1
|
Macêdo AKS, da Silva JRP, Brighenti LS, de Azambuja Ribeiro RI, Dos Santos HB, Thomé RG. Variations in liver histology and P-gp expression among fish species in Doce River Basin, Brazil: implications for pollution sensitivity. J Mol Histol 2024; 56:47. [PMID: 39695022 DOI: 10.1007/s10735-024-10334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Fish may have different sensitivity to pollutants present in the water. We analyzed the liver histology, and P-gp expression in six species of fish from the Doce River basin. Fish were caught at six different points in the Doce River, and liver samples were taken for histological analysis. P-gp expression was analyzed using an immunohistochemical technique. In Astyanax lacustris, Hoplias intermedius, Hypostomus affinis, Trachelyopterus striatulus and Oligosarcus acutirostris, a double arrangement of hepatocyte plates was generally observed (tubular-form), while in Deutorodon taeniatus, a single arrangement of hepatocyte plates was frequently observed (cord-like). Histological changes, such as cytoplasmic vacuolation and nuclear alteration, were observed in the livers of all species analyzed, however, the species A. lacustris (34.1%) and H. affinis (33.3%) were those with the fewest individuals with histological changes. The H. intermedius, T. striatulus, and O. acutirostris were the species that presented more than 80% of their individuals with histological changes. The A. lacustris and H. affinis were the species that showed the highest P-pg immunolabeling in the liver, while the T. striatulus and O. acutirostris had the lowest levels. These results support the hypothesis that levels of P-gp expression could respond to the resistance or sensitivity of each species to environmental pollutants.
Collapse
Affiliation(s)
- Anderson Kelvin Saraiva Macêdo
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Jicaury Roberta Pereira da Silva
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Ludmila Silva Brighenti
- Universidade do Estado de Minas Gerais, Campus Divinópolis, Avenida Paraná, 3001, Divinópolis, Minas Gerais, 35501- 170, Brazil
| | - Rosy Iara de Azambuja Ribeiro
- Laboratório de Patologia Experimental - LAPATEX, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil.
| |
Collapse
|
2
|
Mukherjee I, Bhat A. Shoals in troubled waters? The impact of rising temperatures on metabolism, foraging, and shoaling behavior in mixed-species shoals. JOURNAL OF FISH BIOLOGY 2024; 105:526-538. [PMID: 38468594 DOI: 10.1111/jfb.15707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
Rising water temperatures across aquatic habitats, in the current global climate change scenario, can directly affect metabolism and food intake in fish species. This can potentially alter their physiological, behavioral, and shoaling properties. In the current study, we examined the effects of high temperatures on metabolism, foraging, and shoaling in tropical fish. Mixed-species (comprising flying barbs, zebrafish, and gambusia) and single-species (flying barbs and zebrafish) shoals were conditioned for 45 days to three kinds of temperature regimes: the current temperature regime (CTR), in which shoals were maintained at water temperature of 24°C (i.e., the current mean temperature of their habitat), the predicted temperature regime (PTR) at 31°C (i.e., simulating conditions projected for their habitat in 2100), and the dynamic temperature regime (DTR), which experienced daily temperature fluctuations between 24 and 31°C (i.e., resembling rapid temperature changes expected in their natural environments). We found species-specific responses to these temperature regimes. Flying barbs exhibited significantly lower body weight at PTR but maintained consistent muscle glycogen content across all temperature regimes. In contrast, zebrafish and gambusia displayed significantly elevated muscle glycogen content at PTR, with similar body weights across all three temperature regimes. Cohesion within flying barb shoals and cohesion/polarization in mixed-species shoals decreased significantly at PTR. Shoals exposed to DTR exhibited intermediate characteristics between those conditioned to CTR and PTR, suggesting that shoals may be less impacted by dynamic temperatures compared to prolonged high temperatures. This study highlights species-specific metabolic responses to temperature changes and their potential implications for larger-scale shoal properties.
Collapse
Affiliation(s)
- Ishani Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Anuradha Bhat
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
3
|
Fujiwara GH, Utsunomiya HSM, Ferraz JVC, Gutierres DM, Fernandes IF, Dos Santos Carvalho C. Biochemistry biomarkers and metal levels as indicators of environmental pollution in Danio rerio exposed to the Sorocaba River (S.P.), Brazil. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:569-581. [PMID: 38647642 DOI: 10.1007/s10646-024-02753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Metal contamination of the environment poses a significant threat to human health and can cause significant damage to aquatic ecosystems. Danio rerio was exposed to Sorocaba River water for 96 h from two different sites in summer (S) and winter (W). Concentrations of Al, Cd, Cu, Mn and Zn were determined in the exposure water and in sediment. At the end of the exposure, the concentrations of Al, Cu and Mn at the Ibiúna point (P1) and Mn at the Itupararanga point (P2) decreased compared to the initial concentrations in the water. In summer and winter, the highest concentrations of Cu and Mn were found in the sediment. Exposure to the Sorocaba River water caused various responses both in summer and winter. For example, GPx decreased in winter, Glutathione S-Transferase (GST) increased in summer, and Nitric Oxide Synthase (NOS) decreased in both seasons in the viscera. In winter, SOD Superoxide Dismutase (SOD) increased, while GPx and GST (winter) decreased in muscle; regarding viscera carbonyl proteins, there was an increase in the summer at P2. Acetylcholinesterase activity decreased in the brain in winter at P2 and NOS decreased in the summer-exposed groups and increased in the winter P2-exposed group. Lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) decreased in viscera (S, P1) and increased in muscle (S, P1 and P2). The glucose and triglycerides increased in muscle, both in summer and winter. Correlation analysis revealed associations between biomarkers from different organs. These alterations suggest that the fish experienced oxidative stress in response to exposure to the Sorocaba River, contaminated with metals, highlighting their vulnerability to environmental pollutants.
Collapse
Affiliation(s)
- Gabriel Hiroshi Fujiwara
- Laboratório de Biomarcadores (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, Km 110, SP-264, CEP 18052-780, Sorocaba, SP, Brazil
- Programa de pós-graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, Km 110, SP-264, CEP 18052-780, Sorocaba, SP, Brazil
| | - Heidi Samantha Moraes Utsunomiya
- Laboratório de Biomarcadores (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, Km 110, SP-264, CEP 18052-780, Sorocaba, SP, Brazil
| | - João Victor Cassiel Ferraz
- Laboratório de Biomarcadores (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, Km 110, SP-264, CEP 18052-780, Sorocaba, SP, Brazil
| | - Davi Marques Gutierres
- Laboratório de Biomarcadores (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, Km 110, SP-264, CEP 18052-780, Sorocaba, SP, Brazil
| | - Isabela Ferreira Fernandes
- Laboratório de Biomarcadores (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, Km 110, SP-264, CEP 18052-780, Sorocaba, SP, Brazil
- Programa de pós-graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, Km 110, SP-264, CEP 18052-780, Sorocaba, SP, Brazil
| | - Cleoni Dos Santos Carvalho
- Laboratório de Biomarcadores (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, Km 110, SP-264, CEP 18052-780, Sorocaba, SP, Brazil.
- Programa de pós-graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, Km 110, SP-264, CEP 18052-780, Sorocaba, SP, Brazil.
| |
Collapse
|
4
|
Zhou L, Lian C, He Y, Chi X, Chen H, Zhong Z, Wang M, Cao L, Wang H, Zhang H, Li C. Toxicology assessment of deep-sea mining impacts on Gigantidas platifrons: A comparative in situ and laboratory metal exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173184. [PMID: 38750754 DOI: 10.1016/j.scitotenv.2024.173184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Deep-sea toxicology is essential for deep-sea environmental impact assessment. Yet most toxicology experiments are conducted solely in laboratory settings, overlooking the complexities of the deep-sea environment. Here we carried out metal exposure experiments in both the laboratory and in situ, to compare and evaluate the response patterns of Gigantidas platifrons to metal exposure (copper [Cu] or cadmium [Cd] at 100 μg/L for 48 h). Metal concentrations, traditional biochemical parameters, and fatty acid composition were assessed in deep-sea mussel gills. The results revealed significant metal accumulation in deep-sea mussel gills in both laboratory and in situ experiments. Metal exposure could induce oxidative stress, neurotoxicity, an immune response, altered energy metabolism, and changes to fatty acid composition in mussel gills. Interestingly, the metal accumulating capability, biochemical response patterns, and fatty acid composition each varied under differing experimental systems. In the laboratory setting, Cd-exposed mussels exhibited a higher value for integrated biomarker response (IBR) while in situ the Cu-exposed mussels instead displayed a higher IBR value. This study emphasizes the importance of performing deep-sea toxicology experiments in situ and contributes valuable data to a standardized workflow for deep-sea toxicology assessment.
Collapse
Affiliation(s)
- Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yameng He
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xupeng Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
5
|
Cui L, Cheng C, Li X, Gao X, Lv X, Wang Y, Zhang H, Lei K. Comprehensive assessment of copper's effect on marine organisms under ocean acidification and warming in the 21st century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172145. [PMID: 38569974 DOI: 10.1016/j.scitotenv.2024.172145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/05/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Copper (Cu) has sparked widespread global concern as one of the most hazardous metals to aquatic animals. Ocean acidification (OA) and warming (OW) are expected to alter copper's bioavailability based on pH and temperature-sensitive effects; research on their effects on copper on marine organisms is still in its infancy. Therefore, under representative concentration pathways (RCP) 2.6, 4.5, and 8.5, we used the multiple linear regression-water quality criteria (MLR-WQC) method to assess the effects of OA and OW on the ecological risk posed by copper in the Ocean of East China (OEC), which includes the Bohai Sea, Yellow Sea, and East China Sea. The results showed that there was a positive correlation between temperature and copper toxicity, while there was a negative correlation between pH and copper toxicity. The short-term water quality criteria (WQC) values were 1.53, 1.41, 1.30 and 1.13 μg·L-1, while the long-term WQC values were 0.58, 0.48, 0.40 and 0.29 μg·L-1 for 2020, 2099-RCP2.6, 2099-RCP4.5 and 2099-RCP8.5, respectively. Cu in the OEC poses a moderate ecological risk. Under the current copper exposure situation, strict intervention (RCP2.6) only increases the ecological risk of copper exposure by 20 %, and no intervention (RCP8.5) will increase the ecological risk of copper exposure by nearly double. The results indicate that intervention on carbon emissions can slow down the rate at which OA and OW worsen the damage copper poses to marine creatures. This study can provide valuable information for a comprehensive understanding of the combined impacts of climate change and copper on marine organisms.
Collapse
Affiliation(s)
- Liang Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chen Cheng
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Xiaoguang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xubo Lv
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yan Wang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Hua Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Kun Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Hu M, Song HY, Chen L. Quercetin acts via the G3BP1/YWHAZ axis to inhibit glycolysis and proliferation in oral squamous cell carcinoma. Toxicol Mech Methods 2023; 33:141-150. [PMID: 35945655 DOI: 10.1080/15376516.2022.2103480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is increasing evidence that the GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) plays important roles in the formation of various tumors. However, the biological functions and mechanism of G3BP1 in promoting the progression of oral squamous cell carcinoma remain largely unknown. The impacts of quercetin on glycolysis and proliferation of the CAL27 oral squamous cell carcinoma line were investigated, and the mediating role of the G3BP1/YWHAZ pathway was explored. CAL27 cells stably over- or underexpressing G3BP1 were treated with quercetin, and then cell proliferation was assayed together with the expression of proteins involved in glucose uptake, glycolysis, and lactate production, as well as the activity of hexokinase, pyruvate kinase, and lactate dehydrogenase. CAL27 cells expressed G3BP1 and YWHAZ at significantly higher levels than normal oral squamous cells. CAL27 cells showed the highest expression of both proteins among the three carcinoma lines (TSCCA, SCC15, 42 CAL27). Overexpressing G3BP1 in CAL27 cells markedly induced glucose uptake, glycolysis, cell proliferation, and YWHAZ expression. Knocking down G3BP1 or YWHAZ exerted the opposite effects, which were similar to the effects of inhibiting glycolysis. Quercetin repressed glucose uptake, glycolysis, cell proliferation, and G3BP1/YWHAZ signaling in a dose-dependent way, and these effects were antagonized by G3BP1 overexpression. Quercetin can inhibit glycolysis and cell proliferation of oral squamous cell carcinoma, apparently by inhibiting the G3BP1/YWHAZ axis.
Collapse
Affiliation(s)
- Meng Hu
- Department of Cosmetic Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Hong-Yan Song
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Ling Chen
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| |
Collapse
|
7
|
Chen Y, Cheng B, Liu Y, Bai Y, Yang X, Xu S. Metabolic responses of golden trout (Oncorhynchus mykiss aguabonita) after acute exposure to waterborne copper. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106236. [PMID: 35842982 DOI: 10.1016/j.aquatox.2022.106236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Despite the broad knowledge of copper-induced stress and toxicity, data on the physiological responses to acute copper exposure and the correlation of those activities to a generalized stress response are still limited. The present study aimed to assess the physiological responses of golden trout to overcome copper stress at concentrations of 60 µg/L and 120 µg/L after 96 h, respectively. The activities of glucose-6-phosphate dehydrogenase (G6PD) phosphoenolpyruvate carboxykinase (PEPCK) and NADPH/NADP+ ratio were significantly increased, and metabolites including glucose 6-phosphate, fructose 1-phosphate and fatty acids significantly accumulated in fish liver, indicating that gluconeogenesis, the pentose-phosphate pathway, as well as alteration of the membrane fatty acid composition were activated to serve as a defense mechanism against 60 µg/L of copper after 96 h. After exposure to 120 µg/L of copper for 96 h, the NAD+ and ATP contents, the activities of enzymes in the glycolytic pathway (phosphofructokinase, PFK and pyruvate kinase, PK) and mitochondrial respiratory chain complex I decreased significantly in fish liver. In addition, carbohydrates and MDA accumulated in golden trout after 120 µg/L copper treatment. These results indicated that 120 µg/L of copper exposure may induce a metabolic stress in golden trout after 96 h. The multi-marker approach allows us to reach a greater understanding of the effects of copper on physiological responses of golden trout.
Collapse
Affiliation(s)
- Yan Chen
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Bo Cheng
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, PR China
| | - Yang Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, PR China
| | - Yucen Bai
- China Rural Technology Development Center, No.54 Sanlihe Road, Xicheng District, Beijing 100045, PR China.
| | - Xiaofei Yang
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Shaogang Xu
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| |
Collapse
|
8
|
Lakra KC, Mistri A, Banerjee TK, Lal B. Analyses of the health status, risk assessment and recovery response of the nutritionally important catfish Clarias batrachus reared in coal mine effluent-fed pond water: a biochemical, haematological and histopathological investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47462-47487. [PMID: 35182337 DOI: 10.1007/s11356-022-18971-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The present field study evaluates the health status of the catfish Clarias batrachus reared in coal mine effluent (CME)-fed pond water at Rajrappa mining complex using biochemical, haematological and histopathological parameters. Simultaneously, risk assessment along with recovery response of the CME intoxicated fish following their treatment with CME-free freshwater was also studied. The CME-fed pond water fish revealed significant decrease in biomolecules concentrations and considerable increase in activities of several enzymes along with metallothionein level as compared to control. The impaired regulation of metabolic function was also revealed by blood parameters showing significant decrease in haemoglobin content (8.78 ± 0.344 g/100 mL) and red blood cells count (1.77 ± 0.12 × 106 mm3) while substantial elevation in white blood cells (187.13 ± 9.78 × 103 mm3). The histopathological study also confirmed the changes including hypertrophy of club cells of skin, swelling of secondary lamella of gills, extensive fibrosis in liver and glomerular shrinkage with increased Bowman's space in kidney. Potential health risk assessments based on estimated daily intake and target hazard quotient indicated health risks associated with the consumption of such fishes. The CME-contaminated fish when transferred to CME-free freshwater exhibited decreased metal content accompanied by eventual recovery response as evident by retrieval in biochemical and haematological parameters. Withdrawal study also revealed restoration in the activity of different marker enzymes in fish tissues including blood as well as recovery in their cellular architecture. The results of the present study validate the depuration process as an effective practice for detoxification of fish contaminated with effluent.
Collapse
Affiliation(s)
- Kalpana Chhaya Lakra
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arup Mistri
- Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Tarun Kumar Banerjee
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Bechan Lal
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
9
|
Singh M, Rano S, Roy S, Mukherjee P, Dalui S, Gupta GK, Kumar S, Mondal MK. Characterization of organophosphate pesticide sorption of potato peel biochar as low cost adsorbent for chlorpyrifos removal. CHEMOSPHERE 2022; 297:134112. [PMID: 35227752 DOI: 10.1016/j.chemosphere.2022.134112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
There has been a growing interest in the scientific world in the production of biochar from natural organic wastes as potential sustainable precursors for bioremediation. Potato peel biochar was produced by slow pyrolysis method under oxygen-limited conditions and used as bio adsorbent in bioremediation of commercial pesticide having Chlorpyrifos as an active component. Chlorpyrifos is an organophosphate pesticide, highly neurotoxic, and primarily targets the central nervous system of pests and insects. The excess residues of chlorpyrifos are hazardous to environmental flora and fauna. Chlorpyrifos was treated against biochar at varying physical parameters and further optimized by using response surface methodology through Box-Behnken design (BBD). 72.06% of pesticide removal was observed post 24 h of treatment against a pesticide concentration of 1346.85 μg/ml with a biochar concentration of 1.04 mg/ml under room temperature at pH 5.04. Biochar was characterized by proximate and ultimate analysis, FTIR, and SEM-EDX. Characterization by SEM-EDX showed the surface morphology and minerals on the peel and biochar. Microgram of potato peel shows pores of larger size than biochar having many cavities with different dimensions. In the plant system, growth morphology, nutritional status, polyphenols, total antioxidant content, and free radical scavenging activity were assessed. Enhancement in presence of biochar was recorded in growth morphology and plant biomolecules including photosynthetic pigments. Better translocation of the nutrient is recorded in biochar treated plants, as evidenced by the low amount of carbohydrate and protein in treated leaves. Biocompatibility assessment of chlorpyriphos in fish erythrocytes showed 43.26% hemolysis by pesticide-treated biochar. The practical use of this approach can also be best utilized if applied to those geographical regions where the soil pH is acidic. Biochar is a marketable bio-product, which can have a positive impact in agriculture, industries, and the energy sector creating a bio-based economy with reduced environmental pollution.
Collapse
Affiliation(s)
- Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Haldia, PurbaMedinipur, West Bengal, 721657, India.
| | - Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Haldia, PurbaMedinipur, West Bengal, 721657, India
| | - Sandhik Roy
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Haldia, PurbaMedinipur, West Bengal, 721657, India
| | - Pallav Mukherjee
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Haldia, PurbaMedinipur, West Bengal, 721657, India
| | - Sushovan Dalui
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Haldia, PurbaMedinipur, West Bengal, 721657, India
| | - Goutam Kishore Gupta
- Department of Chemical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, 221005, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Monoj Kumar Mondal
- Department of Chemical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, 221005, India
| |
Collapse
|
10
|
Fırat Ö, Erol R, Fırat Ö. An Investigation on Freshwater Fish Oreochromis niloticus (Linnaeus, 1758): Assessing Hemotoxic Effects of Different Copper Compounds Used as Nanomaterial or Pesticide. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:549-554. [PMID: 34216227 DOI: 10.1007/s00128-021-03320-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Considering the constant exposure of fish to copper oxide nanoparticles (CuO-NPs) and copper sulphate (CuSO4) in natural aquatic environments as a result of increased usage of these chemicals in industry, medicine and aquaculture/agriculture over the past few decenniums, the current investigation aimed to reveal their comparative hemotoxic effects on freshwater fish Oreochromis niloticus by measuring hematological and blood oxidative stress biomarkers and Cu levels. Fish were exposed to 0.05 mg/L CuO-NPs and CuSO4 for 4 and 21 days. Both copper forms decreased erythrocyte, hematocrit, and hemoglobin values, and superoxide dismutase and catalase activities while they elevated glucose-6-phosphate dehydrogenase activity, and glutathione, malondialdehyde and Cu levels. Leukocyte levels and glutathione peroxidase activity did not show any significant change. In a conclusion, the current research demonstrates that CuO-NPs and CuSO4 for O. niloticus have similar hemotoxic effects, however, CuO-NPs are slightly more toxic than CuSO4 regarding hematological changes and oxidative stress observed.
Collapse
Affiliation(s)
- Özgür Fırat
- Science and Letters Faculty, Biology Department, Adiyaman University, Adiyaman, Turkey
| | - Rabia Erol
- Science and Letters Faculty, Biology Department, Adiyaman University, Adiyaman, Turkey
| | - Özge Fırat
- Kahta Vocational School, Veterinary Department, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
11
|
Mason MW, Bertucci EM, Leri FM, Parrott BB. Transient Copper Exposure During Embryogenesis and Temperature Affect Developmental Rate, Survival, and Fin Regeneration in Japanese Medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:748-757. [PMID: 34918380 DOI: 10.1002/etc.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Combined environmental stressors that an organism experiences can have both immediate and lasting consequences. In the present study, we exposed Japanese medaka (Oryzias latipes) embryos to sublethal copper sulfate (CuSO4 ; 0, 10, and 100 ppb) in combination with different rearing temperatures (27, 30, and 33 °C) to assess acute and latent effects on development, growth, and regenerative capacity. Embryos exposed to CuSO4 and/or higher temperatures hatched significantly earlier. At 4 months post-exposure, fish exposed to low levels of CuSO4 during development had higher survival, whereas fish exposed to both 100 ppb CuSO4 and 33 °C temperatures had significantly lower survival. In addition, a sex-specific effect of embryonic CuSO4 exposure was observed as female mass decreased with increasing Cu dose. We also assessed caudal fin regenerative capabilities in both embryo-exposed fish at 4 months of age and adult medaka that were exposed to 0, 10, and 100 ppb CuSO4 at room temperature during a 14-day trial. Whereas fin regeneration was unaffected by adult exposure to Cu, fish transiently exposed during embryogenesis displayed an initial increase in fin growth rate and an increased incidence of abnormal fin morphology following regrowth. Collectively, these data suggest that developmental Cu exposure has the potential to exert long-lasting impacts to organismal growth, survival, and function. Environ Toxicol Chem 2022;41:748-757. © 2021 SETAC.
Collapse
Affiliation(s)
- Marilyn W Mason
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| | - Emily M Bertucci
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Faith M Leri
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
Li ZH, Li P, Wu Y. Effects of temperature fluctuation on endocrine disturbance of grass carp Ctenopharyngodon idella under mercury chloride stress. CHEMOSPHERE 2021; 263:128137. [PMID: 33297125 DOI: 10.1016/j.chemosphere.2020.128137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/31/2020] [Accepted: 08/23/2020] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is considered to be one of the most toxic and ubiquitously distributed metals in the aquatic system. Meanwhile, the temperature increase of water bodies due to global climatic changes, may affect ecosystems through alterations of the metal properties or by affecting the susceptibility of organisms. To study the physiological stress of mercury chloride on grass carp Ctenopharyngodon idella at different temperatures, we investigated the effects of water temperature and/or mercury chloride (HgCl2) on growth performance (SGR-the specific growth rate, HSI-hepato-somatic index, CF-condition factor) and the thyroid hormones levels (T3-triiodothyronine; T4-thyroxine), as well as the expression levels of related genes involved growth and hypothalamus-pituitary-thyroid (HPT) axis. Fish (45.37 ± 3.58 g) were acclimated to 15, 20, 25, 30 or 35 °C and co-exposed to 0.0 or 0.039 mg/L HgCl2 for 4 weeks in triplicates. Three-way ANOVA revealed that all variables were significantly affected by water temperature, HgCl2 exposure, exposure time and their interactions. It was found that fish reared in Hg-free group at 25 °C showed the optimum growth. Otherwise, T4 concentrations were decreased, while T3 levels remained constant following exposure to HgCl2, which was explained by the up-regulation of the dio2 gene. Our data provide evidences that increased temperatures can potentiate HgCl2 toxicity, but the exact mechanism of the effects of temperature coupled HgCl2 on fish is not full clear, which should be give more attention in future.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| | - Yanhua Wu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| |
Collapse
|
13
|
Li ZH, Li P, Wu Y. Regulation of glutathione-dependent antioxidant defense system of grass carp Ctenopharyngodon idella under the combined stress of mercury and temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1689-1696. [PMID: 32845466 DOI: 10.1007/s11356-020-10587-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the combined effects of temperatures fluencies and mercury (Hg) on glutathione-dependent antioxidant system in fish, by measuring the oxidative stress indicator (LPO, lipid peroxidation) and the parameters involved in the glutathione-related antioxidant defense system (GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferase; GSH, reduced glutathione), as well as the expression of related genes in grass carp, Ctenopharyngodon idella. Fish (45.37 ± 3.58 g) were exposed to 10 test groups, e.g., 15 °C with/without Hg, 20 °C with/without Hg, 25 °C with/without Hg, 30 °C with/without Hg, 35 °C with/without Hg for 4 weeks. Three-way ANOVA was used to analyze the correlation between the measured parameters and experimental conditions (water temperature, Hg exposure, exposure time, and their interactions.). Our results show that there is no interaction between mercury and low temperature, but the combined effect at high temperature has been confirmed, which indicated the glutathione-dependent enzyme system in grass carp has a complex regulatory mechanism with temperature fluctuations. In the actual field monitoring, it is necessary to consider the impact of extreme temperature on the toxicity of pollutants in the aquatic ecosystem.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| | - Yanhua Wu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| |
Collapse
|
14
|
Bioaccumulation of heavy metals and their toxicity assessment in Mystus species. Saudi J Biol Sci 2020; 28:1459-1464. [PMID: 33613073 PMCID: PMC7878687 DOI: 10.1016/j.sjbs.2020.11.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
This study was conducted on two native fish species namely Mystus vittatus and Mystus tengara inhabiting challenging environment of Yamuna River. The heavy metals concentrations in the river water were found to be as follows: Fe > Mn > Zn > Cu > Ni > Cr > Cd, all above the Bureau of Indian Standards (BIS) and World Health Organization (WHO) guidelines. The high metal pollution index in gill, liver, and kidney of M. vittatus was recorded compared to M. tengara. The pathology caused by the accumulation of heavy metals resulted significantly (p < 0.05) higher enzyme activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatinine kinase (CK) in M. tengara as compared to M. vittatus. However, albumin: globulin ratio was found to be below 0.8 in both fishes. Higher total leukocyte (TLC) (48.5 × 103/mm3), lymphocytes (40%), respiratory burst activity (1.9), and nitric oxide synthase (NOS) activity (13.11 U/L) in M. vittatus reflect high immune response. In addition, chromosomal breakage study showed significantly (p < 0.05) low micronuclei frequency, lobed nuclei, and kidney-shaped nuclei (KSN) in M. vittatus. These results indicate that under the same challenging conditions M. vittatus have more capability of resistance and its continuous survival points towards its suitability to serve as a bioindicator than M. tengara.
Collapse
|
15
|
Baldissera MD, Souza CF, Barroso DC, Pereira RS, Alessio KO, Bizzi C, Baldisserotto B, Val AL. Acute exposure to environmentally relevant concentrations of copper affects branchial and hepatic phosphoryl transfer network of Cichlasoma amazonarum: Impacts on bioenergetics homeostasis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108846. [PMID: 32777469 DOI: 10.1016/j.cbpc.2020.108846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
The toxic effects of copper (Cu) are linked to dysfunction of metabolism and depletion of adenosine triphosphate (ATP). Nevertheless, the effects related to phosphoryl transfer network, a network of enzymes to precise coupling of the ATP-production and ATP-consuming process for maintenance of bioenergetic, remain unknown. Therefore, the aim of this study was to determine whether the phosphoryl transfer network could be one pathway involved in the bioenergetic imbalance of Cichlasoma amazonarum exposed for 96 h to environmentally relevant concentrations of Cu found in Amazonia water around mines. Branchial mitochondrial creatine kinase (CK) activity was significantly lower in fish exposed to 1500 μg/L Cu than in the control group, while branchial cytosolic CK activity was significantly greater. Branchial (exposed to 750 and 1500 μg/L Cu) and hepatic (exposed to 1500 μg/L Cu) pyruvate kinase (PK) activity was significantly lower in fish exposed to Cu than in the control group. Branchial and hepatic ATP levels were significantly lower in fish exposed to 1500 μg/L than in the control group. Branchial reactive oxygen species (ROS) and lipid peroxidation (LPO) levels were significantly higher in fish exposed to 750 and 1500 μg/L Cu compared to control. Hepatic ROS and LPO levels were significantly higher in fish exposed to 1500 μg/L than in the control group. Branchial and hepatic Cu levels were significantly higher in fish exposed to 1500 μg/L compared to other groups. Exposure to 750 and 1500 μg/L Cu impairs bioenergetics homeostasis, which appears to be mediated by ROS overproduction and lipid peroxidation.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Danilo C Barroso
- LEEM-Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| | - Rogério Santos Pereira
- LEEM-Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| | - Keiti O Alessio
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Cézar Bizzi
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Adalberto L Val
- LEEM-Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| |
Collapse
|
16
|
Heavy metal pollution and risk assessment by the battery of toxicity tests. Sci Rep 2020; 10:16593. [PMID: 33024143 PMCID: PMC7538597 DOI: 10.1038/s41598-020-73468-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/17/2020] [Indexed: 01/28/2023] Open
Abstract
The current study was carried out on dominant fish Oreochromis niloticus and water collected from the polluted Yamuna River, Agra, India. The heavy metals in water, recorded as follows: Fe > Mn > Zn > Cu > Ni > Cr > Cd and all were found to be above the prescribed limits. According to metal pollution index, exposed muscle (49.86), kidney (47.68) and liver (45.26) have been recorded to have higher bioaccumulation. The blood biochemical analysis of exposed O. niloticus indicated significant increase in activities of aspartate aminotransferase (+ 343.5%), alkaline phosphatase (+ 673.6%), alanine aminotransferase (+ 309.1%), and creatinine (+ 494.3%) over the reference. However, a significant decrease in albumin (A): globulins (G) ratio (− 87.86%) was observed. Similarly, the exposed fish also showed significant increase in total leucocyte count (+ 121%), differential leucocyte count, respiratory burst (+ 1175%), and nitric oxide synthase (+ 420%). The histological examination of liver and kidney showed tissue injury. Moreover, micronuclei (0.95%), kidney shaped nuclei (1.2%), and lobed nuclei (0.6%) along with DNA damage in the form of mean tail length in the liver (20.7 µm) and kidney (16.5 µm) was observed in the exposed O. niloticus. Potential health risk assessments based on estimated daily intake, target hazard quotient, hazard index, and target cancer risk indicated health risks associated with the consumption of these contaminated fishes. In conclusion, the present study showed that exposure to heavy metals contaminated water can alter immunological response; induce histopathological alterations and DNA damage in the studied fish. The consumption of this contaminated water or fish could have serious impact on human health.
Collapse
|
17
|
Chagas BRC, Utsunomiya HSM, Fernandes MN, Carvalho CS. Metabolic responses in bullfrog, Lithobates catesbeianus after exposure to zinc, copper and cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2020; 233:108768. [PMID: 32304870 DOI: 10.1016/j.cbpc.2020.108768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/31/2022]
Abstract
This study investigated the activity of lactated dehydrogenase (LDH), malate dehydrogenase (MDH) enzymes and the levels of glucose, protein and triglyceride in bullfrog tadpoles after exposure to 1 μg L-1 of zinc (Zn), copper (Cu) and cadmium (Cd) isolated and combined for 2 and 16 days. Zn, Cu + Cd and Zn + Cu + Cd increased the activity of the LDH (2 and 16 days) and MDH (2 days) enzymes in the liver; and MDH increased in the kidney after 16 days in all co-exposed groups compared to the control. Glucose increased in the liver in the Zn and Cu groups at 2 and 16 days of exposure and decreased in the kidney (groups Cd, Zn + Cd and Cu + Cd) and muscle (Cd) at 2 days of exposure. After 2 days of exposure, the protein increased in the liver (Zn), in the kidney in all groups exposed to metals except in the groups exposed to Cd and Zn + Cu + Cd, which did not change and decreased in muscle in all the groups exposed to isolated metals. Regarding triglycerides, the kidney and muscle were the most affected, leading to a decrease in the Zn, Cu and Cd groups and in the Zn + Cu (16 days) and Zn + Cu + Cd groups (2 days). The anaerobiosis and aerobiosis were activated in the liver and kidney after short-term exposure (2 days) and in the kidney, the aerobic metabolism was activated after chronic exposure (16 days). The metals caused toxicity and were higher in co-exposure to metals with a potential to cause metabolism damage in L. catesbeianus.
Collapse
Affiliation(s)
- B R C Chagas
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, SP-264, CEP 18052-780 Sorocaba, São Paulo, Brazil
| | - H S M Utsunomiya
- Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, SP-264, CEP 18052-780 Sorocaba, São Paulo, Brazil
| | - M N Fernandes
- Universidade Federal de São Carlos, Departamento de Ciências Fisiológicas, Caixa Postal 676, Rodovia Washington Luis km 235, CEP 13565-905 São Carlos, SP, Brazil
| | - C S Carvalho
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, SP-264, CEP 18052-780 Sorocaba, São Paulo, Brazil; Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, SP-264, CEP 18052-780 Sorocaba, São Paulo, Brazil.
| |
Collapse
|