1
|
Rodgers LT, Maloney BJ, Hartz AMS, Bauer B. Fluorescence-Guided Resection of GL261 Red-FLuc and TRP-mCherry-FLuc Mouse Glioblastoma Tumors. Cancers (Basel) 2025; 17:734. [PMID: 40075583 PMCID: PMC11898961 DOI: 10.3390/cancers17050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Most preclinical studies on glioblastoma (GBM) fail to provide translational utility in the clinic. Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) improves tumor resection, disease prognosis, and, thus, patient outcomes. Given the critical role of surgery in managing recurrent GBM, it is essential to incorporate surgical elements into preclinical models to accurately reflect clinical scenarios and enhance translational success. However, existing protocols for 5-ALA-guided resection in preclinical models are limited and often lack clinical relevance. Methods: To address this gap, we developed a novel protocol for the 5-ALA-guided resection in two mouse GBM models: TRP-mCherry-FLuc and GL261 Red-FLuc. Results: The resection of TRP-mCherry-FLuc tumors significantly extended survival and mitigated weight loss compared to controls. Similarly, GL261 Red-FLuc tumor resection increased survival, reduced body weight loss, and slowed tumor progression. Conclusions: This study presents a clinically relevant protocol for 5-ALA-guided resection in preclinical GBM models, providing a platform for future research to integrate adjuvant therapies and enhance their potential translation into clinical practice.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Bryan J. Maloney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Mansour MA, Kamer-Eldawla AM, Malaeb RW, Aboelhassan R, Nabawi DH, Aziz MM, Mostafa HN. Unlocking the code: The role of molecular and genetic profiling in revolutionizing glioblastoma treatment. Cancer Treat Res Commun 2025; 43:100881. [PMID: 39985914 DOI: 10.1016/j.ctarc.2025.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer, characterized by profound molecular and cellular heterogeneity, which contributes to its resistance to conventional therapies and poor prognosis. Despite multimodal treatments including surgical resection, radiation, and chemotherapy, median survival remains approximately 15 months. Recent advances in molecular and genetic profiling have elucidated key genetic alterations and molecular subtypes of GBM, such as EGFR amplification, PTEN and ATRX loss, and TP53 alterations, which have significant prognostic and therapeutic implications. These discoveries have spurred the development of targeted therapies aimed at disrupting aberrant signaling pathways like RTK/RAS/PI3K and TP53. However, treatment resistance remains a formidable challenge, driven by tumor heterogeneity, the complex tumor microenvironment (TME), and intrinsic adaptive mechanisms. Emerging therapeutic approaches aim to address these challenges, including the use of immunotherapies such as immune checkpoint inhibitors and CAR T-cell therapies, which target specific tumor antigens but face hurdles due to the immunosuppressive TME. Additionally, novel strategies like biopolymer-based interstitial therapies, focused ultrasound for blood-brain barrier disruption, and nanoparticle-based drug delivery systems show promise in enhancing the efficacy and precision of GBM treatments. This review explores the evolving landscape of GBM therapy, emphasizing the importance of personalized medicine through molecular profiling, the potential of combination therapies, and the need for innovative approaches to overcome therapeutic resistance. Continued research into GBM's biology and treatment modalities offers hope for improving patient outcomes.
Collapse
Affiliation(s)
- Moustafa A Mansour
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt; Department of Neurology and Neurosurgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt; Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA.
| | - Ahmed M Kamer-Eldawla
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt; Department of Neurosurgery, Malawi Specialized Hospital, Minya, Egypt
| | - Reem W Malaeb
- Department of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Rasha Aboelhassan
- Department of Clinical Oncology, Nasser Institute for Research and Treatment, Cairo, Egypt
| | - Dina H Nabawi
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed M Aziz
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt; Department of Neurosurgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hamdi Nabawi Mostafa
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt; Department of Neurosurgery, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
3
|
King JL, Valdivia A, Hingtgen SD, Benhabbour SR. Injectable Tumoricidal Neural Stem Cell-Laden Hydrogel for Treatment of Glioblastoma Multiforme-An In Vivo Safety, Persistence, and Efficacy Study. Pharmaceutics 2024; 17:3. [PMID: 39861656 PMCID: PMC11768746 DOI: 10.3390/pharmaceutics17010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Glioblastoma multiforme (GBM) is the most common high-grade primary brain cancer in adults. Despite efforts to advance treatment, GBM remains treatment resistant and inevitably progresses after first-line therapy. Induced neural stem cell (iNSC) therapy is a promising, personalized cell therapy approach that has been explored to circumvent challenges associated with the current GBM treatment. METHODS Herein, we developed a chitosan-based (CS) injectable, biodegradable, in situ forming thermo-responsive hydrogel as a cell delivery vehicle for the treatment of GBM. Tumoricidal neural stem cells were encapsulated in the injectable CS hydrogel as stem cell therapy for treatment of post-surgical GBM. In this report, we investigated the safety of the injectable CS hydrogel in an immune-competent mouse model. Furthermore, we evaluated the persistence and efficacy of iNSC-laden CS hydrogels in a post-surgical GBM mouse model. RESULTS The injectable CS hydrogel was well tolerated in mice with no signs of chronic local inflammation. Induced neural stem cells (iNSCs) persisted in the CS hydrogels for over 196 days in comparison to 21 days for iNSCs (cell injection) only. GBM recurrence was significantly slower in mice treated with iNSC-laden CS hydrogels with a 50% increase in overall median survival in comparison to iNSCs (cell injection) only. CONCLUSIONS Collectively, we demonstrated the ability to encapsulate, retain, and deliver iNSCs in an injectable CS hydrogel that is well tolerated with better survival rates than iNSCs alone.
Collapse
Affiliation(s)
- Jasmine L. King
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA;
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.V.); (S.D.H.)
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.V.); (S.D.H.)
| | - S. Rahima Benhabbour
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA;
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.V.); (S.D.H.)
| |
Collapse
|
4
|
Fernandez-Gil BI, Schiapparelli P, Navarro-Garcia de Llano JP, Otamendi-Lopez A, Ulloa-Navas MJ, Michaelides L, Vazquez-Ramos CA, Herchko SM, Murray ME, Cherukuri Y, Asmann YW, Trifiletti DM, Quiñones-Hinojosa A. Effects of PreOperative radiotherapy in a preclinical glioblastoma model: a paradigm-shift approach. J Neurooncol 2024; 169:633-646. [PMID: 39037687 DOI: 10.1007/s11060-024-04765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE PreOperative radiotherapy (RT) is commonly used in the treatment of brain metastasis and different cancer types but has never been used in primary glioblastoma (GBM). Here, we aim to establish, describe, and validate the use of PreOperative RT for the treatment of GBM in a preclinical model. METHODS Rat brains were locally irradiated with 30-Gy, hypofractionated in five doses 2 weeks before or after the resection of intracranial GBM. Kaplan-Meier analysis determined survival. Hematoxylin-eosin staining was performed, and nuclei size and p21 senescence marker were measured in both resected and recurrent rodent tumors. Immunohistochemistry assessed microglia/macrophage markers, and RNAseq analyzed gene expression changes in recurrent tumors. Akoya Multiplex Staining on two human patients from our ongoing Phase I/IIa trial served as proof of principle. RESULTS PreOperative RT group median survival was significantly higher than PostOperative RT (p < 0.05). Radiation enlarged cytoplasm and nuclei in PreOperative RT resected tumors (p < 0.001) and induced senescence in PostOperative RT recurrent tumors (p < 0.05). Gene Set Enrichment Analysis (GSEA) suggested a more proliferative profile in PreOperative RT group. PreOperative RT showed lower macrophage/microglia recruitment in recurrent tumors (p < 0.01) compared to PostOperative RT. Akoya Multiplex results indicated TGF-ß accumulation in the cytoplasm of TAMs and CD4 + lymphocyte predominance in PostOperative group. CONCLUSIONS This is the first preclinical study showing feasibility and longer overall survival using neoadjuvant radiotherapy before GBM resection in a mammalian model. This suggests strong superiority for new clinical radiation strategies. Further studies and trials are required to confirm our results.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Steven M Herchko
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Melissa E Murray
- Department of Molecular Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yesesri Cherukuri
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | | |
Collapse
|
5
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
6
|
White J, White MPJ, Wickremesekera A, Peng L, Gray C. The tumour microenvironment, treatment resistance and recurrence in glioblastoma. J Transl Med 2024; 22:540. [PMID: 38844944 PMCID: PMC11155041 DOI: 10.1186/s12967-024-05301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
The adaptability of glioblastoma (GBM) cells, encouraged by complex interactions with the tumour microenvironment (TME), currently renders GBM an incurable cancer. Despite intensive research, with many clinical trials, GBM patients rely on standard treatments including surgery followed by radiation and chemotherapy, which have been observed to induce a more aggressive phenotype in recurrent tumours. This failure to improve treatments is undoubtedly a result of insufficient models which fail to incorporate components of the human brain TME. Research has increasingly uncovered mechanisms of tumour-TME interactions that correlate to worsened patient prognoses, including tumour-associated astrocyte mitochondrial transfer, neuronal circuit remodelling and immunosuppression. This tumour hijacked TME is highly implicated in driving therapy resistance, with further alterations within the TME and tumour resulting from therapy exposure inducing increased tumour growth and invasion. Recent developments improving organoid models, including aspects of the TME, are paving an exciting future for the research and drug development for GBM, with the hopes of improving patient survival growing closer. This review focuses on GBMs interactions with the TME and their effect on tumour pathology and treatment efficiency, with a look at challenges GBM models face in sufficiently recapitulating this complex and highly adaptive cancer.
Collapse
Affiliation(s)
- Jasmine White
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | | | - Agadha Wickremesekera
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
7
|
Zhang Y, Xi K, Fu Z, Zhang Y, Cheng B, Feng F, Dong Y, Fang Z, Zhang Y, Shen J, Wang M, Han X, Geng H, Sun L, Li X, Chen C, Jiang X, Ni S. Stimulation of tumoricidal immunity via bacteriotherapy inhibits glioblastoma relapse. Nat Commun 2024; 15:4241. [PMID: 38762500 PMCID: PMC11102507 DOI: 10.1038/s41467-024-48606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by invasive behavior and a compromised immune response, presenting treatment challenges. Surgical debulking of GBM fails to address its highly infiltrative nature, leaving neoplastic satellites in an environment characterized by impaired immune surveillance, ultimately paving the way for tumor recurrence. Tracking and eradicating residual GBM cells by boosting antitumor immunity is critical for preventing postoperative relapse, but effective immunotherapeutic strategies remain elusive. Here, we report a cavity-injectable bacterium-hydrogel superstructure that targets GBM satellites around the cavity, triggers GBM pyroptosis, and initiates innate and adaptive immune responses, which prevent postoperative GBM relapse in male mice. The immunostimulatory Salmonella delivery vehicles (SDVs) engineered from attenuated Salmonella typhimurium (VNP20009) seek and attack GBM cells. Salmonella lysis-inducing nanocapsules (SLINs), designed to trigger autolysis, are tethered to the SDVs, eliciting antitumor immune response through the intracellular release of bacterial components. Furthermore, SDVs and SLINs administration via intracavitary injection of the ATP-responsive hydrogel can recruit phagocytes and promote antigen presentation, initiating an adaptive immune response. Therefore, our work offers a local bacteriotherapy for stimulating anti-GBM immunity, with potential applicability for patients facing malignancies at a high risk of recurrence.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Department of Pediatrics, Qilu hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zhipeng Fu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuying Zhang
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan, 250033, Shandong, China
| | - Bo Cheng
- Department of Radiation Oncology, Qilu Hospital affiliated to Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Fan Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuanmin Dong
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zezheng Fang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yi Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jianyu Shen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Mingrui Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xu Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Huimin Geng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, Shandong, China
| | - Chen Chen
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Xinyi Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science,, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Ebrahimpour A, Khoobi M, Riyahi Alam N, Masoumbeigi M, Tirgar F, Ebrahimi T. Reliable differentiation of necrosis and active metabolically contours of glioblastoma multiforme using susceptibility-based imaging. Heliyon 2024; 10:e28355. [PMID: 38571593 PMCID: PMC10987993 DOI: 10.1016/j.heliyon.2024.e28355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Purpose Gadolinium-enhancing necrosis in glioblastoma multiforme (GBM), as an occasionally occurring false positive in contrast enhancement (CE) imaging, leads to trouble for segmentation of GBM and treatment. Therefore, the investigation of complementary detection way to identify the metabolically active volume of the tumor with high reliability is very worth to be addressed. Here, we reported on a case of GBM with gadolinium-enhancing necrosis in an experimental CE imaging study in mice and evaluated the discrimination of the necrosis and metabolically active parts of the GBM using conventional and state-of-the-art susceptibility-based MRI. Methods In this study, following 5-aminolevulinic acid (ALA) and iron supplements (FAC, 6 h after ALA, intra-tumoral injection) to animal, T2*-W imaging and quantitative susceptibility mapping (QSM) were performed, and compared with CE imaging. Results The signal intensity (SI) of the active and necrosis areas of the case in the CE image demonstrated no significant difference while the SI on the T2*-W images and susceptibility value in QSM changed 24 and 150%, respectively. Conclusion The preclinical case report provides valuable insights into the potential of susceptibility-based MRI using ALA + FAC to apply as a robust discriminator between necrotic and viable tumors.
Collapse
Affiliation(s)
- Anita Ebrahimpour
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Riyahi Alam
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Masoumbeigi
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Tirgar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Ebrahimi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Oudin A, Moreno-Sanchez PM, Baus V, Niclou SP, Golebiewska A. Magnetic resonance imaging-guided intracranial resection of glioblastoma tumors in patient-derived orthotopic xenografts leads to clinically relevant tumor recurrence. BMC Cancer 2024; 24:3. [PMID: 38166949 PMCID: PMC10763155 DOI: 10.1186/s12885-023-11774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Preclinical in vivo cancer models are essential tools for investigating tumor progression and response to treatment prior to clinical trials. Although treatment modalities are regularly assessed in mice upon tumor growth in vivo, surgical resection remains challenging, particularly in the orthotopic site. Here, we report a successful surgical resection of glioblastoma (GBM) in patient-derived orthotopic xenografts (PDOXs). METHODS We derived a cohort of 46 GBM PDOX models that faithfully recapitulate human disease in mice. We assessed the detection and quantification of intracranial tumors using magnetic resonance imaging (MRI).To evaluate feasibility of surgical resection in PDOXs, we selected two models representing histopathological features of GBM tumors, including diffuse growth into the mouse brain. Surgical resection in the mouse brains was performed based on MRI-guided coordinates. Survival study followed by MRI and immunohistochemistry-based evaluation of recurrent tumors allowed for assessment of clinically relevant parameters. RESULTS We demonstrate the utility of MRI for the noninvasive assessment of in vivo tumor growth, preoperative programming of resection coordinates and follow-up of tumor recurrence. We report tumor detection by MRI in 90% of GBM PDOX models (36/40), of which 55% (22/40) can be reliably quantified during tumor growth. We show that a surgical resection protocol in mice carrying diffuse primary GBM tumors in the brain leads to clinically relevant outcomes. Similar to neurosurgery in patients, we achieved a near total to complete extent of tumor resection, and mice with resected tumors presented significantly increased survival. The remaining unresected GBM cells that invaded the normal mouse brain prior to surgery regrew tumors with similar histopathological features and tumor microenvironments to the primary tumors. CONCLUSIONS Our data positions GBM PDOXs developed in mouse brains as a valuable preclinical model for conducting therapeutic studies that involve surgical tumor resection. The high detectability of tumors by MRI across a substantial number of PDOX models in mice will allow for scalability of our approach toward specific tumor types for efficacy studies in precision medicine-oriented approaches. Additionally, these models hold promise for the development of enhanced image-guided surgery protocols.
Collapse
Affiliation(s)
- Anais Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg
| | - Pilar M Moreno-Sanchez
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Virginie Baus
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg.
| |
Collapse
|
10
|
Kim Y, Kim J, An JM, Park CK, Kim D. All-Nontoxic Fluorescent Probe for Biothiols and Its Clinical Applications for Real-Time Glioblastoma Visualization. ACS Sens 2023; 8:1723-1732. [PMID: 36967520 DOI: 10.1021/acssensors.3c00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fluorescence-guided surgery (FSG) is a surgical method to selectively visualize the tumor site using fluorescent materials with instrumental setups in the operation rooms. It has been widely used in the surgery of brain tumors, such as glioblastoma (GBM), which is difficult to distinguish from normal tissue. Although FSG is crucial for GBM surgery, the commercially available fluorescent materials for FSG have shown serious adverse effects. To satisfy the clinical demand, we recently reported reaction-based fluorescent probes based on a 4-chloro-7-nitrobenzofurazan (NBD) fluorophore that can detect cysteine (Cys) and homocysteine (Hcy), a biomarker of GBM, and their applications for the GBM diagnosis and FSG. However, our probes have cellular toxicity issues arising from the leaving group (LG) that is generated after the reaction of the fluorescent probe and the analytes. In this study, we disclosed a nontoxic fluorescent probe for sensing biothiols and their clinical applications for real-time human glioblastoma visualization. Systematic toxicity analysis of several LGs was conducted on several cell lines. Among the LGs, 2-hydroxy-pyridine showed negligible toxicity, and its fluorescent probe derivative (named NPO-o-Pyr) showed high specificity and sensitivity (LOD: 0.071 ppm for Cys; 0.189 ppm for Hcy), a fast response time (<5 min) to Cys and Hcy, and high biocompatibility. In addition, NPO-o-Pyr can significantly detect the GBM site both in actual clinical samples as well as in the GBM-xenografted mouse model. We are confident that NPO-o-Pyr will become a new substitute in FSG due to its capability to overcome the limitations of the current fluorescent probes.
Collapse
|
11
|
The Reactive Astrocytes After Surgical Brain Injury Potentiates the Migration, Invasion, and Angiogenesis of C6 Glioma. World Neurosurg 2022; 168:e595-e606. [DOI: 10.1016/j.wneu.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
|
12
|
Tamai S, Ichinose T, Tsutsui T, Tanaka S, Garaeva F, Sabit H, Nakada M. Tumor Microenvironment in Glioma Invasion. Brain Sci 2022; 12:brainsci12040505. [PMID: 35448036 PMCID: PMC9031400 DOI: 10.3390/brainsci12040505] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
A major malignant trait of gliomas is their remarkable infiltration capacity. When glioma develops, the tumor cells have already reached the distant part. Therefore, complete removal of the glioma is impossible. Recently, research on the involvement of the tumor microenvironment in glioma invasion has advanced. Local hypoxia triggers cell migration as an environmental factor. The transcription factor hypoxia-inducible factor (HIF) -1α, produced in tumor cells under hypoxia, promotes the transcription of various invasion related molecules. The extracellular matrix surrounding tumors is degraded by proteases secreted by tumor cells and simultaneously replaced by an extracellular matrix that promotes infiltration. Astrocytes and microglia become tumor-associated astrocytes and glioma-associated macrophages/microglia, respectively, in relation to tumor cells. These cells also promote glioma invasion. Interactions between glioma cells actively promote infiltration of each other. Surgery, chemotherapy, and radiation therapy transform the microenvironment, allowing glioma cells to invade. These findings indicate that the tumor microenvironment may be a target for glioma invasion. On the other hand, because the living body actively promotes tumor infiltration in response to the tumor, it is necessary to reconsider whether the invasion itself is friend or foe to the brain.
Collapse
|
13
|
Waqar M, Trifiletti DM, McBain C, O'Connor J, Coope DJ, Akkari L, Quinones-Hinojosa A, Borst GR. Early Therapeutic Interventions for Newly Diagnosed Glioblastoma: Rationale and Review of the Literature. Curr Oncol Rep 2022; 24:311-324. [PMID: 35119629 PMCID: PMC8885508 DOI: 10.1007/s11912-021-01157-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Glioblastoma is the commonest primary brain cancer in adults whose outcomes are amongst the worst of any cancer. The current treatment pathway comprises surgery and postoperative chemoradiotherapy though unresectable diffusely infiltrative tumour cells remain untreated for several weeks post-diagnosis. Intratumoural heterogeneity combined with increased hypoxia in the postoperative tumour microenvironment potentially decreases the efficacy of adjuvant interventions and fails to prevent early postoperative regrowth, called rapid early progression (REP). In this review, we discuss the clinical implications and biological foundations of post-surgery REP. Subsequently, clinical interventions potentially targeting this phenomenon are reviewed systematically. RECENT FINDINGS Early interventions include early systemic chemotherapy, neoadjuvant immunotherapy, local therapies delivered during surgery (including Gliadel wafers, nanoparticles and stem cell therapy) and several radiotherapy techniques. We critically appraise and compare these strategies in terms of their efficacy, toxicity, challenges and potential to prolong survival. Finally, we discuss the most promising strategies that could benefit future glioblastoma patients. There is biological rationale to suggest that early interventions could improve the outcome of glioblastoma patients and they should be investigated in future trials.
Collapse
Affiliation(s)
- Mueez Waqar
- Department of Academic Neurological Surgery, Geoffrey Jefferson Brain Research Centre, Salford Royal Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL, 32224, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Catherine McBain
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK
| | - James O'Connor
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK
| | - David J Coope
- Department of Academic Neurological Surgery, Geoffrey Jefferson Brain Research Centre, Salford Royal Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alfredo Quinones-Hinojosa
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL, 32224, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Gerben R Borst
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
14
|
Chang JH, Greene C, Frudd K, Araujo dos Santos L, Futter C, Nichols BJ, Campbell M, Turowski P. Methamphetamine enhances caveolar transport of therapeutic agents across the rodent blood-brain barrier. Cell Rep Med 2022; 3:100497. [PMID: 35106509 PMCID: PMC8784794 DOI: 10.1016/j.xcrm.2021.100497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 07/17/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022]
Abstract
The blood-brain barrier (BBB) restricts clinically relevant accumulation of many therapeutics in the CNS. Low-dose methamphetamine (METH) induces fluid-phase transcytosis across BBB endothelial cells in vitro and could be used to enhance CNS drug delivery. Here, we show that low-dose METH induces significant BBB leakage in rodents ex vivo and in vivo. Notably, METH leaves tight junctions intact and induces transient leakage via caveolar transport, which is suppressed at 4°C and in caveolin-1 (CAV1) knockout mice. METH enhances brain penetration of both small therapeutic molecules, such as doxorubicin (DOX), and large proteins. Lastly, METH improves the therapeutic efficacy of DOX in a mouse model of glioblastoma, as measured by a 25% increase in median survival time and a significant reduction in satellite lesions. Collectively, our data indicate that caveolar transport at the adult BBB is agonist inducible and that METH can enhance drug delivery to the CNS.
Collapse
Affiliation(s)
- Jui-Hsien Chang
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Karen Frudd
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Clare Futter
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
15
|
Turk OM, Woodall RC, Gutova M, Brown CE, Rockne RC, Munson JM. Delivery strategies for cell-based therapies in the brain: overcoming multiple barriers. Drug Deliv Transl Res 2021; 11:2448-2467. [PMID: 34718958 PMCID: PMC8987295 DOI: 10.1007/s13346-021-01079-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Cell-based therapies to the brain are promising for the treatment of multiple brain disorders including neurodegeneration and cancers. In order to access the brain parenchyma, there are multiple physiological barriers that must be overcome depending on the route of delivery. Specifically, the blood-brain barrier has been a major difficulty in drug delivery for decades, and it still presents a challenge for the delivery of therapeutic cells. Other barriers, including the blood-cerebrospinal fluid barrier and lymphatic-brain barrier, are less explored, but may offer specific challenges or opportunities for therapeutic delivery. Here we discuss the barriers to the brain and the strategies currently in place to deliver cell-based therapies, including engineered T cells, dendritic cells, and stem cells, to treat diseases. With a particular focus on cancers, we also highlight the current ongoing clinical trials that use cell-based therapies to treat disease, many of which show promise at treating some of the deadliest illnesses.
Collapse
Affiliation(s)
- Olivia M Turk
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Ryan C Woodall
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope, Duarte, CA, USA
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope, Duarte, CA, USA
| | - Christine E Brown
- Departments of Hematology & Hematopoietic Cell Transplantation and Immuno-Oncology, City of Hope, Duarte, CA, USA
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope, Duarte, CA, USA
| | - Jennifer M Munson
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
| |
Collapse
|
16
|
Comparing Tumor Cell Invasion and Myeloid Cell Composition in Compatible Primary and Relapsing Glioblastoma. Cancers (Basel) 2021; 13:cancers13143636. [PMID: 34298846 PMCID: PMC8303884 DOI: 10.3390/cancers13143636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary We established a new minimally invasive mouse model for GBM relapse. For this, we utilized orthotopical implantation of HSVTK-transduced GBM cells and pharmacological treatment with GCV. In addition, we implanted patient-derived GBM cells of primary or recurrent tumors. We found that recurrent GBM were more aggressively invasive than primary GBM. Moreover, the recurring tumors had a higher ratio of monocyte-derived macrophages among the entire population of tumor associated myeloid cells. This shift in the composition of tumor-associated immune cells appeared to be independent from cell-death signaling or surgical intervention. This model provides the means to investigate the entire process of tumor relapse and test standard as well as experimental therapeutic strategies for relapsing GBM under defined conditions. Abstract Glioblastoma (GBM) recurrence after treatment is almost inevitable but addressing this issue with adequate preclinical models has remained challenging. Here, we introduce a GBM mouse model allowing non-invasive and scalable de-bulking of a tumor mass located deeply in the brain, which can be combined with conventional therapeutic approaches. Strong reduction of the GBM volume is achieved after pharmacologically inducing a tumor-specific cell death mechanism. This is followed by GBM re-growth over a predictable timeframe. Pharmacological de-bulking followed by tumor relapse was accomplished with an orthotopic mouse glioma model. Relapsing experimental tumors recapitulated pathological features often observed in recurrent human GBM, like increased invasiveness or altered immune cell composition. Orthotopic implantation of GBM cells originating from biopsies of one patient at initial or follow-up treatment reproduced these findings. Interestingly, relapsing GBM of both models contained a much higher ratio of monocyte-derived macrophages (MDM) versus microglia than primary GBM. This was not altered when combining pharmacological de-bulking with invasive surgery. We interpret that factors released from viable primary GBM cells preferentially attract microglia whereas relapsing tumors preponderantly release chemoattractants for MDM. All in all, this relapse model has the capacity to provide novel insights into clinically highly relevant aspects of GBM treatment.
Collapse
|
17
|
Kim Y, Lee D, Lawler S. Collective invasion of glioma cells through OCT1 signalling and interaction with reactive astrocytes after surgery. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190390. [PMID: 32713306 DOI: 10.1098/rstb.2019.0390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with a short median survival time. GBM is characterized by the hallmarks of aggressive proliferation and cellular infiltration of normal brain tissue. miR-451 and its downstream molecules are known to play a pivotal role in regulation of the balance of proliferation and aggressive invasion in response to metabolic stress in the tumour microenvironment (TME). Surgery-induced transition in reactive astrocyte populations can play a significant role in tumour dynamics. In this work, we develop a multi-scale mathematical model of miR-451-LKB1-AMPK-OCT1-mTOR pathway signalling and individual cell dynamics of the tumour and reactive astrocytes after surgery. We show how the effects of fluctuating glucose on tumour cells need to be reprogrammed by taking into account the recent history of glucose variations and an AMPK/miR-451 reciprocal feedback loop. The model shows how variations in glucose availability significantly affect the activity of signalling molecules and, in turn, lead to critical cell migration. The model also predicts that microsurgery of a primary tumour induces phenotypical changes in reactive astrocytes and stem cell-like astrocytes promoting tumour cell proliferation and migration by Cxcl5. Finally, we investigated a new anti-tumour strategy by Cxcl5-targeting drugs. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea.,Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Moore KM, Murthy AB, Graham-Gurysh EG, Hingtgen SD, Bachelder EM, Ainslie KM. Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy. ACS Biomater Sci Eng 2020; 6:3762-3777. [PMID: 33463324 PMCID: PMC10373914 DOI: 10.1021/acsbiomaterials.0c00477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic strategies for GBM by providing a source for high, sustained concentrations of tumoricidal agents locally to the tumor. One major roadblock for tumoricidal stem cell therapy is that the persistence of tumoricidal stem cells injected as a cell suspension into the GBM surgical resection cavity is limited. Polymeric biomaterial scaffolds have been utilized to enhance the delivery of tumoricidal stem cells in the surgical resection cavity and extend their persistence in the brain, ultimately increasing their therapeutic efficacy against GBM. In this review, we examine three main scaffold categories explored for tumoricidal stem cell therapy: microcapsules, hydrogels, and electrospun scaffolds. Furthermore, considering the significant impact of surgery on the brain and recurrent GBM, we survey a brief history of orthotopic models of GBM surgical resection.
Collapse
Affiliation(s)
- Kathryn M Moore
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Ananya B Murthy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
19
|
Transferrin receptor 1 targeted optical imaging for identifying glioma margin in mouse models. J Neurooncol 2020; 148:245-258. [PMID: 32405996 DOI: 10.1007/s11060-020-03527-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Optical molecular imaging technology that indiscriminately detects intracranial glioblastoma (GBM) can help neurosurgeons effectively remove tumor masses. Transferrin receptor 1 (TfR 1) is a diagnostic and therapeutic target in GBM. A TfR 1-targeted peptide, CRTIGPSVC (CRT), was shown to cross the blood brain barrier (BBB) and accumulate at high levels in GBM tissues. In this study, we synthesized a TfR 1-targeted near-infrared fluorescent (NIRF) probe, Cy5-CRT, for identifying the GBM tissue margin in mouse models. METHODS We initially confirmed the overexpression of TfR 1 in GBM and the tumor-specific homing ability of Cy5-CRT in subcutaneous and orthotopic GBM mouse models. We then examined the feasibility of Cy5-CRT for identifying the tumor margin in orthotopic GBM xenografts. Finally, we compared Cy5-CRT with the clinically used fluorescein sodium in identifying tumor margins. RESULTS Cy5-CRT specifically accumulated in GBM tissues and detected the tumor burden with exceptional contrast in mice with orthotopic GBM, enabling fluorescence-guided GBM resection under NIRF live imaging conditions. Importantly, Cy5-CRT recognized the GBM tissue margin more clearly than fluorescein sodium. CONCLUSIONS The TfR 1-targeted optical probe Cy5-CRT specifically differentiates tumor tissues from the surrounding normal brain with high sensitivity, indicating its potential application for the precise surgical removal of GBM.
Collapse
|
20
|
Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. J Control Release 2020; 319:311-321. [DOI: 10.1016/j.jconrel.2020.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
|
21
|
Li Q, Wang C, Cai L, Lu J, Zhu Z, Wang C, Su Z, Lu X. miR‑34a derived from mesenchymal stem cells stimulates senescence in glioma cells by inducing DNA damage. Mol Med Rep 2018; 19:1849-1857. [PMID: 30592284 DOI: 10.3892/mmr.2018.9800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Insights into the roles of microRNAs (miRNAs/miRs) in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches in the treatment of glioma. miR‑34a, as a well‑known tumor suppressor miRNA, is closely related with cellular senescence. Mesenchymal stem cells (MSCs) are a major component of the tumor microenvironment and possess the ability to deliver exogenous miRs to glioma cells to exert anti‑tumor effects. The present study investigated whether modified MSCs with miR‑34a possess an anti‑tumor function in glioma cells. A Transwell system was used to co‑culture U87 glioma cells and MSCs overexpressing miR‑34a, and cell proliferation and senescence assessed. The expression of senescence‑related genes p53, Cdkn1a, and Cdkn2c were tested using reverse transcription‑quantitative polymerase chain reaction and protein expression levels of sirtuin 1 (SIRT1) and γ‑H2A histone family, member X were detected by western blotting. Telomerase activity of U87 cells was examined using the Telo TAGGG Telomerase PCR ELISA PLUS kit. The results demonstrated that the delivered exogenous miR‑34a from MSCs significantly decreased expression of the target gene SIRT1. In addition, the delivered miR‑34a decreased the proliferation of glioma cells and provoked the expression of senescence‑related genes p53, Cdkn1a, and Cdkn2c. In addition, upregulation of miR‑34a induced DNA damage, shortened telomere length and impaired telomerase activity. However, these pro‑senescent effects were reversed by forced SIRT1 upregulation. In conclusion, the results demonstrated a novel role for miR‑34a, inducing glioma cell senescence, whereas miR‑34a modulation of SIRT1, inducing DNA damage, is crucial for miRNA replacement therapy in glioma treatment.
Collapse
Affiliation(s)
- Qun Li
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chengde Wang
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lin Cai
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianglong Lu
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhangzhang Zhu
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chunyong Wang
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhipeng Su
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xianghe Lu
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
22
|
Yuan J, Zhang F, Hallahan D, Zhang Z, He L, Wu LG, You M, Yang Q. Reprogramming glioblastoma multiforme cells into neurons by protein kinase inhibitors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:181. [PMID: 30071868 PMCID: PMC6090992 DOI: 10.1186/s13046-018-0857-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
Background Reprogramming of cancers into normal-like tissues is an innovative strategy for cancer treatment. Recent reports demonstrate that defined factors can reprogram cancer cells into pluripotent stem cells. Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor in humans. Despite multimodal therapy, the outcome for patients with GBM is still poor. Therefore, developing novel therapeutic strategy is a critical requirement. Methods We have developed a novel reprogramming method that uses a conceptually unique strategy for GBM treatment. We screened a kinase inhibitor library to find which candidate inhibitors under reprogramming condition can reprogram GBM cells into neurons. The induced neurons are identified whether functional and loss of tumorigenicity. Results We have found that mTOR and ROCK kinase inhibitors are sufficient to reprogram GBM cells into neural-like cells and “normal” neurons. The induced neurons expressed neuron-specific proteins, generated action potentials and neurotransmitter receptor-mediated currents. Genome-wide transcriptional analysis showed that the induced neurons had a profile different from GBM cells and were similar to that of control neurons induced by established methods. In vitro and in vivo tumorigenesis assays showed that induced neurons lost their proliferation ability and tumorigenicity. Moreover, reprogramming treatment with ROCK-mTOR inhibitors prevented GBM local recurrence in mice. Conclusion This study indicates that ROCK and mTOR inhibitors-based reprogramming treatment prevents GBM local recurrence. Currently ROCK-mTOR inhibitors are used as anti-tumor drugs in patients, so this reprogramming strategy has significant potential to move rapidly toward clinical trials. Electronic supplementary material The online version of this article (10.1186/s13046-018-0857-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Yuan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO, 63108, USA.,Medical Center of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,School of Stomatology, Jinan University, Guangzhou, 510630, China
| | - Fan Zhang
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO, 63108, USA
| | - Dennis Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO, 63108, USA
| | - Zhen Zhang
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Liming He
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Meng You
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO, 63108, USA
| | - Qin Yang
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO, 63108, USA.
| |
Collapse
|
23
|
Okolie O, Irvin DM, Bago JR, Sheets K, Satterlee A, Carey-Ewend AG, Lettry V, Dumitru R, Elton S, Ewend MG, Miller CR, Hingtgen SD. Intra-cavity stem cell therapy inhibits tumor progression in a novel murine model of medulloblastoma surgical resection. PLoS One 2018; 13:e0198596. [PMID: 29990322 PMCID: PMC6038981 DOI: 10.1371/journal.pone.0198596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Background Cytotoxic neural stem cells (NSCs) have emerged as a promising treatment for Medulloblastoma (MB), the most common malignant primary pediatric brain tumor. The lack of accurate pre-clinical models incorporating surgical resection and tumor recurrence limits advancement in post-surgical MB treatments. Using cell lines from two of the 5 distinct MB molecular sub-groups, in this study, we developed an image-guided mouse model of MB surgical resection and investigate intra-cavity NSC therapy for post-operative MB. Methods Using D283 and Daoy human MB cells engineered to express multi-modality optical reporters, we created the first image-guided resection model of orthotopic MB. Brain-derived NSCs and novel induced NSCs (iNSCs) generated from pediatric skin were engineered to express the pro-drug/enzyme therapy thymidine kinase/ganciclovir, seeded into the post-operative cavity, and used to investigate intra-cavity therapy for post-surgical MB. Results We found that surgery reduced MB volumes by 92%, and the rate of post-operative MB regrowth increased 3-fold compared to pre-resection growth. Real-time imaging showed NSCs rapidly homed to MB, migrating 1.6-fold faster and 2-fold farther in the presence of tumors, and co-localized with MB present in the contra-lateral hemisphere. Seeding of cytotoxic NSCs into the post-operative surgical cavity decreased MB volumes 15-fold and extended median survival 133%. As an initial step towards novel autologous therapy in human MB patients, we found skin-derived iNSCs homed to MB cells, while intra-cavity iNSC therapy suppressed post-surgical tumor growth and prolonged survival of MB-bearing mice by 123%. Conclusions We report a novel image-guided model of MB resection/recurrence and provide new evidence of cytotoxic NSCs/iNSCs delivered into the surgical cavity effectively target residual MB foci.
Collapse
Affiliation(s)
- Onyinyechukwu Okolie
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Irvin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Juli R. Bago
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrew Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Abigail G. Carey-Ewend
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vivien Lettry
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raluca Dumitru
- UNC Human Pluripotent Stem Cell Core, Genetics Department, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Scott Elton
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Matthew G. Ewend
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - C. Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
Li D, Zhang J, Chi C, Xiao X, Wang J, Lang L, Ali I, Niu G, Zhang L, Tian J, Ji N, Zhu Z, Chen X. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN. Theranostics 2018; 8:2508-2520. [PMID: 29721096 PMCID: PMC5928906 DOI: 10.7150/thno.25599] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/25/2018] [Indexed: 12/31/2022] Open
Abstract
Purpose: Despite the use of fluorescence-guided surgery (FGS), maximum safe resection of glioblastoma multiforme (GBM) remains a major challenge. It has restricted surgeons between preoperative diagnosis and intraoperative treatment. Currently, an integrated approach combining preoperative assessment with intraoperative guidance would be a significant step in this direction. Experimental design: We developed a novel 68Ga-IRDye800CW-BBN PET/near-infrared fluorescence (NIRF) dual-modality imaging probe targeting gastrin-releasing peptide receptor (GRPR) in GBM. The preclinical in vivo tumor imaging and FGS were first evaluated using an orthotopic U87MG glioma xenograft model. Subsequently, the first-in-human prospective cohort study (NCT 02910804) of GBM patients were conducted with preoperative PET assessment and intraoperative FGS. Results: The orthotopic tumors in mice could be precisely resected using the near-infrared intraoperative system. Translational cohort research in 14 GBM patients demonstrated an excellent correlation between preoperative positive PET uptake and intraoperative NIRF signal. The tumor fluorescence signals were significantly higher than those from adjacent brain tissue in vivo and ex vivo (p < 0.0001). Compared with pathology, the sensitivity and specificity of fluorescence using 42 loci of fluorescence-guided sampling were 93.9% (95% CI 79.8%-99.3%) and 100% (95% CI 66.4%-100%), respectively. The tracer was safe and the extent of resection was satisfactory without newly developed neurologic deficits. Progression-free survival (PFS) at 6 months was 80% and two newly diagnosed patients achieved long PFS. Conclusions: This initial study has demonstrated that the novel dual-modality imaging technique is feasible for integrated pre- and intraoperative targeted imaging via the same molecular receptor and improved intraoperative GBM visualization and maximum safe resection.
Collapse
Affiliation(s)
- Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Molecular Imaging, Chinese Academy of Science, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Jingjing Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging, Chinese Academy of Science, Beijing, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Junmei Wang
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, United States
| | - Iqbal Ali
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, United States
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Chinese Academy of Science, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, United States
| |
Collapse
|
25
|
Dai X, Zhang T, Yang H, Tang J, Carney PR, Jiang H. Fast noninvasive functional diffuse optical tomography for brain imaging. JOURNAL OF BIOPHOTONICS 2018; 11:e201600267. [PMID: 28696034 DOI: 10.1002/jbio.201600267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/23/2017] [Accepted: 06/29/2017] [Indexed: 05/23/2023]
Abstract
Advances in epilepsy studies have shown that specific changes in hemodynamics precede and accompany seizure onset and propagation. However, it has been challenging to noninvasively detect these changes in real time and in humans, due to the lack of fast functional neuroimaging tools. In this study, we present a functional diffuse optical tomography (DOT) method with the guidance of an anatomical human head atlas for 3-dimensionally mapping the brain in real time. Central to our DOT system is a human head interface coupled with a technique that can incorporate topological information of the brain surface into the DOT image reconstruction. The performance of the DOT system was tested by imaging motor tasks-involved brain activities on N = 6 subjects (3 epilepsy patients and 3 healthy controls). We observed diffuse areas of activations from the reconstructed [HbT] images of patients, relative to more focal activations for healthy subjects. Moreover, significant pretask hemodynamic activations were also seen in the motor cortex of patients, which indicated abnormal activities persistent in the brain of an epilepsy patient. This work demonstrates that fast functional DOT is a valuable tool for noninvasive 3-dimensional mapping of brain hemodynamics.
Collapse
Affiliation(s)
- Xianjin Dai
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Tao Zhang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Hao Yang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Jianbo Tang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Paul R Carney
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Huabei Jiang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
Graham-Gurysh E, Moore KM, Satterlee AB, Sheets KT, Lin FC, Bachelder EM, Miller CR, Hingtgen SD, Ainslie KM. Sustained Delivery of Doxorubicin via Acetalated Dextran Scaffold Prevents Glioblastoma Recurrence after Surgical Resection. Mol Pharm 2018; 15:1309-1318. [PMID: 29342360 DOI: 10.1021/acs.molpharmaceut.7b01114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The primary cause of mortality for glioblastoma (GBM) is local tumor recurrence following standard-of-care therapies, including surgical resection. With most tumors recurring near the site of surgical resection, local delivery of chemotherapy at the time of surgery is a promising strategy. Herein drug-loaded polymer scaffolds with two distinct degradation profiles were fabricated to investigate the effect of local drug delivery rate on GBM recurrence following surgical resection. The novel biopolymer, acetalated dextran (Ace-DEX), was compared with commercially available polyester, poly(l-lactide) (PLA). Steady-state doxorubicin (DXR) release from Ace-DEX scaffolds was found to be faster when compared with scaffolds composed of PLA, in vitro. This increased drug release rate translated to improved therapeutic outcomes in a novel surgical model of orthotopic glioblastoma resection and recurrence. Mice treated with DXR-loaded Ace-DEX scaffolds (Ace-DEX/10DXR) resulted in 57% long-term survival out to study completion at 120 days compared with 20% survival following treatment with DXR-loaded PLA scaffolds (PLA/10DXR). Additionally, all mice treated with PLA/10DXR scaffolds exhibited disease progression by day 38, as defined by a 5-fold growth in tumor bioluminescent signal. In contrast, 57% of mice treated with Ace-DEX/10DXR scaffolds displayed a reduction in tumor burden, with 43% exhibiting complete remission. These results underscore the importance of polymer choice and drug release rate when evaluating local drug delivery strategies to improve prognosis for GBM patients undergoing tumor resection.
Collapse
Affiliation(s)
- Elizabeth Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kathryn M Moore
- Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Andrew B Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kevin T Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Feng-Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences Institute , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - C Ryan Miller
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Departments of Neurology and Pharmacology, Lineberger Comprehensive Cancer Center, and Neuroscience Center, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
27
|
Reactive Astrocytes in Glioblastoma Multiforme. Mol Neurobiol 2018; 55:6927-6938. [PMID: 29363044 DOI: 10.1007/s12035-018-0880-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/07/2018] [Indexed: 12/17/2022]
Abstract
Despite the multidisciplinary integration in the therapeutic management of glioblastoma multiforme (GBM), the prognosis of GBM patients is poor. There is growing recognition that the cells in the tumor microenvironment play a vital role in regulating the progression of glioma. Astrocytes are an important component of the blood-brain barrier (BBB) as well as the tripartite synapse neural network to promote bidirectional communication with neurons under physiological conditions. Emerging evidence shows that tumor-associated reactive astrocytes interact with glioma cells and facilitate the progression, aggression, and survival of tumors by releasing different cytokines. Communication between reactive astrocytes and glioma cells is further promoted through ion channels and ion transporters, which augment the migratory capacity and invasiveness of tumor cells by modifying H+ and Ca2+ concentrations and stimulating volume changes in the cell. This in part contributes to the loss of epithelial polarization, initiating epithelial-mesenchymal transition. Therefore, this review will summarize the recent findings on the role of reactive astrocytes in the progression of GBM and in the development of treatment-resistant glioma. In addition, the involvement of ion channels and transporters in bridging the interactions between tumor cells and astrocytes and their potential as new therapeutic anti-tumor targets will be discussed.
Collapse
|
28
|
Bhere D, Tamura K, Wakimoto H, Choi SH, Purow B, Debatisse J, Shah K. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol 2018; 20:215-224. [PMID: 29016934 PMCID: PMC5777493 DOI: 10.1093/neuonc/nox138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background MicroRNAs (miRs) are known to play a pivotal role in tumorigenesis, controlling cell proliferation and apoptosis. In this study, we investigated the potential of miR-7 to prime resistant tumor cells to apoptosis in glioblastoma (GBM). Methods We created constitutive and regulatable miR-7 expression vectors and utilized pharmacological inhibition of caspases and genetic loss of function to study the effect of forced expression of miR-7 on death receptor (DR) pathways in a cohort of GBM with established resistance to tumor necrosis factor apoptosis inducing ligand (TRAIL) and in patient-derived primary GBM stem cell (GSC) lines. We engineered adeno-associated virus (AAV)-miR-7 and stem cell (SC) releasing secretable (S)-TRAIL and utilized real time in vivo imaging and neuropathology to understand the effect of the combined treatment of AAV-miR-7 and SC-S-TRAIL in vitro and in mouse models of GBM from TRAIL-resistant GSC. Results We show that expression of miR-7 in GBM cells results in downregulation of epidermal growth factor receptor and phosphorylated Akt and activation of nuclear factor-kappaB signaling. This leads to an upregulation of DR5, ultimately priming resistant GBM cells to DR-ligand, TRAIL-induced apoptotic cell death. In vivo, a single administration of AAV-miR-7 significantly decreases tumor volumes, upregulates DR5, and enables SC-delivered S-TRAIL to eradicate GBM xenografts generated from patient-derived TRAIL-resistant GSC, significantly improving survival of mice. Conclusions This study identifies the unique role of miR-7 in linking cell proliferation to death pathways that can be targeted simultaneously to effectively eliminate GBM, thus presenting a promising strategy for treating GBM.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kaoru Tamura
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sung Hugh Choi
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Purow
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Jeremy Debatisse
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Bagó JR, Okolie O, Dumitru R, Ewend MG, Parker JS, Werff RV, Underhill TM, Schmid RS, Miller CR, Hingtgen SD. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci Transl Med 2018; 9:9/375/eaah6510. [PMID: 28148846 DOI: 10.1126/scitranslmed.aah6510] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 07/26/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
Abstract
Engineered neural stem cells (NSCs) are a promising approach to treating glioblastoma (GBM). The ideal NSC drug carrier for clinical use should be easily isolated and autologous to avoid immune rejection. We transdifferentiated (TD) human fibroblasts into tumor-homing early-stage induced NSCs (h-iNSCTE), engineered them to express optical reporters and different therapeutic gene products, and assessed the tumor-homing migration and therapeutic efficacy of cytotoxic h-iNSCTE in patient-derived GBM models of surgical and nonsurgical disease. Molecular and functional analysis revealed that our single-factor SOX2 TD strategy converted human skin fibroblasts into h-iNSCTE that were nestin+ and expressed pathways associated with tumor-homing migration in 4 days. Time-lapse motion analysis showed that h-iNSCTE rapidly migrated to human GBM cells and penetrated human GBM spheroids, a process inhibited by blockade of CXCR4. Serial imaging showed that h-iNSCTE delivery of the proapoptotic agent tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) reduced the size of solid human GBM xenografts 250-fold in 3 weeks and prolonged median survival from 22 to 49 days. Additionally, h-iNSCTE thymidine kinase/ganciclovir enzyme/prodrug therapy (h-iNSCTE-TK) reduced the size of patient-derived GBM xenografts 20-fold and extended survival from 32 to 62 days. Mimicking clinical NSC therapy, h-iNSCTE-TK therapy delivered into the postoperative surgical resection cavity delayed the regrowth of residual GBMs threefold and prolonged survival from 46 to 60 days. These results suggest that TD of human skin into h-iNSCTE is a platform for creating tumor-homing cytotoxic cell therapies for cancer, where the potential to avoid carrier rejection could maximize treatment durability in human trials.
Collapse
Affiliation(s)
- Juli R Bagó
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Onyi Okolie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raluca Dumitru
- UNC Human Pluripotent Stem Cell Core Facility, Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew G Ewend
- Department of Neurosurgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan Vander Werff
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ralf S Schmid
- Division of Neuropathology and Department of Pathology and Laboratory Medicine, Department of Neurology and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - C Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Division of Neuropathology and Department of Pathology and Laboratory Medicine, Department of Neurology and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Neurosurgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
30
|
Delivery of Cytotoxic Mesenchymal Stem Cells with Biodegradable Scaffolds for Treatment of Postoperative Brain Cancer. Methods Mol Biol 2018; 1831:49-58. [PMID: 30051424 DOI: 10.1007/978-1-4939-8661-3_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Engineered stem cells have recently entered clinical trials as therapeutic agents for treating glioblastoma foci that remain after primary brain tumor resection. However, efficient delivery of anti-cancer mesenchymal stem cells (MSCs) into the resection cavity remains a potential obstacle to therapeutic efficacy in humans. Direct injection quickly leads to significant stem cell loss and poor tumor killing. Recent reports have shown that biodegradable scaffolds improve MSC persistence and restore therapeutic potential. Here, we describe a method for the delivery of therapeutic MSCs on biodegradable fibrin scaffolds into the resection cavity to treat postoperative brain cancer.
Collapse
|
31
|
|
32
|
Wang J, Cheng P, Pavlyukov MS, Yu H, Zhang Z, Kim SH, Minata M, Mohyeldin A, Xie W, Chen D, Goidts V, Frett B, Hu W, Li H, Shin YJ, Lee Y, Nam DH, Kornblum HI, Wang M, Nakano I. Targeting NEK2 attenuates glioblastoma growth and radioresistance by destabilizing histone methyltransferase EZH2. J Clin Invest 2017; 127:3075-3089. [PMID: 28737508 DOI: 10.1172/jci89092] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/08/2017] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that glioma stem cells (GSCs) are important therapeutic targets in glioblastoma (GBM). In this study, we identified NIMA-related kinase 2 (NEK2) as a functional binding protein of enhancer of zeste homolog 2 (EZH2) that plays a critical role in the posttranslational regulation of EZH2 protein in GSCs. NEK2 was among the most differentially expressed kinase-encoding genes in GSC-containing cultures (glioma spheres), and it was required for in vitro clonogenicity, in vivo tumor propagation, and radioresistance. Mechanistically, the formation of a protein complex comprising NEK2 and EZH2 in glioma spheres phosphorylated and then protected EZH2 from ubiquitination-dependent protein degradation in a NEK2 kinase activity-dependent manner. Clinically, NEK2 expression in patients with glioma was closely associated with EZH2 expression and correlated with a poor prognosis. NEK2 expression was also substantially elevated in recurrent tumors after therapeutic failure compared with primary untreated tumors in matched GBM patients. We designed a NEK2 kinase inhibitor, compound 3a (CMP3a), which efficiently attenuated GBM growth in a mouse model and exhibited a synergistic effect with radiotherapy. These data demonstrate a key role for NEK2 in maintaining GSCs in GBM by stabilizing the EZH2 protein and introduce the small-molecule inhibitor CMP3a as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peng Cheng
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurosurgery, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Marat S Pavlyukov
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Hai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhuo Zhang
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Mutsuko Minata
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ahmed Mohyeldin
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dongquan Chen
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Violaine Goidts
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Brendan Frett
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA.,Synactix Pharmaceuticals Inc., Tucson, Arizona, USA
| | - Wenhao Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Hongyu Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Yong Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeri Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Harley I Kornblum
- Departments of Psychiatry.,Pharmacology, and.,Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
33
|
Therapeutic dormancy to delay postsurgical glioma recurrence: the past, present and promise of focal hypothermia. J Neurooncol 2017; 133:447-454. [DOI: 10.1007/s11060-017-2471-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/07/2017] [Indexed: 01/06/2023]
|
34
|
Zhu H, Leiss L, Yang N, Rygh CB, Mitra SS, Cheshier SH, Weissman IL, Huang B, Miletic H, Bjerkvig R, Enger PØ, Li X, Wang J. Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy. Oncotarget 2017; 8:12145-12157. [PMID: 28076333 PMCID: PMC5355332 DOI: 10.18632/oncotarget.14553] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/26/2016] [Indexed: 02/04/2023] Open
Abstract
Surgical resection is a standard component of treatment in the clinical management of patients with glioblastoma multiforme (GBM). However, experimental therapies are rarely investigated in the context of tumor debulking in preclinical models. Here, a surgical debulking GBM xenograft model was developed in nude rats, and was used in combination with CD47 blocking immunotherapy, a novel treatment strategy that triggers phagocytosis of tumor cells by macrophages in diverse cancer types including GBM. Orthotopic patient-derived xenograft tumors expressing CD47 were resected at 4 weeks after implantation and immediately thereafter treated with anti-CD47 or control antibodies injected into the cavity. Debulking prolonged survival (median survival, 68.5 vs 42.5 days, debulking and non-debulking survival times, respectively; n = 6 animals/group; P = 0.0005). Survival was further improved in animals that underwent combination treatment with anti-CD47 mAbs (median survival, 81.5 days vs 69 days, debulking + anti-CD47 vs debulking + control IgG, respectively; P = 0.0007). Immunohistochemistical staining of tumor sections revealed an increase in recruitment of cells positive for CD68, a marker for macrophages/immune cell types, to the surgical site (50% vs 10%, debulking vs non-debulking, respectively). Finally, analysis of tumor protein lysates on antibody microarrays demonstrated an increase in pro-inflammatory cytokines, such as CXCL10, and a decrease in angiogenic proteins in debulking + anti-CD47 vs non-debulking + IgG tumors. The results indicated that surgical resection combined with anti-CD47 blocking immunotherapy promoted an inflammatory response and prolonged survival in animals, and is therefore an attractive strategy for clinical translation.
Collapse
Affiliation(s)
- Huaiyang Zhu
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Oncology, Shandong Chest Hospital, Jinan, China
| | - Lina Leiss
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neuro Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Cecilie B. Rygh
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Siddhartha S. Mitra
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, USA
| | - Samuel H. Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Stanford University, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, USA
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Per Ø. Enger
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Jian Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|
35
|
Okolie O, Bago JR, Schmid RS, Irvin DM, Bash RE, Miller CR, Hingtgen SD. Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol 2016; 18:1622-1633. [PMID: 27298311 DOI: 10.1093/neuonc/now117] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/04/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Surgical resection is a universal component of glioma therapy. Little is known about the postoperative microenvironment due to limited preclinical models. Thus, we sought to develop a glioma resection and recurrence model in syngeneic immune-competent mice to understand how surgical resection influences tumor biology and the local microenvironment. METHODS We genetically engineered cells from a murine glioma mouse model to express fluorescent and bioluminescent reporters. Established allografts were resected using image-guided microsurgery. Postoperative tumor recurrence was monitored by serial imaging, and the peritumoral microenvironment was characterized by histopathology and immunohistochemistry. Coculture techniques were used to explore how astrocyte injury influences tumor aggressiveness in vitro. Transcriptome and secretome alterations in injured astrocytes was examined by RNA-seq and Luminex. RESULTS We found that image-guided resection achieved >90% reduction in tumor volume but failed to prevent both local and distant tumor recurrence. Immunostaining for glial fibrillary acidic protein and nestin showed that resection-induced injury led to temporal and spatial alterations in reactive astrocytes within the peritumoral microenvironment. In vitro, we found that astrocyte injury induced transcriptome and secretome alterations and promoted tumor proliferation, as well as migration. CONCLUSIONS This study demonstrates a unique syngeneic model of glioma resection and recurrence in immune-competent mice. Furthermore, this model provided insights into the pattern of postsurgical tumor recurrence and changes in the peritumoral microenvironment, as well as the impact of injured astrocytes on glioma growth and invasion. A better understanding of the postsurgical tumor microenvironment will allow development of targeted anticancer agents that improve surgery-mediated effects on tumor biology.
Collapse
Affiliation(s)
- Onyinyechukwu Okolie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - Juli R Bago
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - Ralf S Schmid
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - David M Irvin
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - Ryan E Bash
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - C Ryan Miller
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| |
Collapse
|
36
|
|
37
|
Bagó JR, Pegna GJ, Okolie O, Mohiti-Asli M, Loboa EG, Hingtgen SD. Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials 2016; 90:116-25. [PMID: 27016620 DOI: 10.1016/j.biomaterials.2016.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 12/16/2022]
Abstract
Engineered stem cell (SC)-based therapy holds enormous promise for treating the incurable brain cancer glioblastoma (GBM). Retaining the cytotoxic SCs in the surgical cavity after GBM resection is one of the greatest challenges to this approach. Here, we describe a biocompatible electrospun nanofibrous scaffold (bENS) implant capable of delivering and retaining tumor-homing cytotoxic stem cells that suppress recurrence of post-surgical GBM. As a new approach to GBM therapy, we created poly(l-lactic acid) (PLA) bENS bearing drug-releasing human mesenchymal stem cells (hMSCs). We discovered that bENS-based implant increased hMSC retention in the surgical cavity 5-fold and prolonged persistence 3-fold compared to standard direct injection using our mouse model of GBM surgical resection/recurrence. Time-lapse imaging showed cytotoxic hMSC/bENS treatment killed co-cultured human GBM cells, and allowed hMSCs to rapidly migrate off the scaffolds as they homed to GBMs. In vivo, bENS loaded with hMSCs releasing the anti-tumor protein TRAIL (bENS(sTR)) reduced the volume of established GBM xenografts 3-fold. Mimicking clinical GBM patient therapy, lining the post-operative GBM surgical cavity with bENS(sTR) implants inhibited the re-growth of residual GBM foci 2.3-fold and prolonged post-surgical median survival from 13.5 to 31 days in mice. These results suggest that nanofibrous-based SC therapies could be an innovative new approach to improve the outcomes of patients suffering from terminal brain cancer.
Collapse
Affiliation(s)
- Juli R Bagó
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Guillaume J Pegna
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Onyi Okolie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mahsa Mohiti-Asli
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA; College of Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
38
|
Bagó JR, Alfonso-Pecchio A, Okolie O, Dumitru R, Rinkenbaugh A, Baldwin AS, Miller CR, Magness ST, Hingtgen SD. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat Commun 2016; 7:10593. [PMID: 26830441 PMCID: PMC4740908 DOI: 10.1038/ncomms10593] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
Transdifferentiation (TD) is a recent advancement in somatic cell reprogramming. The direct conversion of TD eliminates the pluripotent intermediate state to create cells that are ideal for personalized cell therapy. Here we provide evidence that TD-derived induced neural stem cells (iNSCs) are an efficacious therapeutic strategy for brain cancer. We find that iNSCs genetically engineered with optical reporters and tumouricidal gene products retain the capacity to differentiate and induced apoptosis in co-cultured human glioblastoma cells. Time-lapse imaging shows that iNSCs are tumouritropic, homing rapidly to co-cultured glioblastoma cells and migrating extensively to distant tumour foci in the murine brain. Multimodality imaging reveals that iNSC delivery of the anticancer molecule TRAIL decreases the growth of established solid and diffuse patient-derived orthotopic glioblastoma xenografts 230- and 20-fold, respectively, while significantly prolonging the median mouse survival. These findings establish a strategy for creating autologous cell-based therapies to treat patients with aggressive forms of brain cancer. Neural stem cells have a tropism for glioblastoma. Here the authors employ fibroblasts directly reprogrammed into induced neural stem cells and loaded with cytotoxic molecules to migrate to xenotransplanted brain tumours in mice, achieving tumour shrinkage and prolonged survival.
Collapse
Affiliation(s)
- Juli R Bagó
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Adolfo Alfonso-Pecchio
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Onyi Okolie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Raluca Dumitru
- Department of Genetics, UNC Human Pluripotent Stem Cell Core, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Amanda Rinkenbaugh
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Division of Neuropathology, Department of Pathology and Laboratory Medicine, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - C Ryan Miller
- Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Division of Neuropathology, Department of Pathology and Laboratory Medicine, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Neurology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Scott T Magness
- Department of Cell Biology and Physiology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
39
|
Bagó JR, Pegna GJ, Okolie O, Hingtgen SD. Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer. Biomaterials 2016; 84:42-53. [PMID: 26803410 DOI: 10.1016/j.biomaterials.2016.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022]
Abstract
Tumor-homing cytotoxic stem cell (SC) therapy is a promising new approach for treating the incurable brain cancer glioblastoma (GBM). However, problems of retaining cytotoxic SCs within the post-surgical GBM resection cavity are likely to significantly limit the clinical utility of this strategy. Here, we describe a new fibrin-based transplant approach capable of increasing cytotoxic SC retention and persistence within the resection cavity, yet remaining permissive to tumoritropic migration. This fibrin-based transplant can effectively treat both solid and post-surgical human GBM in mice. Using our murine model of image-guided model of GBM resection, we discovered that suspending human mesenchymal stem cells (hMSCS) in a fibrin matrix increased initial retention in the surgical resection cavity 2-fold and prolonged persistence in the cavity 3-fold compared to conventional delivery strategies. Time-lapse motion analysis revealed that cytotoxic hMSCs in the fibrin matrix remain tumoritropic, rapidly migrating from the fibrin matrix to co-localize with cultured human GBM cells. We encapsulated hMSCs releasing the cytotoxic agent TRAIL (hMSC-sTR) in fibrin, and found hMSC-sTR/fibrin therapy reduced the viability of multiple 3-D human GBM spheroids and regressed established human GBM xenografts 3-fold in 11 days. Mimicking clinical therapy of surgically resected GBM, intra-cavity seeding of therapeutic hMSC-sTR encapsulated in fibrin reduced post-surgical GBM volumes 6-fold, increased time to recurrence 4-fold, and prolonged median survival from 15 to 36 days compared to control-treated animals. Fibrin-based SC therapy could represent a clinically compatible, viable treatment to suppress recurrence of post-surgical GBM and other lethal cancer types.
Collapse
Affiliation(s)
- Juli R Bagó
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Guillaume J Pegna
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Onyi Okolie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
40
|
Neural stem cell therapy for cancer. Methods 2015; 99:37-43. [PMID: 26314280 DOI: 10.1016/j.ymeth.2015.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/07/2015] [Accepted: 08/23/2015] [Indexed: 12/13/2022] Open
Abstract
Cancers of the brain remain one of the greatest medical challenges. Traditional surgery and chemo-radiation therapy are unable to eradicate diffuse cancer cells and tumor recurrence is nearly inevitable. In contrast to traditional regenerative medicine applications, engineered neural stem cells (NSCs) are emerging as a promising new therapeutic strategy for cancer therapy. The tumor-homing properties allow NSCs to access both primary and invasive tumor foci, creating a novel delivery platform. NSCs engineered with a wide array of cytotoxic agents have been found to significantly reduce tumor volumes and markedly extend survival in preclinical models. With the recent launch of new clinical trials, the potential to successfully manage cancer in human patients with cytotoxic NSC therapy is moving closer to becoming a reality.
Collapse
|
41
|
Rolón-Reyes K, Kucheryavykh YV, Cubano LA, Inyushin M, Skatchkov SN, Eaton MJ, Harrison JK, Kucheryavykh LY. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS One 2015; 10:e0131059. [PMID: 26098895 PMCID: PMC4476590 DOI: 10.1371/journal.pone.0131059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/27/2015] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells.
Collapse
Affiliation(s)
- Kimberleve Rolón-Reyes
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Yuriy V. Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Luis A. Cubano
- Department of Anatomy and Cell Biology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Mikhail Inyushin
- Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Serguei N. Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
- Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Jeffrey K. Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida
| | - Lilia Y. Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
42
|
Wehrenberg-Klee E, Redjal N, Leece A, Turker NS, Heidari P, Shah K, Mahmood U. PET imaging of glioblastoma multiforme EGFR expression for therapeutic decision guidance. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2015; 5:379-389. [PMID: 26269775 PMCID: PMC4529591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
After initial therapy and total resection of glioblastoma multiforme (GBM), 80-90% of recurrences occur at the surgical margins. Insufficient sensitivity and specificity of current imaging techniques based on non-specific vascular imaging agents lead to delay in diagnosis of residual and/or recurrent disease. A tumor-specific imaging agent for GBM may improve detection of small residual disease in the post-operative period, and improve ability to distinguish tumor recurrence from its imaging mimics that can delay diagnosis. To this end, we developed an EGFR-targeted PET probe and assessed its ability to image EGFR WT (U87) and EGFRvIII (Gli36vIII) expressing GBMs in both murine intra-cranial xenografts and in a surgical-resection model. The developed imaging probe, (64)Cu-DOTAcetuximab-F(ab´)2, binds with a Kd of 11.2 nM to EGFR expressing GBM. (64)Cu-DOTA-cetuximab-F(ab´)2 specifically localized to intra-cranial tumor with a significant difference in SUVmean between tumor and contralateral brain for both Gli36vIII and U87 tumors (P<0.01 for both comparisons), with mean TBR of 22.5±0.7 for Gli36vIII tumors and 28.9±2.1 for U87 tumors (TBR±SEM). Tracer uptake by tumor was significantly inhibited by pre-injection with cetuximab (P<0.01 for both), with SUVmean reduced by 68% and 58% for Gli36vIII and U87 tumors, respectively. Surgical resection model PET-CT imaging demonstrates residual tumor and low nonspecific uptake in the resection site. We conclude that (64)Cu-DOTA-cetuximab-F(ab´)2 binds specifically to intracranial EGFR WT and EGFRvIII expressing GBM, demonstrates excellent TBR, and specifically images small residual tumor in a surgical model, suggesting future clinical utility in identifying true tumor recurrence.
Collapse
Affiliation(s)
- Eric Wehrenberg-Klee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBoston, MA
| | - Navid Redjal
- Molecular Neurotherapy and Imaging Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolBoston, MA
| | - Alicia Leece
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBoston, MA
| | - N Selcan Turker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBoston, MA
| | - Pedram Heidari
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBoston, MA
| | - Khalid Shah
- Molecular Neurotherapy and Imaging Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolBoston, MA
| | - Umar Mahmood
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBoston, MA
| |
Collapse
|
43
|
Hale JS, Sinyuk M, Rich JN, Lathia JD. Decoding the cancer stem cell hypothesis in glioblastoma. CNS Oncol 2015; 2:319-30. [PMID: 24379973 DOI: 10.2217/cns.13.23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Our understanding of the complexity of nervous system cancers has been enhanced through the incorporation of cellular heterogeneity into tumor models, with cellular subsets displaying stem cell characteristics. Advanced cancers such as glioblastoma are organized in a hierarchy with cancer stem cells at the apex. Cancer stem cells are functionally defined by their ability to self-renew and propagate tumors similar to the parental tumors from which they are derived. We will discuss advances in cancer stem cells, including the ability to prospectively isolate and interrogate cancer stem cells, by defining molecular mechanisms responsible for the tumor maintenance and growth. While the field of cancer stem cell biology is relatively young, continued elucidation of the tumor hierarchy holds promise for the development of novel patient therapies.
Collapse
|
44
|
Redjal N, Zhu Y, Shah K. Combination of systemic chemotherapy with local stem cell delivered S-TRAIL in resected brain tumors. Stem Cells 2015; 33:101-10. [PMID: 25186100 PMCID: PMC4270944 DOI: 10.1002/stem.1834] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/29/2014] [Indexed: 01/02/2023]
Abstract
Despite advances in standard therapies, the survival of glioblastoma multiforme (GBM) patients has not improved. Limitations to successful translation of new therapies include poor delivery of systemic therapies and use of simplified preclinical models which fail to reflect the clinical complexity of GBMs. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically in tumor cells and we have tested its efficacy by on-site delivery via engineered stem cells (SC) in mouse models of GBM that mimic the clinical scenario of tumor aggressiveness and resection. However, about half of tumor lines are resistant to TRAIL and overcoming TRAIL-resistance in GBM by combining therapeutic agents that are currently in clinical trials with SC-TRAIL and understanding the molecular dynamics of these combination therapies are critical to the broad use of TRAIL as a therapeutic agent in clinics. In this study, we screened clinically relevant chemotherapeutic agents for their ability to sensitize resistant GBM cell lines to TRAIL induced apoptosis. We show that low dose cisplatin increases surface receptor expression of death receptor 4/5 post G2 cycle arrest and sensitizes GBM cells to TRAIL induced apoptosis. In vivo, using an intracranial resection model of resistant primary human-derived GBM and real-time optical imaging, we show that a low dose of cisplatin in combination with synthetic extracellular matrix encapsulated SC-TRAIL significantly decreases tumor regrowth and increases survival in mice bearing GBM. This study has the potential to help expedite effective translation of local stem cell-based delivery of TRAIL into the clinical setting to target a broad spectrum of GBMs.
Collapse
Affiliation(s)
- Navid Redjal
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Yanni Zhu
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Khalid Shah
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| |
Collapse
|
45
|
Sundar SJ, Hsieh JK, Manjila S, Lathia JD, Sloan A. The role of cancer stem cells in glioblastoma. Neurosurg Focus 2014; 37:E6. [DOI: 10.3171/2014.9.focus14494] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recurrence in glioblastoma is nearly universal, and its prognosis remains dismal despite significant advances in treatment over the past decade. Glioblastoma demonstrates considerable intratumoral phenotypic and molecular heterogeneity and contains a population of cancer stem cells that contributes to tumor propagation, maintenance, and treatment resistance. Cancer stem cells are functionally defined by their ability to self-renew and to differentiate, and they constitute the diverse hierarchy of cells composing a tumor. When xenografted into an appropriate host, they are capable of tumorigenesis. Given the critical role of cancer stem cells in the pathogenesis of glioblastoma, research into their molecular and phenotypic characteristics is a therapeutic priority. In this review, the authors discuss the evolution of the cancer stem cell model of tumorigenesis and describe the specific role of cancer stem cells in the pathogenesis of glioblastoma and their molecular and microenvironmental characteristics. They also discuss recent clinical investigations into targeted therapies against cancer stem cells in the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Jason K. Hsieh
- 1Case Western Reserve University School of Medicine
- 2Cleveland Clinic Lerner College of Medicine
| | - Sunil Manjila
- 3Department of Neurological Surgery, University Hospitals Case Medical Center
| | - Justin D. Lathia
- 2Cleveland Clinic Lerner College of Medicine
- 4Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic; and
- 5Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew Sloan
- 1Case Western Reserve University School of Medicine
- 3Department of Neurological Surgery, University Hospitals Case Medical Center
- 5Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
46
|
Goffart N, Dedobbeleer M, Rogister B. Glioblastoma stem cells: new insights in therapeutic strategies. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT Despite notable achievements in glioblastoma diagnosis and treatment, the prognosis of glioblastoma patients remains poor and reflects the failure of current therapeutic modalities. In this context, innovative therapeutic strategies have recently been developed to specifically target glioblastoma stem cells, a subpopulation of tumor cells involved in experimental tumorigenesis and known to be critical for tumor recurrence and therapeutic resistance. The current review summarizes the different trails which make glioblastoma stem cells resistant to treatments, mainly focusing on radio-, chemo- and immunotherapy. This broad overview might actually help to set up new bases for glioblastoma therapy in order to better fight tumor relapses and to improve the patients’ prognosis.
Collapse
Affiliation(s)
- Nicolas Goffart
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Matthias Dedobbeleer
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
- Department of Neurology, CHU & University of Liège, Liège, Belgium
- GIGA-Development, Stem Cells & Regenerative Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
47
|
Martinez-Quintanilla J, He D, Wakimoto H, Alemany R, Shah K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther 2014; 23:108-18. [PMID: 25352242 DOI: 10.1038/mt.2014.204] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023] Open
Abstract
Despite the proven safety of oncolytic viruses (OV) in clinical trials for glioblastoma (GBM), their efficacy has been hindered by suboptimal spreading within the tumor. We show that hyaluronan or hyaluronic acid (HA), an important component of extracellular matrix (ECM), is highly expressed in a majority of tumor xenografts established from patient-derived GBM lines that present both invasive and nodular phenotypes. Intratumoral injection of a conditionally replicating adenovirus expressing soluble hyaluronidase (ICOVIR17) into nodular GBM, mediated HA degradation and enhanced viral spread, resulting in a significant antitumor effect and mice survival. In an effort to translate OV-based therapeutics into clinical settings, we encapsulated human adipose-derived mesenchymal stem cells (MSC) loaded with ICOVIR17 in biocompatible synthetic extracellular matrix (sECM) and tested their efficacy in a clinically relevant mouse model of GBM resection. Compared with direct injection of ICOVIR17, sECM-MSC loaded with ICOVIR17 resulted in a significant decrease in tumor regrowth and increased mice survival. This is the first report of its kind revealing the expression of HA in GBM and the role of OV-mediated HA targeting in clinically relevant mouse model of GBM resection and thus has clinical implications.
Collapse
Affiliation(s)
- Jordi Martinez-Quintanilla
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Derek He
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Wakimoto
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [3] Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ramon Alemany
- Laboratori de Recerca Traslacional IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Khalid Shah
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [3] Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [4] Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
48
|
Bu L, Shen B, Cheng Z. Fluorescent imaging of cancerous tissues for targeted surgery. Adv Drug Deliv Rev 2014; 76:21-38. [PMID: 25064553 DOI: 10.1016/j.addr.2014.07.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 05/29/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022]
Abstract
To maximize tumor excision and minimize collateral damage are the primary goals of cancer surgery. Emerging molecular imaging techniques have made "image-guided surgery" developed into "molecular imaging-guided surgery", which is termed as "targeted surgery" in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling "targeted surgery" to be a component of "targeted therapy". Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields.
Collapse
|
49
|
Validation of an imageable surgical resection animal model of Glioblastoma (GBM). J Neurosci Methods 2014; 233:99-104. [PMID: 24952322 DOI: 10.1016/j.jneumeth.2014.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/14/2014] [Accepted: 05/06/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and malignant primary brain tumour having a median survival of just 12-18 months following standard therapy protocols. Local recurrence, post-resection and adjuvant therapy occurs in most cases. NEW METHOD U87MG-luc2-bearing GBM xenografts underwent 4.5mm craniectomy and tumour resection using microsurgical techniques. The cranial defect was repaired using a novel modified cranial window technique consisting of a circular microscope coverslip held in place with glue. RESULTS Immediate post-operative bioluminescence imaging (BLI) revealed a gross total resection rate of 75%. At censor point 4 weeks post-resection, Kaplan-Meier survival analysis revealed 100% survival in the surgical group compared to 0% in the non-surgical cohort (p=0.01). No neurological defects or infections in the surgical group were observed. GBM recurrence was reliably imaged using facile non-invasive optical bioluminescence (BLI) imaging with recurrence observed at week 4. COMPARISON WITH EXISTING METHOD(S) For the first time, we have used a novel cranial defect repair method to extend and improve intracranial surgical resection methods for application in translational GBM rodent disease models. Combining BLI and the cranial window technique described herein facilitates non-invasive serial imaging follow-up. CONCLUSION Within the current context we have developed a robust methodology for establishing a clinically relevant imageable GBM surgical resection model that appropriately mimics GBM recurrence post resection in patients.
Collapse
|