1
|
Dubey PR, Kaur G, Shukla R. Nano-mediated Management of Metal Toxicity-induced Neurodegeneration: A Critical Review. Mol Neurobiol 2025:10.1007/s12035-025-04782-z. [PMID: 39994160 DOI: 10.1007/s12035-025-04782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Heavy metals, omnipresent in the environment, though imperative in trace quantities for human physiology, become a serious health hazard due to their toxicity. Copper, arsenic, lead, iron, and mercury are some examples of the heavy metals responsible for oxidative stress, which is one of the primary factors behind neurodegenerative diseases like Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Neurodegeneration is caused by toxicity due to environmental exposure to these toxic substances or genetic variation. Conventional therapies, relying on chelation and antioxidants, suffer from the broader perspective of metal removal in a non-selective manner and poor targeting of the brain. In this respect, treatments based on nanotechnology that employ nanoparticles such as dendrimers, micelles, and liposomes constitute a promising interest in enhancing drug delivery with minimal neurotoxicity. The present review outlines the heavy metals responsible for neurodegenerative diseases, their pathophysiology, management strategies available at present, and the scope of nanotechnology intervention in overcoming shortcomings of conventional therapies. The genetic influence of heavy metals on neurological health is also part of this article.
Collapse
Affiliation(s)
- Priyanshu Rajesh Dubey
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Gagandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
2
|
Noureldeen ME, Shahin NN, Amin HAA, El-Sawalhi MM, Ghaiad HR. Parthenolide ameliorates 3-nitropropionic acid-induced Huntington's disease-like aberrations via modulating NLRP3 inflammasome, reducing microglial activation and inducing astrocyte shifting. Mol Med 2024; 30:158. [PMID: 39327568 PMCID: PMC11425901 DOI: 10.1186/s10020-024-00917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is a progressive neurodegenerative disease that causes motor, cognitive, and psychiatric abnormalities, with no satisfying disease-modifying therapy so far. 3-nitropropionic acid (3NP) induces behavioural deficits, together with biochemical and histological alterations in animals' striata that mimic HD. The role of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in HD pathogenesis remains largely uncharacterized. Parthenolide (PTL), a naturally occurring nuclear factor kappa B (NF-κB) inhibitor, is also known to inhibit NLRP3 inflammasome. Whether PTL is beneficial in HD has not been established yet. AIM This study evaluated the possible neuroprotective effects of PTL against 3NP-induced behavioural abnormalities, striatal biochemical derangements, and histological aberrations. METHODS Male Wistar rats received PTL (0.5 mg/kg/day, i.p) for 3 weeks and 3NP (10 mg/kg/day, i.p) was administered alongside for the latter 2 weeks to induce HD. Finally, animals were subjected to open-field, Morris water maze and rotarod tests. Rat striata were examined histologically, striatal protein expression levels of glial fibrillary acidic protein (GFAP), cluster of differentiation 45 (CD45) and neuron-specific enolase (NSE) were evaluated immunohistochemically, while those of interleukin (IL)-1β, IL-18, ionized calcium-binding adapter molecule-1 (Iba1) and glutamate were determined by ELISA. Striatal nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein (Keap1), NF-κB, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, S100 calcium-binding protein A10 (S100A10) and complement-3 (C3) were assessed by gene expression analysis. RESULTS PTL improved motor, locomotor, cognitive and anxiety-like behaviours, restored neuronal integrity, upregulated Nrf2, and inhibited NLRP3 inflammasome, NF-κB and microglial activation. Additionally, PTL induced astrocyte shifting towards the neuroprotective A2 phenotype. CONCLUSION PTL exhibits neuroprotection against 3NP-induced HD, that might be ascribed, at least in part, to its modulatory effects on Keap1/Nrf2 and NF-κB/NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Mona E Noureldeen
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Hebat Allah A Amin
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Maha M El-Sawalhi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Heba R Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Ibrahim DS, Shahen EMS. Effect of royal jelly on acrylamide-induced neurotoxicity in rats. J Chem Neuroanat 2023; 134:102358. [PMID: 37925036 DOI: 10.1016/j.jchemneu.2023.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Royal Jelly (RJ) is a natural product made by nurse bees known for its multiple therapeutic properties. The research aims to discover the ability of RJ to improve the hematological alterations and neurotoxicity caused by acrylamide (AA). The study rats were separated equally into four groups (6 in each group), the control group, the AA (38.27 mg/kg bw) group, the RJ (150 mg/kg bw) + AA group, and the RJ (300 mg/kg bw) + AA group. Blood and brain samples were collected after 10 days to evaluate haematological and biochemical parameters and to examine histopathological and immunohistochemistry. The administration of AA increased the level of malondialdehyde (MDA), decreases levels of haematological parameters, superoxide dismutase (SOD), reduced glutathione (GSH), brain-derived neurotrophic factor (BDNF), neurotransmitters (serotonin, dopamine, and acetylcholine), and cleaved caspase-3, as well as increase the damage to the brain tissues. Meanwhile, RJ improved levels of haematological parameters, oxidative stress parameters (MDA, SOD, and GSH), BDNF, neurotransmitters, cleaved caspase-3, and brain tissue damage induced by AA. The study demonstrated the protective impact of RJ against the haematological alterations and neurotoxicity caused by AA.
Collapse
Affiliation(s)
- Doaa S Ibrahim
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt.
| | - Eman M S Shahen
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
4
|
Mannino F, Pallio G, Imbesi C, Scarfone A, Puzzolo D, Micali A, Freni J, Squadrito F, Bitto A, Minutoli L, Irrera N. Beta-Caryophyllene, a Plant-Derived CB2 Receptor Agonist, Protects SH-SY5Y Cells from Cadmium-Induced Toxicity. Int J Mol Sci 2023; 24:15487. [PMID: 37895166 PMCID: PMC10607613 DOI: 10.3390/ijms242015487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Cadmium (Cd) is a transition heavy metal that is able to accumulate in the central nervous system and may induce cell death through reactive oxygen species (ROS)-mediated mechanisms and inactivating the antioxidant processes, becoming an important risk factor for neurodegenerative diseases. The antioxidant effects of cannabinoid receptor modulation have been extensively described, and, in particular, β-Caryophyllene (BCP), a plant-derived cannabinoid 2 receptor (CB2R) agonist, not only showed significant antioxidant properties but also anti-inflammatory, analgesic, and neuroprotective effects. Therefore, the aim of the present study was to evaluate BCP effects in a model of Cd-induced toxicity in the neuroblastoma SH-SY5Y cell line used to reproduce Cd intoxication in humans. SH-SY5Y cells were pre-treated with BCP (25, 50, and 100 μM) for 24 h. The day after, cells were challenged with cadmium chloride (CdCl2; 10 μM) for 24 h to induce neuronal toxicity. CdCl2 increased ROS accumulation, and BCP treatment significantly reduced ROS production at concentrations of 50 and 100 μM. In addition, CdCl2 significantly decreased the protein level of nuclear factor erythroid 2-related factor 2 (Nrf2) compared to unstimulated cells; the treatment with BCP at a concentration of 50 μM markedly increased Nrf2 expression, thus confirming the BCP anti-oxidant effect. Moreover, BCP treatment preserved cells from death, regulated the apoptosis pathway, and showed a significant anti-inflammatory effect, thus reducing the pro-inflammatory cytokines increased by the CdCl2 challenge. The results indicated that BCP preserved neuronal damage induced by Cd and might represent a future candidate for protection in neurotoxic conditions.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (G.P.); (D.P.); (J.F.)
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Alessandro Scarfone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (G.P.); (D.P.); (J.F.)
| | - Antonio Micali
- Department of Adult and Childhood Pathology “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (G.P.); (D.P.); (J.F.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| |
Collapse
|
5
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|
6
|
Sola E, Moyano P, Flores A, García JM, García J, Anadon MJ, Frejo MT, Pelayo A, de la Cabeza Fernandez M, Del Pino J. Cadmium-promoted thyroid hormones disruption mediates ROS, inflammation, Aβ and Tau proteins production, gliosis, spongiosis and neurodegeneration in rat basal forebrain. Chem Biol Interact 2023; 375:110428. [PMID: 36868496 DOI: 10.1016/j.cbi.2023.110428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Cadmium (Cd) produces cognition decline following single and repeated treatment, although the complete mechanisms are still unrevealed. Basal forebrain (BF) cholinergic neurons innervate the cortex and hippocampus, regulating cognition. Cd single and repeated exposure induced BF cholinergic neuronal loss, partly through thyroid hormones (THs) disruption, which may cause the cognition decline observed following Cd exposure. However, the mechanisms through which THs disruption mediate this effect remain unknown. To research the possible mechanisms through which Cd-induced THs deficiency may mediate BF neurodegeneration, Wistar male rats were treated with Cd for 1- (1 mg/kg) or 28-days (0.1 mg/kg) with or without triiodothyronine (T3, 40 μg/kg/day). Cd exposure promoted neurodegeneration, spongiosis, gliosis and several mechanisms related to these alterations (increased H202, malondialdehyde, TNF-α, IL-1β, IL-6, BACE1, Aβ and phosphorylated-Tau levels, and decreased phosphorylated-AKT and phosphorylated-GSK-3β levels). T3 supplementation partially reversed the effects observed. Our results show that Cd induces several mechanisms that may be responsible for the neurodegeneration, spongiosis and gliosis observed in the rats' BF, which are partially mediated by a reduction in THs levels. These data may help to explain the mechanisms through which Cd induces BF neurodegeneration, possibly leading to the cognitive decline observed, providing new therapeutic tools to prevent and treat these damages.
Collapse
Affiliation(s)
- Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Maria de la Cabeza Fernandez
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Ozturk Kurt B, Ozdemir S. Selenium Heals the Chlorpyrifos-Induced Oxidative Damage and Antioxidant Enzyme Levels in the Rat Tissues. Biol Trace Elem Res 2023; 201:1772-1780. [PMID: 35522419 DOI: 10.1007/s12011-022-03271-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Chlorpyrifos (CPF), mainly exposed by oral, dermal, or inhalation, is a broad-spectrum organophosphate pesticide used in pest control, increasing agricultural productivity, and being considered toxic to living things. Selenium (Se), an essential component of selenoenzymes and selenoproteins, is an essential element that protects cells from oxidative stress and has antioxidant properties. The study aimed to examine the oxidative stress caused by different doses of CPF exposure in brain, liver, and kidney tissues while observing the healing effect of Se application on tissue damage and antioxidant levels. A total of 56 rats were divided into seven different groups: 1st group control (water); 2nd group sham (corn oil); the 3rd group was CPF-L (5.4 mg/kg CPF); the 4th group was CPF-H (13.5 mg/kg CPF); the 5th group was Se (3 mg/kg Se); 6th group was CPF-L + Se (5.4 mg/kg CPF + 3 mg/kg Se); the 7th group was CPF-H + Se (13.5 mg/kg CPF + 3 mg/kg Se). The brain, liver, and kidney tissues were obtained from rats sacrificed 6 weeks later. Acetylcholinesterase (AChE), oxidant, and antioxidant parameters were examined in the tissues. The results suggest that CPF causes neurotoxicity, hepatotoxicity, and renal toxicity by altering AChE levels, inducing lipid peroxidation, and decreasing antioxidant systems. Se treatment increased the activities of AChE and, antioxidant defense system and reduced the malondialdehyde (MDA) levels in the brain, liver, and kidney tissues of rats. Se was found to heal and also protect these tissues against these changes resulting from CPF exposure.
Collapse
Affiliation(s)
- Bahar Ozturk Kurt
- Department of Biophysics, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, 34096, Fatih/Istanbul, Turkey.
| | - Semra Ozdemir
- Department of Biophysics, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, 34096, Fatih/Istanbul, Turkey
| |
Collapse
|
8
|
Kamt SF, Liu J, Yan LJ. Renal-Protective Roles of Lipoic Acid in Kidney Disease. Nutrients 2023; 15:1732. [PMID: 37049574 PMCID: PMC10097220 DOI: 10.3390/nu15071732] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The kidney is a crucial organ that eliminates metabolic waste and reabsorbs nutritious elements. It also participates in the regulation of blood pressure, maintenance of electrolyte balance and blood pH homeostasis, as well as erythropoiesis and vitamin D maturation. Due to such a heavy workload, the kidney is an energy-demanding organ and is constantly exposed to endogenous and exogenous insults, leading to the development of either acute kidney injury (AKI) or chronic kidney disease (CKD). Nevertheless, there are no therapeutic managements to treat AKI or CKD effectively. Therefore, novel therapeutic approaches for fighting kidney injury are urgently needed. This review article discusses the role of α-lipoic acid (ALA) in preventing and treating kidney diseases. We focus on various animal models of kidney injury by which the underlying renoprotective mechanisms of ALA have been unraveled. The animal models covered include diabetic nephropathy, sepsis-induced kidney injury, renal ischemic injury, unilateral ureteral obstruction, and kidney injuries induced by folic acid and metals such as cisplatin, cadmium, and iron. We highlight the common mechanisms of ALA's renal protective actions that include decreasing oxidative damage, increasing antioxidant capacities, counteracting inflammation, mitigating renal fibrosis, and attenuating nephron cell death. It is by these mechanisms that ALA achieves its biological function of alleviating kidney injury and improving kidney function. Nevertheless, we also point out that more comprehensive, preclinical, and clinical studies will be needed to make ALA a better therapeutic agent for targeting kidney disorders.
Collapse
Affiliation(s)
- Sulin F. Kamt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China;
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
9
|
Nazarinia D, Karimpour S, Hashemi P, Dolatshahi M. Neuroprotective effects of Royal Jelly (RJ) against pentylenetetrazole (PTZ)-induced seizures in rats by targeting inflammation and oxidative stress. J Chem Neuroanat 2023; 129:102255. [PMID: 36878412 DOI: 10.1016/j.jchemneu.2023.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Epilepsy is a chronic neurological condition in which inflammation and oxidative stress play a key role in the pathogenesis. Recently, several studies have suggested that Royal Jelly (RJ) has antioxidant effects. Nevertheless, there is no evidence of its effectiveness against epilepsy. Here, we evaluated its neuroprotective effects at different doses (100 and 200 mg/kg) against pentylenetetrazole (PTZ)-induced seizures. Fifty male Wistar rats were randomly divided into five groups: control, PTZ, RJ100 + PTZ, RJ200 + PTZ and RJ100. In order to establish epilepsy model, 45 mg/kg of PTZ was injected intraperitoneally for 10 consecutive days. Seizure parameters were graded based on Racine's 7-point classification. Elevated-plus maze, Y maze and shuttle box tests were carried out to assess anxiety-like behavior, short-term memory, and passive avoidance memory, respectively. We used ELISA technique to measure the expression of the pro-inflammatory cytokines and oxidative stress factors. Also, neuronal loss in the hippocampal CA3 region was determined using Nissl staining. Our findings showed that PTZ-treated rats had more seizure intensity, anxiety-like behavior, memory dysfunction, higher levels of TNF-α, IL-1β, and oxidative markers. RJ could allay seizure severity and duration. It also improved memory function as well as anxiety level. In terms of biochemical assessment, RJ gave rise to a significant decrease in the level of IL-1β, TNF-α and MDA and it restored the activities of GPX and SOD enzymes. Hence, our study shows that RJ contains anti-inflammatory and antioxidative effects which contribute to less neuronal damage in the PTZ-induced epilepsy model.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Sepideh Karimpour
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Paria Hashemi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
10
|
Anticonvulsant Effects of Royal Jelly in Kainic Acid-Induced Animal Model of Temporal Lobe Epilepsy Through Antioxidant Activity. Neurochem Res 2023; 48:2187-2195. [PMID: 36856963 DOI: 10.1007/s11064-023-03897-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of partial and drug-resistant epilepsy, characterized by recurrent seizures originating from temporal lobe structures like the hippocampus. Hippocampal sclerosis and oxidative stress are two important factors in the pathogenesis of TLE that exacerbate epileptic seizures in this form of epilepsy. Recently, royal jelly (RJ) shown to have neuroprotective and antioxidant activities in several neurodegenerative models. Therefore, the aim of the present study was to investigate the pretreatment effect of RJ on epileptic seizures, hippocampal neuronal loss, and oxidative stress in the rat model of kainic acid (KA)-induced TLE. To this aim, 40 male Wistar rats weighing 200-250 g were divided into 4 groups, including control, vehicle, KA, and RJ + KA. Rats received RJ (150 mg/kg/day) for 14 days before induction of TLE with KA. Epileptic behaviors were evaluated according to Racine's scale. Oxidative stress markers including, malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant capacity (TAC) as well as neuronal loss in the CA1 region of the hippocampus (using Nissl staining) were evaluated in all groups. Our findings showed that RJ pretreatment significantly reduced the seizure score and increased the latency to the first seizure. RJ also reduced MDA and TOS while increasing TAC. In addition, RJ reversed neuronal damage in the hippocampal CA1 and CA3 areas. In conclusion, our results suggest that RJ has anticonvulsant and neuroprotective effects in KA induced TLE via its antioxidative properties.
Collapse
|
11
|
Raoufi S, Salavati Z, Komaki A, Shahidi S, Zarei M. Royal jelly improves learning and memory deficits in an amyloid β-induced model of Alzheimer's disease in male rats: Involvement of oxidative stress. Metab Brain Dis 2023; 38:1239-1248. [PMID: 36809522 DOI: 10.1007/s11011-023-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023]
Abstract
Alzheimer's disease (AD) as the commonest type of dementia is associated with the cognitive function failure. Oxidative stress performs an essential role in the progression of AD. Royal jelly (RJ) is a natural product of bees with antioxidant and anti-inflammatory properties. The present research aimed to investigate the possible protective effect of RJ on learning and memory in a rat model of Aβ-induced AD. Forty male adult Wistar rats were equally distributed into five groups: control, sham-operated, Aβ (receiving intracerebroventricular (ICV) injection of amyloid beta (Aβ1-40)), Aβ + RJ 50 mg/kg, and Aβ + RJ 100 mg/kg. RJ was administered daily post-surgery by oral gavage for four weeks. Behavioral learning and memory were examined using the novel object recognition (NOR) and passive avoidance learning (PAL) tests. Also, oxidative stress markers, such as malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant capacity (TAC), were assessed in the hippocampus. Aβ reduced step-through latency (STLr) and increased time spent in the dark compartment (TDC) in the PAL task and also decreased discrimination index in the NOR test. Administration of RJ ameliorated the Aβ-related memory impairment in both NOR and PAL tasks. Aβ decreased TAC and increased MDA and TOS levels in the hippocampus, whereas RJ administration reversed these Aβ-induced alterations. Our results indicated that RJ has the potential to ameliorate learning and memory impairment in the Aβ model of AD via attenuating oxidative stress.
Collapse
Affiliation(s)
- Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Salavati
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Aslan A, Beyaz S, Gok O, Parlak G, Can MI, Agca CA, Ozercan IH, Parlak AE. Royal jelly protects brain tissue against fluoride-induced damage by activating Bcl-2/NF-κB/caspase-3/caspase-6/Bax and Erk signaling pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49014-49025. [PMID: 36759409 DOI: 10.1007/s11356-023-25636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
This study is aimed at determining whether royal jelly (RJ) which has a powerful antioxidant property prevents fluoride-induced brain tissue damage and exploring whether Bcl-2/NF-κB/ and caspase-3/caspase-6/Bax/Erk pathways play a critical role in the neuroprotective effect of RJ. Wistar albino rats were chosen for the study, and they were randomly distributed into six groups: (i) control; (ii) royal jelly; (iii) fluoride-50; (iv) fluoride-100; (v) fluoride-50 + royal jelly; (vi) fluoride-100 + royal jelly. We established fluoride-induced brain tissue damage with 8-week-old male Wistar albino rats by administration of fluoride exposure (either 50 mg/kg or 100 mg/kg bw) through drinking water for 8 weeks. Then, the study duration is for 56 days where the rats were treated with or without RJ (100 mg/kg bw) through oral gavage. The effects of RJ on glutathione (GSH), catalase activity (CAT), and malondialdehyde (MDA) levels were determined via spectrophotometer. Western blot analysis was performed to investigate the effects of royal jelly on the protein expression levels of Bax, caspase-3, caspase-6, Bcl-2, NF-κB, COX-2, and Erk. It was also studied the effects of RJ on histopathological alterations in fluoride-induced damage to the rat brain. As a result, the Bcl-2, NF-κB, and COX-2 protein expression levels were increased in the fluoride-treated (50 and 100 mg/kg) groups but they were decreased significantly by RJ treatment in the brain tissue. Additionally, the protein expression of caspase-3, caspase-6, Bax, and Erk were decreased in fluoride-treated groups and they were significantly increased by RJ treatment compared to the un-treated rats. Our results suggested that RJ prevented fluoride-induced brain tissue damage through anti-antioxidant activities.
Collapse
Affiliation(s)
- Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey.
| | - Seda Beyaz
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Gozde Parlak
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Muhammed Ismail Can
- Faculty of Science, Department of Biology, Inonu University, Malatya, Turkey
| | - Can Ali Agca
- Faculty of Science, Department of Molecular Biology and Genetics 12000, Bingol University, Bingol, Turkey
| | | | - Akif Evren Parlak
- Department of Environmental Protection Technologies, Keban Vocational School, Firat University, Elazig, Turkey
| |
Collapse
|
13
|
Kheirdeh M, Koushkie Jahromi M, Hemmatinafar M, Nemati J. Additive beneficial effects of aerobic training and royal jelly on hippocampal inflammation and function in experimental autoimmune encephalomyelitis rats. Mult Scler Relat Disord 2023; 70:104527. [PMID: 36696832 DOI: 10.1016/j.msard.2023.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Although the beneficial role of training and the use of some antioxidants in physiological and psychological disorders in autoimmune diseases has been reported, the simultaneous effect of aerobic training (AT) and royal jelly (RJ) with different doses is not well understood. The present study aimed to investigate the impact of AT and RJ on inflammatory factors in the hippocampus, as well as depression and anxiety in the experimental autoimmune encephalomyelitis (EAE). METHODS Sprague-Dawley rats with EAE were assigned to seven groups: (1) EAE without any other intervention (EAE); (2) sham, receiving normal saline (Sh); (3) 50 mg/kg RJ (RJ50); (4) 100 mg/kg RJ (RJ100); (5) AT; (6) AT + RJ50; and (7) AT + RJ100. In addition, a healthy control group was assessed. RESULTS EAE significantly increased interleukin 17 (IL-17), transforming growth factor-β (TGF-β) gene expression and immobilization time as well as anxiety and depression indices, and significantly decreased interleukin 10 (IL-10), compared to the control group. AT decreased significantly IL-17, TGF-β gene expression and immobilization time as well as anxiety and depression indices, while it significantly increased IL-10, compared to the EAE group. RJ50 and RJ100 decreased significantly IL-17, IL-23 gene expression, anxiety and depression indices, and significantly increased IL-10 compared to the EAE group. AT + RJ50 and AT + RJ100 significantly decreased IL-17, IL-23, and TGF-β and as well as anxiety and depression indices while significantly increasing IL-10 compared to the EAE group. The effects of AT + RJ100 on significant decreasing IL-17, IL-23, anxiety and depression and increasing TGF-β, IL-10 were more favorable than RJ50. CONCLUSION AT and RJ improved inflammatory and regulatory factors of autoimmunity and reduced anxiety and depression. The RJ combined with AT induced additive effects while using RJ100 was more favorable than RJ50.
Collapse
Affiliation(s)
- Maryam Kheirdeh
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Iran
| | | | - Mohammad Hemmatinafar
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Iran
| | - Javad Nemati
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Iran
| |
Collapse
|
14
|
Almeer RS, Alkahtani S, Alarifi S, Moneim AEA, Abdi S, Albasher G. Ziziphus spina-christi Leaf Extract Mitigates Mercuric Chloride-induced Cortical Damage in Rats. Comb Chem High Throughput Screen 2022; 25:103-113. [PMID: 33280592 DOI: 10.2174/1386207323666201204124412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/23/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mercuric chloride (HgCl2) severely impairs the central nervous system when humans are exposed to it. AIMS We investigated the neuroprotective efficiency of Ziziphus spina-christi leaf extract (ZSCLE) on HgCl2-mediated cortical deficits. METHODS Twenty-eight rats were distributed equally into four groups: the control, ZSCLE-treated (300 mg/kg), HgCl2-treated (0.4 mg/kg), and ZSCLE+HgCl2-treated groups. Animals received their treatments for 28 days. RESULTS Supplementation with ZSCLE after HgCl2 exposure prevented the deposition of mercury in the cortical slices. It also lowered malondialdehyde levels and nitrite and nitrate formation, elevated glutathione levels, activated its associated-antioxidant enzymes, glutathione reductase, and glutathione peroxidase, and upregulated the transcription of catalase and superoxide dismutase and their activities were accordingly increased. Moreover, ZSCLE activated the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 when compared with the HgCl2 group. Notably, post-treatment with ZSCLE increased the activity of acetylcholinesterase and ameliorated the histopathological changes associated with HgCl2 exposure. Furthermore, ZSCLE blocked cortical inflammation, as observed by the lowered mRNA expression and protein levels of interleukin-1 beta and tumor necrosis factor-alpha, as well as decreased mRNA expression of inducible nitric oxide synthase. In addition, ZSCLE decreased neuron loss by preventing apoptosis in the cortical tissue upon HgCl2 intoxication. CONCLUSION Based on the obtained findings, we suggest that ZSCLE supplementation could be applied as a neuroprotective agent to decrease neuron damage following HgCl2 toxicity.
Collapse
Affiliation(s)
- Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo,Egypt
| | - Saba Abdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| |
Collapse
|
15
|
Sola E, Moyano P, Flores A, García J, García JM, Anadon MJ, Frejo MT, Pelayo A, de la Cabeza Fernandez M, Del Pino J. Cadmium-induced neurotoxic effects on rat basal forebrain cholinergic system through thyroid hormones disruption. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103791. [PMID: 34968718 DOI: 10.1016/j.etap.2021.103791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) single and repeated exposure produces cognitive dysfunctions. Basal forebrain cholinergic neurons (BFCN) regulate cognitive functions. BFCN loss or cholinergic neurotransmission dysfunction leads to cognitive disabilities. Thyroid hormones (THs) maintain BFCN viability and functions, and Cd disrupts their levels. However, Cd-induced BFCN damages and THs disruption involvement was not studied. To research this we treated male Wistar rats intraperitoneally with Cd once (1 mg/kg) or repetitively for 28 days (0.1 mg/kg) with/without triiodothyronine (T3, 40 µg/kg/day). Cd increased thyroid-stimulating-hormone (TSH) and decreased T3 and tetraiodothyronine (T4). Cd altered cholinergic transmission and induced a more pronounced neurodegeneration on BFCN, mediated partially by THs reduction. Additionally, Cd antagonized muscarinic 1 receptor (M1R), overexpressed acetylcholinesterase S variant (AChE-S), downregulated AChE-R, M2R, M3R and M4R, and reduced AChE and choline acetyltransferase activities through THs disruption. These results may assist to discover cadmium mechanisms that induce cognitive disabilities, revealing a new possible therapeutic tool.
Collapse
Affiliation(s)
- Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Maria de la Cabeza Fernandez
- Department of Chemistry in Pharmaceutical Sciences, Pharnacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
16
|
Zaazaa AM, Abd El-Motelp BA, Ali NA, Youssef AM, Sayed MA, Mohamed SH. Stem cell-derived exosomes and copper sulfide nanoparticles attenuate the progression of neurodegenerative disorders induced by cadmium in rats. Heliyon 2022; 8:e08622. [PMID: 35028441 PMCID: PMC8741450 DOI: 10.1016/j.heliyon.2021.e08622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
The goal of the current study was to investigate the therapeutic effects of exosomes derived from mesenchymal stem cells (MSCs-Exo) and copper sulfide nanoparticles (CuSNPs) as biomaterials in order to understand the mechanisms that contribute to overcoming cadmium (Cad) induced neurological disorders in rats. Animals were divided into five groups (n = 10): group 1 was served as a negative control and receive vehicle saline (Con), group 2 Positive control groups were received Cad as cadmium chloride at a dose of 20 mg/kg/day for six weeks (Cad group), group 3 was received Cad plus MSCs-Exo as a single dose of 100 μLi. v. (Cad + MSCs-Exo), group 4 was received Cad plus CuSNPs at a dose of 6.5 mg/kg orally (Cad + CuSNPs), group 5 was received Cad + MSCs-Exo + CuSNPs for six weeks. However, the activities of each acetylcholine (Ach), acetylcholinesterase (AchE), total antioxidant status (TAC) were measured. Also, the levels of ROS, nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), Brain brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were evaluated. Beneficial effects on the behavior of animals were observed after treatment with MSCs-Exo and CuSNPs. Furthermore, the administration of MSCs-Exo and CuSNPs have been improve the TAC, BDNF and NGF via ameliorating the oxidative stress and inflammatory markers. Moreover, Histopathological studies had shown that great development in the brain of Cad rats treated with MSCs-Exo and CuSNPs. In conclusion, this study offers an overview of innovative stem cell therapy techniques and how to integrate them with nanotechnology to boost therapeutic performance.
Collapse
Affiliation(s)
- Asmaa Magdy Zaazaa
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, AsmaaFahmy Street Heliopolis, Cairo, Egypt
| | - Bosy Azmy Abd El-Motelp
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, AsmaaFahmy Street Heliopolis, Cairo, Egypt
| | - Naglaa A. Ali
- Hormones Department, Research Division, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
- Corresponding author.
| | - Ahmed M. Youssef
- Inorganic Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed Aly Sayed
- Department of Animal Reproduction and A. I., Veterinary Research Division, National Research Centre, 33 Bohouth St. Dokki, Cairo, Egypt
| | - Safaa H. Mohamed
- Hormones Department, Research Division, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
- Corresponding author.
| |
Collapse
|
17
|
Zeng T, Guo W, Jiang L, Luo Q, Shi Z, Lei B, Zhang J, Cai Z. Integration of omics analysis and atmospheric pressure MALDI mass spectrometry imaging reveals the cadmium toxicity on female ICR mouse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149803. [PMID: 34467920 DOI: 10.1016/j.scitotenv.2021.149803] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Acute cadmium toxicity induces multi-system organ failure. Mass spectrometry (MS)-based omics analyses and atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-MALDI MSI) are powerful tools for characterizing the biomarkers. Many studies on cadmium toxicity by metabolomics have been investigated, whereas the applications of lipidomics and MSI studies are still inadequate. In this study, the systematic metabolomics study on female ICR mice tissues including liver, kidney, heart, stomach, brain as well as spleen under cadmium exposure was firstly conducted and lipidomic characterizations on female ICR mice liver, kidney and heart were further constructed step by step. To deeply understand its toxicological mechanisms, several representative lipids on the mouse liver were visualized by AP-MALDI MSI. The results demonstrated that exposure to cadmium caused significant metabolic alterations in the liver, kidney and heart among all the tissues. Additionally, the toxicological mechanisms of cadmium in the mouse models are closely associated with the inflammation response, energy expenditure, oxidative stress, DNA and mitochondria damage, and lipid homeostasis. These insights could enhance knowledge in acute cadmium toxicity of public health and guide risk assessment in the future.
Collapse
Affiliation(s)
- Ting Zeng
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Wenjing Guo
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lilong Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Qiong Luo
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhangsheng Shi
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Bo Lei
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China
| | - Jialing Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
18
|
Yan L. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021; 4:329-342. [PMID: 34977484 PMCID: PMC8690981 DOI: 10.1002/ame2.12194] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
Collapse
Affiliation(s)
- Liang‐Jun Yan
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
19
|
Alshammari GM, Al-Qahtani WH, Alshuniaber MA, Yagoub AEA, Al-Khalifah AS, Al-Harbi LN, Alhussain MH, AlSedairy SA, Yahya MA. Quercetin improves the impairment in memory function and attenuates hippocampal damage in cadmium chloride-intoxicated male rats by suppressing acetylcholinesterase and concomitant activation of SIRT1 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Yan LJ, Allen DC. Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism. Biomolecules 2021; 11:1575. [PMID: 34827573 PMCID: PMC8615899 DOI: 10.3390/biom11111575] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cadmium is a nonessential metal that has heavily polluted the environment due to human activities. It can be absorbed into the human body via the gastrointestinal tract, respiratory tract, and the skin, and can cause chronic damage to the kidneys. The main site where cadmium accumulates and causes damage within the nephrons is the proximal tubule. This accumulation can induce dysfunction of the mitochondrial electron transport chain, leading to electron leakage and production of reactive oxygen species (ROS). Cadmium may also impair the function of NADPH oxidase, resulting in another source of ROS. These ROS together can cause oxidative damage to DNA, proteins, and lipids, triggering epithelial cell death and a decline in kidney function. In this article, we also reviewed evidence that the antioxidant power of plant extracts, herbal medicines, and pharmacological agents could ameliorate cadmium-induced kidney injury. Finally, a model of cadmium-induced kidney injury, centering on the notion that oxidative damage is a unifying mechanism of cadmium renal toxicity, is also presented. Given that cadmium exposure is inevitable, further studies using animal models are warranted for a detailed understanding of the mechanism underlying cadmium induced ROS production, and for the identification of more therapeutic targets.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | | |
Collapse
|
21
|
Aslan A, Beyaz S, Gok O, Can MI, Parlak G, Ozercan IH, Gundogdu R. Royal jelly abrogates flouride-induced oxidative damage in rat heart tissue by activating of the nrf-2/NF-κB and bcl-2/bax pathway. Toxicol Mech Methods 2021; 31:644-654. [PMID: 34227456 DOI: 10.1080/15376516.2021.1950249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Royal jelly is known to strengthen memory, provide antioxidative, antidiabetic, antitumor, anticancer, antibacterial, antiinflammatory, antihypertensive. In this study, 42 rats (n = 42) were used, and these rats were divided into 6 groups of 7 rats each. Groups: (i) Control Group: Group fed with standard diet; (ii) Royal Jelly (RJ) Group: RJ (100 mg/kg bw, gavage); (iii) F50 Group: Fluoride (50 mg/kg bw, drinking water); (iv) F100 Group: F (100 mg/kg bw, drinking water); (v) F50 + RJ Group: F (50 mg/kg bw, drinking water) + RJ (100 mg/kg bw, gavage); (vi) F100 + RJ Group: F (100 mg/kg bw, drinking water) + RJ (100 mg/kg bw, gavage). The rats were decapitated after 8 weeks, and their heart tissues were taken and examined. Lipid peroxidation by MDA (malondialdehyde) analyzes, GSH (glutathione) level and catalase activity were determined by spectrophotometer. Protein expression levels of caspase-3, caspase-6, caspase-9, Bcl-2, Bax, BDNF, Gsk-3, Nrf-2 and NF-κB proteins in heart tissue were determined by western blotting technique and hearth tissue evaluated by histopathologically. As a result, MDA levels, Bcl-2, Gsk-3 and NF-κB protein expression levels were reduced, whereas GSH levels, caspase-3, caspase-9, caspase-6, Bax, BDNF and Nrf-2 protein levels were increased in the F50 + RJ and F100 + RJ groups compared to the F50 and F100 groups. According to the results of this study, it has been concluded that Royal jelly has the potential to be developed in to a drug for treatment of heart diseases in addition to providing protection against heart damage.
Collapse
Affiliation(s)
- Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Seda Beyaz
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Muhammed Ismail Can
- Faculty of Science, Department of Biology, Inonu University, Malatya, Turkey
| | - Gozde Parlak
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | | | - Ramazan Gundogdu
- Faculty of Science, Department of Biology, Bingol University, Bingol, Turkey
| |
Collapse
|
22
|
Xue H, Cao H, Xing C, Feng J, Zhang L, Zhang C, Hu G, Yang F. Selenium triggers Nrf2-AMPK crosstalk to alleviate cadmium-induced autophagy in rabbit cerebrum. Toxicology 2021; 459:152855. [PMID: 34252479 DOI: 10.1016/j.tox.2021.152855] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that accumulates in the brain and causes a series of histopathological changes. Selenium (Se) exerts a crucial function in protecting damage caused by toxic heavy metals, but its potential mechanism is rarely studied. The main purpose of this study is to explore the protective effects of Se on Cd-induced oxidative stress and autophagy in rabbit cerebrum. Forty rabbits were randomly divided into four groups and treated as follows: Control group, Cd (1 mg/kg⋅BW) group, Se (0.5 mg/kg⋅BW) group and Cd (1 mg/kg⋅BW)+Se (0.5 mg/kg⋅BW) group, with 30 days feeding management. Our results suggested that Se treatment significantly suppressed the Cd-induced degenerative changes including cell necrosis, vacuolization, and atrophic neurons. In addition, Se decreased the contents of MDA and H2O2 and increased the activities of CAT, SOD, GST, GSH and GSH-Px, alleviating the imbalance of the redox system induced by Cd. Furthermore, Cd caused the up-regulation of the mRNA levels of autophagy-related genes (ATG3, ATG5, ATG7, ATG12 and p62), AMPK (Prkaa1, Prkaa2, Prkab1, Prkab2, Prkag2, Prkag3) and Nrf2 (Nrf2, HO-1 and NQO1) signaling pathway, and the expression levels of LC3II/LC3I, p-AMPK/AMPK, Beclin-1, Nrf2 and HO-1 proteins, which were alleviated by Se, indicated that Se inhibited Cd-induced autophagy and Nrf2 signaling pathway activation. In conclusion, our study found that Se antagonized Cd-induced oxidative stress and autophagy in the brain by generating crosstalk between AMPK and Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Haotian Xue
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jiapei Feng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Linwei Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
23
|
Al-Brakati A, Albarakati AJA, Lokman MS, Theyab A, Algahtani M, Menshawi S, AlAmri OD, Al Omairi NE, Essawy EA, Kassab RB, Abdel Moneim AE. Possible Role of Kaempferol in Reversing Oxidative Damage, Inflammation, and Apoptosis-Mediated Cortical Injury Following Cadmium Exposure. Neurotox Res 2021; 39:198-209. [PMID: 33141427 DOI: 10.1007/s12640-020-00300-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a heavy metal of considerable toxicity, inducing a number of hazardous effects to humans and animals including neurotoxicity. This experiment was aimed to investigate the potential effect of kaempferol (KPF) against Cd-induced cortical injury. Thirty-two adult Sprague-Dawley rats were divided equally into four groups. The control rats intraperitoneally (i.p.) injected with physiological saline (0.9% NaCl), the cadmium chloride (CdCl2)-treated rats were i.p. injected with 4.5 mg/kg of CdCl2, the KPF-treated rats were orally gavaged with 50 mg/kg of KPF, and the KPF + CdCl2-treated rats were administered orally 50 mg/kg of KPF 120 min before receiving i.p. injection of 4.5 mg/kg CdCl2. CdCl2 exposure for 30 days led to the accumulation of Cd in the cortical tissue, accompanied by a reduction in the content of monoamines and acetylcholinesterase activity. Additionally, CdCl2 induced a state of oxidative stress as evidenced by the elevation of lipid peroxidation and nitrate/nitrite levels, while glutathione content and the activities of glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase were decreased. Moreover, CdCl2 mediated inflammatory events in the cortical tissue through increasing tumor necrosis factor-alpha and interleukin-1 beta levels and upregulating the expression of inducible nitric oxide synthase. Furthermore, pro-apoptotic proteins (Bax and caspase-3) were elevated, while Bcl-2, the anti-apoptotic protein, was decreased. Also, histological alterations were observed obviously following CdCl2. However, KPF pretreatment restored significantly the examined markers to be near the normal values. Hence, the obtained data provide evidences that KPF pretreatment has the protective effect to preserve the cortical tissues in CdCl2-exposed rats by restraining oxidative stress, inflammatory response, apoptosis, neurochemical modulation, and improving the histological changes.
Collapse
Affiliation(s)
- Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, The Comprehensive Specialized Clinics of Security Forces, Jeddah, Saudi Arabia
| | - Salah Menshawi
- Department of Laboratory Medicine, The Comprehensive Specialized Clinics of Security Forces, Jeddah, Saudi Arabia
| | - Ohoud D AlAmri
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naif E Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ehab A Essawy
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
24
|
Liu L, Liu Y, Cheng X, Qiao X. The Alleviative Effects of Quercetin on Cadmium-Induced Necroptosis via Inhibition ROS/iNOS/NF-κB Pathway in the Chicken Brain. Biol Trace Elem Res 2021; 199:1584-1594. [PMID: 33398654 DOI: 10.1007/s12011-020-02563-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd), a ubiquitous environmental pollutant, has neurotoxicity to humans and animals. Quercetin (QE), the main component of flavonoids, has strong antioxidant and anti-inflammatory effects. However, little is reported about the influence of Cd exposure on necroptosis in the chicken brain and the antagonistic impacts of QE against Cd-induced brain necroptosis. The aim of this study was to ascertain the alleviative mechanism of QE on Cd-induced necroptosis in the chicken brain. Two hundred 3.5-month-old Isa hens were randomly divided into four groups, control group, QE group, Cd group, and Cd + QE co-administration group. The histopathological analysis indicated that necrosis features were observed in the Cd-intoxicated chicken brains. Meanwhile, the expression levels of RIPK1, RIPK3, and MLKL were elevated and the level of Caspase 8 was reduced in the Cd group, which further testified Cd triggered the occurrence of necroptosis in the chicken brain. Cd exposure obviously increased Cd accumulation, ROS generation, and MDA level; weakened the activities of antioxidase (SOD, GPx, and CAT); enhanced iNOS activity and NO production; promoted the expression of inflammatory factors (NF-κB, TNFα, COX-2, iNOS, PTGEs, and IL-1β); and activated HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90). But, these Cd-caused variations were obviously attenuated in the Cd + QE group. This study indicated that QE had an alleviative effect on Cd-induced necroptosis in the chicken brain through inhibition ROS/iNOS/NF-κB pathway.
Collapse
Affiliation(s)
- Lili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Yuan Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xi Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, People's Republic of China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, People's Republic of China.
| |
Collapse
|
25
|
Collazo N, Carpena M, Nuñez-Estevez B, Otero P, Simal-Gandara J, Prieto MA. Health Promoting Properties of Bee Royal Jelly: Food of the Queens. Nutrients 2021; 13:543. [PMID: 33562330 PMCID: PMC7915653 DOI: 10.3390/nu13020543] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Royal jelly (RJ) demand is growing every year and so is the market for functional foods in general. RJ is formed by different substances, mainly carbohydrates, proteins, and lipids, but also vitamins, minerals, and phenolic or volatile compounds in lower proportion. Major royal jelly proteins (MRJP) are, together with 10-hydroxy-2-decenoic acid (10-HDA), key substances of RJ due to their different biological properties. In particular, 10-HDA is a unique substance in this product. RJ has been historically employed as health enhancer and is still very relevant in China due to the traditional medicine and the apitherapy. Nowadays, it is mainly consumed as a functional food or is found in supplements and other formulations for its health-beneficial properties. Within these properites, anti-lipidemic, antioxidant, antiproliferative, antimicrobial, neuroprotective, anti-inflammatory, immunomodulatory, antiaging, and estrogenic activities have been reported for RJ or its specific components. This manuscript is aimed at reviewing the current knowledge on RJ components, their assessment in terms of authenticity, their biological activities, and related health applications.
Collapse
Affiliation(s)
- Nicolas Collazo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Bernabe Nuñez-Estevez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
26
|
Li Z, Liu Y, Wang F, Gao Z, Elhefny MA, Habotta OA, Abdel Moneim AE, Kassab RB. Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis. Chem Biol Interact 2021; 337:109392. [PMID: 33497687 DOI: 10.1016/j.cbi.2021.109392] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/01/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Arsenic is a toxic metalloid abundantly found in nature and used in many industries. Consumption of contaminated water mainly results in human exposure to arsenic. Toxicity (arsenicosis) resulting from arsenic exposure causes cerebral neurodegeneration. Protocatechuic acid (PCA), a phenol derived from edible plants, has antioxidant properties. The present study investigated the neuroprotective potential of PCA against arsenic-induced neurotoxicity in mice. Male Swiss albino mice were divided into four groups: (i) orally administered physiological saline, (ii) orally administered 100 mg/kg PCA, (iii) orally administered 5 mg/kg NaAsO2, and (iv) orally administered 100 mg/kg PCA 120 min prior to oral administration of 5 mg/kg NaAsO2. Each group received its respective treatment for 1 week, after which cortical tissues from each group were analyzed for various parameters of oxidative stress, proinflammatory cytokines, apoptosis-related proteins, and changes in histopathology. NaAsO2-treatment resulted in a significant increase in lipid peroxidation (LPO), inducible nitric oxide synthetase (iNOs), and NO levels, with a decrease in the levels of both enzymatic (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and non-enzymatic (glutathione) antioxidant markers. Arsenic increased proinflammatory cytokine (tumor necrosis factor-α and interleukin-1β) levels, enhanced caspase-3 and Bax expression, and reduced Bcl-2 expression. Furthermore, arsenic-exposure in mice decreased significantly acetylcholinesterase activity and brain-derived neurotrophic factor level in the cerebral cortex. Histopathological examination revealed changes in nerve cell cyto-architecture and distribution in arsenic-exposed brain tissue sections. PCA treatment before arsenic administration resulted in a positive shift in the oxidative stress and cytokine levels with decreased levels of LPO, iNOS, and NO. PCA pre-treatment considerably attenuated arsenic-associated histopathological changes in murine brain tissue. This study suggested that the presence of PCA may be responsible for the prevention of arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhaoxia Li
- Department of Pediatric, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Yujuan Liu
- Department of Pediatric, Binzhou People's Hospital, Binzhou, Shandong Province, 256600, China
| | - Fang Wang
- Department of Pediatric, Binzhou People's Hospital, Binzhou, Shandong Province, 256600, China
| | - Zhuanglei Gao
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China.
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt; Department of Medial Genetics, Faculty of Medicine; Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795, Egypt; Biology Department, Faculty of Science and Arts, Al Baha University, Almakhwah Branch, Saudi Arabia
| |
Collapse
|
27
|
Ali AM, Kunugi H. Apitherapy for Parkinson's Disease: A Focus on the Effects of Propolis and Royal Jelly. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1727142. [PMID: 33123309 PMCID: PMC7586183 DOI: 10.1155/2020/1727142] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
The vast increase of world's aging populations is associated with increased risk of age-related neurodegenerative diseases such as Parkinson's disease (PD). PD is a widespread disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra, which encompasses a wide range of debilitating motor, emotional, cognitive, and physical symptoms. PD threatens the quality of life of millions of patients and their families. Additionally, public welfare and healthcare systems are burdened with its high cost of care. Available treatments provide only a symptomatic relief and produce a trail of noxious side effects, which increase noncompliance. Hence, researchers have recently focused on the use of nutraceuticals as safe adjunctive treatments of PD to limit its progress and associated damages in affected groups. Propolis is a common product of the beehive, which possesses a large number of therapeutic properties. Royal jelly (RJ) is a bee product that is fed to bee queens during their entire life, and it contributes to their high physical fitness, fertility, and long lifespan. Evidence suggests that propolis and RJ can promote health by preventing the occurrence of age-related debilitating diseases. Therefore, they have been used to treat various serious disorders such as diabetes mellitus, cardiovascular diseases, and cancer. Some evolving studies used these bee products to treat PD in animal models. However, a clear understanding of the collective effect of propolis and RJ as well as their mechanism of action in PD is lacking. This review evaluates the available literature for the effects of propolis and RJ on PD. Whenever possible, it elaborates on the underlying mechanisms through which they function in this disorder and offers insights for fruitful use of bee products in future clinical trials.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Ali AM, Kunugi H. Royal Jelly as an Intelligent Anti-Aging Agent-A Focus on Cognitive Aging and Alzheimer's Disease: A Review. Antioxidants (Basel) 2020; 9:E937. [PMID: 33003559 PMCID: PMC7601550 DOI: 10.3390/antiox9100937] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
The astronomical increase of the world's aged population is associated with the increased prevalence of neurodegenerative diseases, heightened disability, and extremely high costs of care. Alzheimer's Disease (AD) is a widespread, age-related, multifactorial neurodegenerative disease that has enormous social and financial drawbacks worldwide. The unsatisfactory outcomes of available AD pharmacotherapy necessitate the search for alternative natural resources that can target various the underlying mechanisms of AD pathology and reduce disease occurrence and/or progression. Royal jelly (RJ) is the main food of bee queens; it contributes to their fertility, long lifespan, and memory performance. It represents a potent nutraceutical with various pharmacological properties, and has been used in a number of preclinical studies to target AD and age-related cognitive deterioration. To understand the mechanisms through which RJ affects cognitive performance both in natural aging and AD, we reviewed the literature, elaborating on the metabolic, molecular, and cellular mechanisms that mediate its anti-AD effects. Preclinical findings revealed that RJ acts as a multidomain cognitive enhancer that can restore cognitive performance in aged and AD models. It promotes brain cell survival and function by targeting multiple adversities in the neuronal microenvironment such as inflammation, oxidative stress, mitochondrial alterations, impaired proteostasis, amyloid-β toxicity, Ca excitotoxicity, and bioenergetic challenges. Human trials using RJ in AD are limited in quantity and quality. Here, the limitations of RJ-based treatment strategies are discussed, and directions for future studies examining the effect of RJ in cognitively impaired subjects are noted.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
29
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Back to Nucleus: Combating with Cadmium Toxicity Using Nrf2 Signaling Pathway as a Promising Therapeutic Target. Biol Trace Elem Res 2020; 197:52-62. [PMID: 31786752 DOI: 10.1007/s12011-019-01980-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
There are concerns about the spread of heavy metals in the environment, and human activities are one of the most important factors in their spread. These agents have the high half-life resulting in their persistence in the environment. So, prevention of their spread is the first step. However, heavy metals are an inevitable part of modern and industrial life and they are applied in different fields. Cadmium is one of the heavy metals which has high carcinogenesis ability. Industrial waste, vehicle emissions, paints, and fertilizers are ways of exposing human to cadmium. This potentially toxic agent harmfully affects the various organs and systems of body such as the liver, kidney, brain, and cardiovascular system. Oxidative stress is one of the most important pathways of cadmium toxicity. So, improving the antioxidant defense system can be considered as a potential target. On the other hand, the Nrf2 signaling pathway involves improving the antioxidant capacity by promoting the activity of antioxidant enzymes such as catalase and superoxide dismutase. At the present review, we demonstrate how Nrf2 signaling pathway can be modulated to diminish the cadmium toxicity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
30
|
Al Olayan EM, Aloufi AS, AlAmri OD, El-Habit OH, Abdel Moneim AE. Protocatechuic acid mitigates cadmium-induced neurotoxicity in rats: Role of oxidative stress, inflammation and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137969. [PMID: 32392679 DOI: 10.1016/j.scitotenv.2020.137969] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
Environmental and occupational exposure to heavy metals, including cadmium (Cd), is associated with extremely adverse impacts to living systems. Antioxidant agents are suggested to eliminate Cd intoxication. In this paper, we investigated the potential neuroprotective effect of protocatechuic acid (PCA) against Cd-induced neuronal damage in rats. Adult male Wistar rats were randomly divided into control, PCA (100 mg/kg)-treated, CdCl2 (6.5 mg/kg)-treated, and PCA and Cd treatment groups. Pre-treatment with PCA significantly reduced Cd concentrations and increased cortical acetylcholinesterase activity and brain derived neurotrophic factor. Additionally, PCA also prevented CdCl2-induced oxidative stress in the cortical tissue by preventing lipid peroxidation and the formation of nitric oxide (NO), and significantly enhancing antioxidant enzymes. Molecularly, PCA significantly up-regulated the antioxidant gene expression (Sod2, Cat, Gpx1, and Gsr) that was down-regulated by Cd. It should be noted that this effect was achieved by targeting the nuclear-related factor 2 (Nfe2l2) mRNA expression. PCA also prevented the Cd-induced inflammation by reducing the pro-inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β. Moreover, PCA supplementation relieved the Cd-induced neuronal death by increasing Bcl-2 and decreasing Bax and Cas-3 levels in the cortical tissue. The improvement of the cortical tissue histopathology by PCA confirmed the biochemical and molecular data. Collectively, our findings indicate that PCA can counteract Cd-induced cortical toxicity by enhancing the antioxidant defense system and suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Ebtesam M Al Olayan
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Abeer S Aloufi
- Research Chair of Vaccines, Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia; Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ohoud D AlAmri
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ola H El-Habit
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
31
|
Cadmium-Induced Oxidative Stress: Focus on the Central Nervous System. Antioxidants (Basel) 2020; 9:antiox9060492. [PMID: 32516892 PMCID: PMC7346204 DOI: 10.3390/antiox9060492] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd), a category I human carcinogen, is a well-known widespread environmental pollutant. Chronic Cd exposure affects different organs and tissues, such as the central nervous system (CNS), and its deleterious effects can be linked to indirect reactive oxygen species (ROS) generation. Since Cd is predominantly present in +2 oxidation state, it can interplay with a plethora of channels and transporters in the cell membrane surface in order to enter the cells. Mitochondrial dysfunction, ROS production, glutathione depletion and lipid peroxidation are reviewed in order to better characterize the Cd-elicited molecular pathways. Furthermore, Cd effects on different CNS cell types have been highlighted to better elucidate its role in neurodegenerative disorders. Indeed, Cd can increase blood-brain barrier (BBB) permeability and promotes Cd entry that, in turn, stimulates pericytes in maintaining the BBB open. Once inside the CNS, Cd acts on glial cells (astrocytes, microglia, oligodendrocytes) triggering a pro-inflammatory cascade that accounts for the Cd deleterious effects and neurons inducing the destruction of synaptic branches.
Collapse
|
32
|
Abdel-Rahman M, Rezk MM, Ahmed-Farid OA, Essam S, Abdel Moneim AE. Saussurea lappa root extract ameliorates the hazards effect of thorium induced oxidative stress and neuroendocrine alterations in adult male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13237-13246. [PMID: 32016872 DOI: 10.1007/s11356-020-07917-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The present study was aimed to estimating the effect of Saussurea lappa (costus) root extract on thorium accumulation in different brain regions (cerebral cortex, cerebellum, and hypothalamus) of adult male albino rats and also to evaluate the antioxidant effect and thyroid gland modulation activity of costus following thorium toxicity. Adult male rats were randomly allocated into four groups; control group receiving saline (0.9% NaCl), thorium group receiving an intraperitoneal (i.p.) injection of thorium nitrate (Th; 6.3 mg/kg bwt), costus group receiving an oral administration of costus extract at 200 mg/kg bwt and costus + thorium group receiving costus 1 h before thorium injection. Thorium injection in rats for 28 days resulted in the accumulation of Th maximally in the cerebellum followed by the cerebral cortex and then in the hypothalamus. The accumulation of Th was associated with significant disturbance in sodium and potassium ions. A significant decrease in monoamines was also observed in different brain regions. Furthermore, the results indicated that Th-induced oxidative stress evidenced by increased lipid peroxidation and nitric oxide and decrease the glutathione content. Additionally, Th caused a significant increase in thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4) levels in the serum of rats. However, the pre-administration of costus alleviated all of those disturbances. Our results revealed that costus extract exerted its protective effect mainly through potentiating the antioxidant defense system.
Collapse
Affiliation(s)
- Mona Abdel-Rahman
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed M Rezk
- Isotopes Department, Nuclear Materials Authority, Cairo, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research (NODCAR), Giza, Giza Governorate, Egypt
| | - Safia Essam
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
33
|
Red Beetroot Extract Abrogates Chlorpyrifos-Induced Cortical Damage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2963020. [PMID: 32215171 PMCID: PMC7085382 DOI: 10.1155/2020/2963020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 12/14/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
Organophosphorus insecticides including chlorpyrifos (CPF) are mainly used for agriculture, household, and military purposes; their application is associated with various adverse reactions in animals and humans. This study was conducted to evaluate the potential neuroprotective effect of red beetroot methanolic extract (RBR) against CPF-induced cortical damage. Twenty-eight adult male Wistar albino rats were divided into 4 groups (n = 7 in each group): the control group was administered physiological saline (0.9% NaCl), the CPF group was administered CPF (10 mg/kg), the RBR group was administered RBR (300 mg/kg), and the RBR+CPF group was treated with RBR (300 mg/kg) 1 hr before CPF (10 mg/kg) supplementation. All groups were treated for 28 days. Rats exposed to CPF exhibited a significant decrease in cortical acetylcholinesterase activity and brain-derived neurotrophic factor and a decrease in glial fibrillary acidic protein. CPF intoxication increased lipid peroxidation, inducible nitric oxide synthase expression, and nitric oxide production. This was accompanied by a decrease in glutathione content and in the activities of glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase in the cortical tissue. Additionally, CPF enhanced inflammatory response, indicated by increased levels and expression of interleukin-1β and tumor necrosis factor-α. CPF triggered neuronal apoptosis by upregulating Bax and caspase-3 and downregulating Bcl-2. However, RBR reversed the induced neuronal alterations following CPF intoxication. Our findings suggest that RBR can minimize and prevent CPF neurotoxicity through its antioxidant, anti-inflammatory, and antiapoptotic activities.
Collapse
|
34
|
Wang X, Wang T, Pan T, Huang M, Ren W, Xu G, Amin HK, Kassab RB, Abdel Moneim AE. Senna alexandrina extract supplementation reverses hepatic oxidative, inflammatory, and apoptotic effects of cadmium chloride administration in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5981-5992. [PMID: 31863371 DOI: 10.1007/s11356-019-07117-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Senna alexandrina is traditionally used for its antioxidant and anti-inflammatory properties, but little information is available concerning its potential protective effects against cadmium, which is a widespread environmental toxicant that causes hepatotoxicity. Here, we explored the effects of S. alexandrina extract (SAE) on cadmium chloride (CdCl2)-induced liver toxicity over 4 weeks in rats. Rats were allocated into four groups: control, SAE (100 mg/kg), CdCl2 (0.6 mg/kg), and SAE + CdCl2, respectively. Cadmium level in hepatic tissue, blood transaminases, and total bilirubin as indicators of liver function were assessed. Oxidative stress indices [malondialdehyde (MDA), nitrate/nitrite (NO), and glutathione (GSH)], antioxidant molecules [superoxide dismutase (SOD, catalase (CAT), glutathione-derived enzymes, and nuclear factor erythroid 2-related factor 2 (Nrf2)], pro-inflammatory mediators [interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α)], apoptosis proteins (Bcl-2, Bax, and caspase-3), and histological alterations to the liver were examined. SAE administration before CdCl2 exposure decreased cadmium deposition in liver tissue and the blood liver function indicators. SAE pre-treatment prevented oxidative, inflammatory, and apoptotic reactions and decreased histological alterations to the liver caused by CdCl2 exposure. SAE can be used as a promising protective agent against CdCl2-induced hepatotoxicity by increasing Nrf2 expression. Graphical abstract.
Collapse
Affiliation(s)
- Xianbin Wang
- Department of Graduate School, Tianjin Medical University, Tianjin, 300051, China
| | - Ting Wang
- Department of Radiology, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, Neimenggu, China
| | - Tingting Pan
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China
| | - Mei Huang
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China
| | - Weihua Ren
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China
| | - Geliang Xu
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China.
| | - Hatem K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
35
|
Ziziphus spina-christi Leaf Extract Suppressed Mercury Chloride-Induced Nephrotoxicity via Nrf2-Antioxidant Pathway Activation and Inhibition of Inflammatory and Apoptotic Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5634685. [PMID: 31827681 PMCID: PMC6881572 DOI: 10.1155/2019/5634685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 01/24/2023]
Abstract
Exposure to heavy metals, including mercury chloride (HgCl2), is associated with severe health problems. This study was designed to investigate HgCl2-induced nephrotoxicity and evaluate the protective role of Ziziphus spina-christi leaf extract (ZSCLE). Four randomly selected groups containing seven rats were used. For a period of 28 days, the control group was administered 0.9% saline solution; the second group was administered 300 mg/kg ZSCLE; the third group was administered 0.4 mg/kg HgCl2 dissolved in 0.9% physiological saline solution; and the fourth group was administered an oral supplement of 300 mg/kg ZSCLE one hour after HgCl2 administration. HgCl2 intoxication resulted in Hg accumulation in renal tissue; decreases in body weight, kidney index, and glutathione content and superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities; increases in creatinine, urea, Kim-1 expression, lipid peroxidation, and nitric oxide production; suppression of the Nrf2-antioxidant response pathway; upregulation of Il1β, Tnfα, and Nos2; and potentiation of proapoptotic activity. ZSCLE exerted beneficial effects against mercury-induced renal toxicity and significantly reversed these alterations to near normal values. These effects resulted from its chelation and antioxidant, anti-inflammatory, and antiapoptotic activities. ZSCLE may prevent or minimize the pathological changes induced by mercury in the kidney.
Collapse
|
36
|
Rutin and Selenium Co-administration Reverse 3-Nitropropionic Acid-Induced Neurochemical and Molecular Impairments in a Mouse Model of Huntington’s Disease. Neurotox Res 2019; 37:77-92. [PMID: 31332714 DOI: 10.1007/s12640-019-00086-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
|
37
|
Mahmoud SM, Abdel Moneim AE, Qayed MM, El-Yamany NA. Potential role of N-acetylcysteine on chlorpyrifos-induced neurotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20731-20741. [PMID: 31104238 DOI: 10.1007/s11356-019-05366-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate insecticide with several harmful effects. N-acetylcysteine (NAC) represents an ideal antixenobiotic; it can directly enter endogenous biochemical processes and is used as adjunctive treatment for psychiatric disorders. We aimed to evaluate the neuroprotective effect of NAC as an antioxidant drug against CPF-induced neurotoxicity in adult male albino rat brains. Twenty-eight male Wister rats were allocated into four groups (n = 7) and were administered the following for 28 days: group I (control group), physiological saline (0.9% NaCl); group II (CPF group), 10 mg/kg body weight (BW) CPF; group III (NAC group), 100 mg/kg BW NAC; and group VI (CPF+NAC group), NAC 1 h before CPF. CPF intoxication resulted in acetylcholinesterase inhibition, reduced glutathione content, and elevated levels of malondialdehyde and nitric oxide, which are oxidative stress biomarkers. CPF also depleted the activity of antioxidant enzymes, superoxide dismutase and catalase, and levels of inflammatory mediators, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. Levels of vascular endothelial growth factor, Bax, and the proapoptotic caspases-3 also increased, while brain-derived neurotrophic factor level decreased. Additionally, CPF significantly diminished Bcl-2 (an antiapoptotic protein) in rat brain cortical tissue. NAC treatment was found to protect brain tissue by reversing the CPF-induced neurotoxicity. Our results show the antioxidant, antiinflammatory, and antiapoptotic effects of NAC on CPF-induced neurotoxicity in rat brain tissue.
Collapse
Affiliation(s)
- Sahar M Mahmoud
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Marwa M Qayed
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nabil A El-Yamany
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|