1
|
Khoshnood A, Farhadian N, Abnous K, Matin MM, Ziaee N, Iranpour S. Polyethyleneimine/gold nanorods conjugated with carbon quantum dots and hyaluronic acid for chemo-photothermal therapy of breast cancer. J Mater Chem B 2025; 13:4893-4909. [PMID: 40176547 DOI: 10.1039/d4tb02234c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The aim of this study was to develop a stable polyethyleneimine/gold nanorod composite conjugated with a carbon quantum dot (CQD) and hyaluronic acid (HA) complex (CQD-HA-PEI@GNRs) for applications in chemotherapy and photothermal therapy. GNRs were synthesized using a seed-mediated growth method, and the amount of seed solution was optimized to obtain GNRs with an optimal aspect ratio and a strong peak in the near-infrared (NIR) region. The surface of the GNRs was then modified with polyethylene imine (PEI). In parallel, CQDs were synthesized through a hydrothermal method and subsequently conjugated with HA to act as an active targeting ligand. The resulting CQD-HA complex was loaded onto the surface of the PEI@GNR composite. Finally, the anticancer drug doxorubicin (DOX) was effectively loaded onto this innovative complex. The cytotoxicity of the final complex was evaluated on different cell lines in the presence and absence of laser irradiation. Furthermore, the efficacy of the formulation was investigated in BALB/c mice bearing breast cancer tumors. Characterization results confirmed the successful formation of GNRs with a length of 40 nm, exhibiting a strong peak at 813 nm in the NIR region. The zeta potential value of the GNRs was -25.62 mV, which increased to +40.59 mV after the surface modification with PEI. CQDs were synthesized and successfully conjugated with HA. DOX encapsulation efficiency was 92.8%, with appropriate drug release profiles in the presence of laser irradiation. The final complex showed appropriate cytotoxicity toward 4T1 and MCF7 breast cancer cell lines. In vivo analysis of the CQD-HA-PEI@GNR-DOX complex combined with laser treatment demonstrated significant tumor growth inhibition in comparison to the control group. Finally, this novel complex was proposed as an alternative for breast cancer treatment.
Collapse
Affiliation(s)
- Ali Khoshnood
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Ziaee
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Sonia Iranpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Putnin T, Chanarsa S, Yaiwong P, Ngamaroonchote A, Aroonyadet N, Jakmunee J, Bamrungsap S, Laocharoensuk R, Ounnunkad K. Unraveling the Impact of Polyethylenimine-Coated Gold Nanoparticle Size on the Efficiency of Sandwich-Style Electrochemical Immunosensors. ACS MEASUREMENT SCIENCE AU 2025; 5:96-108. [PMID: 39991027 PMCID: PMC11843508 DOI: 10.1021/acsmeasuresciau.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/25/2025]
Abstract
Sometimes, smaller size is not always better, and looking for nanomaterials that offer better device performance requires consideration of their properties at the first stage. In this study, the effects of the size of polyethylenimine-capped AuNPs (PEI-AuNPs) and proteins on the immunosensor performances, namely, sensitivity and limit of detection, are examined. The size-effect investigation of PEI-AuNPs involves their modification on the surface of disposable screen-printed carbon electrodes to support primary antibodies and their ability to load secondary antibodies and redox probes to perform amplification in the immunosensor. The correlation of the average size, electrochemical activities, protein size, and device property of PEI-AuNPs is investigated. The synthesized PEI-AuNPs with different average diameters ranging from 4.7 to 44.9 nm are employed for the investigation. When the sensor surface forms a sandwich architecture, the detection employs the current response of Ag+ ions on the PEI-AuNPs bioconjugate, which greatly increases by increasing the protein concentration. In addition, the best electrochemical signal of PEI-AuNPs or their antibody complexes with a unique AuNPs' average size allows superior signal amplification. The effect of using different sizes of target proteins on their devices is not significantly observed. Although in general small-sized nanomaterials offer high active surface areas, which can improve the electrode surface, reactivity, and device performance, we observe that the medium size of PEI-AuNPs (16.3 nm) gives the best sensitivity and detection limit of this sensor type. Therefore, the finding is useful for considering and optimizing their sizes for tunable voltammetric properties and acquiring a superior sensor.
Collapse
Affiliation(s)
- Thitirat Putnin
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Supakeit Chanarsa
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Patrawadee Yaiwong
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Aroonsri Ngamaroonchote
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Noppadol Aroonyadet
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Jaroon Jakmunee
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Suwussa Bamrungsap
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Rawiwan Laocharoensuk
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Kontad Ounnunkad
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| |
Collapse
|
3
|
Reipa V, Hackley VA, Tona A, Heo MB, Lee YR, Lee TG, Johnston-Peck A, Cho TJ. Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:79. [PMID: 39852694 PMCID: PMC11767793 DOI: 10.3390/nano15020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
The safety screening of manufactured nanomaterials (MNMs) is essential for their adoption by consumers and the marketplace. Lately, animal-based testing has been replaced by mechanistically informative in vitro assays due to the requirements of regulatory agencies. Cell viability assays are widely employed for manufactured nanomaterial hazard screening as a first-tier approach. Critical parts of such assays are positive and negative controls that serve as measurement benchmarks. We present the cellular viability and corresponding particle characterization obtained with eight different cell lines that were exposed to Au-PEI and Au-PEG-COOH nanoparticles. We showed that polyethyleneimine- and carboxylate-polyethylene-glycol-conjugated gold nanoparticles (AuPEI and Au-PEG-COOH) qualified for positive and negative controls in the in vitro cell viability assays used for MNM toxicological screening.
Collapse
Affiliation(s)
- Vytas Reipa
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (V.A.H.); (A.T.); (A.J.-P.)
| | - Vincent A. Hackley
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (V.A.H.); (A.T.); (A.J.-P.)
| | - Alessandro Tona
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (V.A.H.); (A.T.); (A.J.-P.)
| | - Min Beom Heo
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; (M.B.H.); (Y.R.L.); (T.G.L.)
| | - Ye Ryeong Lee
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; (M.B.H.); (Y.R.L.); (T.G.L.)
| | - Tae Geol Lee
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; (M.B.H.); (Y.R.L.); (T.G.L.)
| | - Aaron Johnston-Peck
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (V.A.H.); (A.T.); (A.J.-P.)
| | - Tae Joon Cho
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (V.A.H.); (A.T.); (A.J.-P.)
| |
Collapse
|
4
|
Saffari Z, Cohan RA, Sepahi M, Sadeqi M, Khoobi M, Fard MH, Ghavidel A, Amiri FB, Aghasadeghi MR, Norouzian D. Signal amplification of a quartz crystal microbalance immunosensor by gold nanoparticles-polyethyleneimine for hepatitis B biomarker detection. Sci Rep 2023; 13:21851. [PMID: 38071203 PMCID: PMC10710426 DOI: 10.1038/s41598-023-48766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The procedures currently used for hepatitis B (HB) detection are not suitable for screening, clinical diagnosis, and point-of-care testing (POCT). Therefore, we developed and tested a QCM-based immunosensor by surface modification with AuNP-PEIs to amplify the signal and provide an oriented-immobilization surface. The AuNP-PEIs were characterized by ICP-Mass, UV/Vis, DLS, FE-SEM, and ATR-FTIR. After coating AuNP-PEIs on the gold electrode surface, anti-HBsAg antibodies were immobilized using NHS/EDC chemistry based on response surface methodology (RSM) optimization. The efficiency of the immunosensor was assessed by human sera and data were compared to gold-standard ELISA using receiver-operating-characteristic (ROC) analysis. FE-SEM, AFM, EDS, and EDS mapping confirmed AuNP-PEIs are homogeneously distributed on the surface with a high density and purity. After antibody immobilization, the immunosensor exhibited good recognition of HBsAg with a calibration curve of ∆F = - 6.910e-7x + 10(R2 = 0.9905), a LOD of 1.49 ng/mL, and a LOQ of 4.52 ng/mL. The immunosensor yielded reliable and accurate results with a specificity of 100% (95% CI 47.8-100.0) and sensitivity of 100% (95% CI 96.2-100.0). In conclusion, the fabricated immunosensor has the potential as an analytic tool with high sensitivity and specificity. However, further investigations are needed to convert it to a tiny lab-on-chip for HB diagnosis in clinical samples.
Collapse
Affiliation(s)
- Zahra Saffari
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mina Sepahi
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Sadeqi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Ghavidel
- Physics Department, Sharif University of Technology, Tehran, Iran
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Dariush Norouzian
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
5
|
Hwang YS, So D, Lee M, Yoon J, Reipa V, Tona A, Yi F, Nelson BC, LaVan DA, Hackley VA, Daar IO, Cho TJ. Polyethyleneimine/polyethylene glycol-conjugated gold nanoparticles as nanoscale positive/negative controls in nanotoxicology: testing in frog embryo teratogenesis assay- Xenopus and mammalian tissue culture system. Nanotoxicology 2023; 17:94-115. [PMID: 36919473 PMCID: PMC10471858 DOI: 10.1080/17435390.2023.2187322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Despite the great potential of using positively charged gold nanoparticles (AuNPs) in nanomedicine, no systematic studies have been reported on their synthesis optimization or colloidal stability under physiological conditions until a group at the National Institute of Standards and Technology recently succeeded in producing remarkably stable polyethyleneimine (PEI)-coated AuNPs (Au-PEI). This improved version of Au-PEI (Au-PEI25kB) has increased the demand for toxicity and teratogenicity information for applications in nanomedicine and nanotoxicology. In vitro assays for Au-PEI25kB in various cell lines showed substantial active cytotoxicity. For advanced toxicity research, the frog embryo teratogenesis assay-Xenopus (FETAX) method was employed in this study. We observed that positively-charged Au-PEI25kB exhibited significant toxicity and teratogenicity, whereas polyethylene glycol conjugated AuNPs (Au-PEG) used as comparable negative controls did not. There is a characteristic avidity of Au-PEI25kB for the jelly coat, the chorionic envelope (also known as vitelline membrane) and the cytoplasmic membrane, as well as a barrier effect of the chorionic envelope observed with Au-PEG. To circumvent these characteristics, an injection-mediated FETAX approach was utilized. Like treatment with the FETAX method, the injection of Au-PEI25kB severely impaired embryo development. Notably, the survival/concentration curve that was steep when the standard FETAX approach was employed became gradual in the injection-mediated FETAX. These results suggest that Au-PEI25kB may be a good candidate as a nanoscale positive control material for nanoparticle analysis in toxicology and teratology.
Collapse
Affiliation(s)
- Yoo-Seok Hwang
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Daeho So
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Moonsup Lee
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jaeho Yoon
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Vytas Reipa
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alessandro Tona
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Feng Yi
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Bryant C. Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David A. LaVan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent A. Hackley
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ira O. Daar
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Tae Joon Cho
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
6
|
Investigating Efficacy of Three DNA-Aptamers in Targeted Plasmid Delivery to Human Prostate Cancer Cell Lines. Mol Biotechnol 2023; 65:97-107. [PMID: 35834121 DOI: 10.1007/s12033-022-00528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2022] [Indexed: 01/11/2023]
Abstract
Selection of targeted and efficient carriers to deliver drugs and genes to cells and tissues is still a major challenge and to overcome this obstacle, aptamers conjugated to nanoparticles have been broadly examined. To assess whether polycation of aptamers can improve plasmid delivery efficacy, we investigated the effect of three DNA-aptamers (AS1411, WY-5a, and Sgs-8) conjugated to branched polyethylenimine (b-PEI; MW ∼25 kDa) with different combinations of gene (plasmid) for delivery to prostate cancer cell lines (DU145 and PC3). According to transfection assessments, the dual conjugation of aptamers (AS:WY) with b-PEI produced the best results and increased the efficiency of plasmid delivery to up to three folds compared to unmodified PEI. Surprisingly, triple aptamer arrangement not only reduced transfection ability but also showed cytotoxicity. While our results demonstrated potential synergistic effects of AS1411 and WY-5a aptamers for gene delivery, it is important to note that the present evidence relies on the aptamer and cell types.
Collapse
|
7
|
Fabrication and cytotoxicity evaluation of polyethyleneimine conjugated fluorescent MXene nanosheets as cancer theranostics agent. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Polyethylenimine-Coated Ultrasmall Holmium Oxide Nanoparticles: Synthesis, Characterization, Cytotoxicities, and Water Proton Spin Relaxivities. NANOMATERIALS 2022; 12:nano12091588. [PMID: 35564300 PMCID: PMC9101814 DOI: 10.3390/nano12091588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Water proton spin relaxivities, colloidal stability, and biocompatibility of nanoparticle magnetic resonance imaging (MRI) contrast agents depend on surface-coating ligands. In this study, hydrophilic and biocompatible polyethylenimines (PEIs) of different sizes (Mn = 1200 and 60,000 amu) were used as surface-coating ligands for ultrasmall holmium oxide (Ho2O3) nanoparticles. The synthesized PEI1200- and PEI60000-coated ultrasmall Ho2O3 nanoparticles, with an average particle diameter of 2.05 and 1.90 nm, respectively, demonstrated low cellular cytotoxicities, good colloidal stability, and appreciable transverse water proton spin relaxivities (r2) of 13.1 and 9.9 s−1mM−1, respectively, in a 3.0 T MR field with negligible longitudinal water proton spin relaxivities (r1) (i.e., 0.1 s−1mM−1) for both samples. Consequently, for both samples, the dose-dependent contrast changes in the longitudinal (R1) and transverse (R2) relaxation rate map images were negligible and appreciable, respectively, indicating their potential as efficient transverse T2 MRI contrast agents in vitro.
Collapse
|
9
|
Kumar PPP, Lim DK. Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications. Pharmaceutics 2021; 14:70. [PMID: 35056967 PMCID: PMC8781750 DOI: 10.3390/pharmaceutics14010070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been extensively investigated for their use in various biomedical applications. Owing to their biocompatibility, simple surface modifications, and electrical and unique optical properties, AuNPs are considered promising nanomaterials for use in in vitro disease diagnosis, in vivo imaging, drug delivery, and tissue engineering applications. The functionality of AuNPs may be further expanded by producing hybrid nanocomposites with polymers that provide additional functions, responsiveness, and improved biocompatibility. Polymers may deliver large quantities of drugs or genes in therapeutic applications. A polymer alters the surface charges of AuNPs to improve or modulate cellular uptake efficiency and their biodistribution in the body. Furthermore, designing the functionality of nanocomposites to respond to an endo- or exogenous stimulus, such as pH, enzymes, or light, may facilitate the development of novel therapeutic applications. In this review, we focus on the recent progress in the use of AuNPs and Au-polymer nanocomposites in therapeutic applications such as drug or gene delivery, photothermal therapy, and tissue engineering.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
10
|
Mahaye N, Leareng SK, Musee N. Cytotoxicity and genotoxicity of coated-gold nanoparticles on freshwater algae Pseudokirchneriella subcapitata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105865. [PMID: 34034204 DOI: 10.1016/j.aquatox.2021.105865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Gold engineered nanoparticles (nAu) are increasingly detected in ecosystems, and this raises the need to establish their potential effects on aquatic organisms. Herein, cytotoxic and genotoxic effects of branched polyethylenimine (BPEI)- and citrate (cit)-coated nAu (5, 20, and 40 nm) on algae Pseudokirchneriella subcapitata were evaluated. The apical biological endpoints: growth inhibition and chlorophyll a (Chl a) content were investigated at 62.5-1000 µg/L over 168 h. In addition, the apurinic/apyrimidinic (AP) sites, randomly amplified polymorphic deoxyribonucleic acid (RAPD) profiles, and genomic template stability (GTS) were assessed to determine the genotoxic effects of nAu. The results show algal growth inhibition at 5 nm BPEI-nAu up to 96 h, and thereafter cell recovery except at the highest concentration of 1000 µg/L. Insignificant growth reduction for cit-nAu (all sizes), as well as 20 and 40 nm BPEI-nAu, was observed over 96 h, but growth promotion was apparent at all exposures thereafter except for 40 nm BPEI-nAu at 250 µg/L. A decrease in Chl a content following exposure to 5 nm BPEI-nAu at 1000 µg/L corresponded to significant algal growth reduction. In genotoxicity studies, a significant increase in AP sites content was observed relative to the control - an indication of nAu ability to induce genotoxic effects irrespective of their size and coating type. For 5 nm- and 20 nm-sized nAu for both coating types and exposure concentrations no differences in AP sites content were observed after 72 and 168 h. However, a significant reduction in AP sites was observed following algae exposure to 40 nm-sized nAu (irrespective of coating type and exposure concentration) at 168 h compared to 72 h. Thus, AP sites results at 40 nm-size suggest likely DNA damage recovery over a longer exposure period. The findings on AP sites content showed a good correlation with an increase in genome template stability and growth promotion observed after 168 h. In addition, RAPD profiles demonstrated that nAu can induce DNA damage and/or DNA mutation to P. subcapitata as evidenced by the appearance and/or disappearance of normal bands compared to the controls. Therefore, genotoxicity results revealed significant toxicity of nAu to algae at the molecular level although no apparent effects were detectable at the morphological level. Overall, findings herein indicate that long-term exposure of P. subcapitata to low concentrations of nAu may cause undesirable sub-lethal ecological effects.
Collapse
Affiliation(s)
- Ntombikayise Mahaye
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Samuel K Leareng
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Ndeke Musee
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.
| |
Collapse
|
11
|
Bali K, Bak M, Szarka K, Juhász G, Sáfrán G, Pécz B, Mihály J, Mészáros R. Controlling the morphology of poly(ethyleneimine)/gold nanoassemblies through the variation of pH and electrolyte additives. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Cho TJ, Gorham JM, Pettibone JM, Liu J, Tan J, Hackley VA. Parallel Multiparameter Study of PEI-Functionalized Gold Nanoparticle Synthesis for Biomedical Applications: Part 2. Elucidating the Role of Surface Chemistry and Polymer Structure in Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14058-14069. [PMID: 33170723 DOI: 10.1021/acs.langmuir.0c02630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elucidating the polyethyleneimine (PEI) chemistry to predictively and reproducibly synthesize gold nanoparticle (AuNP)-PEI conjugates with desired properties has been elusive despite evaluation in numerous studies and reported enhanced properties. The lack of reproducible methods to control the core size and stability has led to contradictory results for performance and safety; thus, advancement of the conjugate platform for commercial use has likely been hindered. Recently, we reported a robust, reproducible method for synthesizing PEI-functionalized AuNPs (Au-PEIs), providing an opportunity to investigate structure-function relationships and to further investigate synthesis parameters affecting performance, where only materials stable in biological media are candidates for use. The properties of Au-PEIs prepared by the optimized reduction of HAuCl4 using four different structural variants of PEI changed significantly with the PEI molar mass and backbone form (branched or linear). In the present study using our previously reported synthesis procedure, comprehensive analysis of properties such as size distribution, surface plasmon resonance (SPR), morphological state, surface functionality, and the shelf life has been systematically evaluated to elucidate the role of surface chemistry and reactive groups involved in conjugation, as a function of conjugate size and morphology. Being important for commercial adoption, the chemistry was related to the observed colloidal stability of the product in relevant media, including exposure to physiological variables such as salt, pH, proteins, and thermal changes. Overall, this work advances progress toward smart design of engineered nanoscale drug delivery systems and devices by providing unreported details of contributions affecting formation, stability, and fate.
Collapse
Affiliation(s)
- Tae Joon Cho
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Justin M Gorham
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John M Pettibone
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jingyu Liu
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jiaojie Tan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|