journal.pone.0151901] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
Background Breast cancer is reported to cause the highest mortality among female cancer patients. Previous studies have explored the association of silent mating-type information regulator 2 homolog 1 (SIRT1) gene expression with prognosis in breast cancer. However, no studies exist, so far, on the role of SIRT1 gene polymorphism in breast cancer risk or prognosis. The present study aimed to assess the association between SIRT1 gene polymorphisms and breast cancer in Egyptians. Methods The study comprised 980 Egyptian females divided into a breast cancer group (541 patients) and a healthy control group (439 subjects). SIRT1 gene single nucleotide polymorphisms (SNPs) rs3758391, rs3740051 and rs12778366 were genotyped using real-time polymerase chain reaction (RT-PCR). Allelic and genotypic frequencies were determined in both groups and association with breast cancer and clinicopathological characteristics was assessed. Results Breast cancer patients exhibited elevated serum SIRT1 levels which varied among different tumor grades. SIRT1 rs3758391 and rs12778366 TT genotypes were more frequent, exhibited higher SIRT1 levels than CC and CT genotypes and were associated with histologic grade and lymph node status. SIRT1 rs12778366 TT genotype also correlated with negative estrogen receptor (ER) and progesterone receptor (PR) statuses. The T allele frequency for both SNPs was higher in breast cancer patients than in normal subjects. Combined GG and AG genotypes of rs3740051 were more frequent, showed higher serum SIRT1 levels than the AA genotype, and were associated with ER and PR expression. Furthermore, inheritance of the G allele was associated with breast cancer. Conclusions Our findings reveal that rs3758391 and rs12778366 polymorphisms of SIRT1 gene are associated with breast cancer risk and prognosis in the Egyptian population.
Collapse
Affiliation(s)
- Sherine M. Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nancy N. Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail:
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
30
|
Chen Z, Zhai Y, Zhang W, Teng Y, Yao K. Single Nucleotide Polymorphisms of the Sirtuin 1 (SIRT1) Gene are Associated With age-Related Macular Degeneration in Chinese Han Individuals: A Case-Control Pilot Study. Medicine (Baltimore) 2015; 94:e2238. [PMID: 26656366 PMCID: PMC5008511 DOI: 10.1097/md.0000000000002238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To investigate whether 3 variants in sirtuin 1 (SIRT1) gene contributed differently in patients with age-related macular degeneration (AMD) in a Chinese Han population.We conducted a case-control study in a group of Chinese patients with AMD (n = 253) and contrasted the results against a control group (n = 292). Three single nucleotide polymorphisms (SNPs) of SIRT1 gene including rs12778366, rs3740051, and rs4746720 were genotyped using improved multiplex ligase detection reaction. The association between targeted SNPs and AMD was then analyzed by codominant, dominant, recessive, and allelic models.The genotyping data of rs12778366, rs3740051, and rs4746720 revealed significant deviations from Hardy-Weinberg equilibrium tests in the AMD group but not in the control group.We detected significantly differences of rs12778366 allele distribution between 2 groups in recessive and codominant model (P < 0.05). Homozygous carriers of the risk allele C displayed a higher chance of developing AMD (P = 0.036, odds ratio = 3.227; 95% confidence interval: 1.015-10.265).Our study, for the first time, raises the possibility that genetic variations of SIRT1 could be implicated in the pathophysiology of AMD in the Chinese Han population.
Collapse
Affiliation(s)
- Zhiqing Chen
- From the Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China (ZC, YZ, YT, KY); Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China (ZC, YZ, YT, KY); and Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China (WZ)
| | | | | | | | | |
Collapse
|
31
|
Chiaranunt P, Ferrara JLM, Byersdorfer CA. Rethinking the paradigm: How comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Mol Immunol 2015; 68:564-74. [PMID: 26359186 PMCID: PMC11523081 DOI: 10.1016/j.molimm.2015.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/15/2015] [Accepted: 07/19/2015] [Indexed: 02/09/2023]
Abstract
The classic paradigm of T cell metabolism posits that activated Teff cells utilize glycolysis to keep pace with increased energetic demands, while resting and Tmem cells rely on the oxidation of fat. In contrast, Teff cells during graft-versus-host disease (GVHD) increase their reliance on oxidative metabolism and, in particular, on fatty acid oxidation (FAO). To explore the potential mechanisms driving adoption of this alternative metabolism, we first review key pathways regulating FAO across a variety of disparate tissue types, including liver, heart, and skeletal muscle. Based upon these comparative studies, we then outline a consensus network of transcriptional and signaling pathways that predict a model for regulating FAO in Teff cells during GVHD. This model raises important implications about the dynamic nature of metabolic reprogramming in T cells and suggests exciting future directions for further study of in vivo T cell metabolism.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States
| | - James L M Ferrara
- The Tisch Cancer Institute & Division of Hematology/Medical Oncology, Icahn School of Medicine, Hess Center for Science and Medicine, New York, NY 10029, United States
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States.
| |
Collapse
|
32
|
Mohtavinejad N, Nakhaee A, Harati H, Poodineh J, Afzali M. SIRT1 gene is associated with cardiovascular disease in the Iranian population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2014.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|