1
|
Nguyen MN, Lipp P, Zucker I, Schäfer AI. Quantification of Nanoplastics and Inorganic Nanoparticles via Laser-Induced Breakdown Detection (LIBD). SMALL METHODS 2025:e2402060. [PMID: 40195877 DOI: 10.1002/smtd.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Nanoparticles with diverse characteristics are difficult to quantify at low concentrations in the water environment (106-109 particles mL-1 for nanoplastics originating from the breakdown of plastic debris) for the evaluation of effective treatment methods. This study examines the sensitivity, or limit of detection (LOD), of laser-induced breakdown detection (LIBD) for the counting of nanoparticles, including nanoplastics. For polystyrene (PS) standards with sizes of 20-400 nm, LIBD shows relatively low LODs (for example, 2 × 106 particles mL-1 for 100 nm particles) compared with turbidity monitoring, UV-vis spectroscopy (both 6 × 108 particles mL-1), and nanoparticle tracking analysis (2 × 107 particles mL-1). For nanoplastics (PS, polypropylene, and polyethylene terephthalate), the detection limits are 104 - 105 particles mL-1, one to two orders of magnitude lower than the PS standards. LIBD can quantify inorganic nanoparticles, such as zeolite, titania, and hematite. The sensitivity increases (i.e., LOD reduces) with increasing particle density, while some particles are prone to artifacts. The low LODs make LIBD a robust technique for counting nanoparticles of various types and sizes, even at the concentrations found in the permeate of membrane-based water treatment systems. Given the high sensitivity, LIBD has the potential to be applied in membrane integrity monitoring and fundamental studies on membrane mechanisms.
Collapse
Affiliation(s)
- Minh N Nguyen
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pia Lipp
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Ines Zucker
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
3
|
Chiu TH, Liao JH, Silalahi RPB, Pillay MN, Liu CW. Hydride-doped coinage metal superatoms and their catalytic applications. NANOSCALE HORIZONS 2024; 9:675-692. [PMID: 38507282 DOI: 10.1039/d4nh00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Superatomic constructs have been identified as a critical component of future technologies. The isolation of coinage metal superatoms relies on partially reducing metallic frameworks to accommodate the mixed valent state required to generate a superatom. Controlling this reduction requires careful consideration in reducing the agent, temperature, and the ligand that directs the self-assembly process. Hydride-based reducing agents dominate the synthetic wet chemical routes to coinage metal clusters. However, within this category, a unique subset of superatoms that retain a hydride/s within the nanocluster post-reduction have emerged. These stable constructs have only recently been characterized in the solid state and have highly unique structural features and properties. The difficulty in identifying the position of hydrides in electron-rich metallic constructs requires the combination and correlation of several analytical methods, including ESI-MS, NMR, SCXRD, and DFT. This text highlights the importance of NMR in detecting hydride environments in these superatomic systems. Added to the complexity of these systems is the dual nature of the hydride, which can act as metallic hydrogen in some cases, resulting in entirely different physical properties. This review includes all hydride-doped superatomic nanoclusters emphasizing synthesis, structure, and catalytic potential.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
4
|
Azzouz A, Roy R. Innovative Strategy for Truly Reversible Capture of Polluting Gases-Application to Carbon Dioxide. Int J Mol Sci 2023; 24:16463. [PMID: 38003653 PMCID: PMC10671383 DOI: 10.3390/ijms242216463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This paper consists of a deep analysis and data comparison of the main strategies undertaken for achieving truly reversible capture of carbon dioxide involving optimized gas uptakes while affording weakest retention strength. So far, most strategies failed because the estimated amount of CO2 produced by equivalent energy was higher than that captured. A more viable and sustainable approach in the present context of a persistent fossil fuel-dependent economy should be based on a judicious compromise between effective CO2 capture with lowest energy for adsorbent regeneration. The most relevant example is that of so-called promising technologies based on amino adsorbents which unavoidably require thermal regeneration. In contrast, OH-functionalized adsorbents barely reach satisfactory CO2 uptakes but act as breathing surfaces affording easy gas release even under ambient conditions or in CO2-free atmospheres. Between these two opposite approaches, there should exist smart approaches to tailor CO2 retention strength even at the expense of the gas uptake. Among these, incorporation of zero-valent metal and/or OH-enriched amines or amine-enriched polyol species are probably the most promising. The main findings provided by the literature are herein deeply and systematically analysed for highlighting the main criteria that allow for designing ideal CO2 adsorbent properties.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada;
- École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | - René Roy
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada;
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Weihai CY Dendrimer Technology Co., Ltd., No. 369-13, Caomiaozi Town, Lingang District, Weihai 264211, China
| |
Collapse
|
5
|
Khan S, Rehman U, Parveen N, Kumar S, Baboota S, Ali J. siRNA therapeutics: insights, challenges, remedies and future prospects. Expert Opin Drug Deliv 2023; 20:1167-1187. [PMID: 37642354 DOI: 10.1080/17425247.2023.2251890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Among conventional and novel therapeutic approaches, the siRNA strategy stands out for treating disease by silencing the gene responsible for the corresponding disorder. Gene silencing is supposedly intended to target any disease-causing gene, and therefore, several attempts and investments were made to exploit siRNA gene therapy and advance it into clinical settings. Despite the remarkable beneficial prospects, the applicability of siRNA therapeutics is very challenging due to various pathophysiological barriers that hamper its target reach, which is the cytosol, and execution of gene silencing action. AREAS COVERED The present review provides insights into the field of siRNA therapeutics, significant in vivo hurdles that mitigate the target accessibility of siRNA, and remedies to overcome these siRNA delivery challenges. Nonetheless, the current review also highlights the on-going clinical trials and the regulatory aspects of siRNA modalities. EXPERT OPINION The siRNAs have the potential to reach previously untreated target sites and silence the concerned gene owing to their modification as polymeric or lipidic nanoparticles, conjugates, and the application of advanced drug delivery strategies. With such mounting research attempts to improve the delivery of siRNA to target tissue, we might shortly witness revolutionary therapeutic outcomes, new approvals, and clinical implications.
Collapse
Affiliation(s)
- Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Lu J, Atochina-Vasserman EN, Maurya DS, Shalihin MI, Zhang D, Chenna SS, Adamson J, Liu M, Shah HUR, Shah H, Xiao Q, Queeley B, Ona NA, Reagan EK, Ni H, Sahoo D, Peterca M, Weissman D, Percec V. Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids. Pharmaceutics 2023; 15:1572. [PMID: 37376020 DOI: 10.3390/pharmaceutics15061572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.
Collapse
Affiliation(s)
- Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Muhammad Irhash Shalihin
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Srijay S Chenna
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Habib Ur Rehman Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Honey Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Bryn Queeley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Nathan A Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
7
|
Hussain S, Liu H, Vikraman D, Jaffery SHA, Nazir G, Shahzad F, Batoo KM, Jung J, Kang J, Kim HS. Tuning of electron transport layers using MXene/metal-oxide nanocomposites for perovskite solar cells and X-ray detectors. NANOSCALE 2023; 15:7329-7343. [PMID: 36974757 DOI: 10.1039/d3nr01196h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This work elaborates on the decoration of metal oxides (ZnO and Fe3O4) between MXene sheets for use as the supporting geometry of PCBM electron transport layers (ETLs) in perovskite solar cells and X-ray detectors. The metal oxide supports for carrying the plentiful charge carriers and the hydrophobic nature of MXenes provide an easy charge transfer path through their flakes and a smooth surface for the ETL. The developed interface engineering based on the MXene/ZnO and MXene/Fe3O4 hybrid ETL results in improved power conversion efficiencies (PCEs) of 13.31% and 13.79%, respectively. The observed PCE is improved to 25.80% and 30.34% by blending the MXene/ZnO and MXene/Fe3O4 nanoparticles with the PCBM layer, respectively. Various factors, such as surface modification, swift interfacial interaction, roughness decrement, and charge transport improvement, are strongly influenced to improve the device performance. Moreover, X-ray detectors with the MXene/Fe3O4-modulated PCBM ETL achieve a CCD-DCD, sensitivity, mobility, and trap density of 15.46 μA cm-2, 4.63 mA per Gy per cm2, 5.21 × 10-4 cm2 V-1 s-1, and 1.47 × 1015 cm2 V-1 s-1, respectively. Metal oxide-decorated MXene sheets incorporating the PCBM ETL are a significant route for improving the photoactive species generation, long-term stability, and high mobility of perovskite-based devices.
Collapse
Affiliation(s)
- Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Hailiang Liu
- Convergence Semiconductor Research Center, Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea.
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea.
| | - Syed Hassan Abbas Jaffery
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, Saudi Arabia
| | - Jongwan Jung
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Jungwon Kang
- Convergence Semiconductor Research Center, Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea.
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea.
| |
Collapse
|
8
|
Kisakova LA, Apartsin EK, Nizolenko LF, Karpenko LI. Dendrimer-Mediated Delivery of DNA and RNA Vaccines. Pharmaceutics 2023; 15:pharmaceutics15041106. [PMID: 37111593 PMCID: PMC10145063 DOI: 10.3390/pharmaceutics15041106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. Nucleic acid-based vaccines have a number of advantages, such as safety, efficacy, and low cost. They are potentially faster to develop, cheaper to produce, and easier to store and transport. A crucial step in the technology of DNA or RNA vaccines is choosing an efficient delivery method. Nucleic acid delivery using liposomes is the most popular approach today, but this method has certain disadvantages. Therefore, studies are actively underway to develop various alternative delivery methods, among which synthetic cationic polymers such as dendrimers are very attractive. Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. The biosafety of some dendrimers has been evaluated in several clinical trials presented in this review. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. This review summarizes the literature data on the development of dendrimer-based delivery systems for DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Evgeny K. Apartsin
- CBMN, UMR 5248, CNRS, Bordeaux INP, University Bordeaux, F-33600 Pessac, France
| | - Lily F. Nizolenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| |
Collapse
|
9
|
Click Chemistry: A Promising Tool for Building Hierarchical Structures. Polymers (Basel) 2022; 14:polym14194077. [PMID: 36236024 PMCID: PMC9570962 DOI: 10.3390/polym14194077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The hierarchical structures are utilized at different levels in nature. Moreover, a wide spectrum of nature’s properties (e.g., mechanical, physical and biological properties) has been attributed to this hierarchy. Different reviews have been published to cover the use of click chemistry in building hierarchical structures. However, each one of those reviews focused on a narrow area on this topic, i.e., specific chemical reaction, such as in thiol-ene chemistry, or a specific molecule or compound such as polyhedral oligomeric silsesquioxane, or a certain range of hierarchical structures between the nano to micro range, e.g., nanocrystals. In this review, a frame to connect the dots between the different published works has been demonstrated. This article will not attempt to give an exhaustive review of all the published work in the field, instead the potential of click chemistry to build hierarchical structures of different levels using building blocks of different length scales has been shown through two main approaches. The first is a one-step direct formation of 3D micro/macrometer dimensions structures from Pico dimensions structures (molecules, monomers, etc.). The second approach includes several steps Pico ➔ 0D nano ➔ 1D nano ➔ 2D nano ➔ 3D nano/micro/macro dimensions structures. Another purpose of this review article is to connect between (a) the atomic theory, which covers the atoms and molecules in the picometer dimensions (picoscopic chemistry set); (b) “nano-periodic system” model, which covers different nanobuilding blocks in the nanometers range such as nanoparticles, dendrimers, buckyball, etc. which was developed by Tomalia; and (c) the micro/macrometer dimensions level.
Collapse
|
10
|
Li DF, Yang MF, Xu HM, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Wang JY, Liang YJ, Yao J, Wang LS. Nanoparticles for oral delivery: targeted therapy for inflammatory bowel disease. J Mater Chem B 2022; 10:5853-5872. [PMID: 35876136 DOI: 10.1039/d2tb01190e] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a group of chronic and idiopathic gastrointestinal (GI) disorders, inflammatory bowel disease (IBD) is characterized by recurrent intestinal mucosal inflammation. Oral administration is critical for the treatment of IBD. Unfortunately, it is difficult to target the bowel located in the GI tract due to multiple physical barriers. The unique physicochemical properties of nanoparticle-based drug delivery systems (DDSs) and their enhanced permeability and retention effects in the inflamed bowel, render nanomedicines to be used to implement precise drug delivery at diseased sites in IBD therapy. In this review, we described the pathophysiological features of IBD, and designed strategies to exploit these features for intestinal targeting. In addition, we introduced the types of currently developed nano-targeted carriers, including synthetic nanoparticle-based and emerging naturally derived nanoparticles (e.g., extracellular vesicles and plant-derived nanoparticles). Moreover, recent developments in targeted oral nanoparticles for IBD therapy were also highlighted. Finally, we presented challenges associated with nanotechnology and potential directions for future IBD treatment.
Collapse
Affiliation(s)
- De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026, Guangdong, China.
| | - Yu-Jie Liang
- Shenzhen Kangning Hospital, No. 1080, Cuizu Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
11
|
Cacciamali A, Pascucci L, Villa R, Dotti S. Engineered nanoparticles toxicity on adipose tissue derived mesenchymal stem cells: A preliminary investigation. Res Vet Sci 2022; 152:134-149. [PMID: 35969916 DOI: 10.1016/j.rvsc.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022]
Abstract
Nanoscience and nanotechnologies have recently gained importance in several fields, such as industry and medicine. A big issue of the increasing application of nanomaterials is the poor literature regarding their potential toxicity in humans and animals. Recently, adult stem cells have been proposed as putative targets of nanoparticles (NPs). This study aims to investigate the effects of zerovalent-metallic NPs on isolated and amplified equine Adipose tissue derived Mesenchymal Stem Cells (eAdMSCs). Cells were treated with Cobalt (Co-), Iron (Fe-), and Nickel (Ni-) nanoparticles (NPs) at different concentrations and were characterized for the cytotoxic and genotoxic effects of exposure. Treatment with NPs resulted in reduced cell viability and proliferative capability in comparison with untreated cells. However, this did not influence eAdMSCs potency, as treated cells were able to differentiate towards the adipogenic and osteogenic lineages. Ni- and Fe-NPs showed cytoplasmic localization, while Co-NPs entered the nucleus and mitochondria, suggesting a potential genotoxic activity. Regarding p53 expression, it was enhanced in the first 48 h after treatments, with a drastic reduction of expression within 72 h. Higher p53 expression was reported in the case of Co-NP treatment, suggesting the tumorigenic potential of these NPs. Telomerase activity was enhanced by Fe- and Ni-NP treatments in a concentration- and time-dependent way. This was not true for Co-NP treated samples, suggesting a reduced replicative capacity of eAdMSCs upon Co-NP exposure. The present study is a preliminary investigation of the influence exerted by NPs on eAdMSC physiological activity in terms of cytotoxic and genotoxic effects. The present results revealed eAdMSC physiology to be strongly influenced by NPs in a dose-, time- and NP-dependent way.
Collapse
Affiliation(s)
- Andrea Cacciamali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| | - Luisa Pascucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy.
| | - Riccardo Villa
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| | - Silvia Dotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| |
Collapse
|
12
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
13
|
Zhang D, Atochina-Vasserman EN, Lu J, Maurya DS, Xiao Q, Liu M, Adamson J, Ona N, Reagan EK, Ni H, Weissman D, Percec V. The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component Ionizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity. J Am Chem Soc 2022; 144:4746-4753. [PMID: 35263098 DOI: 10.1021/jacs.2c00273] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral and synthetic vectors for delivery of nucleic acids impacted genetic nanomedicine by aiding the rapid development of the extraordinarily efficient Covid-19 vaccines. Access to targeted delivery of nucleic acids is expected to expand the field of nanomedicine beyond most expectations. Both viral and synthetic vectors have advantages and disadvantages. The major advantage of the synthetic vectors is their unlimited synthetic capability. The four-component lipid nanoparticles (LNPs) are the leading nonviral vector for mRNA used by Pfizer and Moderna in Covid-19 vaccines. Their synthetic capacity inspired us to develop a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA. The first experiments on IAJDs provided, through a rational-library design combined with orthogonal-modular accelerated synthesis and sequence control in their hydrophilic part, some of the most active synthetic vectors for the delivery of mRNA to lung. The second experiments employed a similar strategy, generating, by a less complex hydrophilic structure, a library of IAJDs targeting spleen, liver, and lung. Here, we report preliminary studies designing the hydrophobic region of IAJDs by using dissimilar alkyl lengths and demonstrate the unexpectedly important role of the primary structure of the hydrophobic part of IAJDs by increasing up to 90.2-fold the activity of targeted delivery of mRNA to spleen, lymph nodes, liver, and lung. The principles of the design strategy reported here and in previous publications indicate that IAJDs could have a profound impact on the future of genetic nanomedicine.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
14
|
Singh D, Kaur P, Attri S, Singh S, Sharma P, Mohana P, Kaur K, Kaur H, Singh G, Rashid F, Singh D, Kumar A, Rajput A, Bedi N, Singh B, Buttar HS, Arora S. Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy. Curr Drug Deliv 2021; 19:560 - 586. [PMID: 34906056 DOI: 10.2174/1567201818666211214112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
The conventional anticancer chemotherapies not only cause serious toxic effects, but also produce resistance in tumor cells exposed to long-term therapy. Usually, the killing of metastasized cancer cells requires long-term therapy with higher drug doses, because the cancer cells develop resistance due to the induction of poly-glycoproteins (P-gps) that act as a transmembrane efflux pump to transport drugs out of the cells. During the last few decades, scientists have been exploring new anticancer drug delivery systems such as microencapsulation, hydrogels, and nanotubes to improve bioavailability, reduce drug-dose requirement, decrease multiple drug resistance, and to save normal cells as non-specific targets. Hopefully, the development of novel drug delivery vehicles (nanotubes, liposomes, supramolecules, hydrogels, and micelles) will assist to deliver drug molecules at the specific target site and reduce the undesirable side effects of anticancer therapies in humans. Nanoparticles and lipid formulations are also designed to deliver small drug payload at the desired tumor cell sites for their anticancer actions. This review will focus on the recent advances in the drug delivery systems, and their application in treating different cancer types in humans.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Pallavi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga. India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario. Canada
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
15
|
Ali SS, Al-Tohamy R, Koutra E, Moawad MS, Kornaros M, Mustafa AM, Mahmoud YAG, Badr A, Osman MEH, Elsamahy T, Jiao H, Sun J. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148359. [PMID: 34147795 DOI: 10.1016/j.scitotenv.2021.148359] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 05/12/2023]
Abstract
The high demand for sufficient and safe food, and continuous damage of environment by conventional agriculture are major challenges facing the globe. The necessity of smart alternatives and more sustainable practices in food production is crucial to confront the steady increase in human population and careless depletion of global resources. Nanotechnology implementation in agriculture offers smart delivery systems of nutrients, pesticides, and genetic materials for enhanced soil fertility and protection, along with improved traits for better stress tolerance. Additionally, nano-based sensors are the ideal approach towards precision farming for monitoring all factors that impact on agricultural productivity. Furthermore, nanotechnology can play a significant role in post-harvest food processing and packaging to reduce food contamination and wastage. In this review, nanotechnology applications in the agriculture and food sector are reviewed. Implementations of nanotechnology in agriculture have included nano- remediation of wastewater for land irrigation, nanofertilizers, nanopesticides, and nanosensors, while the beneficial effects of nanomaterials (NMs) in promoting genetic traits, germination, and stress tolerance of plants are discussed. Furthermore, the article highlights the efficiency of nanoparticles (NPs) and nanozymes in food processing and packaging. To this end, the potential risks and impacts of NMs on soil, plants, and human tissues and organs are emphasized in order to unravel the complex bio-nano interactions. Finally, the strengths, weaknesses, opportunities, and threats of nanotechnology are evaluated and discussed to provide a broad and clear view of the nanotechnology potentials, as well as future directions for nano-based agri-food applications towards sustainability.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Nanoscience Program, Zewail City of Science and Technology, 6th of October, Giza 12588, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - Mohamed E H Osman
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
17
|
Gericke M, Geitel K, Jörke C, Clement JH, Heinze T. Reactive Nanoparticles Derived from Polysaccharide Phenyl Carbonates. Molecules 2021; 26:molecules26134026. [PMID: 34279366 PMCID: PMC8272227 DOI: 10.3390/molecules26134026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/28/2022] Open
Abstract
Polysaccharide (PS) based nanoparticles (NP) are of great interest for biomedical applications. A key challenge in this regard is the functionalization of these nanomaterials. The aim of the present work was the development of reactive PS-NP that can be coupled with an amino group containing compounds under mild aqueous conditions. A series of cellulose phenyl carbonates (CPC) and xylan phenyl carbonates (XPC) with variable degrees of substitution (DS) was obtained by homogeneous synthesis. The preparation of PS-NP by self-assembling of these hydrophobic derivatives was studied comprehensively. While CPC mostly formed macroscopic aggregates, XPC formed well-defined spherical NP with diameters around 100 to 200 nm that showed a pronounced long-term stability in water against both particle aggregation as well as cleavage of phenyl carbonate moieties. Using an amino group functionalized dye it was demonstrated that the novel XPC-NP are reactive towards amines. A simple coupling procedure was established that enables direct functionalization of the reactive NP in an aqueous dispersion. Finally, it was demonstrated that dye functionalized XPC-NP are non-cytotoxic and can be employed in advanced biomedical applications.
Collapse
Affiliation(s)
- Martin Gericke
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstr 10, 07743 Jena, Germany
- Correspondence: (M.G.); (T.H.)
| | - Katja Geitel
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (K.G.); (C.J.); (J.H.C.)
| | - Cornelia Jörke
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (K.G.); (C.J.); (J.H.C.)
| | - Joachim H. Clement
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (K.G.); (C.J.); (J.H.C.)
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstr 10, 07743 Jena, Germany
- Correspondence: (M.G.); (T.H.)
| |
Collapse
|
18
|
Terehova M, Dzmitruk V, Abashkin V, Kirakosyan G, Ghukasyan G, Bryszewska M, Pedziwiatr-Werbicka E, Ionov M, Gómez R, de la Mata FJ, Mignani S, Shi X, Majoral JP, Sukhodola A, Shcharbin D. Comparison of the effects of dendrimer, micelle and silver nanoparticles on phospholipase A2 structure. J Biotechnol 2021; 331:48-52. [PMID: 33727080 DOI: 10.1016/j.jbiotec.2021.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022]
Abstract
The interaction of nanoparticles (NP) with proteins (the so-called 'protein corona') is a huge challenge in attempting to apply them in personalized nanomedicine. We have analyzed the interaction between A) two 'soft' NPs (a cationic phosphorus dendrimer of generation 3; a cationic phosphorus amphiphilic dendron of generation 2), and B) one 'hard' nanoparticle (silver NP covered with cationic carbosilane dendritic moieties); and membrane-bound protein phospholipase A2 from bovine pancreas. The hard and soft NPs have differences in the nature of their interactions with phospholipase A2. This enzyme surrounds hard AgNP, whereas dendrimer and amphiphilic dendron form aggregates/micelles with phospholipase A2. There is a difference in action of phospholipase A2 bound to the core of dendrimer, and of micelles formed from non-covalent interactions between the amphiphilic dendron. These data are important in understanding the nature of interaction between different kinds of nanoparticles and proteins.
Collapse
Affiliation(s)
- Maria Terehova
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Volha Dzmitruk
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | | | | | - Maria Bryszewska
- Department of General Biophysics, University of Lodz, Pomorska str. 141/143, 90-236, Lodz, Poland
| | | | - Maksim Ionov
- Department of General Biophysics, University of Lodz, Pomorska str. 141/143, 90-236, Lodz, Poland
| | - Rafael Gómez
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine(CIBER-BBN), Spain
| | - F Javier de la Mata
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine(CIBER-BBN), Spain
| | - Serge Mignani
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques CNRS UMR 860 Université Paris Descartes PRES Sorbone Paris Cité, rue des Saints Pères, 75006, Paris, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Jean-Pierre Majoral
- Laboratoire Chimie de Coordination, CNRS, 205 route de Narbonne, 31077, Toulouse Cedex, France; Université de Toulouse, UPS, INP, Toulouse, 31077 Cedex 4, France
| | - Aleksandr Sukhodola
- B.I. Stepanov Institute of Physics of NASB, Skoriny str. 68, 220072, Minsk, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus.
| |
Collapse
|
19
|
Khelghati N, Soleimanpour Mokhtarvand J, Mir M, Alemi F, Asemi Z, Sadeghpour A, Maleki M, Samadi Kafil H, Jadidi-Niaragh F, Majidinia M, Yousefi B. The importance of co-delivery of nanoparticle-siRNA and anticancer agents in cancer therapy. Chem Biol Drug Des 2021; 97:997-1015. [PMID: 33458952 DOI: 10.1111/cbdd.13824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/10/2021] [Indexed: 01/12/2023]
Abstract
According to global statistics, cancer is the second leading cause of death worldwide. Because of the heterogeneity of cancer, single-drug therapy has many limitations due to low efficacy. Therefore, combination therapy with two or more therapeutic agents is being arisen. One of the most important approaches in cancer therapy is the shot down of key genes involved in apoptotic processes and cell cycle. In this regard, siRNA is a good candidate, a highly attractive method to suppressing tumor growth and invasion. Combination therapy with siRNAs and chemotherapeutic agents can overcome the multidrug resistance and increase apoptosis. The efficient delivery of siRNA to the target cell/tissue/organ has been a challenge. To overcome these challenges, the presence of suitable delivery systems by using nanoparticles is interesting. In this review, we discuss the current challenges for successful RNA interference. Also, we suggested proper a strategy for delivering siRNA that can be useful in targeting therapy. Finally, the combination of a variety of anticancer drugs and siRNA through acceptable delivery systems and their effects on cell cycle and apoptosis will be evaluated.
Collapse
Affiliation(s)
- Nafiseh Khelghati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mostafa Mir
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Pedziwiatr-Werbicka E, Horodecka K, Shcharbin D, Bryszewska M. Nanoparticles in Combating Cancer: Opportunities and Limitations. A Brief Review. Curr Med Chem 2021; 28:346-359. [PMID: 32000637 DOI: 10.2174/0929867327666200130101605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022]
Abstract
Nanomedicine is a good alternative to traditional methods of cancer treatment but does not solve all the limitations of oncology. Nanoparticles used in anticancer therapy can work as carriers of drugs, nucleic acids, imaging agents or they can sensitize cells to radiation. The present review focuses on the application of nanoparticles to treating cancer, as well as on its problems and limitations. Using nanoparticles as drug carriers, significant improvement in the efficiency of transport of compounds and their targeting directly to the tumour has been achieved; it also reduces the side effects of chemotherapeutic drugs on the body. However, nanoparticles do not significantly improve the effectiveness of the chemotherapeutic agent itself. Most nanodrugs can reduce the toxicity of chemotherapy, but do not significantly affect the effectiveness of treatment. Nanodrugs should be developed that can be effective as an anti-metastatic treatment, e.g. by enhancing the ability of nanoparticles to transport chemotherapeutic loads to sentinel lymph nodes using the immune system and developing chemotherapy in specific metastatic areas. Gene therapy, however, is the most modern method of treating cancer, the cause of cancer being tackled by altering genetic material. Other applications of nanoparticles for radiotherapy and diagnostics are discussed.
Collapse
Affiliation(s)
- Elzbieta Pedziwiatr-Werbicka
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| | - Katarzyna Horodecka
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Maria Bryszewska
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| |
Collapse
|
21
|
Vincent MP, Bobbala S, Karabin NB, Frey M, Liu Y, Navidzadeh JO, Stack T, Scott EA. Surface chemistry-mediated modulation of adsorbed albumin folding state specifies nanocarrier clearance by distinct macrophage subsets. Nat Commun 2021; 12:648. [PMID: 33510170 PMCID: PMC7844416 DOI: 10.1038/s41467-020-20886-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Controlling nanocarrier interactions with the immune system requires a thorough understanding of the surface properties that modulate protein adsorption in biological fluids, since the resulting protein corona redefines cellular interactions with nanocarrier surfaces. Albumin is initially one of the dominant proteins to adsorb to nanocarrier surfaces, a process that is considered benign or beneficial by minimizing opsonization or inflammation. Here, we demonstrate the surface chemistry of a model nanocarrier can be engineered to stabilize or denature the three-dimensional conformation of adsorbed albumin, which respectively promotes evasion or non-specific clearance in vivo. Interestingly, certain common chemistries that have long been considered to convey stealth properties denature albumin to promote nanocarrier recognition by macrophage class A1 scavenger receptors, providing a means for their eventual removal from systemic circulation. We establish that the surface chemistry of nanocarriers can be specified to modulate adsorbed albumin structure and thereby tune clearance by macrophage scavenger receptors.
Collapse
Affiliation(s)
- Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Molly Frey
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Justin O Navidzadeh
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Trevor Stack
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
22
|
The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties. Biomolecules 2020; 10:biom10040642. [PMID: 32326311 PMCID: PMC7226492 DOI: 10.3390/biom10040642] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/27/2020] [Accepted: 03/21/2020] [Indexed: 12/23/2022] Open
Abstract
This article reviews progress over the past three decades related to the role of dendrimer-based, branch cell symmetry in the development of advanced drug delivery systems, aqueous based compatibilizers/solubilizers/excipients and nano-metal cluster catalysts. Historically, it begins with early unreported work by the Tomalia Group (i.e., The Dow Chemical Co.) revealing that all known dendrimer family types may be divided into two major symmetry categories; namely: Category I: symmetrical branch cell dendrimers (e.g., Tomalia, Vögtle, Newkome-type dendrimers) possessing interior hollowness/porosity and Category II: asymmetrical branch cell dendrimers (e.g., Denkewalter-type) possessing no interior void space. These two branch cell symmetry features were shown to be pivotal in directing internal packing modes; thereby, differentiating key dendrimer properties such as densities, refractive indices and interior porosities. Furthermore, this discovery provided an explanation for unimolecular micelle encapsulation (UME) behavior observed exclusively for Category I, but not for Category II. This account surveys early experiments confirming the inextricable influence of dendrimer branch cell symmetry on interior packing properties, first examples of Category (I) based UME behavior, nuclear magnetic resonance (NMR) protocols for systematic encapsulation characterization, application of these principles to the solubilization of active approved drugs, engineering dendrimer critical nanoscale design parameters (CNDPs) for optimized properties and concluding with high optimism for the anticipated role of dendrimer-based solubilization principles in emerging new life science, drug delivery and nanomedical applications.
Collapse
|
23
|
Kadri R, Bacharouch J, Elkhoury K, Ben Messaoud G, Kahn C, Desobry S, Linder M, Tamayol A, Francius G, Mano JF, Sánchez-González L, Arab-Tehrany E. Role of active nanoliposomes in the surface and bulk mechanical properties of hybrid hydrogels. Mater Today Bio 2020; 6:100046. [PMID: 32259100 PMCID: PMC7096761 DOI: 10.1016/j.mtbio.2020.100046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 11/03/2022] Open
Abstract
Nanoliposomes are widely used as delivery vehicles for active compounds. Nanoliposomes from rapeseed phospholipids were incorporated into interpenetrating polymer network hydrogels of gelatin methacryloyl and alginate. The multiscale physicochemical properties of the hydrogels are studied both on the surface and through the thickness of the 3D network. The obtained composite hydrogels exhibited strong mechanical properties and a highly porous surface. The blend ratio, as well as the concentration of nanoliposomes, affects the properties of the hydrogels. Nanofunctionalized hydrogels induced keratinocyte growth. These advantageous characteristics may open up many applications of the developed hydrogels in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- R Kadri
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - J Bacharouch
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - K Elkhoury
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - G Ben Messaoud
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - C Kahn
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - S Desobry
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - M Linder
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - A Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - G Francius
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour L'Environnement, UMR 7564, Villers-lès-Nancy, F-54601, France.,CNRS, Laboratoire de Chimie Physique et Microbiologie pour L'Environnement, UMR 7564, Villers-lès-Nancy, F-54601, France
| | - J F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - L Sánchez-González
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - E Arab-Tehrany
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| |
Collapse
|
24
|
Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020; 20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Polysaccharide (PS) nanoparticles (NP) are fascinating materials that combine huge application potential with the unique beneficial features of natural biopolymers. Different types of PS-NP can be distinguished depending on the basic preparation principles (top-down vs bottom-up vs coating of nanomaterials) and the material from which they are obtained (native PS vs chemically modified PS derivatives vs nanocomposites). This review provides a comprehensive overview of an approach towards PS-NP that has gained rapidly increasing interest within the last decade; the nanoself-assembling of hydrophobic PS derivatives. This facile process is easy to perform and offers a broad structural diversity in terms of the PS backbone and the additional functionalities that can be introduced. Fundamental principles of different NP preparation techniques along with useful characterization methods are presented in this work. A comprehensive summary of PS-NP prepared by different techniques and with various PS backbones and types/amounts of hydrophobic substituents is given. The intention is to demonstrate how different parameters determine the size, size distribution, and zeta-potential of the particles. Moreover, application trends in biomedical areas are highlighted in which tailored functional PS-NP are evaluated and constantly developed further.
Collapse
Affiliation(s)
- Martin Gericke
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Peter Schulze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
25
|
Chen W, Li J, Liu J, Sun W, Li Z, Li Y. Theoretical investigation of perfect fullerene-like borospherene Ih-B 20 protected by alkaline earth metal: multi-layered spherical electride molecules as electric field manipulated second-order nonlinear optical switches. Dalton Trans 2020; 49:15267-15275. [DOI: 10.1039/d0dt03266b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A perfect fullerene-like borospherene B20 with 12 B5 rings stabilized in the electride molecule (Mg2+)12&B2018− + 6e−.
Collapse
Affiliation(s)
- Weihong Chen
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun
| | - Jing Li
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun
| | - Jiayuan Liu
- Institute of Applied Chemistry
- Hebei North University
- Zhangjiakou
- People's Republic of China
| | - Weiming Sun
- Department of Basic Chemistry
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- People's Republic of China
| | - Zhiru Li
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun
| |
Collapse
|
26
|
He Z, Yang Y, Liang HW, Liu JW, Yu SH. Nanowire Genome: A Magic Toolbox for 1D Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902807. [PMID: 31566828 DOI: 10.1002/adma.201902807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/07/2019] [Indexed: 06/10/2023]
Abstract
1D nanomaterials with high aspect ratio, i.e., nanowires and nanotubes, have inspired considerable research interest thanks to the fact that exotic physical and chemical properties emerge as their diameters approach or fall into certain length scales, such as the wavelength of light, the mean free path of phonons, the exciton Bohr radius, the critical size of magnetic domains, and the exciton diffusion length. On the basis of their components, aspect ratio, and properties, there may be imperceptible connections among hundreds of nanowires prepared by different strategies. Inspired by the heredity system in life, a new concept termed the "nanowire genome" is introduced here to clarify the relationships between hundreds of nanowires reported previously. As such, this approach will not only improve the tools incorporating the prior nanowires but also help to precisely synthesize new nanowires and even assist in the prediction on the properties of nanowires. Although the road from start-ups to maturity is long and fraught with challenges, the genetical syntheses of more than 200 kinds of nanostructures stemming from three mother nanowires (Te, Ag, and Cu) are summarized here to demonstrate the nanowire genome as a versatile toolbox. A summary and outlook on future challenges in this field are also presented.
Collapse
Affiliation(s)
- Zhen He
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jian-Wei Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
27
|
Shcharbin D, Halets-Bui I, Abashkin V, Dzmitruk V, Loznikova S, Odabaşı M, Acet Ö, Önal B, Özdemir N, Shcharbina N, Bryszewska M. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids Surf B Biointerfaces 2019; 182:110354. [DOI: 10.1016/j.colsurfb.2019.110354] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/11/2022]
|
28
|
Elkhoury K, Russell C, Sanchez-Gonzalez L, Mostafavi A, Williams T, Kahn C, Peppas NA, Arab-Tehrany E, Tamayol A. Soft-Nanoparticle Functionalization of Natural Hydrogels for Tissue Engineering Applications. Adv Healthc Mater 2019; 8:e1900506. [PMID: 31402589 PMCID: PMC6752977 DOI: 10.1002/adhm.201900506] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Indexed: 12/29/2022]
Abstract
Tissue engineering has emerged as an important research area that provides numerous research tools for the fabrication of biologically functional constructs that can be used in drug discovery, disease modeling, and the treatment of diseased or injured organs. From a materials point of view, scaffolds have become an important part of tissue engineering activities and are usually used to form an environment supporting cellular growth, differentiation, and maturation. Among various materials used as scaffolds, hydrogels based on natural polymers are considered one of the most suitable groups of materials for creating tissue engineering scaffolds. Natural hydrogels, however, do not always provide the physicochemical and biological characteristics and properties required for optimal cell growth. This review discusses the properties and tissue engineering applications of widely used natural hydrogels. In addition, methods of modulation of their physicochemical and biological properties using soft nanoparticles as fillers or reinforcing agents are presented.
Collapse
Affiliation(s)
| | - Carina Russell
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | | | | | - Tyrell Williams
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Cyril Kahn
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | - Nicholas A. Peppas
- Departments of Biomedical and Chemical Engineering, Departments of Pediatrics and Surgery, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
- Mary and Dick Holland Regenerative Medicine Program University of Nebraska-Medical Center, Omaha, NE, 68198
| |
Collapse
|
29
|
An innovative in situ method of creating hybrid dendrimer nano-assembly: An efficient next generation dendritic platform for drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102043. [PMID: 31247312 DOI: 10.1016/j.nano.2019.102043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 01/02/2023]
Abstract
Dendrimers have proven to be effective for drug delivery and their biodisposition varies with change on their surface, generation and core. In an effort to understand the role of critical nanoscale design parameters, we developed a novel hybrid dendrimer approach to harness unique features of individual dendrimers and create a nano-assembly. We report an easy in situ method of creating hybrid dendrimer nano-assembly by mixing G4.0 PAMAM (-NH2) and G3.5 PAMAM (-COONa) dendrimers with a chemotherapeutic drug docetaxel (DTX). Zeta potential, HR-TEM, 1H-NMR proved the formation of nano-assembly. In vitro dissolution, release studies revealed pH dependent dissolution and sustained drug release. Cellular uptake, cytotoxicity, and flow cytometric analysis in human/mouse glioblastoma cells indicated the effectiveness of hybrid dendrimers. The oral administration of the hybrid dendrimers showed pharmacokinetic equivalence to intravenous injection of commercially available Taxotere®. Hybrid dendrimer concept provides much needed fine-tuning to create multistage next-generation dendritic platform in nanomedicine.
Collapse
|
30
|
Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.09.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Knauer N, Pashkina E, Apartsin E. Topological Aspects of the Design of Nanocarriers for Therapeutic Peptides and Proteins. Pharmaceutics 2019; 11:E91. [PMID: 30795556 PMCID: PMC6410174 DOI: 10.3390/pharmaceutics11020091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
Supramolecular chemistry holds great potential for the design of versatile and safe carriers for therapeutic proteins and peptides. Nanocarriers can be designed to meet specific criteria for given application (exact drug, administration route, target tissue, etc.). However, alterations in the topology of formulation components can drastically change their activity. This is why the supramolecular topology of therapeutic nanoconstructions has to be considered. Herein, we discuss several topological groups used for the design of nanoformulations for peptide and protein delivery: modification of polypeptide chains by host-guest interactions; packaging of proteins and peptides into liposomes; complexation and conjugation with dendrimers. Each topological type has its own advantages and disadvantages, so careful design of nanoformulations is needed. Ideally, each case where nanomedicine is needed requires a therapeutic construction specially created for that taking into account features of the administration route, target tissue, or organ, properties of a drug, its bioavailability, etc. The wide number of studies in the field of protein delivery by supramolecular and nanocarriers for proteins and peptides evidence their increasing potential for different aspects of the innovative medicine. Although significant progress has been achieved in the field, there are several remaining challenges to be overcome in future.
Collapse
Affiliation(s)
- Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrinthevskaya str., 630099 Novosibirsk, Russia.
| | - Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrinthevskaya str., 630099 Novosibirsk, Russia.
| | - Evgeny Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, 2, Pirogov str., 630090 Novosibirsk, Russia.
| |
Collapse
|
32
|
Wojnilowicz M, Glab A, Bertucci A, Caruso F, Cavalieri F. Super-resolution Imaging of Proton Sponge-Triggered Rupture of Endosomes and Cytosolic Release of Small Interfering RNA. ACS NANO 2019; 13:187-202. [PMID: 30566836 DOI: 10.1021/acsnano.8b05151] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The intracellular delivery of nucleic acids and proteins remains a key challenge in the development of biological therapeutics. In gene therapy, the inefficient delivery of small interfering RNA (siRNA) to the cytosol by lipoplexes or polyplexes is often ascribed to the entrapment and degradation of siRNA payload in the endosomal compartments. A possible mechanism by which polyplexes rupture the endosomal membrane and release their nucleic acid cargo is commonly defined as the "proton sponge effect". This is an osmosis-driven process triggered by the proton buffering capacity of polyplexes. Herein, we investigate the molecular basis of the "proton sponge effect" through direct visualization of the siRNA trafficking process, including analysis of individual polyplexes and endosomes, using stochastic optical reconstruction microscopy. We probe the sequential siRNA trafficking steps through single molecule super-resolution analysis of subcellular structures, polyplexes, and silencing RNA molecules. Specifically, individual intact polyplexes released in the cytosol upon rupture of the endosomes, the damaged endosomal vesicles, and the disassembly of the polyplexes in the cytosol are examined. We find that the architecture of the polyplex and the rigidity of the cationic polymer chains are crucial parameters that control the mechanism of endosomal escape driven by the proton sponge effect. We provide evidence that in highly branched and rigid cationic polymers, such as glycogen or polyethylenimine, immobilized on silica nanoparticles, the proton sponge effect is effective in inducing osmotic swelling and rupture of endosomes.
Collapse
Affiliation(s)
- Marcin Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Agata Glab
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Alessandro Bertucci
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
- Dipartimento di Scienze e Tecnologie Chimiche , Universita' degli Studi di Roma "Tor Vergata" , via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
- Dipartimento di Scienze e Tecnologie Chimiche , Universita' degli Studi di Roma "Tor Vergata" , via della Ricerca Scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
33
|
Chauhan AS. Dendrimers for Drug Delivery. Molecules 2018; 23:molecules23040938. [PMID: 29670005 PMCID: PMC6017392 DOI: 10.3390/molecules23040938] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 11/30/2022] Open
Abstract
Dendrimers have come a long way in the last 25 years since their inception. Originally created as a wonder molecule of chemistry, dendrimer is now in the fourth class of polymers. Dr. Donald Tomalia first published his seminal work on Poly(amidoamine) (PAMAM) dendrimers in 1985. Application of dendrimers as a drug delivery system started in late 1990s. Dendrimers for drug delivery are employed using two approaches: (i) formulation and (ii) nanoconstruct. In the formulation approach, drugs are physically entrapped in a dendrimer using non-covalent interactions, whereas drugs are covalently coupled on dendrimers in the nanoconstruct approach. We have demonstrated the utility of PAMAM dendrimers for enhancing solubility, stability and oral bioavailability of various drugs. Drug entrapment and drug release from dendrimers can be controlled by modifying dendrimer surfaces and generations. PAMAM dendrimers are also shown to increase transdermal permeation and specific drug targeting. Dendrimer platforms can be engineered to attach targeting ligands and imaging molecules to create a nanodevice. Dendrimer nanotechnology, due to its multifunctional ability, has the potential to create next generation nanodevices.
Collapse
Affiliation(s)
- Abhay Singh Chauhan
- School of Pharmacy, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
34
|
Amaral SP, Tawara MH, Fernandez-Villamarin M, Borrajo E, Martínez-Costas J, Vidal A, Riguera R, Fernandez-Megia E. Tuning the Size of Nanoassembles: A Hierarchical Transfer of Information from Dendrimers to Polyion Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sandra P. Amaral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Maun H. Tawara
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Marcos Fernandez-Villamarin
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Erea Borrajo
- Departamento de Fisioloxía and Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS); Universidade de Santiago de Compostela; Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS); 15782 Santiago de Compostela Spain
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Bioquímica e Bioloxía Molecular; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Anxo Vidal
- Departamento de Fisioloxía and Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS); Universidade de Santiago de Compostela; Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS); 15782 Santiago de Compostela Spain
| | - Ricardo Riguera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
35
|
Amaral SP, Tawara MH, Fernandez-Villamarin M, Borrajo E, Martínez-Costas J, Vidal A, Riguera R, Fernandez-Megia E. Tuning the Size of Nanoassembles: A Hierarchical Transfer of Information from Dendrimers to Polyion Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201712244] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandra P. Amaral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Maun H. Tawara
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Marcos Fernandez-Villamarin
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Erea Borrajo
- Departamento de Fisioloxía and Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS); Universidade de Santiago de Compostela; Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS); 15782 Santiago de Compostela Spain
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Bioquímica e Bioloxía Molecular; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Anxo Vidal
- Departamento de Fisioloxía and Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS); Universidade de Santiago de Compostela; Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS); 15782 Santiago de Compostela Spain
| | - Ricardo Riguera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
36
|
Abstract
Among the six Critical Nanoscale Design Parameters (CNDPs) proposed by Prof. Donald A. Tomalia, this review illustrates the influence of the sixth one, which concerns the elemental composition, on the properties of dendrimers. After a large introduction that summarizes different types of dendrimers that have been compared with PolyAMidoAMine (PAMAM) dendrimers, this review will focus on the properties of positively and negatively charged phosphorhydrazone (PPH) dendrimers, especially in the field of biology, compared with other types of dendrimers, in particular PAMAM dendrimers, as well as polypropyleneimine (PPI), carbosilane, and p-Lysine dendrimers.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse CEDEX 4, France.
| | - Jean-Pierre Majoral
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse CEDEX 4, France.
| |
Collapse
|
37
|
Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. COLLOIDS AND INTERFACES 2017. [DOI: 10.3390/colloids1010006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Synthesis, in vitro evaluation of antibacterial, antifungal and larvicidal activities of pyrazole/pyridine based compounds and their nanocrystalline MS (M = Cu and Cd) derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2002-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Azzouz A, Roy R. Dendrimers: syntheses, toxicity, and applications toward catalysis, environmental sciences, and nanomedecine. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Abdelkrim Azzouz
- Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - René Roy
- Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
40
|
Zakeri M, Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoor-Baltork I, Pahlevanneshan Z. Copper containing nanosilica thioalated dendritic material: A recyclable catalyst for synthesis of benzimidazoles and benzothiazoles. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3937] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maryam Zakeri
- Department of Chemistry, Catalysis Division; University of Isfahan; Isfahan 81746-73441 Iran
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division; University of Isfahan; Isfahan 81746-73441 Iran
| | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division; University of Isfahan; Isfahan 81746-73441 Iran
| | - Shahram Tangestaninejad
- Department of Chemistry, Catalysis Division; University of Isfahan; Isfahan 81746-73441 Iran
| | | | | |
Collapse
|
41
|
Shcharbin D, Pedziwiatr-Werbicka E, Vcherashniaya A, Janaszewska A, Marcinkowska M, Goska P, Klajnert-Maculewicz B, Ionov M, Abashkin V, Ihnatsyeu-Kachan A, de la Mata FJ, Ortega P, Gomez-Ramirez R, Majoral JP, Bryszewska M. Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin—Constants and mechanisms. Colloids Surf B Biointerfaces 2017; 155:11-16. [DOI: 10.1016/j.colsurfb.2017.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/28/2022]
|
42
|
Rahman A, Rahman AK, Tomalia DA. Engineering dendrimers to produce dendrimer dipole excitation based terahertz radiation sources suitable for spectrometry, molecular and biomedical imaging. NANOSCALE HORIZONS 2017; 2:127-134. [PMID: 32260656 DOI: 10.1039/c7nh00010c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two critical nanoscale design parameters (CNDPs); namely, surface chemistry and interior compositions of poly(amidoamine) (PAMAM) dendrimers were systematically engineered to produce unique hyperpolarizable, electro-optical substrates. These electro-optically active dendritic films were demonstrated to produce high quality, continuous wave terahertz radiation when exposed to a suitable pump laser that could be used for spectrometry and molecular imaging. These dendrimer based dipole excitation (DDE) terahertz sources were used to construct a working spectrometer suitable for many practical applications including THz imaging and analysis of encapsulated hydrogen species in fullerenes.
Collapse
Affiliation(s)
- Anis Rahman
- Applied Research and Photonics, Harrisburg, PA 17111, USA
| | | | | |
Collapse
|
43
|
Albrecht K, Hirabayashi Y, Otake M, Mendori S, Tobari Y, Azuma Y, Majima Y, Yamamoto K. Polymerization of a divalent/tetravalent metal-storing atom-mimicking dendrimer. SCIENCE ADVANCES 2016; 2:e1601414. [PMID: 27957538 PMCID: PMC5135387 DOI: 10.1126/sciadv.1601414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
The phenylazomethine dendrimer (DPA) has a layer-by-layer electron density gradient that is an analog of the Bohr atom (atom mimicry). In combination with electron pair mimicry, the polymerization of this atom-mimicking dendrimer was achieved. The valency of the mimicked atom was controlled by changing the chemical structure of the dendrimer. By mimicking a divalent atom, a one-dimensional (1D) polymer was obtained, and by using a planar tetravalent atom mimic, a 2D polymer was obtained. These poly(dendrimer) polymers could store Lewis acids (SnCl2) in their unoccupied orbitals, thus indicating that these poly(dendrimer) polymers consist of a series of nanocontainers.
Collapse
Affiliation(s)
- Ken Albrecht
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226-8503, Japan
| | - Yuki Hirabayashi
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226-8503, Japan
| | - Masaya Otake
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226-8503, Japan
| | - Shin Mendori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226-8503, Japan
| | - Yuta Tobari
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226-8503, Japan
| | - Yasuo Azuma
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226-8503, Japan
| | - Yutaka Majima
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226-8503, Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
44
|
Filipe LCS, Machuqueiro M, Darbre T, Baptista AM. Exploring the Structural Properties of Positively Charged Peptide Dendrimers. J Phys Chem B 2016; 120:11323-11330. [PMID: 27739676 DOI: 10.1021/acs.jpcb.6b09156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report a combined experimental and computational approach to study the structural behavior of positively charged peptide dendrimers. Third-generation dendrimers containing combinations of positive/neutral amino acid residues in the different dendrimer generations were synthesized and their overall size evaluated using diffusion NMR. Molecular dynamics simulations were performed to obtain a comprehensive description of the molecular-level phenomena substantiating the structural differences observed. Comparison of the results presented with previous findings reveals a striking charge-dependent tendency in these systems, where the simple number and placement of charged amino acids in the sequence allows an extensive control over the exhibited structural features. Indeed, we observe that peptide dendrimers bearing progressively higher amounts of charged residues are characterized by an increasing structural plasticity, with a myriad of conformational states equally accessible to them. On the other hand, dendrimers containing only small amounts of charged residues evidence, to some extent, a characteristic structural rigidity.
Collapse
Affiliation(s)
- Luís C S Filipe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Bern , Freiestrasse 3, 3012 Bern, Switzerland
| | - António M Baptista
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Av. da República, EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
45
|
Abstract
This special issue entitled “Functional Dendrimers” focuses on the manipulation of at least six “critical nanoscale design parameters” (CNDPs) of dendrimers including: size, shape, surface chemistry, flexibility/rigidity, architecture and elemental composition. These CNDPs collectively define properties of all “functional dendrimers”. This special issue contains many interesting examples describing the manipulation of certain dendrimer CNDPs to create new emerging properties and, in some cases, predictive nanoperiodic property patterns (i.e., dendritic effects). The systematic engineering of CNDPs provides a valuable strategy for optimizing functional dendrimer properties for use in specific applications.
Collapse
|
46
|
Enciso AE, Neun B, Rodriguez J, Ranjan AP, Dobrovolskaia MA, Simanek EE. Nanoparticle Effects on Human Platelets in Vitro: A Comparison between PAMAM and Triazine Dendrimers. Molecules 2016; 21:428. [PMID: 27043508 PMCID: PMC6273833 DOI: 10.3390/molecules21040428] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/09/2016] [Accepted: 03/21/2016] [Indexed: 12/20/2022] Open
Abstract
Triazine and PAMAM dendrimers of similar size and number of cationic surface groups were compared for their ability to promote platelet aggregation. Triazine dendrimers (G3, G5 and G7) varied in molecular weight from 8 kDa-130 kDa and in surface groups 16-256. PAMAM dendrimers selected for comparison included G3 (7 kDa, 32 surface groups) and G6 (58 kDa, 256 surface groups). The treatment of human platelet-rich plasma (PRP) with low generation triazine dendrimers (0.01-1 µM) did not show any significant effect in human platelet aggregation in vitro; however, the treatment of PRP with larger generations promotes an effective aggregation. These results are in agreement with studies performed with PAMAM dendrimers, where large generations promote aggregation. Triazine dendrimers promote aggregation less aggressively than PAMAM dendrimers, a factor attributed to differences in cationic charge or the formation of supramolecular assemblies of dendrimers.
Collapse
Affiliation(s)
- Alan E Enciso
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA.
| | - Barry Neun
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Jamie Rodriguez
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Amalendu P Ranjan
- Department of Molecular and Medical Genetics & Institute of Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76109, USA.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Eric E Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA.
| |
Collapse
|
47
|
Functionalization of a Triazine Dendrimer Presenting Four Maleimides on the Periphery and a DOTA Group at the Core. Molecules 2016; 21:335. [PMID: 26978338 PMCID: PMC6273729 DOI: 10.3390/molecules21030335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
A readily and rapidly accessible triazine dendrimer was manipulated in four steps with 23% overall yield to give a construct displaying four maleimide groups and DOTA. The maleimide groups of the dendrimer are sensitive to hydrolysis under basic conditions. The addition of up to four molecules of water can be observed via mass spectrometry and HPLC. The evolution in the alkene region of the ¹H-NMR--the transformation of the maleimide singlet to the appearance of two doublets--is consistent with imide hydrolysis and not the Michael addition. The hydrolysis events that proceeded over hours are sufficiently slower than the desired thiol addition reactions that occur in minutes. The addition of thiols to maleimides can be accomplished in a variety of solvents. The thiols examined derived from cysteine and include the protected amino acid, a protected dipeptide, and native oligopeptides containing either 9 or 18 amino acids. The addition reactions were monitored with HPLC and mass spectrometry in most cases. Complete substitution was observed for small molecule reactants. The model peptides containing nine or eighteen amino acids provided a mixture of products averaging between 3 and 4 substitutions/dendrimer. The functionalization of the chelate group with gadolinium was also accomplished easily.
Collapse
|
48
|
Abstract
Lipidic nanoparticulate self-assembled structures are effective carriers for drug delivery. This chapter describes the most famous nanotechnological drug delivery systems that are already used in clinical practice and clinical evaluation or in academic research. Liposomes are nanocolloidal lyotropic liquid crystals that are able to deliver bioactive molecules. Their membrane biophysics and thermodynamic properties reflect to the creation of metastable phases that affect their functionality and physicochemical behavior. Thermo- and pH-responsive liposomes are innovative nanotechnological platforms for drug delivery and targeting. Polymeric micelles and polymersomes are nanostructures that are promising drug carriers, while dendrimeric structures are considered as real nanoparticulate systems that are used in drug delivery and as nonviral vectors as well as in prevention of serious infections leading to diseases. Vaccines based on nanoparticles such as liposomes are an emerging technology and liposomes seem to meet the requirement criteria of adjuvanicity.
Collapse
|
49
|
Tomalia DA, Khanna SN. A Systematic Framework and Nanoperiodic Concept for Unifying Nanoscience: Hard/Soft Nanoelements, Superatoms, Meta-Atoms, New Emerging Properties, Periodic Property Patterns, and Predictive Mendeleev-like Nanoperiodic Tables. Chem Rev 2016; 116:2705-74. [DOI: 10.1021/acs.chemrev.5b00367] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Donald A. Tomalia
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- National Dendrimer & Nanotechnology Center, NanoSynthons LLC, 1200 North Fancher Avenue, Mt. Pleasant, Michigan 48858, United States
| | - Shiv N. Khanna
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
50
|
Szwed A, Milowska K, Ionov M, Shcharbin D, Moreno S, Gomez-Ramirez R, de la Mata FJ, Majoral JP, Bryszewska M, Gabryelak T. Interaction between dendrimers and regulatory proteins. Comparison of effects of carbosilane and carbosilane–viologen–phosphorus dendrimers. RSC Adv 2016. [DOI: 10.1039/c6ra16558c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For nanoparticles to be used successfully in biomedical application, their interactions with biological fluids need to be investigated, in which they will react with proteins and other macromolecules.
Collapse
|