1
|
Holland M, Krishnan C, Sotoudeh H, Nabors L, Fiveash J, Riley K, Huang W, Barboriak D, Kim H. Detecting pseudo versus true progression of glioblastoma via accurate quantitative DCE-MRI using point-of-care portable perfusion phantoms: a pilot study. Quant Imaging Med Surg 2025; 15:4321-4332. [PMID: 40384646 PMCID: PMC12084687 DOI: 10.21037/qims-2024-2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/17/2025] [Indexed: 05/20/2025]
Abstract
Background Currently, no definitive method reliably differentiates pseudoprogression from true progression. Misclassification can either halt effective therapy or prolong ineffective treatment. We hypothesized that the diagnostic accuracy could be improved using quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) after error correction via point-of-care portable perfusion phantoms (P4s). This study aimed to develop a P4 for quantitative DCE-MRI of the brain and enhance accuracy in distinguishing between pseudo and true glioblastoma progression. Methods Twelve patients with potential glioblastoma progression after adjuvant chemoradiation therapy were recruited. Each subject underwent two DCE-MRI exams within a week using a single 3T MRI scanner. Quantitative DCE-MRI parameters were retrieved based on the extended Tofts model (ETM), Tofts model (TM), and shutter speed model (SSM) before and after P4-based error correction. The consistency of the pharmacokinetic (PK) parameter measurements was evaluated based on the within-subject coefficient of variation (wCV) before and after P4-based error correction. Glioblastoma progression status was determined using the Response Assessment in Neuro-Oncology (RANO) criteria about five months after DCE-MRI exams. Results Among the participants, five had true progression, and seven had pseudoprogression. The wCVs of the Ktrans measurement based on TM, ETM, and SSM were 22%, 22%, and 24%, respectively, before error correction but improved to 7%, 6%, and 8%, respectively, after correction. Similarly, their accuracies in differentiating between pseudo and true progression were 0.88 regardless of the PK models before error correction. However, those after error correction were improved to 100% in TM (or ETM) and 96% in SSM. Conclusions Following P4-based error correction, a quantitative DCE-MRI parameter, Ktrans , demonstrated 100% accuracy in discriminating between pseudo and true progression when TM or ETM were employed.
Collapse
Affiliation(s)
- Martin Holland
- Department of Interdisciplinary Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chetana Krishnan
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Houman Sotoudeh
- Department of Radiology, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| | - Louis Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristen Riley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Huang
- Radiation Oncology Research Institute, Corewell Health William Beaumont University Hospital, Royal Oak, MI, USA
| | | | - Harrison Kim
- DDepartment of Radiology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Huang J, Ao Y, Mu L, Zhao J, Chen H, Yang L, Yao B, Zhang S, Yang S, Mok GSP, Zhang K, Hu Z, Li Y, Liang D, Liu X, Zheng H, Qiu L, Zhang N. Feasibility of ultrafast DCE-MRI for identifying benign and malignant breast lesions. Comput Med Imaging Graph 2025; 123:102561. [PMID: 40300227 DOI: 10.1016/j.compmedimag.2025.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
OBJECTIVES This study investigates whether the use of ultrafast DCE-MRI immediately after contrast injection is an alternative to conventional DCE-MRI for diagnosing benign and malignant breast lesions. METHODS A total of 86 female patients were included in this prospective study. Each patient underwent both ultrafast DCE-MRI and conventional DCE-MRI before surgery. The Mann-Whitney U test was used to analyze whether there were significant differences in DCE-MRI parameters between benign and malignant breast lesions (p < 0.05) for both conventional and ultrafast methods. The AUC value of the ROC curve was used to assess the diagnostic performance for each parameter and to determine their critical values, sensitivity, and specificity using the maximum Youden index. Delong test and support vector machine (SVM) were also used to evaluate the performance of conventional DCE-MRI and ultrafast DCE-MRI in identifying benign and malignant breast lesions. RESULTS A total of 99 lesion areas (21 benign and 78 malignant lesions) were found in the 86 patients. Conventional DCE-MRI has only two semiquantitative parameters that can identify benign and malignant (Wash-out and SER, p < 0.05), whereas ultrafast DCE-MRI is the one that can identify benign and malignant for all semiquantitative parameters except clearance, and there are more semiquantitative parameters that can be used to identify benign and malignant by ultrafast DCE-MRI than by conventional DCE-MRI. The ultrafast DCE-MRI parameters (AUC=0.8626) had a greater AUC than the conventional DCE-MRI parameters (AUC=0.7552) for distinguishing between benign and malignant breast lesions. CONCLUSIONS Ultrafast DCE-MRI is effective in identifying benign and malignant breast lesions at the early stage of contrast injection; therefore, it is feasible to use Ultrafast DCE-MRI instead of conventional DCE-MRI to diagnose benign and malignant breast tumor lesions. ADVANCES IN KNOWLEDGE We evaluated ultrafast DCE-MRI's quantitative parameters in distinguishing benign from malignant breast lesions. SVM was used to assess the performance of conventional and ultrafast DCE-MRI in breast malignancy discrimination.
Collapse
Affiliation(s)
- Junhui Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Army Engineering University of PLA, Nanjing, China
| | - Yongsheng Ao
- Department of Radiology, the Second People's Hospital of Yibin, Yibin, China; Neuroimaging Big Data Research Center, Clinical Research and Translational Center, the Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, China
| | - Lan Mu
- Chengdu Pidu District People's Hospital, Chengdu, China
| | - Jierui Zhao
- Department of Radiology, the Second People's Hospital of Yibin, Yibin, China; Neuroimaging Big Data Research Center, Clinical Research and Translational Center, the Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, China
| | - Hongliang Chen
- Department of Radiology, the Second People's Hospital of Yibin, Yibin, China; Neuroimaging Big Data Research Center, Clinical Research and Translational Center, the Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, China
| | - Long Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bingyu Yao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | | | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macao; Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macao
| | - Ke Zhang
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; State Key Laboratory of Biomedical Imaging Science and System, Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; State Key Laboratory of Biomedical Imaging Science and System, Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; State Key Laboratory of Biomedical Imaging Science and System, Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; State Key Laboratory of Biomedical Imaging Science and System, Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; State Key Laboratory of Biomedical Imaging Science and System, Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Lihua Qiu
- Department of Radiology, the Second People's Hospital of Yibin, Yibin, China; Neuroimaging Big Data Research Center, Clinical Research and Translational Center, the Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, China.
| | - Na Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; State Key Laboratory of Biomedical Imaging Science and System, Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China.
| |
Collapse
|
3
|
Shen Y, Wu S, Wu Y, Cui C, Li H, Yang S, Liu X, Chen X, Huang C, Wang X. Radiomics model building from multiparametric MRI to predict Ki-67 expression in patients with primary central nervous system lymphomas: a multicenter study. BMC Med Imaging 2025; 25:54. [PMID: 39962371 PMCID: PMC11834475 DOI: 10.1186/s12880-025-01585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVES To examine the correlation of apparent diffusion coefficient (ADC), diffusion weighted imaging (DWI), and T1 contrast enhanced (T1-CE) with Ki-67 in primary central nervous system lymphomas (PCNSL). And to assess the diagnostic performance of MRI radiomics-based machine-learning algorithms in differentiating the high proliferation and low proliferation groups of PCNSL. METHODS 83 patients with PCNSL were included in this retrospective study. ADC, DWI and T1-CE sequences were collected and their correlation with Ki-67 was examined using Spearman's correlation analysis. The Kaplan-Meier method and log-rank test were used to compare the survival rates of the high proliferation and low proliferation groups. The radiomics features were extracted respectively, and the features were screened by machine learning algorithm and statistical method. Radiomics models of seven different sequence permutations were constructed. The area under the receiver operating characteristic curve (ROC AUC) was used to evaluate the predictive performance of all models. DeLong test was utilized to compare the differences of models. RESULTS Relative mean apparent diffusion coefficient (rADCmean) (ρ=-0.354, p = 0.019), relative mean diffusion weighted imaging (rDWImean) (b = 1000) (ρ = 0.273, p = 0.013) and relative mean T1 contrast enhancement (rT1-CEmean) (ρ = 0.385, p = 0.001) was significantly correlated with Ki-67. Interobserver agreements between the two radiologists were almost perfect for all parameters (rADCmean ICC = 0.978, 95%CI 0.966-0.986; rDWImean (b = 1000) ICC = 0.931, 95% CI 0.895-0.955; rT1-CEmean ICC = 0.969, 95% CI 0.953-0.980). The differences in PFS (p = 0.016) and OS (p = 0.014) between the low and high proliferation groups were statistically significant. The best prediction model in our study used a combination of ADC, DWI, and T1-CE achieving the highest AUC of 0.869, while the second ranked model used ADC and DWI, achieving an AUC of 0.828. CONCLUSION rDWImean, rADCmean and rT1-CEmean were correlated with Ki-67. The radiomics model based on MRI sequences combined is promising to distinguish low proliferation PCNSL from high proliferation PCNSL.
Collapse
Affiliation(s)
- Yelong Shen
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
- Department of Radiology, Shandong University, No. 44, West Wenhua Road, Jinan, 250021, Shandong, China
| | - Siyu Wu
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
- Department of Radiology, Shandong University, No. 44, West Wenhua Road, Jinan, 250021, Shandong, China
| | - Yanan Wu
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Chao Cui
- Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, Shandong, China
| | - Haiou Li
- Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shuang Yang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, 250021, Shandong, China
| | - Xuejun Liu
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xingzhi Chen
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co., Ltd, 100080, Beijing, China
| | - Chencui Huang
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co., Ltd, 100080, Beijing, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Radiology, Shandong University, No. 44, West Wenhua Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
de Godoy LL, Rajan A, Banihashemi A, Patel T, Desai A, Bagley S, Brem S, Chawla S, Mohan S. Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model. Brain Sci 2025; 15:146. [PMID: 40002479 PMCID: PMC11852837 DOI: 10.3390/brainsci15020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose: Early treatment response assessments are crucial, and the results are known to better correlate with prognosis and survival outcomes. The present study was conducted to differentiate true progression (TP) from pseudoprogression (PsP) in long-term-surviving glioblastoma patients using our previously established multiparametric MRI-based predictive model, as well as to identify clinical factors impacting survival outcomes in these patients. Methods: We report six patients with glioblastoma that had an overall survival longer than 5 years. When tumor specimens were available from second-stage surgery, histopathological analyses were used to classify between TP (>25% characteristics of malignant neoplasms; n = 2) and PsP (<25% characteristics of malignant neoplasms; n = 2). In the absence of histopathology, modified RANO criteria were assessed to determine the presence of TP (n = 1) or PsP (n = 1). The predictive probabilities (PPs) of tumor progression were measured from contrast-enhancing regions of neoplasms using a multiparametric MRI-based prediction model. Subsequently, these PP values were used to define each lesion as TP (PP ≥ 50%) or PsP (PP < 50%). Additionally, detailed clinical information was collected. Results: Our predictive model correctly identified all patients with TP (n = 3) and PsP (n = 3) cases, reflecting a significant concordance between histopathology/modified RANO criteria and PP values. The overall survival varied from 5.1 to 12.3 years. Five of the six glioblastoma patients were MGMT promoter methylated. All patients were female, with a median age of 56 years. Moreover, all six patients had a good functional status (KPS ≥ 70), underwent near-total/complete resection, and received alternative therapies. Conclusions: Multiparametric MRI can aid in assessing treatment response in long-term-surviving glioblastoma patients.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Archith Rajan
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Amir Banihashemi
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Thara Patel
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (T.P.); (S.B.)
| | - Arati Desai
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Bagley
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Brem
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (T.P.); (S.B.)
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanjeev Chawla
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Suyash Mohan
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| |
Collapse
|
5
|
Amer A, Ansari S, Krayyem A, Kundu S, Khose S, Pokhylevych H, Calle S, Patel CB, Yang Z, Liu HLA, Johnson JM. Dynamic Contrast-enhanced MRI Processing Comparison for Distinguishing True Progression From Pseudoprogression in High-grade Glioma. J Comput Assist Tomogr 2025:00004728-990000000-00410. [PMID: 39876523 DOI: 10.1097/rct.0000000000001716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Treatment-related changes may occur due to radiation and temozolomide in glioblastoma and can mimic tumor progression on conventional MRI. DCE-MRI enables quantification of the extent of blood-brain barrier (BBB) disruption, providing information about areas of suspicious postcontrast T1 enhancement. We compared DCE-MRI processing methods for distinguishing true disease progression from pseudoprogression in high-grade gliomas (HGGs). METHODS We identified 110 patients with HGG treated with surgery and chemoradiation who underwent DCE-MRI to further interrogate areas of new/increasing enhancement. All patients had confirmatory surgery/biopsy with pathology-confirmed progression or pseudoprogression. Scans were performed at 3T and analyzed using nordicICE. The MCA, SSS, and Parker models are three standardized processing methodologies used to create ktrans maps, a parameter that quantifies BBB permeability. Three equal regions of interest were placed at sites of peak contrast enhancement within each lesion. Data from each method was processed for mean and maximum ktrans. We conducted several rounds of analysis and finalized a strategy on penalized support vector machines based on engineered features with bootstrap sampling. RESULTS The Parker method was significant for ktrans maximum in the combined pathology and clinical as well as the pathology-only data sets. MCA and SSS did not perform well under the SVM classifier for pathology only. For clinical follow-up subjects, the Parker method yielded statistically significant results for maximum and mean ktrans. CONCLUSIONS The Parker method was effective in distinguishing PD and PsP for pathology and clinical data sets. MCA and SSS techniques were effective for the clinical data set.
Collapse
Affiliation(s)
| | - Shehbaz Ansari
- Department of Radiology, Rush University Medical Center, Chicago, IL
| | | | | | | | | | | | | | | | - Ho-Ling Anthony Liu
- Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason M Johnson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| |
Collapse
|
6
|
Goulenko V, Madhugiri VS, Bregy A, Recker M, Lipinski L, Fabiano A, Fenstermaker R, Plunkett R, Abad A, Belal A, Alberico R, Qiu J, Prasad D. Histopathological correlation of brain tumor recurrence vs. radiation effect post-radiosurgery as detected by MRI contrast clearance analysis: a validation study. J Neurooncol 2024; 168:547-553. [PMID: 38748050 DOI: 10.1007/s11060-024-04697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE The differentiation between adverse radiation effects (ARE) and tumor recurrence or progression (TRP) is a major decision-making point in the follow-up of patients with brain tumors. The advent of immunotherapy, targeted therapy and radiosurgery has made this distinction difficult to achieve in several clinical situations. Contrast clearance analysis (CCA) is a useful technique that can inform clinical decisions but has so far only been histologically validated in the context of high-grade gliomas. METHODS This is a series of 7 patients, treated between 2018 and 2023, for various brain pathologies including brain metastasis, atypical meningioma, and high-grade glioma. MRI with contrast clearance analysis was used to inform clinical decisions and patients underwent surgical resection as indicated. The histopathology findings were compared with the CCA findings in all cases. RESULTS All seven patients had been treated with gamma knife radiosurgery and were followed up with periodic MR imaging. All patients underwent CCA when the necessity to distinguish tumor recurrence from radiation necrosis arose, and subsequently underwent surgery as indicated. Concordance of CCA findings with histological findings was found in all cases (100%). CONCLUSIONS Based on prior studies on GBM and the surgical findings in our series, delayed contrast extravasation MRI findings correlate well with histopathology across a wide spectrum of brain tumor pathologies. CCA can provide a quick diagnosis and have a direct impact on patients' treatment and outcomes.
Collapse
Affiliation(s)
- Victor Goulenko
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Amade Bregy
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Matthew Recker
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Lindsay Lipinski
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrew Fabiano
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Fenstermaker
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Plunkett
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Ajay Abad
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ahmed Belal
- Department of Diagnostic Imaging, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ronald Alberico
- Department of Diagnostic Imaging, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dheerendra Prasad
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA.
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, 14203, Buffalo, NY, USA.
| |
Collapse
|
7
|
Bhandari A, Gu B, Kashkooli FM, Zhan W. Image-based predictive modelling frameworks for personalised drug delivery in cancer therapy. J Control Release 2024; 370:721-746. [PMID: 38718876 DOI: 10.1016/j.jconrel.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Personalised drug delivery enables a tailored treatment plan for each patient compared to conventional drug delivery, where a generic strategy is commonly employed. It can not only achieve precise treatment to improve effectiveness but also reduce the risk of adverse effects to improve patients' quality of life. Drug delivery involves multiple interconnected physiological and physicochemical processes, which span a wide range of time and length scales. How to consider the impact of individual differences on these processes becomes critical. Multiphysics models are an open system that allows well-controlled studies on the individual and combined effects of influencing factors on drug delivery outcomes while accommodating the patient-specific in vivo environment, which is not economically feasible through experimental means. Extensive modelling frameworks have been developed to reveal the underlying mechanisms of drug delivery and optimise effective delivery plans. This review provides an overview of currently available models, their integration with advanced medical imaging modalities, and code packages for personalised drug delivery. The potential to incorporate new technologies (i.e., machine learning) in this field is also addressed for development.
Collapse
Affiliation(s)
- Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | | | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
8
|
Arevalo-Perez J, Trang A, Yllera-Contreras E, Yildirim O, Saha A, Young R, Lyo J, Peck KK, Holodny AI. Longitudinal Evaluation of DCE-MRI as an Early Indicator of Progression after Standard Therapy in Glioblastoma. Cancers (Basel) 2024; 16:1839. [PMID: 38791921 PMCID: PMC11119591 DOI: 10.3390/cancers16101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Background and Purpose: Distinguishing treatment-induced imaging changes from progressive disease has important implications for avoiding inappropriate discontinuation of a treatment. Our goal in this study is to evaluate the utility of dynamic contrast-enhanced (DCE) perfusion MRI as a biomarker for the early detection of progression. We hypothesize that DCE-MRI may have the potential as an early predictor for the progression of disease in GBM patients when compared to the current standard of conventional MRI. Methods: We identified 26 patients from 2011 to 2023 with newly diagnosed primary glioblastoma by histopathology and gross or subtotal resection of the tumor. Then, we classified them into two groups: patients with progression of disease (POD) confirmed by pathology or change in chemotherapy and patients with stable disease without evidence of progression or need for therapy change. Finally, at least three DCE-MRI scans were performed prior to POD for the progression cohort, and three consecutive DCE-MRI scans were performed for those with stable disease. The volume of interest (VOI) was delineated by a neuroradiologist to measure the maximum values for Ktrans and plasma volume (Vp). A Friedman test was conducted to evaluate the statistical significance of the parameter changes between scans. Results: The mean interval between subsequent scans was 57.94 days, with POD-1 representing the first scan prior to POD and POD-3 representing the third scan. The normalized maximum Vp values for POD-3, POD-2, and POD-1 are 1.40, 1.86, and 3.24, respectively (FS = 18.00, p = 0.0001). It demonstrates that Vp max values are progressively increasing in the three scans prior to POD when measured by routine MRI scans. The normalized maximum Ktrans values for POD-1, POD-2, and POD-3 are 0.51, 0.09, and 0.51, respectively (FS = 1.13, p < 0.57). Conclusions: Our analysis of the longitudinal scans leading up to POD significantly correlated with increasing plasma volume (Vp). A longitudinal study for tumor perfusion change demonstrated that DCE perfusion could be utilized as an early predictor of tumor progression.
Collapse
Affiliation(s)
- Julio Arevalo-Perez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; (A.T.); (E.Y.-C.); (O.Y.); (A.S.); (R.Y.); (K.K.P.); (A.I.H.)
- Department of Radiology, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10065, USA
| | - Andy Trang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; (A.T.); (E.Y.-C.); (O.Y.); (A.S.); (R.Y.); (K.K.P.); (A.I.H.)
| | - Elena Yllera-Contreras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; (A.T.); (E.Y.-C.); (O.Y.); (A.S.); (R.Y.); (K.K.P.); (A.I.H.)
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; (A.T.); (E.Y.-C.); (O.Y.); (A.S.); (R.Y.); (K.K.P.); (A.I.H.)
- Department of Radiology, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10065, USA
| | - Atin Saha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; (A.T.); (E.Y.-C.); (O.Y.); (A.S.); (R.Y.); (K.K.P.); (A.I.H.)
- Department of Radiology, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10065, USA
| | - Robert Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; (A.T.); (E.Y.-C.); (O.Y.); (A.S.); (R.Y.); (K.K.P.); (A.I.H.)
- Department of Radiology, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10065, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - John Lyo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; (A.T.); (E.Y.-C.); (O.Y.); (A.S.); (R.Y.); (K.K.P.); (A.I.H.)
- Department of Radiology, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10065, USA
| | - Kyung K. Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; (A.T.); (E.Y.-C.); (O.Y.); (A.S.); (R.Y.); (K.K.P.); (A.I.H.)
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Andrei I. Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; (A.T.); (E.Y.-C.); (O.Y.); (A.S.); (R.Y.); (K.K.P.); (A.I.H.)
- Department of Radiology, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10065, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, 1300 York Ave, New York, NY 10065, USA
| |
Collapse
|
9
|
Lee J, Chen MM, Liu HL, Ucisik FE, Wintermark M, Kumar VA. MR Perfusion Imaging for Gliomas. Magn Reson Imaging Clin N Am 2024; 32:73-83. [PMID: 38007284 DOI: 10.1016/j.mric.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Accurate diagnosis and treatment evaluation of patients with gliomas is imperative to make clinical decisions. Multiparametric MR perfusion imaging reveals physiologic features of gliomas that can help classify them according to their histologic and molecular features as well as distinguish them from other neoplastic and nonneoplastic entities. It is also helpful in distinguishing tumor recurrence or progression from radiation necrosis, pseudoprogression, and pseudoresponse, which is difficult with conventional MR imaging. This review provides an update on MR perfusion imaging for the diagnosis and treatment monitoring of patients with gliomas following standard-of-care chemoradiation therapy and other treatment regimens such as immunotherapy.
Collapse
Affiliation(s)
- Jina Lee
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Melissa M Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - F Eymen Ucisik
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Zhang L, Fan M, Li L. Deconvolution-Based Pharmacokinetic Analysis to Improve the Prediction of Pathological Information of Breast Cancer. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:13-24. [PMID: 38343210 PMCID: PMC10976965 DOI: 10.1007/s10278-023-00915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 03/02/2024]
Abstract
Pharmacokinetic (PK) parameters, revealing changes in the tumor microenvironment, are related to the pathological information of breast cancer. Tracer kinetic models (e.g., Tofts-Kety model) with a nonlinear least square solver are commonly used to estimate PK parameters. However, the method is sensitive to noise in images. To relieve the effects of noise, a deconvolution (DEC) method, which was validated on synthetic concentration-time series, was proposed to accurately calculate PK parameters from breast dynamic contrast-enhanced magnetic resonance imaging. A time-to-peak-based tumor partitioning method was used to divide the whole tumor into three tumor subregions with different kinetic patterns. Radiomic features were calculated from the tumor subregion and whole tumor-based PK parameter maps. The optimal features determined by the fivefold cross-validation method were used to build random forest classifiers to predict molecular subtypes, Ki-67, and tumor grade. The diagnostic performance evaluated by the area under the receiver operating characteristic curve (AUC) was compared between the subregion and whole tumor-based PK parameters. The results showed that the DEC method obtained more accurate PK parameters than the Tofts method. Moreover, the results showed that the subregion-based Ktrans (best AUCs = 0.8319, 0.7032, 0.7132, 0.7490, 0.8074, and 0.6950) achieved a better diagnostic performance than the whole tumor-based Ktrans (AUCs = 0.8222, 0.6970, 0.6511, 0.7109, 0.7620, and 0.5894) for molecular subtypes, Ki-67, and tumor grade. These findings indicate that DEC-based Ktrans in the subregion has the potential to accurately predict molecular subtypes, Ki-67, and tumor grade.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
- School of Computer and Information, Anqing Normal University, Anqing, 246133, China
| | - Ming Fan
- Institute of Intelligent Biomedicine, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Lihua Li
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China.
- Institute of Intelligent Biomedicine, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
11
|
Yadav VK, Mohan S, Agarwal S, de Godoy LL, Rajan A, Nasrallah MP, Bagley SJ, Brem S, Loevner LA, Poptani H, Singh A, Chawla S. Distinction of pseudoprogression from true progression in glioblastomas using machine learning based on multiparametric magnetic resonance imaging and O 6-methylguanine-methyltransferase promoter methylation status. Neurooncol Adv 2024; 6:vdae159. [PMID: 39502470 PMCID: PMC11535496 DOI: 10.1093/noajnl/vdae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Background It is imperative to differentiate true progression (TP) from pseudoprogression (PsP) in glioblastomas (GBMs). We sought to investigate the potential of physiologically sensitive quantitative parameters derived from diffusion and perfusion magnetic resonance imaging (MRI), and molecular signature combined with machine learning in distinguishing TP from PsP in GBMs in the present study. Methods GBM patients (n = 93) exhibiting contrast-enhancing lesions within 6 months after completion of standard treatment underwent 3T MRI. Final data analyses were performed on 75 patients as O6-methylguanine-DNA-methyltransferase (MGMT) status was available only from these patients. Subsequently, patients were classified as TP (n = 55) or PsP (n = 20) based on histological features or mRANO criteria. Quantitative parameters were computed from contrast-enhancing regions of neoplasms. PsP datasets were artificially augmented to achieve balanced class distribution in 2 groups (TP and PsP). A random forest algorithm was applied to select the optimized features. The data were randomly split into training and testing subsets in an 8:2 ratio. To develop a robust prediction model in distinguishing TP from PsP, several machine-learning classifiers were employed. The cross-validation and receiver operating characteristic (ROC) curve analyses were performed to determine the diagnostic performance. Results The quadratic support vector machine was found to be the best classifier in distinguishing TP from PsP with a training accuracy of 91%, cross-validation accuracy of 86%, and testing accuracy of 85%. Additionally, ROC analysis revealed an accuracy of 85%, sensitivity of 70%, and specificity of 100%. Conclusions Machine learning using quantitative multiparametric MRI may be a promising approach to distinguishing TP from PsP in GBMs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sumeet Agarwal
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
- Department of Electical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Archith Rajan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Department of Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen J Bagley
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie A Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Department of Molecular and Clinical Cancer Medicine, Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Kopřivová T, Keřkovský M, Jůza T, Vybíhal V, Rohan T, Kozubek M, Dostál M. Possibilities of Using Multi-b-value Diffusion Magnetic Resonance Imaging for Classification of Brain Lesions. Acad Radiol 2024; 31:261-272. [PMID: 37932166 DOI: 10.1016/j.acra.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
In contrast to conventional diffusion magnetic resonance imaging (MRI), multi-b-value diffusion MRI methods are able to separate the signal from free water, pseudo-diffusion, and non-Gaussian components of water molecule diffusion. These approaches can then be utilised in so-called intravoxel incoherent motion imaging and diffusion kurtosis imaging. Various parameters provided by these methods can describe additional characteristics of the tissue microstructure and potentially help in the diagnosis and classification of various pathological processes. In this review, we present the basic principles and methods of analysing multi-b-value diffusion imaging data and specifically focus on the known possibilities for its use in the diagnosis of brain lesions. We also suggest possible directions for further research.
Collapse
Affiliation(s)
- Tereza Kopřivová
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic (T.K., M.K., T.J., T.R., M.D.)
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic (T.K., M.K., T.J., T.R., M.D.).
| | - Tomáš Jůza
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic (T.K., M.K., T.J., T.R., M.D.); Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic (T.J., M.D.)
| | - Václav Vybíhal
- Department of Neurosurgery, Faculty of Medicine, Masaryk University Brno and University Hospital Brno, 625 00, Brno, Czech Republic (V.V.)
| | - Tomáš Rohan
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic (T.K., M.K., T.J., T.R., M.D.)
| | - Michal Kozubek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Šumavská, Brno, Czech Republic (M.K.)
| | - Marek Dostál
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic (T.K., M.K., T.J., T.R., M.D.); Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic (T.J., M.D.)
| |
Collapse
|
13
|
Dobeson CB, Birkbeck M, Bhatnagar P, Hall J, Pearson R, West S, English P, Butteriss D, Perthen J, Lewis J. Perfusion MRI in the evaluation of brain metastases: current practice review and rationale for study of baseline MR perfusion imaging prior to stereotactic radiosurgery (STARBEAM-X). Br J Radiol 2023; 96:20220462. [PMID: 37660364 PMCID: PMC10646666 DOI: 10.1259/bjr.20220462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Stereotactic radiosurgery is an established focal treatment for brain metastases with high local control rates. An important side-effect of stereotactic radiosurgery is the development of radionecrosis. On conventional MR imaging, radionecrosis and tumour progression often have similar appearances, but have contrasting management approaches. Perfusion MR imaging is often used in the post-treatment setting in order to help distinguish between the two, but image interpretation can be fraught with challenges.Perfusion MR plays an established role in the baseline and post-treatment evaluation of primary brain tumours and a number of studies have concentrated on the value of perfusion imaging in brain metastases. Of the parameters generated, relative cerebral blood volume is the most widely used variable in terms of its clinical value in differentiating between radionecrosis and tumour progression. Although it has been suggested that the relative cerebral blood volume tends to be elevated in active metastatic disease following treatment with radiosurgery, but not with treatment-related changes, the literature available on interpretation of the ratios provided in the context of defining tumour progression is not consistent.This article aims to provide an overview of the role perfusion MRI plays in the assessment of brain metastases and introduces the rationale for the STARBEAM-X study (Study of assessment of radionecrosis in brain metastases using MR perfusion extra imaging), which will prospectively evaluate baseline perfusion imaging in brain metastases. We hope this will allow insight into the vascular appearance of metastases from different primary sites, and aid in the interpretation of post-treatment perfusion imaging.
Collapse
Affiliation(s)
| | - Matthew Birkbeck
- Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle upon Tyne, UK
| | - Priya Bhatnagar
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Julie Hall
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Rachel Pearson
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Serena West
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Philip English
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - David Butteriss
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanna Perthen
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanne Lewis
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Sohn B, Park K, Ahn SS, Park YW, Choi SH, Kang SG, Kim SH, Chang JH, Lee SK. Dynamic contrast-enhanced MRI radiomics model predicts epidermal growth factor receptor amplification in glioblastoma, IDH-wildtype. J Neurooncol 2023; 164:341-351. [PMID: 37689596 DOI: 10.1007/s11060-023-04435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE To develop and validate a dynamic contrast-enhanced (DCE) MRI-based radiomics model to predict epidermal growth factor receptor (EGFR) amplification in patients with glioblastoma, isocitrate dehydrogenase (IDH) wildtype. METHODS Patients with pathologically confirmed glioblastoma, IDH wildtype, from January 2015 to December 2020, with an EGFR amplification status, were included. Patients who did not undergo DCE or conventional brain MRI were excluded. Patients were categorized into training and test sets by a ratio of 7:3. DCE MRI data were used to generate volume transfer constant (Ktrans) and extracellular volume fraction (Ve) maps. Ktrans, Ve, and conventional MRI were then used to extract the radiomics features, from which the prediction models for EGFR amplification status were developed and validated. RESULTS A total of 190 patients (mean age, 59.9; male, 55.3%), divided into training (n = 133) and test (n = 57) sets, were enrolled. In the test set, the radiomics model using the Ktrans map exhibited the highest area under the receiver operating characteristic curve (AUROC), 0.80 (95% confidence interval [CI], 0.65-0.95). The AUROC for the Ve map-based and conventional MRI-based models were 0.74 (95% CI, 0.58-0.90) and 0.76 (95% CI, 0.61-0.91). CONCLUSION The DCE MRI-based radiomics model that predicts EGFR amplification in glioblastoma, IDH wildtype, was developed and validated. The MRI-based radiomics model using the Ktrans map has higher AUROC than conventional MRI.
Collapse
Affiliation(s)
- Beomseok Sohn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kisung Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Saha A, Peck KK, Karimi S, Lis E, Holodny AI. Dynamic Contrast-Enhanced MR Perfusion: Role in Diagnosis and Treatment Follow-Up in Patients with Vertebral Body Tumors. Neuroimaging Clin N Am 2023; 33:477-486. [PMID: 37356863 DOI: 10.1016/j.nic.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Recent therapeutic advances have led to increased survival times for patients with metastatic disease. Key to survival is early diagnosis and subsequent treatment as well as early detection of treatment failure allowing for therapy modifications. Conventional MR imaging techniques of the spine can be at times suboptimal for identifying viable tumor, as structural changes and imaging characteristics may not differ pretreatment and posttreatment. Advanced imaging techniques such as DCE-MRI can allow earlier and more accurate noninvasive assessment of viable disease by characterizing physiologic changes and tumor microvasculature.
Collapse
Affiliation(s)
- Atin Saha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| | - Kyung K Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sasan Karimi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Eric Lis
- Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. https://twitter.com/AndreiHolodny
| |
Collapse
|
16
|
Martucci M, Russo R, Giordano C, Schiarelli C, D’Apolito G, Tuzza L, Lisi F, Ferrara G, Schimperna F, Vassalli S, Calandrelli R, Gaudino S. Advanced Magnetic Resonance Imaging in the Evaluation of Treated Glioblastoma: A Pictorial Essay. Cancers (Basel) 2023; 15:3790. [PMID: 37568606 PMCID: PMC10417432 DOI: 10.3390/cancers15153790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
MRI plays a key role in the evaluation of post-treatment changes, both in the immediate post-operative period and during follow-up. There are many different treatment's lines and many different neuroradiological findings according to the treatment chosen and the clinical timepoint at which MRI is performed. Structural MRI is often insufficient to correctly interpret and define treatment-related changes. For that, advanced MRI modalities, including perfusion and permeability imaging, diffusion tensor imaging, and magnetic resonance spectroscopy, are increasingly utilized in clinical practice to characterize treatment effects more comprehensively. This article aims to provide an overview of the role of advanced MRI modalities in the evaluation of treated glioblastomas. For a didactic purpose, we choose to divide the treatment history in three main timepoints: post-surgery, during Stupp (first-line treatment) and at recurrence (second-line treatment). For each, a brief introduction, a temporal subdivision (when useful) or a specific drug-related paragraph were provided. Finally, the current trends and application of radiomics and artificial intelligence (AI) in the evaluation of treated GB have been outlined.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Chiara Schiarelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Laura Tuzza
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesca Lisi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Giuseppe Ferrara
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesco Schimperna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Stefania Vassalli
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Rosalinda Calandrelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| |
Collapse
|
17
|
de Godoy LL, Mohan S, Wang S, Nasrallah MP, Sakai Y, O'Rourke DM, Bagley S, Desai A, Loevner LA, Poptani H, Chawla S. Validation of multiparametric MRI based prediction model in identification of pseudoprogression in glioblastomas. J Transl Med 2023; 21:287. [PMID: 37118754 PMCID: PMC10142504 DOI: 10.1186/s12967-023-03941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/30/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Accurate differentiation of pseudoprogression (PsP) from tumor progression (TP) in glioblastomas (GBMs) is essential for appropriate clinical management and prognostication of these patients. In the present study, we sought to validate the findings of our previously developed multiparametric MRI model in a new cohort of GBM patients treated with standard therapy in identifying PsP cases. METHODS Fifty-six GBM patients demonstrating enhancing lesions within 6 months after completion of concurrent chemo-radiotherapy (CCRT) underwent anatomical imaging, diffusion and perfusion MRI on a 3 T magnet. Subsequently, patients were classified as TP + mixed tumor (n = 37) and PsP (n = 19). When tumor specimens were available from repeat surgery, histopathologic findings were used to identify TP + mixed tumor (> 25% malignant features; n = 34) or PsP (< 25% malignant features; n = 16). In case of non-availability of tumor specimens, ≥ 2 consecutive conventional MRIs using mRANO criteria were used to determine TP + mixed tumor (n = 3) or PsP (n = 3). The multiparametric MRI-based prediction model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI derived parameters from contrast enhancing regions. In the next step, PP values were used to characterize each lesion as PsP or TP+ mixed tumor. The lesions were considered as PsP if the PP value was < 50% and TP+ mixed tumor if the PP value was ≥ 50%. Pearson test was used to determine the concordance correlation coefficient between PP values and histopathology/mRANO criteria. The area under ROC curve (AUC) was used as a quantitative measure for assessing the discriminatory accuracy of the prediction model in identifying PsP and TP+ mixed tumor. RESULTS Multiparametric MRI model correctly predicted PsP in 95% (18/19) and TP+ mixed tumor in 57% of cases (21/37) with an overall concordance rate of 70% (39/56) with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.56; p < 0.001). The ROC analyses revealed an accuracy of 75.7% in distinguishing PsP from TP+ mixed tumor. Leave-one-out cross-validation test revealed that 73.2% of cases were correctly classified as PsP and TP + mixed tumor. CONCLUSIONS Our multiparametric MRI based prediction model may be helpful in identifying PsP in GBM patients.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sumei Wang
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yu Sakai
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Bagley
- Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Arati Desai
- Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Laurie A Loevner
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Sanjeev Chawla
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
McKenney AS, Weg E, Bale TA, Wild AT, Um H, Fox MJ, Lin A, Yang JT, Yao P, Birger ML, Tixier F, Sellitti M, Moss NS, Young RJ, Veeraraghavan H. Radiomic Analysis to Predict Histopathologically Confirmed Pseudoprogression in Glioblastoma Patients. Adv Radiat Oncol 2023; 8:100916. [PMID: 36711062 PMCID: PMC9873493 DOI: 10.1016/j.adro.2022.100916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Purpose Pseudoprogression mimicking recurrent glioblastoma remains a diagnostic challenge that may adversely confound or delay appropriate treatment or clinical trial enrollment. We sought to build a radiomic classifier to predict pseudoprogression in patients with primary isocitrate dehydrogenase wild type glioblastoma. Methods and Materials We retrospectively examined a training cohort of 74 patients with isocitrate dehydrogenase wild type glioblastomas with brain magnetic resonance imaging including dynamic contrast enhanced T1 perfusion before resection of an enhancing lesion indeterminate for recurrent tumor or pseudoprogression. A recursive feature elimination random forest classifier was built using nested cross-validation without and with O6-methylguanine-DNA methyltransferase status to predict pseudoprogression. Results A classifier constructed with cross-validation on the training cohort achieved an area under the receiver operating curve of 81% for predicting pseudoprogression. This was further improved to 89% with the addition of O6-methylguanine-DNA methyltransferase status into the classifier. Conclusions Our results suggest that radiomic analysis of contrast T1-weighted images and magnetic resonance imaging perfusion images can assist the prompt diagnosis of pseudoprogression. Validation on external and independent data sets is necessary to verify these advanced analyses, which can be performed on routinely acquired clinical images and may help inform clinical treatment decisions.
Collapse
Affiliation(s)
- Anna Sophia McKenney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | - Emily Weg
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Tejus A. Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aaron T. Wild
- Department Southeast Radiation Oncology, Levine Cancer Institute, Charlotte, North Carolina
| | - Hyemin Um
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J. Fox
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Lin
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan T. Yang
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Yao
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maxwell L. Birger
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Florent Tixier
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew Sellitti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson S. Moss
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J. Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Corresponding author: Robert J. Young, MD
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
19
|
Wang S, Feng Y, Chen L, Yu J, Van Ongeval C, Bormans G, Li Y, Ni Y. Towards updated understanding of brain metastasis. Am J Cancer Res 2022; 12:4290-4311. [PMID: 36225632 PMCID: PMC9548021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/06/2022] [Indexed: 06/16/2023] Open
Abstract
Brain metastasis (BM) is a common complication in cancer patients with advanced disease and attributes to treatment failure and final mortality. Currently there are several therapeutic options available; however these are only suitable for limited subpopulation: surgical resection or radiosurgery for cases with a limited number of lesions, targeted therapies for approximately 18% of patients, and immune checkpoint inhibitors with a response rate of 20-30%. Thus, there is a pressing need for development of novel diagnostic and therapeutic options. This overview article aims to provide research advances in disease model, targeted therapy, blood brain barrier (BBB) opening strategies, imaging and its incorporation with artificial intelligence, external radiotherapy, and internal targeted radionuclide theragnostics. Finally, a distinct type of BM, leptomeningeal metastasis is also covered.
Collapse
Affiliation(s)
- Shuncong Wang
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Yuanbo Feng
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Lei Chen
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Jie Yu
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Chantal Van Ongeval
- Department of Radiology, University Hospitals Leuven, KU LeuvenHerestraat 49, Leuven 3000, Belgium
| | - Guy Bormans
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health SciencesShanghai 201318, China
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| |
Collapse
|
20
|
Qin D, Yang G, Jing H, Tan Y, Zhao B, Zhang H. Tumor Progression and Treatment-Related Changes: Radiological Diagnosis Challenges for the Evaluation of Post Treated Glioma. Cancers (Basel) 2022; 14:cancers14153771. [PMID: 35954435 PMCID: PMC9367286 DOI: 10.3390/cancers14153771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Glioma is the most common primary malignant tumor of the adult central nervous system. Despite aggressive multimodal treatment, its prognosis remains poor. During follow-up, it remains challenging to distinguish treatment-related changes from tumor progression in treated patients with gliomas due to both share clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions). The early effective identification of tumor progression and treatment-related changes is of great significance for the prognosis and treatment of gliomas. We believe that advanced neuroimaging techniques can provide additional information for distinguishing both at an early stage. In this article, we focus on the research of magnetic resonance imaging technology and artificial intelligence in tumor progression and treatment-related changes. Finally, it provides new ideas and insights for clinical diagnosis. Abstract As the most common neuro-epithelial tumors of the central nervous system in adults, gliomas are highly malignant and easy to recurrence, with a dismal prognosis. Imaging studies are indispensable for tracking tumor progression (TP) or treatment-related changes (TRCs). During follow-up, distinguishing TRCs from TP in treated patients with gliomas remains challenging as both share similar clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions) and fulfill criteria for progression. Thus, the early identification of TP and TRCs is of great significance for determining the prognosis and treatment. Histopathological biopsy is currently the gold standard for TP and TRC diagnosis. However, the invasive nature of this technique limits its clinical application. Advanced imaging methods (e.g., diffusion magnetic resonance imaging (MRI), perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission tomography (PET), amide proton transfer (APT) and artificial intelligence (AI)) provide a non-invasive and feasible technical means for identifying of TP and TRCs at an early stage, which have recently become research hotspots. This paper reviews the current research on using the abovementioned advanced imaging methods to identify TP and TRCs of gliomas. First, the review focuses on the pathological changes of the two entities to establish a theoretical basis for imaging identification. Then, it elaborates on the application of different imaging techniques and AI in identifying the two entities. Finally, the current challenges and future prospects of these techniques and methods are discussed.
Collapse
Affiliation(s)
- Danlei Qin
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
| | - Guoqiang Yang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Hui Jing
- Department of MRI, The Six Hospital, Shanxi Medical University, Taiyuan 030008, China;
| | - Yan Tan
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Bin Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|
21
|
Taylor C, Ekert JO, Sefcikova V, Fersht N, Samandouras G. Discriminators of pseudoprogression and true progression in high-grade gliomas: A systematic review and meta-analysis. Sci Rep 2022; 12:13258. [PMID: 35918373 PMCID: PMC9345984 DOI: 10.1038/s41598-022-16726-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
High-grade gliomas remain the most common primary brain tumour with limited treatments options and early recurrence rates following adjuvant treatments. However, differentiating true tumour progression (TTP) from treatment-related effects or pseudoprogression (PsP), may critically influence subsequent management options. Structural MRI is routinely employed to evaluate treatment responses, but misdiagnosis of TTP or PsP may lead to continuation of ineffective or premature cessation of effective treatments, respectively. A systematic review and meta-analysis were conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses method. Embase, MEDLINE, Web of Science and Google Scholar were searched for methods applied to differentiate PsP and TTP, and studies were selected using pre-specified eligibility criteria. The sensitivity and specificity of included studies were summarised. Three of the identified methods were compared in a separate subgroup meta-analysis. Thirty studies assessing seven distinct neuroimaging methods in 1372 patients were included in the systematic review. The highest performing methods in the subgroup analysis were DWI (AUC = 0.93 [0.91-0.95]) and DSC-MRI (AUC = 0.93 [0.90-0.95]), compared to DCE-MRI (AUC = 0.90 [0.87-0.93]). 18F-fluoroethyltyrosine PET (18F-FET PET) and amide proton transfer-weighted MRI (APTw-MRI) also showed high diagnostic accuracy, but results were based on few low-powered studies. Both DWI and DSC-MRI performed with high sensitivity and specificity for differentiating PsP from TTP. Considering the technical parameters and feasibility of each identified method, the authors suggested that, at present, DSC-MRI technique holds the most clinical potential.
Collapse
Affiliation(s)
- Chris Taylor
- UCL Queen Square Institute of Neurology, University College London, Gower St., Bloomsbury, Queen Square, London, WC1E 6BT, UK.
| | - Justyna O Ekert
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, UK
| | - Viktoria Sefcikova
- UCL Queen Square Institute of Neurology, University College London, Gower St., Bloomsbury, Queen Square, London, WC1E 6BT, UK
| | - Naomi Fersht
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - George Samandouras
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, UK
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
22
|
The Value of Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in the Differentiation of Pseudoprogression and Recurrence of Intracranial Gliomas. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5680522. [PMID: 35935318 PMCID: PMC9337951 DOI: 10.1155/2022/5680522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Objective The objective of this study was to determine the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing postoperative changes in intracranial gliomas. Method A total of fifty-one patients who had new enhanced lesions after surgical resection followed by standard radiotherapy and chemotherapy were collected retrospectively from October 2014 to June 2021. The patients were divided into a pseudoprogression group (15 cases) and a recurrence group (36 cases) according to the pathological results of the second operation or a follow-up of more than six months. The follow-up data of all patients were complete, and DCE-MRI was performed. The images were processed to obtain the quantitative parameters Ktrans, Ve, and Kep and the semiquantitative parameter iAUC, which were analysed with relevant statistical software. Results First, the difference in Ktrans and iAUC values between the two groups was statistically significant (P < 0.05), and the difference in Ve and Kep values was not statistically significant (P > 0.05). Second, by comparing the area under the curve, threshold, sensitivity and specificity of Ktrans, and iAUC, it was found that the iAUC threshold value was slightly higher than that of Ktrans, and the specificity of Ktrans was equal to that of iAUC, while the area under the curve and sensitivity of Ktrans were higher than those of iAUC. Third, Ktrans and iAUC had high accuracy in diagnosing recurrence and pseudoprogression, and Ktrans had higher accuracy than iAUC. Conclusion In this study, DCE-MRI has a certain diagnostic value in the early differentiation of recurrence and pseudoprogression, offering a new method for the diagnosis and assessment of gliomas after surgery.
Collapse
|
23
|
Chawla S, Bukhari S, Afridi OM, Wang S, Yadav SK, Akbari H, Verma G, Nath K, Haris M, Bagley S, Davatzikos C, Loevner LA, Mohan S. Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma. NMR IN BIOMEDICINE 2022; 35:e4719. [PMID: 35233862 PMCID: PMC9203929 DOI: 10.1002/nbm.4719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 05/15/2023]
Abstract
Pseudoprogression (PsP) refers to treatment-related clinico-radiologic changes mimicking true progression (TP) that occurs in patients with glioblastoma (GBM), predominantly within the first 6 months after the completion of surgery and concurrent chemoradiation therapy (CCRT) with temozolomide. Accurate differentiation of TP from PsP is essential for making informed decisions on appropriate therapeutic intervention as well as for prognostication of these patients. Conventional neuroimaging findings are often equivocal in distinguishing between TP and PsP and present a considerable diagnostic dilemma to oncologists and radiologists. These challenges have emphasized the need for developing alternative imaging techniques that may aid in the accurate diagnosis of TP and PsP. In this review, we encapsulate the current state of knowledge in the clinical applications of commonly used metabolic and physiologic magnetic resonance (MR) imaging techniques such as diffusion and perfusion imaging and proton spectroscopy in distinguishing TP from PsP. We also showcase the potential of promising imaging techniques, such as amide proton transfer and amino acid-based positron emission tomography, in providing useful information about the treatment response. Additionally, we highlight the role of "radiomics", which is an emerging field of radiology that has the potential to change the way in which advanced MR techniques are utilized in assessing treatment response in GBM patients. Finally, we present our institutional experiences and discuss future perspectives on the role of multiparametric MR imaging in identifying PsP in GBM patients treated with "standard-of-care" CCRT as well as novel/targeted therapies.
Collapse
Affiliation(s)
- Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sultan Bukhari
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Omar M. Afridi
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Sumei Wang
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Santosh K. Yadav
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Hamed Akbari
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohammad Haris
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Stephen Bagley
- Department of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie A. Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Li AY, Iv M. Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging. FRONTIERS IN RADIOLOGY 2022; 2:883293. [PMID: 37492665 PMCID: PMC10365131 DOI: 10.3389/fradi.2022.883293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 07/27/2023]
Abstract
Despite decades of advancement in the diagnosis and therapy of gliomas, the most malignant primary brain tumors, the overall survival rate is still dismal, and their post-treatment imaging appearance remains very challenging to interpret. Since the limitations of conventional magnetic resonance imaging (MRI) in the distinction between recurrence and treatment effect have been recognized, a variety of advanced MR and functional imaging techniques including diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), MR spectroscopy (MRS), as well as a variety of radiotracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been investigated for this indication along with voxel-based and more quantitative analytical methods in recent years. Machine learning and radiomics approaches in recent years have shown promise in distinguishing between recurrence and treatment effect as well as improving prognostication in a malignancy with a very short life expectancy. This review provides a comprehensive overview of the conventional and advanced imaging techniques with the potential to differentiate recurrence from treatment effect and includes updates in the state-of-the-art in advanced imaging with a brief overview of emerging experimental techniques. A series of representative cases are provided to illustrate the synthesis of conventional and advanced imaging with the clinical context which informs the radiologic evaluation of gliomas in the post-treatment setting.
Collapse
Affiliation(s)
- Anna Y. Li
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Iv
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
25
|
Seo M, Ahn KJ, Choi Y, Shin NY, Jang J, Kim BS. Volumetric Measurement of Relative CBV Using T1-Perfusion-Weighted MRI with High Temporal Resolution Compared with Traditional T2*-Perfusion-Weighted MRI in Postoperative Patients with High-Grade Gliomas. AJNR Am J Neuroradiol 2022; 43:864-871. [PMID: 35618428 DOI: 10.3174/ajnr.a7527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/08/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE T1-PWI with high temporal resolution may provide a reliable relative CBV value as a valid alternative to T2*-PWI under increased susceptibility. The purpose of this study was to assess the technical and clinical performance of T1-relative CBV in patients with postoperative high-grade gliomas. MATERIALS AND METHODS Forty-five MRIs of 34 patients with proved high-grade gliomas were included. In all MRIs, T1- and T2*-PWIs were both acquired and processed semiautomatically to generate relative CBV maps using a released commercial software. Lesion masks were overlaid on the relative CBV maps, followed by a histogram of the whole VOI. The intraclass correlation coefficient and Bland-Altman plots were used for quantitative and qualitative comparisons. Signal loss from both methods was compared using the Wilcoxon signed-rank test of zero voxel percentage. The MRIs were divided into a progression group (n = 20) and a nonprogression group (n = 14) for receiver operating characteristic curve analysis. RESULTS Fair intertechnique consistency was observed between the 90th percentiles of the T1- and T2*-relative CBV values (intraclass correlation coefficient = 0.558, P < .001). T2*-PWI revealed a significantly higher percentage of near-zero voxels than T1-PWI (17.7% versus 3.1%, P < .001). There was no statistically significant difference between the area under the curve of T1- and T2*-relative CBV (0.811 versus 0.793, P = .835). T1-relative CBV showed 100% sensitivity and 57.1% specificity for the detection of progressive lesions. CONCLUSIONS T1-relative CBV demonstrated exquisite diagnostic performance for detecting progressive lesions in postoperative patients with high-grade gliomas, suggesting the potential role of T1-PWI as a valid alternative to the traditional T2*-PWI.
Collapse
Affiliation(s)
- M Seo
- From the Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - K-J Ahn
- From the Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Y Choi
- From the Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - N-Y Shin
- From the Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - J Jang
- From the Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - B-S Kim
- From the Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
26
|
Johnson DR, Glenn CA, Javan R, Olson JJ. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of imaging in the management of progressive glioblastoma in adults. J Neurooncol 2022; 158:139-165. [PMID: 34694565 DOI: 10.1007/s11060-021-03853-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022]
Abstract
TARGET POPULATION These recommendations apply to adults with glioblastoma who have been previously treated with first-line radiation or chemoradiotherapy and who are suspected of experiencing tumor progression. QUESTION In patients with previously treated glioblastoma, is standard contrast-enhanced magnetic resonance imaging including diffusion weighted imaging useful for diagnosing tumor progression and differentiating progression from treatment-related changes? LEVEL II Magnetic resonance imaging with and without gadolinium enhancement including diffusion weighted imaging is recommended as the imaging surveillance method to detect the progression of previously diagnosed glioblastoma. QUESTION In patients with previously treated glioblastoma, does magnetic resonance spectroscopy add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL II Magnetic resonance spectroscopy is recommended as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does magnetic resonance perfusion add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III Magnetic resonance perfusion is suggested as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does the addition of single-photon emission computed tomography (SPECT) provide additional useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III Single-photon emission computed tomography imaging is suggested as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does 18F-fluorodeoxyglucose positron emission tomography add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III The routine use of 18F-fluorodeoxyglucose positron emission tomography to identify progression of glioblastoma is not recommended. QUESTION In patients with previously treated glioblastoma, does positron emission tomography with amino acid agents add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III It is suggested that amino acid positron emission tomography be considered to assist in the differentiation of progressive glioblastoma from treatment related changes.
Collapse
Affiliation(s)
- Derek Richard Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Chad Allan Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ramin Javan
- Department of Neuroradiology, George Washington University Hospital, Washington, DC, USA
| | - Jeffrey James Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Bernstock JD, Gary SE, Klinger N, Valdes PA, Ibn Essayed W, Olsen HE, Chagoya G, Elsayed G, Yamashita D, Schuss P, Gessler FA, Peruzzi PP, Bag A, Friedman GK. Standard clinical approaches and emerging modalities for glioblastoma imaging. Neurooncol Adv 2022; 4:vdac080. [PMID: 35821676 PMCID: PMC9268747 DOI: 10.1093/noajnl/vdac080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary adult intracranial malignancy and carries a dismal prognosis despite an aggressive multimodal treatment regimen that consists of surgical resection, radiation, and adjuvant chemotherapy. Radiographic evaluation, largely informed by magnetic resonance imaging (MRI), is a critical component of initial diagnosis, surgical planning, and post-treatment monitoring. However, conventional MRI does not provide information regarding tumor microvasculature, necrosis, or neoangiogenesis. In addition, traditional MRI imaging can be further confounded by treatment-related effects such as pseudoprogression, radiation necrosis, and/or pseudoresponse(s) that preclude clinicians from making fully informed decisions when structuring a therapeutic approach. A myriad of novel imaging modalities have been developed to address these deficits. Herein, we provide a clinically oriented review of standard techniques for imaging GBM and highlight emerging technologies utilized in disease characterization and therapeutic development.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Sam E Gary
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Neil Klinger
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Pablo A Valdes
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Hannah E Olsen
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Daisuke Yamashita
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Patrick Schuss
- Department of Neurosurgery, Unfallkrankenhaus Berlin , Berlin, Germany
| | | | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Asim Bag
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital , Memphis, TN USA
| | - Gregory K Friedman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham , Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham , AL, USA
| |
Collapse
|
28
|
Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, Cellina M, Chianca V, Cozzi D, Danti G, De Muzio F, Di Meglio L, Gentili F, Giacobbe G, Grazzini G, Grazzini I, Guerriero P, Messina C, Micci G, Palumbo P, Rocco MP, Grassi R, Miele V, Barile A. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol 2022; 40:341-366. [PMID: 34951000 DOI: 10.1007/s11604-021-01223-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Dynamic contrast-enhanced (DCE) imaging is a non-invasive technique used for the evaluation of tissue vascularity features through imaging series acquisition after contrast medium administration. Over the years, the study technique and protocols have evolved, seeing a growing application of this method across different imaging modalities for the study of almost all body districts. The main and most consolidated current applications concern MRI imaging for the study of tumors, but an increasing number of studies are evaluating the use of this technique also for inflammatory pathologies and functional studies. Furthermore, the recent advent of artificial intelligence techniques is opening up a vast scenario for the analysis of quantitative information deriving from DCE. The purpose of this article is to provide a comprehensive update on the techniques, protocols, and clinical applications - both established and emerging - of DCE in whole-body imaging.
Collapse
Affiliation(s)
- Domenico Albano
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Andrea Agostini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Clinical, Special and Dental Sciences, Department of Radiology, University Politecnica delle Marche, University Hospital "Ospedali Riuniti Umberto I - G.M. Lancisi - G. Salesi", Ancona, Italy
| | - Salvatore Alessio Angileri
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Benenati
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Oncologia ed Ematologia, RadioterapiaRome, Italy
| | - Giulia Bicchierai
- Diagnostic Senology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Michaela Cellina
- Department of Radiology, ASST Fatebenefratelli Sacco, Ospedale Fatebenefratelli, Milan, Italy
| | - Vito Chianca
- Ospedale Evangelico Betania, Naples, Italy
- Clinica Di Radiologia, Istituto Imaging Della Svizzera Italiana - Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Letizia Di Meglio
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Francesco Gentili
- Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giuliana Giacobbe
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Pasquale Guerriero
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | - Giuseppe Micci
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Abruzzo Health Unit 1, Department of diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, L'Aquila, Italy
| | - Maria Paola Rocco
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
29
|
Follow-Up of High-Grade Glial Tumor; Differentiation of Posttreatment Enhancement and Tumoral Enhancement by DCE-MR Perfusion. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6948422. [PMID: 35185410 PMCID: PMC8825574 DOI: 10.1155/2022/6948422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/21/2021] [Accepted: 01/11/2022] [Indexed: 02/04/2023]
Abstract
Purpose To search for the utility of DCE-MRP to differentiate between posttreatment enhancement (PT) and tumoral enhancement (TM) in high-grade glial tumors. Materials and Methods Thirty-four patients with glioma (11 grade 3; 23 grade 4) were enrolled. Enhancement in the vicinity of the resection cavity demonstrated by DCE-MRP was taken into consideration. Based on the follow-up scans, reoperation or biopsy results, the enhancement type was categorized as PT or TM. Measurements were performed at the enhancing area near the resection cavity (ERC), nearby (NNA) and contralateral nonenhancing areas (CLNA). Perfusion parameters of the ERC were also subtracted from NNA and CLNA. Intragroup comparison (paired sample t-test) and intergroup comparison (Student's t-test) were made. Results There were 7 PTs and 27 TMs. In the PT, the subtracted values of Ve and IAUC from the CLNA and NNA and the subtracted value of Kep from NNA were statistically different. In TM, all metrics were significantly different comparing the CLNA and NNA. Comparing PT with TM, Ktrans, IAUC, Kep, and subtracted values of Ktrans and IAUC from both NNA and CLNA were significantly different. Conclusions In PT, only Ktrans values did not reveal any difference comparing NNA and CLNA. To differentiate PT from TM, Ktrans, Kep, IAUC, and subtracted values of Ktrans and IAUC from NNA and CLNA can be used. These findings are in concordance with literature.
Collapse
|
30
|
Sidibe I, Tensaouti F, Roques M, Cohen-Jonathan-Moyal E, Laprie A. Pseudoprogression in Glioblastoma: Role of Metabolic and Functional MRI-Systematic Review. Biomedicines 2022; 10:biomedicines10020285. [PMID: 35203493 PMCID: PMC8869397 DOI: 10.3390/biomedicines10020285] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Glioblastoma is the most frequent malignant primitive brain tumor in adults. The treatment includes surgery, radiotherapy, and chemotherapy. During follow-up, combined chemoradiotherapy can induce treatment-related changes mimicking tumor progression on medical imaging, such as pseudoprogression (PsP). Differentiating PsP from true progression (TP) remains a challenge for radiologists and oncologists, who need to promptly start a second-line treatment in the case of TP. Advanced magnetic resonance imaging (MRI) techniques such as diffusion-weighted imaging, perfusion MRI, and proton magnetic resonance spectroscopic imaging are more efficient than conventional MRI in differentiating PsP from TP. None of these techniques are fully effective, but current advances in computer science and the advent of artificial intelligence are opening up new possibilities in the imaging field with radiomics (i.e., extraction of a large number of quantitative MRI features describing tumor density, texture, and geometry). These features are used to build predictive models for diagnosis, prognosis, and therapeutic response. Method: Out of 7350 records for MR spectroscopy, GBM, glioma, recurrence, diffusion, perfusion, pseudoprogression, radiomics, and advanced imaging, we screened 574 papers. A total of 228 were eligible, and we analyzed 72 of them, in order to establish the role of each imaging modality and the usefulness and limitations of radiomics analysis.
Collapse
Affiliation(s)
- Ingrid Sidibe
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute Oncopole, 31100 Toulouse, France; (I.S.); (F.T.); (E.C.-J.-M.)
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier INSERM, 31100 Toulouse, France;
| | - Fatima Tensaouti
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute Oncopole, 31100 Toulouse, France; (I.S.); (F.T.); (E.C.-J.-M.)
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier INSERM, 31100 Toulouse, France;
| | - Margaux Roques
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier INSERM, 31100 Toulouse, France;
- Radiology Department, Purpan University Hospital, 31300 Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute Oncopole, 31100 Toulouse, France; (I.S.); (F.T.); (E.C.-J.-M.)
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, 31100 Toulouse, France
| | - Anne Laprie
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute Oncopole, 31100 Toulouse, France; (I.S.); (F.T.); (E.C.-J.-M.)
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier INSERM, 31100 Toulouse, France;
- Correspondence:
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This review aims to cover current MRI techniques for assessing treatment response in brain tumors, with a focus on radio-induced lesions. RECENT FINDINGS Pseudoprogression and radionecrosis are common radiological entities after brain tumor irradiation and are difficult to distinguish from real progression, with major consequences on daily patient care. To date, shortcomings of conventional MRI have been largely recognized but morphological sequences are still used in official response assessment criteria. Several complementary advanced techniques have been proposed but none of them have been validated, hampering their clinical use. Among advanced MRI, brain perfusion measures increase diagnostic accuracy, especially when added with spectroscopy and susceptibility-weighted imaging. However, lack of reproducibility, because of several hard-to-control variables, is still a major limitation for their standardization in routine protocols. Amide Proton Transfer is an emerging molecular imaging technique that promises to offer new metrics by indirectly quantifying intracellular mobile proteins and peptide concentration. Preliminary studies suggest that this noncontrast sequence may add key biomarkers in tumor evaluation, especially in posttherapeutic settings. SUMMARY Benefits and pitfalls of conventional and advanced imaging on posttreatment assessment are discussed and the potential added value of APT in this clinicoradiological evolving scenario is introduced.
Collapse
Affiliation(s)
- Lucia Nichelli
- Department of Neuroradiology, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix
- Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, boulevard de l’Hôpital, Paris
| | - Stefano Casagranda
- Department of Research & Innovation, Olea Medical, avenue des Sorbiers, La Ciotat, France
| |
Collapse
|
32
|
Qiu J, Tao ZC, Deng KX, Wang P, Chen CY, Xiao F, Luo Y, Yuan SY, Chen H, Huang H. Diagnostic accuracy of dynamic contrast-enhanced magnetic resonance imaging for distinguishing pseudoprogression from glioma recurrence: a meta-analysis. Chin Med J (Engl) 2021; 134:2535-2543. [PMID: 34748524 PMCID: PMC8577681 DOI: 10.1097/cm9.0000000000001445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND It is crucial to differentiate accurately glioma recurrence and pseudoprogression which have entirely different prognosis and require different treatment strategies. This study aimed to assess the diagnostic accuracy of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as a tool for distinguishing glioma recurrence and pseudoprogression. METHODS According to particular criteria of inclusion and exclusion, related studies up to May 1, 2019, were thoroughly searched from several databases including PubMed, Embase, Cochrane Library, and Chinese biomedical databases. The quality assessment of diagnostic accuracy studies was applied to evaluate the quality of the included studies. By using the "mada" package in R, the heterogeneity, overall sensitivity, specificity, and diagnostic odds ratio were calculated. Moreover, funnel plots were used to visualize and estimate the publication bias in this study. The area under the summary receiver operating characteristic (SROC) curve was computed to display the diagnostic efficiency of DCE-MRI. RESULTS In the present meta-analysis, a total of 11 studies covering 616 patients were included. The results showed that the pooled sensitivity, specificity, and diagnostic odds ratio were 0.792 (95% confidence interval [CI] 0.707-0.857), 0.779 (95% CI 0.715-0.832), and 16.219 (97.5% CI 9.123-28.833), respectively. The value of the area under the SROC curve was 0.846. In addition, the SROC curve showed high sensitivities (>0.6) and low false positive rates (<0.5) from most of the included studies, which suggest that the results of our study were reliable. Furthermore, the funnel plot suggested the existence of publication bias. CONCLUSIONS While the DCE-MRI is not the perfect diagnostic tool for distinguishing glioma recurrence and pseudoprogression, it was capable of improving diagnostic accuracy. Hence, further investigations combining DCE-MRI with other imaging modalities are required to establish an efficient diagnostic method for glioma patients.
Collapse
Affiliation(s)
- Jun Qiu
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Zhen-Chao Tao
- Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Ke-Xue Deng
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Chuan-Yu Chen
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Fang Xiao
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Yi Luo
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Shu-Ya Yuan
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Hao Chen
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Huan Huang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| |
Collapse
|
33
|
Wang C, Padgett KR, Su MY, Mellon EA, Maziero D, Chang Z. Multi-parametric MRI (mpMRI) for treatment response assessment of radiation therapy. Med Phys 2021; 49:2794-2819. [PMID: 34374098 DOI: 10.1002/mp.15130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) plays an important role in the modern radiation therapy (RT) workflow. In comparison with computed tomography (CT) imaging, which is the dominant imaging modality in RT, MRI possesses excellent soft-tissue contrast for radiographic evaluation. Based on quantitative models, MRI can be used to assess tissue functional and physiological information. With the developments of scanner design, acquisition strategy, advanced data analysis, and modeling, multiparametric MRI (mpMRI), a combination of morphologic and functional imaging modalities, has been increasingly adopted for disease detection, localization, and characterization. Integration of mpMRI techniques into RT enriches the opportunities to individualize RT. In particular, RT response assessment using mpMRI allows for accurate characterization of both tissue anatomical and biochemical changes to support decision-making in monotherapy of radiation treatment and/or systematic cancer management. In recent years, accumulating evidence have, indeed, demonstrated the potentials of mpMRI in RT response assessment regarding patient stratification, trial benchmarking, early treatment intervention, and outcome modeling. Clinical application of mpMRI for treatment response assessment in routine radiation oncology workflow, however, is more complex than implementing an additional imaging protocol; mpMRI requires additional focus on optimal study design, practice standardization, and unified statistical reporting strategy to realize its full potential in the context of RT. In this article, the mpMRI theories, including image mechanism, protocol design, and data analysis, will be reviewed with a focus on the radiation oncology field. Representative works will be discussed to demonstrate how mpMRI can be used for RT response assessment. Additionally, issues and limits of current works, as well as challenges and potential future research directions, will also be discussed.
Collapse
Affiliation(s)
- Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA.,Department of Radiology, University of Miami, Miami, Florida, USA
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, California, USA.,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Danilo Maziero
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
34
|
Xiang L, Sun LH, Liu B, Wang LS, Gong XJ, Qiu J, Ge YQ, Yao WJ, Gu KC. Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Analysis of Microvascular Permeability in Peritumor Brain Edema of Fibrous Meningiomas. Eur Neurol 2021; 84:361-367. [PMID: 34315157 DOI: 10.1159/000516921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aims to analyze the permeability of intra- and peri-meningiomas regions and compare the microvascular permeability between peritumoral brain edema (PTBE) and non-PTBE using DCE-MRI. METHODS This was a retrospective of patients with meningioma who underwent surgery. The patients were grouped as PTBE and non-PTBE. The DCE-MRI quantitative parameters, including volume transfer constant (Ktrans), rate constant (Kep), extracellular volume (Ve), and mean plasma volume (Vp), obtained using the extended Tofts-Kety 2-compartment model. Logistic regression analysis was conducted to explore the risk factor of PTBE. RESULTS Sixty-three patients, diagnosed as fibrous meningioma, were included in this study. They were 17 males and 46 females, aged from 32 to 88 years old. Kep and Vp were significantly lower in patients with PTBE compared with those without (Kep: 0.1852 ± 0.0369 vs. 0.5087 ± 0.1590, p = 0.010; Vp: 0.0090 ± 0.0020 vs. 0.0521 ± 0.0262, p = 0.007), while there were no differences regarding Ktrans and Ve (both p > 0.05). The multivariable analysis showed that tumor size ≥10 cm3 (OR = 4.457, 95% CI: 1.322-15.031, p = 0.016) and Vp (OR = 0.572, 95%CI: 0.333-0.981, p = 0.044) were independently associated with PTBE in patients with meningiomas. CONCLUSION DCE-magnetic resonance imaging·Meningioma·Blood vessel MRI can be used to quantify the microvascular permeability of PTBE in patients with meningioma.
Collapse
Affiliation(s)
- Li Xiang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Hua Sun
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long-Sheng Wang
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi-Jun Gong
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ju Qiu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Wen-Jun Yao
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kang-Chen Gu
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Sasi S D, Gupta RK, Patir R, Ahlawat S, Vaishya S, Singh A. A comprehensive evaluation and impact of normalization of generalized tracer kinetic model parameters to characterize blood-brain-barrier permeability in normal-appearing and tumor tissue regions of patients with glioma. Magn Reson Imaging 2021; 83:77-88. [PMID: 34311065 DOI: 10.1016/j.mri.2021.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022]
Abstract
RATIONALE AND OBJECTIVES To comprehensively evaluate robustness and variations of DCE-MRI derived generalized-tracer-kinetic-model (GTKM) parameters in healthy and tumor tissues and impact of normalization in mitigating these variations on application to glioma. MATERIALS (PATIENTS) AND METHODS A retrospective study included pre-operative 31 high-grade-glioma(HGG), 22 low-grade-glioma(LGG) and 33 follow-up data from 10 patients a prospective study with 4 HGG subjects. Voxel-wise GTKM was fitted to DCE-MRI data to estimate Ktrans, ve, vb. Simulations were used to evaluate noise sensitivity. Variation of parameters with-respect-to arterial-input-function (AIF) variation and data length were studied. Normalization of parameters with-respect-to mean values in gray-matter (GM) and white-matter (WM) regions (GM-Type-2, WM-Type-2) and mean curves (GM-Type-1, WM-Type-1) were also evaluated. Co-efficient-of-variation(CoV), relative-percentage-error (RPE), Box-Whisker plots, bar graphs and t-test were used for comparison. RESULTS GTKM was fitted well in all tissue regions. Ktrans and ve in contrast-enhancing (CE) has shown improved noise sensitivity in longer data. vb was reliable in all tissues. Mean AIF and C(t) peaks showed ~38% and ~35% variations. During simulation, normalizations have mitigated variations due to changes in AIF amplitude in Ktrans and vb.. ve was less sensitive to normalizations. CoV of Ktrans and vb has reduced ~70% after GM-Type-1 normalization and ~80% after GM-Type-2 normalization, respectively. GM-Type-1 (p = 0.003) and GM-Type-2 (p = 0.006) normalizations have significantly improved differentiation of HGG and LGG using Ktrans. CONCLUSION Ktrans and vb can be reliably estimated in normal-appearing brain tissues and can be used for normalization of corresponding parameters in tumor tissues for mitigating inter-subject variability due to errors in AIF. Normalized Ktrans and vb provided improved differentiation of HGG and LGG.
Collapse
Affiliation(s)
- Dinil Sasi S
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Rakesh K Gupta
- Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurugram, India
| | - Rana Patir
- Department of Neurosurgery, Fortis Memorial Research Institute, Gurugram, India
| | - Suneeta Ahlawat
- SRL Diagnostics, Fortis Memorial Research Institute, Gurugram, India
| | - Sandeep Vaishya
- Department of Neurosurgery, Fortis Memorial Research Institute, Gurugram, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
36
|
Pak E, Choi KS, Choi SH, Park CK, Kim TM, Park SH, Lee JH, Lee ST, Hwang I, Yoo RE, Kang KM, Yun TJ, Kim JH, Sohn CH. Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI. Korean J Radiol 2021; 22:1514-1524. [PMID: 34269536 PMCID: PMC8390822 DOI: 10.3348/kjr.2020.1433] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Objective To develop a radiomics risk score based on dynamic contrast-enhanced (DCE) MRI for prognosis prediction in patients with glioblastoma. Materials and Methods One hundred and fifty patients (92 male [61.3%]; mean age ± standard deviation, 60.5 ± 13.5 years) with glioblastoma who underwent preoperative MRI were enrolled in the study. Six hundred and forty-two radiomic features were extracted from volume transfer constant (Ktrans), fractional volume of vascular plasma space (Vp), and fractional volume of extravascular extracellular space (Ve) maps of DCE MRI, wherein the regions of interest were based on both T1-weighted contrast-enhancing areas and non-enhancing T2 hyperintense areas. Using feature selection algorithms, salient radiomic features were selected from the 642 features. Next, a radiomics risk score was developed using a weighted combination of the selected features in the discovery set (n = 105); the risk score was validated in the validation set (n = 45) by investigating the difference in prognosis between the “radiomics risk score” groups. Finally, multivariable Cox regression analysis for progression-free survival was performed using the radiomics risk score and clinical variables as covariates. Results 16 radiomic features obtained from non-enhancing T2 hyperintense areas were selected among the 642 features identified. The radiomics risk score was used to stratify high- and low-risk groups in both the discovery and validation sets (both p < 0.001 by the log-rank test). The radiomics risk score and presence of isocitrate dehydrogenase (IDH) mutation showed independent associations with progression-free survival in opposite directions (hazard ratio, 3.56; p = 0.004 and hazard ratio, 0.34; p = 0.022, respectively). Conclusion We developed and validated the “radiomics risk score” from the features of DCE MRI based on non-enhancing T2 hyperintense areas for risk stratification of patients with glioblastoma. It was associated with progression-free survival independently of IDH mutation status.
Collapse
Affiliation(s)
- Elena Pak
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Kyu Sung Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea.
| | - Chul-Kee Park
- Department of Neurosurgery and Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Cancer Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Cancer Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Inpyeong Hwang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Tae Jin Yun
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Ji-Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
37
|
Bapuraj JR, Perni K, Gomez-Hassan D, Srinivasan A. Imaging Surveillance of Gliomas: Role of Basic and Advanced Imaging Techniques. Radiol Clin North Am 2021; 59:395-407. [PMID: 33926685 DOI: 10.1016/j.rcl.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is essential to be aware of widely accepted criteria for grading of treatment response in both high-grade and low-grade gliomas. These criteria primarily take into account responses of measurable and nonmeasurable lesions on T2-weighted, fluid-attenuated inversion recovery, and postcontrast images to determine a final category of response for the patient. The additional role that other advanced imaging techniques, such as diffusion and perfusion imaging, can play in the surveillance of these tumors is discussed in this article.
Collapse
Affiliation(s)
- Jayapalli Rajiv Bapuraj
- Division of Neuroradiology, Department of Radiology, University of Michigan Medical School, Michigan Medicine, 1500 East Medical Center Drive, UMHS, B2-A209, Ann Arbor, MI 48109, USA
| | - Krishna Perni
- Division of Neuroradiology, Department of Radiology, University of Michigan Medical School, Michigan Medicine, 1500 East Medical Center Drive, UMHS, B2-A209, Ann Arbor, MI 48109, USA
| | - Diana Gomez-Hassan
- Division of Neuroradiology, Department of Radiology, University of Michigan Medical School, Michigan Medicine, 4260 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Ashok Srinivasan
- Division of Neuroradiology, Department of Radiology, University of Michigan Medical School, Michigan Medicine, 1500 East Medical Center Drive, UMHS, B2-A209, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Maziero D, Straza MW, Ford JC, Bovi JA, Diwanji T, Stoyanova R, Paulson ES, Mellon EA. MR-Guided Radiotherapy for Brain and Spine Tumors. Front Oncol 2021; 11:626100. [PMID: 33763361 PMCID: PMC7982530 DOI: 10.3389/fonc.2021.626100] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
MRI is the standard modality to assess anatomy and response to treatment in brain and spine tumors given its superb anatomic soft tissue contrast (e.g., T1 and T2) and numerous additional intrinsic contrast mechanisms that can be used to investigate physiology (e.g., diffusion, perfusion, spectroscopy). As such, hybrid MRI and radiotherapy (RT) devices hold unique promise for Magnetic Resonance guided Radiation Therapy (MRgRT). In the brain, MRgRT provides daily visualizations of evolving tumors that are not seen with cone beam CT guidance and cannot be fully characterized with occasional standalone MRI scans. Significant evolving anatomic changes during radiotherapy can be observed in patients with glioblastoma during the 6-week fractionated MRIgRT course. In this review, a case of rapidly changing symptomatic tumor is demonstrated for possible therapy adaptation. For stereotactic body RT of the spine, MRgRT acquires clear isotropic images of tumor in relation to spinal cord, cerebral spinal fluid, and nearby moving organs at risk such as bowel. This visualization allows for setup reassurance and the possibility of adaptive radiotherapy based on anatomy in difficult cases. A review of the literature for MR relaxometry, diffusion, perfusion, and spectroscopy during RT is also presented. These techniques are known to correlate with physiologic changes in the tumor such as cellularity, necrosis, and metabolism, and serve as early biomarkers of chemotherapy and RT response correlating with patient survival. While physiologic tumor investigations during RT have been limited by the feasibility and cost of obtaining frequent standalone MRIs, MRIgRT systems have enabled daily and widespread physiologic measurements. We demonstrate an example case of a poorly responding tumor on the 0.35 T MRIgRT system with relaxometry and diffusion measured several times per week. Future studies must elucidate which changes in MR-based physiologic metrics and at which timepoints best predict patient outcomes. This will lead to early treatment intensification for tumors identified to have the worst physiologic responses during RT in efforts to improve glioblastoma survival.
Collapse
Affiliation(s)
- Danilo Maziero
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael W Straza
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John C Ford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Joseph A Bovi
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tejan Diwanji
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Radka Stoyanova
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eric S Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Eric A Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
39
|
Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Neuroimaging Clin N Am 2021; 31:103-120. [PMID: 33220823 DOI: 10.1016/j.nic.2020.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
Collapse
Affiliation(s)
- Sara B Strauss
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Alicia Meng
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Edward J Ebani
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA.
| |
Collapse
|
40
|
Le Fèvre C, Constans JM, Chambrelant I, Antoni D, Bund C, Leroy-Freschini B, Schott R, Cebula H, Noël G. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 - Radiological features and metric markers. Crit Rev Oncol Hematol 2021; 159:103230. [PMID: 33515701 DOI: 10.1016/j.critrevonc.2021.103230] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/28/2022] Open
Abstract
After chemoradiotherapy for glioblastoma, pseudoprogression can occur and must be distinguished from true progression to correctly manage glioblastoma treatment and follow-up. Conventional treatment response assessment is evaluated via conventional MRI (contrast-enhanced T1-weighted and T2/FLAIR), which is unreliable. The emergence of advanced MRI techniques, MR spectroscopy, and PET tracers has improved pseudoprogression diagnostic accuracy. This review presents a literature review of the different imaging techniques and potential imaging biomarkers to differentiate pseudoprogression from true progression.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Jean-Marc Constans
- Department of Radiology, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France.
| | - Isabelle Chambrelant
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Caroline Bund
- Department of Nuclear Medicine, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Benjamin Leroy-Freschini
- Department of Nuclear Medicine, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Roland Schott
- Departement of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Hélène Cebula
- Departement of Neurosurgery, Hautepierre University Hospital, 1, avenue Molière, 67200, Strasbourg, France.
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| |
Collapse
|
41
|
Al Feghali KA, Randall JW, Liu DD, Wefel JS, Brown PD, Grosshans DR, McAvoy SA, Farhat MA, Li J, McGovern SL, McAleer MF, Ghia AJ, Paulino AC, Sulman EP, Penas-Prado M, Wang J, de Groot J, Heimberger AB, Armstrong TS, Gilbert MR, Mahajan A, Guha-Thakurta N, Chung C. Phase II trial of proton therapy versus photon IMRT for GBM: secondary analysis comparison of progression-free survival between RANO versus clinical assessment. Neurooncol Adv 2021; 3:vdab073. [PMID: 34337411 PMCID: PMC8320688 DOI: 10.1093/noajnl/vdab073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This secondary image analysis of a randomized trial of proton radiotherapy (PT) versus photon intensity-modulated radiotherapy (IMRT) compares tumor progression based on clinical radiological assessment versus Response Assessment in Neuro-Oncology (RANO). METHODS Eligible patients were enrolled in the randomized trial and had MR imaging at baseline and follow-up beyond 12 weeks from completion of radiotherapy. "Clinical progression" was based on a clinical radiology report of progression and/or change in treatment for progression. RESULTS Of 90 enrolled patients, 66 were evaluable. Median clinical progression-free survival (PFS) was 10.8 (range: 9.4-14.7) months; 10.8 months IMRT versus 11.2 months PT (P = .14). Median RANO-PFS was 8.2 (range: 6.9, 12): 8.9 months IMRT versus 6.6 months PT (P = .24). RANO-PFS was significantly shorter than clinical PFS overall (P = .001) and for both the IMRT (P = .01) and PT (P = .04) groups. There were 31 (46.3%) discrepant cases of which 17 had RANO progression more than a month prior to clinical progression, and 14 had progression by RANO but not clinical criteria. CONCLUSIONS Based on this secondary analysis of a trial of PT versus IMRT for glioblastoma, while no difference in PFS was noted relative to treatment technique, RANO criteria identified progression more often and earlier than clinical assessment. This highlights the disconnect between measures of tumor response in clinical trials versus clinical practice. With growing efforts to utilize real-world data and personalized treatment with timely adaptation, there is a growing need to improve the consistency of determining tumor progression within clinical trials and clinical practice.
Collapse
Affiliation(s)
- Karine A Al Feghali
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - James W Randall
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Diane D Liu
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey S Wefel
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - David R Grosshans
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah A McAvoy
- Department of Radiation Oncology, University of Maryland, Baltimore, Maryland, USA
| | - Maguy A Farhat
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Li
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan L McGovern
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary F McAleer
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Amol J Ghia
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Arnold C Paulino
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Langone, New York, New York, USA
| | - Marta Penas-Prado
- Department of Neuro-Oncology, National Institutes of Health, Bethesda, Maryland, USA
| | - Jihong Wang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - John de Groot
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy B Heimberger
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Terri S Armstrong
- Department of Neuro-Oncology, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Department of Neuro-Oncology, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
42
|
Le Fèvre C, Lhermitte B, Ahle G, Chambrelant I, Cebula H, Antoni D, Keller A, Schott R, Thiery A, Constans JM, Noël G. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review: Part 1 - Molecular, morphological and clinical features. Crit Rev Oncol Hematol 2020; 157:103188. [PMID: 33307200 DOI: 10.1016/j.critrevonc.2020.103188] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
With new therapeutic protocols, more patients treated for glioblastoma have experienced a suspicious radiologic image of progression (pseudoprogression) during follow-up. Pseudoprogression should be differentiated from true progression because the disease management is completely different. In the case of pseudoprogression, the follow-up continues, and the patient is considered stable. In the case of true progression, a treatment adjustment is necessary. Presently, a pseudoprogression diagnosis certainly needs to be pathologically confirmed. Some important efforts in the radiological, histopathological, and genomic fields have been made to differentiate pseudoprogression from true progression, and the assessment of response criteria exists but remains limited. The aim of this paper is to highlight clinical and pathological markers to differentiate pseudoprogression from true progression through a literature review.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Benoît Lhermitte
- Département of Pathology, Hautepierre University Hospital, 1, Avenue Molière, 67200, Strasbourg, France
| | - Guido Ahle
- Departement of Neurology, Hôpitaux Civils de Colmar, 39 Avenue de la Liberté, 68024, Colmar, France
| | - Isabelle Chambrelant
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Hélène Cebula
- Departement of Neurosurgery, Hautepierre University Hospital, 1, Avenue Molière, 67200, Strasbourg, France
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Audrey Keller
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Roland Schott
- Departement of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Alicia Thiery
- Department of Public Health, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Jean-Marc Constans
- Department of Radiology, Amiens-Pïcardie University Hospital, 1 rond point du Professeur Christian Cabrol, 80054 Amiens Cedex 1, France
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France.
| |
Collapse
|
43
|
Tsakiris C, Siempis T, Alexiou GA, Zikou A, Sioka C, Voulgaris S, Argyropoulou MI. Differentiation Between True Tumor Progression of Glioblastoma and Pseudoprogression Using Diffusion-Weighted Imaging and Perfusion-Weighted Imaging: Systematic Review and Meta-analysis. World Neurosurg 2020; 144:e100-e109. [DOI: 10.1016/j.wneu.2020.07.218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023]
|
44
|
Wu XF, Liang X, Wang XC, Qin JB, Zhang L, Tan Y, Zhang H. Differentiating high-grade glioma recurrence from pseudoprogression: Comparing diffusion kurtosis imaging and diffusion tensor imaging. Eur J Radiol 2020; 135:109445. [PMID: 33341429 DOI: 10.1016/j.ejrad.2020.109445] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE To compare the diagnostic value of DKI and DTI in differentiation of high-grade glioma recurrence and pseudoprogression (PsP). METHOD Forty patients with high-grade gliomas who exhibited new enhancing lesions (24 high-grade glioma recurrence and 16 PsP) within 6 months after surgery followed by completion of chemoradiation therapy. All patients underwent repeat surgery or biopsy after routine MRI and DKI (including DTI). They were histologically classified into high-grade glioma recurrence and PsP groups. DKI (mean kurtosis [MK], axial kurtosis [Ka], and radial kurtosis [Kr]) and DTI (mean diffusivity [MD] and fractional anisotropy [FA]) parameters in the enhancing lesions and in the perilesional edema were measured. Inter-group differences between high-grade glioma recurrence and PsP were compared using the Mann-Whitney U test The receiver operating characteristic (ROC) curve was used to assess differential diagnostic efficacy of each parameter, and Z-scores were used to compare the value between DKI and DTI. RESULTS Relative MK (rMK) was significantly higher and relative MD (rMD) was significantly lower in the enhancing lesions of high-grade glioma recurrence compared to PsP (P < 0.001, P = 0.006, respectively). The AUC was 0.914 for rMK and 0.760 for rMD, and this difference was significant (P = 0.030). In the perilesional edema, rMK values were significantly higher and rMD values were significantly lower in high-grade glioma recurrence compared to PsP (P < 0.001, P = 0.005). CONCLUSIONS DKI had superior performance in differentiating high-grade glioma recurrence from PsP, and rMK appeared to be the best independent predictor.
Collapse
Affiliation(s)
- Xiao-Feng Wu
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China; College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiao Liang
- Shanxi Provincial People's Hospital, Taiyuan 030001, Shanxi Province, China
| | - Xiao-Chun Wang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China; College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiang-Bo Qin
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Lei Zhang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Yan Tan
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China; College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China.
| | - Hui Zhang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China; College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China.
| |
Collapse
|
45
|
Katsura M, Sato J, Akahane M, Furuta T, Mori H, Abe O. Recognizing Radiation-induced Changes in the Central Nervous System: Where to Look and What to Look For. Radiographics 2020; 41:224-248. [PMID: 33216673 DOI: 10.1148/rg.2021200064] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Radiation therapy (RT) continues to play a central role as an effective therapeutic modality for a variety of tumors and vascular malformations in the central nervous system. Although the planning and delivery techniques of RT have evolved substantially during the past few decades, the structures surrounding the target lesion are inevitably exposed to radiation. A wide variety of radiation-induced changes may be observed at posttreatment imaging, which may be confusing when interpreting images. Histopathologically, radiation can have deleterious effects on the vascular endothelial cells as well as on neuroglial cells and their precursors. In addition, radiation induces oxidative stress and inflammation, leading to a cycle of further cellular toxic effects and tissue damage. On the basis of the time of expression, radiation-induced injury can be divided into three phases: acute, early delayed, and late delayed. Acute and early delayed injuries are usually transient and reversible, whereas late delayed injuries are generally irreversible. The authors provide a comprehensive review of the timeline and expected imaging appearances after RT, including the characteristic imaging features after RT with concomitant chemotherapy. Specific topics discussed are imaging features that help distinguish expected posttreatment changes from recurrent disease, followed by a discussion on the role of advanced imaging techniques. Knowledge of the RT plan, the amount of normal structures included, the location of the target lesion, and the amount of time elapsed since RT is highly important at follow-up imaging, and the reporting radiologist should be able to recognize the characteristic imaging features after RT and differentiate these findings from tumor recurrence. ©RSNA, 2020.
Collapse
Affiliation(s)
- Masaki Katsura
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| | - Jiro Sato
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| | - Masaaki Akahane
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| | - Toshihiro Furuta
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| | - Harushi Mori
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| | - Osamu Abe
- From the Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan (M.K., J.S., T.F., H.M., O.A.); and Department of Radiology, School of Medicine, International University of Health and Welfare, Chiba, Japan (M.A.)
| |
Collapse
|
46
|
Booth TC, Luis A, Brazil L, Thompson G, Daniel RA, Shuaib H, Ashkan K, Pandey A. Glioblastoma post-operative imaging in neuro-oncology: current UK practice (GIN CUP study). Eur Radiol 2020; 31:2933-2943. [PMID: 33151394 PMCID: PMC8043861 DOI: 10.1007/s00330-020-07387-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES MRI remains the preferred imaging investigation for glioblastoma. Appropriate and timely neuroimaging in the follow-up period is considered to be important in making management decisions. There is a paucity of evidence-based information in current UK, European and international guidelines regarding the optimal timing and type of neuroimaging following initial neurosurgical treatment. This study assessed the current imaging practices amongst UK neuro-oncology centres, thus providing baseline data and informing future practice. METHODS The lead neuro-oncologist, neuroradiologist and neurosurgeon from every UK neuro-oncology centre were invited to complete an online survey. Participants were asked about current and ideal imaging practices following initial treatment. RESULTS Ninety-two participants from all 31 neuro-oncology centres completed the survey (100% response rate). Most centres routinely performed an early post-operative MRI (87%, 27/31), whereas only a third performed a pre-radiotherapy MRI (32%, 10/31). The number and timing of scans routinely performed during adjuvant TMZ treatment varied widely between centres. At the end of the adjuvant period, most centres performed an MRI (71%, 22/31), followed by monitoring scans at 3 monthly intervals (81%, 25/31). Additional short-interval imaging was carried out in cases of possible pseudoprogression in most centres (71%, 22/31). Routine use of advanced imaging was infrequent; however, the addition of advanced sequences was the most popular suggestion for ideal imaging practice, followed by changes in the timing of EPMRI. CONCLUSION Variations in neuroimaging practices exist after initial glioblastoma treatment within the UK. Multicentre, longitudinal, prospective trials are needed to define the optimal imaging schedule for assessment. KEY POINTS • Variations in imaging practices exist in the frequency, timing and type of interval neuroimaging after initial treatment of glioblastoma within the UK. • Large, multicentre, longitudinal, prospective trials are needed to define the optimal imaging schedule for assessment.
Collapse
Affiliation(s)
- Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK. .,Department of Neuroradiology Ruskin Wing, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK.
| | - Aysha Luis
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK.,Department of Neuroradiology, National Hospital For Neurology and Neurosrgery, London, WC1N 3BG, UK
| | - Lucy Brazil
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Gerry Thompson
- Centre for Clinical Brain Sciences, Edinburgh, EH16 4SB, UK
| | - Rachel A Daniel
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Haris Shuaib
- Department of Medical Physics, Guy's & St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Anmol Pandey
- Faculty of Life Sciences and Medicine, King's College London Strand, London, WC2R 2LS, UK
| |
Collapse
|
47
|
Park JE, Kim JY, Kim HS, Shim WH. Comparison of Dynamic Contrast-Enhancement Parameters between Gadobutrol and Gadoterate Meglumine in Posttreatment Glioma: A Prospective Intraindividual Study. AJNR Am J Neuroradiol 2020; 41:2041-2048. [PMID: 33060100 DOI: 10.3174/ajnr.a6792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE Differences in molecular properties between one-molar and half-molar gadolinium-based contrast agents are thought to affect parameters obtained from dynamic contrast-enhanced imaging. The aim of our study was to investigate differences in dynamic contrast-enhanced parameters between one-molar nonionic gadobutrol and half-molar ionic gadoterate meglumine in patients with posttreatment glioma. MATERIALS AND METHODS This prospective study enrolled 32 patients who underwent 2 20-minute dynamic contrast-enhanced examinations, one with gadobutrol and one with gadoterate meglumine. The model-free parameter of area under the signal intensity curve from 30 to 1100 seconds and the Tofts model-based pharmacokinetic parameters were calculated and compared intraindividually using paired t tests. Patients were further divided into progression (n = 12) and stable (n = 20) groups, which were compared using Student t tests. RESULTS Gadobutrol and gadoterate meglumine did not show any significant differences in the area under the signal intensity curve or pharmacokinetic parameters of K trans, Ve, Vp, or Kep (all P > .05). Gadobutrol showed a significantly higher mean wash-in rate (0.83 ± 0.64 versus 0.29 ± 0.63, P = .013) and a significantly lower mean washout rate (0.001 ± 0.0001 versus 0.002 ± 0.002, P = .02) than gadoterate meglumine. Trends toward higher area under the curve, K trans, Ve, Vp, wash-in, and washout rates and lower Kep were observed in the progression group in comparison with the treatment-related-change group, regardless of the contrast agent used. CONCLUSIONS Model-free and pharmacokinetic parameters did not show any significant differences between the 2 gadolinium-based contrast agents, except for a higher wash-in rate with gadobutrol and a higher washout rate with gadoterate meglumine, supporting the interchangeable use of gadolinium-based contrast agents for dynamic contrast-enhanced imaging in patients with posttreatment glioma.
Collapse
Affiliation(s)
- J E Park
- From the Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K., W.H.S.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - J Y Kim
- Department of Radiology (J.Y.K.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - H S Kim
- From the Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K., W.H.S.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - W H Shim
- From the Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K., W.H.S.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
48
|
Machine Learning Model to Predict Pseudoprogression Versus Progression in Glioblastoma Using MRI: A Multi-Institutional Study (KROG 18-07). Cancers (Basel) 2020; 12:cancers12092706. [PMID: 32967367 PMCID: PMC7564954 DOI: 10.3390/cancers12092706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/28/2023] Open
Abstract
Simple Summary Even after the introduction of a standard regimen consisting of concurrent chemoradiotherapy and adjuvant temozolomide, patients with glioblastoma multiforme mostly experience disease progression. Clinicians often encounter a situation where they need to distinguish progressive disease from pseudoprogression after treatment. We tried to investigate the feasibility of machine learning algorithm to distinguish pseudoprogression from progressive disease. In multi-institutional dataset, the developed machine learning model showed an acceptable performance. This algorithm involving MRI data and clinical features could help making decision during patients’ disease course. For the practical use, we calibrated the machine learning model to offer the probability of pseudoprogression to clinicians, then we constructed the web-based user interface to access the model. Abstract Some patients with glioblastoma show a worsening presentation in imaging after concurrent chemoradiation, even when they receive gross total resection. Previously, we showed the feasibility of a machine learning model to predict pseudoprogression (PsPD) versus progressive disease (PD) in glioblastoma patients. The previous model was based on the dataset from two institutions (termed as the Seoul National University Hospital (SNUH) dataset, N = 78). To test this model in a larger dataset, we collected cases from multiple institutions that raised the problem of PsPD vs. PD diagnosis in clinics (Korean Radiation Oncology Group (KROG) dataset, N = 104). The dataset was composed of brain MR images and clinical information. We tested the previous model in the KROG dataset; however, that model showed limited performance. After hyperparameter optimization, we developed a deep learning model based on the whole dataset (N = 182). The 10-fold cross validation revealed that the micro-average area under the precision-recall curve (AUPRC) was 0.86. The calibration model was constructed to estimate the interpretable probability directly from the model output. After calibration, the final model offers clinical probability in a web-user interface.
Collapse
|
49
|
Young RJ, Demétrio De Souza França P, Pirovano G, Piotrowski AF, Nicklin PJ, Riedl CC, Schwartz J, Bale TA, Donabedian PL, Kossatz S, Burnazi EM, Roberts S, Lyashchenko SK, Miller AM, Moss NS, Fiasconaro M, Zhang Z, Mauguen A, Reiner T, Dunphy MP. Preclinical and first-in-human-brain-cancer applications of [ 18F]poly (ADP-ribose) polymerase inhibitor PET/MR. Neurooncol Adv 2020; 2:vdaa119. [PMID: 33392502 PMCID: PMC7758909 DOI: 10.1093/noajnl/vdaa119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background We report preclinical and first-in-human-brain-cancer data using a targeted poly (ADP-ribose) polymerase 1 (PARP1) binding PET tracer, [18F]PARPi, as a diagnostic tool to differentiate between brain cancers and treatment-related changes. Methods We applied a glioma model in p53-deficient nestin/tv-a mice, which were injected with [18F]PARPi and then sacrificed 1 h post-injection for brain examination. We also prospectively enrolled patients with brain cancers to undergo dynamic [18F]PARPi acquisition on a dedicated positron emission tomography/magnetic resonance (PET/MR) scanner. Lesion diagnosis was established by pathology when available or by Response Assessment in Neuro-Oncology (RANO) or RANO-BM response criteria. Resected tissue also underwent PARPi-FL staining and PARP1 immunohistochemistry. Results In a preclinical mouse model, we illustrated that [18F]PARPi crossed the blood–brain barrier and specifically bound to PARP1 overexpressed in cancer cell nuclei. In humans, we demonstrated high [18F]PARPi uptake on PET/MR in active brain cancers and low uptake in treatment-related changes independent of blood–brain barrier disruption. Immunohistochemistry results confirmed higher PARP1 expression in cancerous than in noncancerous tissue. Specificity was also corroborated by blocking fluorescent tracer uptake with an excess unlabeled PARP inhibitor in patient cancer biospecimen. Conclusions Although larger studies are necessary to confirm and further explore this tracer, we describe the promising performance of [18F]PARPi as a diagnostic tool to evaluate patients with brain cancers and possible treatment-related changes.
Collapse
Affiliation(s)
- Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,The Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Paula Demétrio De Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, Brazil
| | - Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Anna F Piotrowski
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,The Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Philip J Nicklin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christopher C Riedl
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jazmin Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,The Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick L Donabedian
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eva M Burnazi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alexandra M Miller
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,The Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nelson S Moss
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Megan Fiasconaro
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhigang Zhang
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Audrey Mauguen
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark P Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
50
|
Liu M, Mao N, Ma H, Dong J, Zhang K, Che K, Duan S, Zhang X, Shi Y, Xie H. Pharmacokinetic parameters and radiomics model based on dynamic contrast enhanced MRI for the preoperative prediction of sentinel lymph node metastasis in breast cancer. Cancer Imaging 2020; 20:65. [PMID: 32933585 PMCID: PMC7493182 DOI: 10.1186/s40644-020-00342-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background To establish pharmacokinetic parameters and a radiomics model based on dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for predicting sentinel lymph node (SLN) metastasis in patients with breast cancer. Methods A total of 164 breast cancer patients confirmed by pathology were prospectively enrolled from December 2017 to May 2018, and underwent DCE-MRI before surgery. Pharmacokinetic parameters and radiomics features were derived from DCE-MRI data. Least absolute shrinkage and selection operator (LASSO) regression method was used to select features, which were then utilized to construct three classification models, namely, the pharmacokinetic parameters model, the radiomics model, and the combined model. These models were built through the logistic regression method by using 10-fold cross validation strategy and were evaluated on the basis of the receiver operating characteristics (ROC) curve. An independent validation dataset was used to confirm the discriminatory power of the models. Results Seven radiomics features were selected by LASSO logistic regression. The radiomics model, the pharmacokinetic parameters model, and the combined model yielded area under the curve (AUC) values of 0.81 (95% confidence interval [CI]: 0.72 to 0.89), 0.77 (95% CI: 0.68 to 0.86), and 0.80 (95% CI: 0.72 to 0.89), respectively, for the training cohort and 0.74 (95% CI: 0.59 to 0.89), 0.74 (95% CI: 0.59 to 0.90), and 0.76 (95% CI: 0.61 to 0.91), respectively, for the validation cohort. The combined model showed the best performance for the preoperative evaluation of SLN metastasis in breast cancer. Conclusions The model incorporating radiomics features and pharmacokinetic parameters can be conveniently used for the individualized preoperative prediction of SLN metastasis in patients with breast cancer.
Collapse
Affiliation(s)
- Meijie Liu
- School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, P. R. China, 264000.,Department of Radiology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding road, Yantai, Shandong, P. R. China, 264000
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding road, Yantai, Shandong, P. R. China, 264000
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding road, Yantai, Shandong, P. R. China, 264000
| | - Jianjun Dong
- Department of Radiology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding road, Yantai, Shandong, P. R. China, 264000
| | - Kun Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding road, Yantai, Shandong, P. R. China, 264000
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding road, Yantai, Shandong, P. R. China, 264000
| | | | - Xuexi Zhang
- GE Healthcare, China, Shanghai, P. R. China, 200000
| | - Yinghong Shi
- Department of Radiology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding road, Yantai, Shandong, P. R. China, 264000.
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding road, Yantai, Shandong, P. R. China, 264000.
| |
Collapse
|