1
|
Miroglio R, Nugnes R, Zanetti L, Faimali M, Gambardella C. Environmental concentrations of fluoxetine antidepressant affect early development of sea urchin Paracentrotus lividus. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107080. [PMID: 40090285 DOI: 10.1016/j.marenvres.2025.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Fluoxetine (FLX), one of the most widely prescribed selective serotonin reuptake inhibitors, is frequently detected in the aquatic environment. In this study we assessed the ecotoxicological effects of FLX on the early life-stages of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea. Fertilization rate, developmental anomalies and behavioural alterations were evaluated up to 72 h by exposing gametes, zygotes, and embryos (gastrula) to environmental (0.001, 0.01 mg/L) and high concentrations (0.1, 1, 10 mg/L). Further, the different types and frequency of morphological anomalies at larval level were classified to estimate the Index of Contaminant Impact (ICI) at relevant and high concentrations. The ICI was applied to predict which FLX concentrations may pose a risk to sea urchins. Although FLX did not affect fertilization, significant skeletal anomalies and behavioural alterations were found in plutei from each exposed stage. Based on EC50 values, the sensitivity level ranks as follows: zygote > gastrula > sperm. The ICI values indicated high and moderate impacts only at high concentrations. However, a slight impact was also found in plutei from zygote exposure at relevant environmental concentrations, highlighting a potential risk for sea urchin early development. Considering increasing FLX consumption, we suggest to include this PC in monitoring plans, to not exceed levels that may impair and severely affect the early developmental stages of echinoderms. In addition, our findings promote the use of ICI as a novel tool for FLX impact assessment.
Collapse
Affiliation(s)
- Roberta Miroglio
- National Research Council, Institute of the Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16149, Genova, Italy.
| | - Roberta Nugnes
- National Research Council, Institute of the Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16149, Genova, Italy
| | - Lisa Zanetti
- National Research Council, Institute of the Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16149, Genova, Italy
| | - Marco Faimali
- National Research Council, Institute of the Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16149, Genova, Italy
| | - Chiara Gambardella
- National Research Council, Institute of the Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16149, Genova, Italy
| |
Collapse
|
2
|
Rybakova EY, Avdonin PP, Trufanov SK, Goncharov NV, Avdonin PV. Synergistic Interaction of 5-HT 1B and 5-HT 2B Receptors in Cytoplasmic Ca 2+ Regulation in Human Umbilical Vein Endothelial Cells: Possible Involvement in Pathologies. Int J Mol Sci 2023; 24:13833. [PMID: 37762136 PMCID: PMC10530667 DOI: 10.3390/ijms241813833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this work was to explore the involvement of 5-HT1B and 5-HT2B receptors (5-HT1BR and 5-HT2BR) in the regulation of free cytoplasmic calcium concentration ([Ca2+]i) in human umbilical vein endothelial cells (HUVEC). We have shown by quantitative PCR analysis, that 5-HT1BR and 5-HT2BR mRNAs levels are almost equal in HUVEC. Immunofluorescent staining demonstrated, that 5-HT1BR and 5-HT2BR are expressed both in plasma membrane and inside the cells. Intracellular 5-HT1BR are localized mainly in the nuclear region, whereas 5-HT2BR receptors are almost evenly distributed in HUVEC. 5-HT, 5-HT1BR agonist CGS12066B, or 5-HT2BR agonist BW723C86 added to HUVEC caused a slight increase in [Ca2+]i, which was much lower than that of histamine, ATP, or SFLLRN, an agonist of protease-activated receptors (PAR1). However, activation of 5-HT1BR with CGS12066B followed by activation of 5-HT2BR with BW723C86 manifested a synergism of response, since several-fold higher rise in [Ca2+]i occurred. CGS12066B caused more than a 5-fold increase in [Ca2+]i rise in HUVEC in response to 5-HT. This 5-HT induced [Ca2+]i rise was abolished by 5-HT2BR antagonist RS127445, indicating that extracellular 5-HT acts through 5-HT2BR. Synergistic [Ca2+]i rise in response to activation of 5-HT1BR and 5-HT2BR persisted in a calcium-free medium. It was suppressed by the phospholipase C inhibitor U73122 and was not inhibited by the ryanodine and NAADP receptors antagonists dantrolene and NED-19. [Ca2+]i measurements in single cells demonstrated that activation of 5-HT2BR alone by BW723C86 caused single asynchronous [Ca2+]i oscillations in 19.8 ± 4.2% (n = 3) of HUVEC that occur with a long delay (66.1 ± 4.3 s, n = 71). On the contrary, histamine causes a simultaneous and almost immediate increase in [Ca2+]i in all the cells. Pre-activation of 5-HT1BR by CGS12066B led to a 3-4 fold increase in the number of HUVEC responding to BW723C86, to synchronization of their responses with a delay shortening, and to the bursts of [Ca2+]i oscillations in addition to single oscillations. In conclusion, to get a full rise of [Ca2+]i in HUVEC in response to 5-HT, simultaneous activation of 5-HT1BR and 5-HT2BR is required. 5-HT causes an increase in [Ca2+]i via 5-HT2BR while 5-HT1BR could be activated by the membrane-permeable agonist CGS12066B. We hypothesized that CGS12066B acts via intracellular 5-HT1BR inaccessible to extracellular 5-HT. Intracellular 5-HT1BR might be activated by 5-HT which could be accumulated in EC under certain pathological conditions.
Collapse
Affiliation(s)
- Elena Yu. Rybakova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Sergei K. Trufanov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia;
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| |
Collapse
|
3
|
Mercurio S, Bozzo M, Pennati A, Candiani S, Pennati R. Serotonin Receptors and Their Involvement in Melanization of Sensory Cells in Ciona intestinalis. Cells 2023; 12:cells12081150. [PMID: 37190059 DOI: 10.3390/cells12081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Serotonin (5-hydroxytryptamine (5-HT)) is a biogenic monoamine with pleiotropic functions. It exerts its roles by binding to specific 5-HT receptors (5HTRs) classified into different families and subtypes. Homologs of 5HTRs are widely present in invertebrates, but their expression and pharmacological characterization have been scarcely investigated. In particular, 5-HT has been localized in many tunicate species but only a few studies have investigated its physiological functions. Tunicates, including ascidians, are the sister group of vertebrates, and data about the role of 5-HTRs in these organisms are thus important for understanding 5-HT evolution among animals. In the present study, we identified and described 5HTRs in the ascidian Ciona intestinalis. During development, they showed broad expression patterns that appeared consistent with those reported in other species. Then, we investigated 5-HT roles in ascidian embryogenesis exposing C. intestinalis embryos to WAY-100635, an antagonist of the 5HT1A receptor, and explored the affected pathways in neural development and melanogenesis. Our results contribute to unraveling the multifaceted functions of 5-HT, revealing its involvement in sensory cell differentiation in ascidians.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Matteo Bozzo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, 16132 Genoa, Italy
| | | | - Simona Candiani
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
4
|
Tryptophan Hydroxylase-2-Mediated Serotonin Biosynthesis Suppresses Cell Reprogramming into Pluripotent State. Int J Mol Sci 2023; 24:ijms24054862. [PMID: 36902295 PMCID: PMC10003565 DOI: 10.3390/ijms24054862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The monoamine neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has important functions both in the neural system and during embryonic development in mammals. In this study, we set out to investigate whether and how endogenous serotonin affects reprogramming to pluripotency. As serotonin is synthesized from tryptophan by the rate limiting enzymes tryptophan hydroxylase-1 and -2 (TPH1 and TPH2), we have assessed the reprogramming of TPH1- and/or TPH2-deficient mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPSCs). The reprogramming of the double mutant MEFs showed a dramatic increase in the efficiency of iPSC generation. In contrast, ectopic expression of TPH2 alone or in conjunction with TPH1 reverted the rate of reprogramming of the double mutant MEFs to the wild-type level and besides, TPH2 overexpression significantly suppressed reprogramming of wild-type MEFs. Our data thus suggest a negative role of serotonin biosynthesis in the reprogramming of somatic cells to a pluripotent state.
Collapse
|
5
|
Temereva E, Rimskaya-Korsakova N. Nuchal organs in the trochophore of Siboglinum fiordicum (Annelida, Siboglinidae). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023. [PMID: 36859788 DOI: 10.1002/jez.b.23192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Nuchal organs are epidermal sensory structures present in most annelids. Based on one of the interpretations, they serve in larval settlement. Siboglinids lack nuchal organs in adult and larval stages, however, larvae of some siboglinids inhabiting seeps and hydrothermal vents are capable of swimming up to 100 km away from their home hydrothermal field to colonize a new one. One question that remains is, what organ are siboglinid larvae using to search and locate suitable substrates? To determine if any nuchal organs are present in siboglinid larvae, we studied the head and sensory apparatus in successive larval stages in a frenulate, Siboglinum fiordicum (Webb, 1963), using transmission electron microscopy and immunocytochemistry. In the early trochophore stage, we found an unpaired dorsal organ lying proximal to the posterior prototroch. This organ consists of trochoblast- and "covering" cells. Trochoblasts exhibited serotonin-like immunoreactivity and likely correspond to ciliated supporting cells, where cilia and microvilli project into the olfactory chamber. The "covering" cells are characterized by the presence of large nuclei with numerous pores and thick processes that project into the olfactory chamber, forming the contacts with the trochoblast projections. We have shown for the first time the presence of a nuchal-like organ in annelids as early as the trochophore stage. The presence of this organ in siboglinid trochophores while they are still in the inside the female tube suggests that this structure might be associated with functions other than settlement, such as communication or initiation of the departure from her tube.
Collapse
Affiliation(s)
- Elena Temereva
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | | |
Collapse
|
6
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Levin M. Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds. Front Syst Neurosci 2022; 16:768201. [PMID: 35401131 PMCID: PMC8988303 DOI: 10.3389/fnsys.2022.768201] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology and bioengineering provide the opportunity to create novel embodied cognitive systems (otherwise known as minds) in a very wide variety of chimeric architectures combining evolved and designed material and software. These advances are disrupting familiar concepts in the philosophy of mind, and require new ways of thinking about and comparing truly diverse intelligences, whose composition and origin are not like any of the available natural model species. In this Perspective, I introduce TAME-Technological Approach to Mind Everywhere-a framework for understanding and manipulating cognition in unconventional substrates. TAME formalizes a non-binary (continuous), empirically-based approach to strongly embodied agency. TAME provides a natural way to think about animal sentience as an instance of collective intelligence of cell groups, arising from dynamics that manifest in similar ways in numerous other substrates. When applied to regenerating/developmental systems, TAME suggests a perspective on morphogenesis as an example of basal cognition. The deep symmetry between problem-solving in anatomical, physiological, transcriptional, and 3D (traditional behavioral) spaces drives specific hypotheses by which cognitive capacities can increase during evolution. An important medium exploited by evolution for joining active subunits into greater agents is developmental bioelectricity, implemented by pre-neural use of ion channels and gap junctions to scale up cell-level feedback loops into anatomical homeostasis. This architecture of multi-scale competency of biological systems has important implications for plasticity of bodies and minds, greatly potentiating evolvability. Considering classical and recent data from the perspectives of computational science, evolutionary biology, and basal cognition, reveals a rich research program with many implications for cognitive science, evolutionary biology, regenerative medicine, and artificial intelligence.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, MA, United States
| |
Collapse
|
8
|
Shmukler YB, Nikishin DA. Non-Neuronal Transmitter Systems in Bacteria, Non-Nervous Eukaryotes, and Invertebrate Embryos. Biomolecules 2022; 12:271. [PMID: 35204771 PMCID: PMC8961645 DOI: 10.3390/biom12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
In 1921, Otto Loewi published his report that ushered in the era of chemical transmission of biological signals. January 2021 marked the 90th anniversary of the birth of Professor Gennady A. Buznikov, who was the first to study the functions of transmitters in embryogenesis. A year earlier it was 60 years since his first publication in this field. These data are a venerable occasion for a review of current knowledge on the mechanisms related to classical transmitters such as 5-hydroxytryptamine, acetylcholine, catecholamines, etc., in animals lacking neural elements and prenervous invertebrate embryos.
Collapse
Affiliation(s)
- Yuri B. Shmukler
- Lab of the Problems of Regeneration, N. K. Koltzov Institute of Developmental Biology RAS, Moscow 119334, Russia;
| | | |
Collapse
|
9
|
Moroz LL. Multiple Origins of Neurons From Secretory Cells. Front Cell Dev Biol 2021; 9:669087. [PMID: 34307354 PMCID: PMC8293673 DOI: 10.3389/fcell.2021.669087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
10
|
Zhang B, Yang JW, Han T, Huang DX, Zhao ZH, Feng JQ, Zhou NM, Xie HQ, Wang TM. Identification and characterization of a novel 5-hydroxytryptamine receptor in the sea cucumber Apostichopus japonicus (Selenka). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:367-380. [PMID: 33651924 DOI: 10.1002/jez.2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/07/2022]
Abstract
Serotonin (5-hydroxytryptamine [5-HT]) receptors (5-HTRs) mediate neuroendocrine signaling via interactions with the ligand serotonin (5-HT). The 5-HT signaling system has been well studied in vertebrates, but rarely known in invertebrate animals, especially in the marine invertebrates. In this study, we identified and characterized a novel 5-HTR from the sea cucumber Apostichopus japonicus (Aj5-HT4/6 ). The cloned Aj5-HT4/6 open reading frame comprised 1290 bp and encoded 429 amino acids. Bioinformatic analysis of the receptor indicated that it was a member of the class A of the G protein-coupled receptor family. Further experiments using Aj5-HT4/6 -transfected HEK293 cells demonstrated that treatment with 5-HT could induce rapid internalization of Aj5-HT4/6 fused with enhanced green fluorescent protein from the cell surface into the cytoplasm and triggered a significant increase in levels of the second messenger cAMP as well as mitogen-activated protein kinase phosphorylation in a 5-HT dose-dependent manner. Quantitative real time-polymerase chain reaction demonstrated that Aj5-HT4/6 was predominantly expressed in the muscle and respiratory tree, and its expression was significantly decreased during estivation. Taken together, these results imply that Aj5-HT4/6 is potentially involved in the movement and metabolism of the sea cucumber.
Collapse
Affiliation(s)
- Bing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jing-Wen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - De-Xiang Huang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zi-Hao Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jia-Qian Feng
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Nai-Ming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Qing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian-Ming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
11
|
D’Aniello E, Paganos P, Anishchenko E, D’Aniello S, Arnone MI. Comparative Neurobiology of Biogenic Amines in Animal Models in Deuterostomes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.587036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Abstract
Selective serotonin reuptake inhibitor (SSRI) drugs, targeting serotonin transport, are widely used. A puzzling and biomedically important phenomenon concerns the persistent sexual dysfunction following SSRI use seen in some patients. What could be the mechanism of a persistent physiological state brought on by a transient exposure to serotonin transport blockers? In this study, we briefly review the clinical facts concerning this side effect of serotonin reuptake inhibitors and suggest a possible mechanism. Bioelectric circuits (among neural or non-neural cells) could persistently maintain alterations of bioelectric cell properties (resting potential), resulting in long-term changes in electrophysiology and signaling. We present new data revealing this phenomenon in planarian flatworms, in which brief SSRI exposures induce long-lasting changes in resting potential profile. We also briefly review recent data linking neurotransmitter signaling to developmental bioelectrics. Further study of tissue bioelectric memory could enable the design of ionoceutical interventions to counteract side effects of SSRIs and similar drugs.
Collapse
Affiliation(s)
- David Healy
- Hergest Unit, Department of Psychiatry, Bangor University, Bangor, Wales
| | - Joshua LaPalme
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| |
Collapse
|
13
|
Ivashkin E, Melnikova V, Kurtova A, Brun NR, Obukhova A, Khabarova MY, Yakusheff A, Adameyko I, Gribble KE, Voronezhskaya EE. Transglutaminase Activity Determines Nuclear Localization of Serotonin Immunoreactivity in the Early Embryos of Invertebrates and Vertebrates. ACS Chem Neurosci 2019; 10:3888-3899. [PMID: 31291540 DOI: 10.1021/acschemneuro.9b00346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serotonin (5-HT) is a key player in many physiological processes in both the adult organism and developing embryo. One of the mechanisms for 5-HT-mediated effects is covalent binding of 5-HT to the target proteins catalyzed by transglutaminases (serotonylation). Despite the implication in a variety of physiological processes, the involvement of serotonylation in embryonic development remains unclear. Here we tested the hypothesis that 5-HT serves as a substrate for transglutaminase-mediated transamidation of the nuclear proteins in the early embryos of both vertebrates and invertebrates. For this, we demonstrated that the level of serotonin immunoreactivity (5-HT-ir) in cell nuclei increases upon the elevation of 5-HT concentration in embryos of sea urchins, mollusks, and teleost fish. Consistently, pharmacological inhibition of transglutaminase activity resulted in the reduction of both brightness and nuclear localization of anti-5-HT staining. We identified specific and bright 5-HT-ir within nuclei attributed to a subset of different cell types: ectodermal and endodermal, macro- and micromeres, and blastoderm. Western blot and dot blot confirmed the presence of 5-HT-ir epitopes in the normal embryos of all the species examined. The experimental elevation of 5-HT level led to the enhancement of 5-HT-ir-related signal on blots in a species-specific manner. The obtained results demonstrate that 5-HT is involved in transglutaminase-dependent monoaminylation of nuclear proteins and suggest nuclear serotonylation as a possible regulatory mechanism during early embryonic development. The results reveal that this pathway is conserved in the development of both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Evgeny Ivashkin
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | - Victoria Melnikova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anastasia Kurtova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadja R. Brun
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Alexandra Obukhova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina Yu. Khabarova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander Yakusheff
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Molecular Neurosciences, Center of Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | - Elena E. Voronezhskaya
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
14
|
Ding K, Zhang L, Zhang T, Yang H, Brinkman R. The Effect of Melatonin on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. Front Physiol 2019; 10:221. [PMID: 30941049 PMCID: PMC6433841 DOI: 10.3389/fphys.2019.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Melatonin is a highly conserved hormone in evolutionary history. It occurs in numerous organisms and plays a role in the endocrine and immune systems. Locomotor behavior is a basic behavior in animals and is an important indicator of circadian rhythms, which are coordinated by the nervous and endocrine systems. To date, the effect of melatonin on locomotor behavior has been studied in vertebrates, including syrian hamsters, sparrows, rats, zebrafish, goldfish, and flatworms. However, there have been few studies of the effects of melatonin on locomotor behavior in marine invertebrates. The goals of present study were to show the existence of melatonin in the sea cucumber Apostichopus japonicus and to evaluate its effect on locomotor activity. In addition, muscle tissues from control and melatonin-treated sea cucumbers were tested using ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to determine the changes of metabolic activity in muscle. Melatonin was present in the coelomic fluid of A. japonicus at a concentration of ∼135.0 ng/L. The total distance traveled and number steps taken over 9 h after melatonin administration decreased with increasing concentration of the melatonin dose. Mean and maximum velocity of movement and stride length and stride frequency also decreased, but their differences were not statistically significant. Overall, these results suggest that melatonin administration had a sedative effect on A. japonicus. The levels of 22 different metabolites were altered in the muscle tissues of melatonin-treated sea cucumbers. Serotonin, 9-cis retinoic acid, all-trans retinoic acid, flavin mononucleotide in muscles were downregulated after melatonin administration. Moreover, a high free fatty acid (FFA) concentration and a decrease in the adenosine 5′-triphosphate (ATP) concentration in the muscle tissues of the melatonin-treated group were detected as well. These results suggest that the sedative effect of melatonin involves some other metabolic pathways, and the reduced locomotor modulator—serotonin, inhibited fatty acid oxidation and disturbed oxidative phosphorylation are potential physiological mechanisms that result in the inhibitory effect of melatonin on locomotion in sea cucumbers.
Collapse
Affiliation(s)
- Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Richard Brinkman
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
15
|
Levin M, Pietak AM, Bischof J. Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Semin Cell Dev Biol 2019; 87:125-144. [PMID: 29635019 PMCID: PMC6234102 DOI: 10.1016/j.semcdb.2018.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Planarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field. We then review recent progress in understanding of the physiological control of an endogenous, bioelectric pattern memory that guides regeneration, and how modulating this memory can permanently alter the flatworm's target morphology. Finally, we focus on computational approaches that complement reductive pathway analysis with synthetic, systems-level understanding of morphological decision-making. We analyze existing models of planarian pattern control and highlight recent successes and remaining knowledge gaps in this interdisciplinary frontier field.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States.
| | - Alexis M Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
16
|
Nikishin DA, Khramova YV, Bagayeva TS, Semenova ML, Shmukler YB. Expression of Components of the Serotonergic System in Folliculogenesis and Preimplantation Development in Mice. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418030062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Valero-Gracia A, Marino R, Crocetta F, Nittoli V, Tiozzo S, Sordino P. Comparative localization of serotonin-like immunoreactive cells in Thaliacea informs tunicate phylogeny. Front Zool 2016; 13:45. [PMID: 27708681 PMCID: PMC5041399 DOI: 10.1186/s12983-016-0177-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Thaliaceans is one of the understudied classes of the phylum Tunicata. In particular, their phylogenetic relationships remain an issue of debate. The overall pattern of serotonin (5-HT) distribution is an excellent biochemical trait to interpret internal relationships at order level. In the experiments reported here we compared serotonin-like immunoreactivity at different life cycle stages of two salpid, one doliolid, and one pyrosomatid species. This multi-species comparison provides new neuroanatomical data for better resolving the phylogeny of the class Thaliacea. RESULTS Adults of all four examined thaliacean species exhibited serotonin-like immunoreactivity in neuronal and non-neuronal cell types, whose anatomical position with respect to the nervous system is consistently identifiable due to α-tubulin immunoreactivity. The results indicate an extensive pattern that is consistent with the presence of serotonin in cell bodies of variable morphology and position, with some variation within and among orders. Serotonin-like immunoreactivity was not found in immature forms such as blastozooids (Salpida), tadpole larvae (Doliolida) and young zooids (Pyrosomatida). CONCLUSIONS Comparative anatomy of serotonin-like immunoreactivity in all three thaliacean clades has not been reported previously. These results are discussed with regard to studies of serotonin-like immunoreactivity in adult ascidians. Lack of serotonin-like immunoreactivity in the endostyle of Salpida and Doliolida compared to Pyrosomella verticillata might be the result of secondary loss of serotonin control over ciliary beating and mucus secretion. These data, when combined with other plesiomorphic characters, support the hypothesis that Pyrosomatida is basal to these clades within Phlebobranchiata and that Salpida and Doliolida constitute sister-groups.
Collapse
Affiliation(s)
- Alberto Valero-Gracia
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Fabio Crocetta
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, GR-19013 Anavyssos, Greece
| | - Valeria Nittoli
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Stefano Tiozzo
- Observatoire Océanographique, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Biologie du Développement de Villefranche-sur-mer, 06230 Villefranche-sur-Mer, France
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
18
|
Moroz LL, Kohn AB. Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150041. [PMID: 26598724 PMCID: PMC4685580 DOI: 10.1098/rstb.2015.0041] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 12/29/2022] Open
Abstract
There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes. Genomics and metabolomics data from basal metazoans suggest that neural signalling evolved independently in ctenophores and cnidarians/bilaterians. This polygenesis hypothesis explains the lack of pan-neuronal and pan-synaptic genes across metazoans, including remarkable examples of lineage-specific evolution of neurogenic and signalling molecules as well as synaptic components. Sponges and placozoans are two lineages without neural and muscular systems. The possibility of secondary loss of neurons and synapses in the Porifera/Placozoa clades is a highly unlikely and less parsimonious scenario. We conclude that acetylcholine, serotonin, histamine, dopamine, octopamine and gamma-aminobutyric acid (GABA) were recruited as transmitters in the neural systems in cnidarian and bilaterian lineages. By contrast, ctenophores independently evolved numerous secretory peptides, indicating extensive adaptations within the clade and suggesting that early neural systems might be peptidergic. Comparative analysis of glutamate signalling also shows numerous lineage-specific innovations, implying the extensive use of this ubiquitous metabolite and intercellular messenger over the course of convergent and parallel evolution of mechanisms of intercellular communication. Therefore: (i) we view a neuron as a functional character but not a genetic character, and (ii) any given neural system cannot be considered as a single character because it is composed of different cell lineages with distinct genealogies, origins and evolutionary histories. Thus, when reconstructing the evolution of nervous systems, we ought to start with the identification of particular cell lineages by establishing distant neural homologies or examples of convergent evolution. In a corollary of the hypothesis of the independent origins of neurons, our analyses suggest that both electrical and chemical synapses evolved more than once.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Andrea B Kohn
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| |
Collapse
|
19
|
Expression and functional activity of neurotransmitter system components in sea urchins' early development. ZYGOTE 2015; 24:206-18. [PMID: 25920999 DOI: 10.1017/s0967199415000040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reverse-transcription polymerase chain reaction (RT-PCR) investigation of the expression of the components supposedly taking part in serotonin regulation of the early development of Paracentrotus lividus has shown the presence of transcripts of five receptors, one of which has conservative amino acid residues characteristic of monoaminergic receptors. At the early stages of embryogenesis the expressions of serotonin transporter (SERT) and noradrenaline transporter (NET) were also recognized. The activities of the enzymes of serotonin synthesis and serotonin transporter were shown using immunohistochemistry and incubation with para-chlorophenylalanine (PСРА) and 5-hydroxytryptophan (HTP). Pharmacological experiments have shown a preferential cytostatic activity of ligands characterized as mammalian 5-hydroxytryptamine (5-HT)1-antagonists. On the basis of the sum of the data from molecular biology and embryo physiological experiments, it is suggested that metabotropic serotonin receptors and membrane transporters take part in the regulatory processes of early sea urchin embryogenesis.
Collapse
|
20
|
Kotnik Halavaty K, Bader M, Bashammakh S, Seyfried S. Serotonin is required for pharyngeal arch morphogenesis in zebrafish. SCIENCEOPEN RESEARCH 2014. [DOI: 10.14293/s2199-1006.1.sor-life.awpdlz.v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Serotonin (5-HT) is not only a neurotransmitter but also a mediator of developmental processes in vertebrates. In this study, we analyzed the importance of 5-HT during zebrafish development. The expression patterns of three zebrafish tryptophan hydroxylase isoforms (Tph1A, Tph1B, Tph2), the rate-limiting enzymes in 5-HT synthesis, were analyzed and compared to the appearance and distribution of 5-HT. 5-HT was found in the raphe nuclei correlating with tph2 expression and in the pineal gland correlating with tph1a and tph2 expression. tph2 deficient fish generated with antisense morpholino oligonucleotides exhibited morphogenesis defects during pharyngeal arch development. The correct specification of neural crest cells was not affected in tph2 morphants as shown by the expression of early markers, but the survival and differentiation of pharyngeal arch progenitor cells were impaired. An organizing role of 5-HT in pharyngeal arch morphogenesis was suggested by a highly regular pattern of 5-HT positive cells in this tissue. Moreover, the 5-HT2B receptor was expressed in the pharyngeal arches and its pharmacological inhibition also induced defects in pharyngeal arch morphogenesis. These results support an important role of Tph2-derived serotonin as a morphogenetic factor in the development of neural crest derived tissues.
Collapse
|
21
|
Janušonis S. Serotonin dynamics in and around the central nervous system: is autism solvable without fundamental insights? Int J Dev Neurosci 2014; 39:9-15. [PMID: 24886833 DOI: 10.1016/j.ijdevneu.2014.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 12/15/2022] Open
Abstract
Altered serotonin (5-hydroxytryptamine, 5-HT) signaling has been implicated in some developmental abnormalities of autism spectrum disorder (ASD). However, the presumed role of 5-HT in ASD raises new questions in fundamental neuroscience. Specifically, it is not clear if the current piecemeal approach to 5-HT signaling in the mammalian body is effective and whether new conceptual approaches may be required. This review briefly discusses 5-HT production and circulation in the central nervous system and outside of it, especially with regard to ASD, and proposes a more encompassing approach that questions the utility of the "neurotransmitter" concept. It then introduces the idea of a generalized 5-HT packet that may offer insights into possible links between serotonergic varicosities and blood platelets. These approaches have theoretical significance, but they are also well positioned to advance our understanding of some long-standing problems in autism research.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA.
| |
Collapse
|
22
|
Shmukler YB, Lauder JM. Gennady A. Buznikov, PhD (1931-2012): father of neurotransmitters as developmental signals. Dev Neurosci 2013; 35:359-60. [PMID: 24081109 DOI: 10.1159/000354226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yuri B Shmukler
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Group of Embryophysiology, Moscow, Russian Federation
| | | |
Collapse
|
23
|
Lleras-Forero L, Tambalo M, Christophorou N, Chambers D, Houart C, Streit A. Neuropeptides: developmental signals in placode progenitor formation. Dev Cell 2013; 26:195-203. [PMID: 23906067 PMCID: PMC3748341 DOI: 10.1016/j.devcel.2013.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 02/20/2013] [Accepted: 07/02/2013] [Indexed: 02/02/2023]
Abstract
Few families of signaling factors have been implicated in the control of development. Here, we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in both chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors, with one of the signals being somatostatin. Somatostatin controls ectodermal expression of nociceptin, and both peptides regulate Pax6 in lens and olfactory progenitors. Consequently, loss of somatostatin and nociceptin signaling leads to severe reduction of lens formation. Our findings not only uncover these neuropeptides as developmental signals but also identify a long-sought-after mechanism that initiates Pax6 in placode progenitors and may explain the ancient evolutionary origin of neuropeptides, predating a complex nervous system.
Collapse
Affiliation(s)
- Laura Lleras-Forero
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Tower Wing, Floor 27, London SE1 9RT, UK
| | - Monica Tambalo
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Tower Wing, Floor 27, London SE1 9RT, UK
| | - Nicolas Christophorou
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Tower Wing, Floor 27, London SE1 9RT, UK
| | - David Chambers
- MRC Centre for Developmental Neurobiology, King’s College London, New Hunts House, London SE1 1UL, UK
| | - Corinne Houart
- MRC Centre for Developmental Neurobiology, King’s College London, New Hunts House, London SE1 1UL, UK
| | - Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Tower Wing, Floor 27, London SE1 9RT, UK
| |
Collapse
|
24
|
Camicia F, Herz M, Prada L, Kamenetzky L, Simonetta S, Cucher M, Bianchi J, Fernández C, Brehm K, Rosenzvit M. The nervous and prenervous roles of serotonin in Echinococcus spp. Int J Parasitol 2013; 43:647-59. [DOI: 10.1016/j.ijpara.2013.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 11/26/2022]
|
25
|
Development of a Streamlined Rat Whole Embryo Culture Assay for Classifying Teratogenic Potential of Pharmaceutical Compounds. Toxicol Sci 2012; 127:535-46. [DOI: 10.1093/toxsci/kfs112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
26
|
Walther DJ, Stahlberg S, Vowinckel J. Novel roles for biogenic monoamines: from monoamines in transglutaminase-mediated post-translational protein modification to monoaminylation deregulation diseases. FEBS J 2011; 278:4740-55. [DOI: 10.1111/j.1742-4658.2011.08347.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Foster HR, Burton GA, Basu N, Werner EE. Chronic exposure to fluoxetine (Prozac) causes developmental delays in Rana pipiens larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:2845-2850. [PMID: 20836066 DOI: 10.1002/etc.345] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/14/2010] [Accepted: 08/11/2010] [Indexed: 05/29/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are among the many pharmaceuticals detected in aquatic ecosystems. Although the acute effects of SSRIs on select organisms have been reported, little is understood about the chronic effects of these drugs on amphibians, which are particularly sensitive to environmental pollutants. Serotonin plays important roles in many physiological functions, including a wide array of developmental processes. Exposure to SSRIs during development may cause developmental complications in a variety of organisms, but little is known about the degree of exposure necessary to cause deleterious effects. Here, we sought to gain a better understanding of the effects of SSRIs on amphibian development by use of a combined laboratory and outdoor mesocosm study. Tadpoles in a laboratory setting were exposed to a low (0.029 µg/L) and a high (0.29 µg/L) concentration of the common SSRI fluoxetine from stages 21 and 22 through completion of metamorphosis. Tadpoles in outdoor mesocosms were exposed to fluoxetine concentrations ranging from 0.1 to 0.3 µg/L. Exposed tadpoles in the laboratory showed delayed development compared with controls when stage was assessed throughout the experiment. Control tadpoles also gained weight faster than treatment tadpoles, which may be explained by reduced food intake. Mesocosm tadpoles exhibited similar trends, but no significant differences were detected. These results indicate that ecologically relevant levels of fluoxetine may cause developmental delays in amphibians.
Collapse
Affiliation(s)
- Hannah R Foster
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
28
|
Squires LN, Rubakhin SS, Wadhams AA, Talbot KN, Nakano H, Moroz LL, Sweedler JV. Serotonin and its metabolism in basal deuterostomes: insights from Strongylocentrotus purpuratus and Xenoturbella bocki. ACTA ACUST UNITED AC 2010; 213:2647-54. [PMID: 20639426 DOI: 10.1242/jeb.042374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Serotonin (5-HT), an important molecule in metazoans, is involved in a range of biological processes including neurotransmission and neuromodulation. Both its creation and release are tightly regulated, as is its removal. Multiple neurochemical pathways are responsible for the catabolism of 5-HT and are phyla specific; therefore, by elucidating these catabolic pathways we glean greater understanding of the relationships and origins of various transmitter systems. Here, 5-HT catabolic pathways were studied in Strongylocentrotus purpuratus and Xenoturbella bocki, two organisms occupying distinct positions in deuterostomes. The 5-HT-related compounds detected in these organisms were compared with those reported in other phyla. In S. purpuratus, 5-HT-related metabolites include N-acetyl serotonin, gamma-glutamyl-serotonin and 5-hydroxyindole acetic acid; the quantity and type were found to vary based on the specific tissues analyzed. In addition to these compounds, varying levels of tryptamine were also seen. Upon addition of a 5-HT precursor and a monoamine oxidase inhibitor, 5-HT itself was detected. In similar experiments using X. bocki tissues, the 5-HT-related compounds found included 5-HT sulfate, gamma-glutamyl-serotonin and 5-hydroxyindole acetic acid, as well as 5-HT and tryptamine. The sea urchin metabolizes 5-HT in a manner similar to both gastropod mollusks, as evidenced by the detection of gamma-glutamyl-serotonin, and vertebrates, as indicated by the presence of 5-hydroxyindole acetic acid and N-acetyl serotonin. In contrast, 5-HT metabolism in X. bocki appears more similar to common protostome 5-HT catabolic pathways.
Collapse
Affiliation(s)
- Leah N Squires
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Shmukler YB. A “micromere model” of cell-cell interactions in sea urchin early embryos. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910030085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Shishova M, Lindberg S. A new perspective on auxin perception. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:417-22. [PMID: 20176409 DOI: 10.1016/j.jplph.2009.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 05/08/2023]
Abstract
An important question in modern plant biology concerns the mechanisms of auxin perception. Despite the recently discovered soluble receptor, the F-box protein TIR1, there is no doubt that another type of signal perception exists, and is linked to the plasma membrane. Two models for the receptor have been suggested: either the receptor includes a protein kinase, or it is coupled with a G-protein. We propose a third model, acting through Ca(2+)-channels in the plasma membrane. The model is based on the revealed rapid auxin-induced reactions, including changes in the membrane potential, shifts in cytosol concentration of Ca(2+) and H(+) and modulation of cell sensitivity to hormones by the external Ca(2+) concentration. Detailed inhibitor analysis with both living cells and isolated plasma membranes show that auxin might directly stimulate Ca(2+) transport through the plasma membrane. A hypothetical scheme of auxin perception at the plasma membrane is suggested together with further transduction events. In addition, comparative analyses of auxin and serotonin perceptions are provided.
Collapse
Affiliation(s)
- Maria Shishova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | | |
Collapse
|
31
|
Díaz-Balzac CA, Mejías W, Jiménez LB, García-Arrarás JE. The catecholaminergic nerve plexus of Holothuroidea. ZOOMORPHOLOGY 2010; 129:99-109. [PMID: 20827375 DOI: 10.1007/s00435-010-0103-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Catecholamines have been extensively reported to be present in most animal groups, including members of Echinodermata. In this study, we investigated the presence and distribution of catecholaminergic nerves in two members of the Holothuroidea, Holothuria glaberrima (Selenka, 1867) (Aspidochirotida, Holothuroidea) and Holothuria mexicana (Ludwig, 1875) (Aspidochirotida, Holothuroidea), by using induced fluorescence for catecholamines on tissue sections and immunohistochemistry with an antibody that recognizes tyrosine hydroxylase. The presence of a catecholaminergic nerve plexus similar in distribution and extension to those previously reported in other members of Echinodermata was observed. This plexus, composed of cells and fibers, is found in the ectoneural component of the echinoderm nervous system and is continuous with the circumoral nerve ring and the radial nerves, tentacular nerves, and esophageal plexus. In addition, fluorescent nerves in the tube feet are continuous with the catecholaminergic components of the radial nerve cords. This is the first comprehensive report on the presence and distribution of catecholamines in the nervous system of Holothuroidea. The continuity and distribution of the catecholaminergic plexus strengthen the notion that the catecholaminergic cells are interneurons, since these do not form part of the known sensory or motor circuits and the fluorescence is confined to organized nervous tissue.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Biology, University of Puerto Rico, Río Piedras Campus, Box 23360, Río Piedras, PR 00931-3360, USA
| | | | | | | |
Collapse
|
32
|
Buznikov G, Nikitina L, Bezuglov V, Francisco M, Boysen G, Obispo-Peak I, Peterson R, Weiss E, Schuel H, Temple B, Morrow A, Lauder J. A putative 'pre-nervous' endocannabinoid system in early echinoderm development. Dev Neurosci 2010; 32:1-18. [PMID: 19907129 PMCID: PMC2866581 DOI: 10.1159/000235758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 08/17/2009] [Indexed: 01/20/2023] Open
Abstract
Embryos and larvae of sea urchins (Lytechinus variegatus, Strongylocentrotus droebachiensis, Strongylocentrotus purpuratus, Dendraster excentricus), and starfish (Pisaster ochraceus) were investigated for the presence of a functional endocannabinoid system. Anandamide (arachidonoyl ethanolamide, AEA), was measured in early L. variegatus embryos by liquid chromatography/mass spectrometry. AEA showed a strong developmental dynamic, increasing more than 5-fold between the 8-16 cell and mid-blastula 2 stage. 'Perturb-and-rescue' experiments in different sea urchin species and starfish showed that AEA blocked transition of embryos from the blastula to the gastrula stage, but had no effect on cleavage divisions, even at high doses. The non-selective cannabinoid receptor agonist, CP55940, had similar effects, but unlike AEA, also blocked cleavage divisions. CB1 antagonists, AEA transport inhibitors, and the cation channel transient membrane potential receptor V1 (TrpV1) agonist, arachidonoyl vanillic acid (arvanil), as well as arachidonoyl serotonin and dopamine (AA-5-HT, AA-DA) acted as rescue substances, partially or totally preventing abnormal embryonic phenotypes elicited by AEA or CP55940. Radioligand binding of [(3)H]CP55940 to membrane preparations from embryos/larvae failed to show significant binding, consistent with the lack of CB receptor orthologs in the sea urchin genome. However, when binding was conducted on whole cell lysates, a small amount of [(3)H]CP55940 binding was observed at the pluteus stage that was displaced by the CB2 antagonist, SR144528. Since AEA is known to bind with high affinity to TrpV1 and to certain G-protein-coupled receptors (GPCRs), the ability of arvanil, AA-5-HT and AA-DA to rescue embryos from AEA teratogenesis suggests that in sea urchins AEA and other endocannabinoids may utilize both Trp and GPCR orthologs. This possibility was explored using bioinformatic and phylogenetic tools to identify candidate orthologs in the S. purpuratus sea urchin genome. Candidate TrpA1 and TrpV1 orthologs were identified. The TrpA1 ortholog fell within a monophyletic clade, including both vertebrate and invertebrate orthologs, whereas the TrpV1 orthologs fell within two distinct TrpV-like invertebrate clades. One of the sea urchin TrpV orthologs was more closely related to the vertebrate epithelial calcium channels (TrpV5-6 family) than to the vertebrate TrpV1-4 family, as determined using profile-hidden Markov model (HMM) searches. Candidate dopamine and adrenergic GPCR orthologs were identified in the sea urchin genome, but no cannabinoid GPCRs were found, consistent with earlier studies. Candidate dopamine D(1), D(2) or alpha(1)-adrenergic receptor orthologs were identified as potential progenitors to the vertebrate cannabinoid receptors using HMM searches, depending on whether the multiple sequence alignment of CB receptor sequences consisted only of urochordate and cephalochordate sequences or also included vertebrate sequences.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Chromatography, Liquid
- Computational Biology
- Dose-Response Relationship, Drug
- Endocannabinoids
- Immunohistochemistry
- Mass Spectrometry
- Nerve Net/drug effects
- Nerve Net/embryology
- Nerve Net/metabolism
- Phylogeny
- Polyunsaturated Alkamides/metabolism
- Polyunsaturated Alkamides/pharmacology
- Radioligand Assay
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Sea Urchins/drug effects
- Sea Urchins/embryology
- Sea Urchins/metabolism
- Starfish/drug effects
- Starfish/embryology
- Starfish/metabolism
Collapse
Affiliation(s)
- G.A. Buznikov
- Department of Cell and Developmental Biology, (UNCSM)
| | - L.A. Nikitina
- Department of Cell and Developmental Biology, (UNCSM)
| | - V.V. Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - G. Boysen
- Department of Environmental Sciences and Engineering, and Center of Environmental Health and Susceptibility, School of Public Health, University of North Carolina, Chapel Hill, N.C., USA
| | | | - R.E. Peterson
- Department of Cell and Developmental Biology, (UNCSM)
- Confocal Imaging Core, Neuroscience Center, UNCSM
| | - E.R. Weiss
- Department of Cell and Developmental Biology, (UNCSM)
| | - H. Schuel
- Division of Anatomy and Cell Biology, Department of Pathology and Anatomical Sciences, School of Medicine, State University of New York at Buffalo, Buffalo, N.Y., USA
| | - B.R.S Temple
- R.L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, N.C., USA
| | - A.L. Morrow
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine (UNCSM)
| | - J.M. Lauder
- Department of Cell and Developmental Biology, (UNCSM)
| |
Collapse
|
33
|
Grohmann M, Hammer P, Walther M, Paulmann N, Büttner A, Eisenmenger W, Baghai TC, Schüle C, Rupprecht R, Bader M, Bondy B, Zill P, Priller J, Walther DJ. Alternative splicing and extensive RNA editing of human TPH2 transcripts. PLoS One 2010; 5:e8956. [PMID: 20126463 PMCID: PMC2813293 DOI: 10.1371/journal.pone.0008956] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 01/08/2010] [Indexed: 11/19/2022] Open
Abstract
Brain serotonin (5-HT) neurotransmission plays a key role in the regulation of mood and has been implicated in a variety of neuropsychiatric conditions. Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the biosynthesis of 5-HT. Recently, we discovered a second TPH isoform (TPH2) in vertebrates, including man, which is predominantly expressed in brain, while the previously known TPH isoform (TPH1) is primarly a non-neuronal enzyme. Overwhelming evidence now points to TPH2 as a candidate gene for 5-HT-related psychiatric disorders. To assess the role of TPH2 gene variability in the etiology of psychiatric diseases we performed cDNA sequence analysis of TPH2 transcripts from human post mortem amygdala samples obtained from individuals with psychiatric disorders (drug abuse, schizophrenia, suicide) and controls. Here we show that TPH2 exists in two alternatively spliced variants in the coding region, denoted TPH2a and TPH2b. Moreover, we found evidence that the pre-mRNAs of both splice variants are dynamically RNA-edited in a mutually exclusive manner. Kinetic studies with cell lines expressing recombinant TPH2 variants revealed a higher activity of the novel TPH2B protein compared with the previously known TPH2A, whereas RNA editing was shown to inhibit the enzymatic activity of both TPH2 splice variants. Therefore, our results strongly suggest a complex fine-tuning of central nervous system 5-HT biosynthesis by TPH2 alternative splicing and RNA editing. Finally, we present molecular and large-scale linkage data evidencing that deregulated alternative splicing and RNA editing is involved in the etiology of psychiatric diseases, such as suicidal behaviour.
Collapse
Affiliation(s)
- Maik Grohmann
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Paul Hammer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria Walther
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nils Paulmann
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany
| | - Andreas Büttner
- Institute for Legal Medicine, Ludwig Maximilians University, Munich, Germany
| | | | - Thomas C. Baghai
- Department of Psychiatry, Ludwig Maximilians University, Munich, Germany
| | - Cornelius Schüle
- Department of Psychiatry, Ludwig Maximilians University, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry, Ludwig Maximilians University, Munich, Germany
| | - Michael Bader
- Laboratory of Molecular Biology of Peptide Hormones, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Brigitta Bondy
- Department of Psychiatry, Ludwig Maximilians University, Munich, Germany
| | - Peter Zill
- Department of Psychiatry, Ludwig Maximilians University, Munich, Germany
| | - Josef Priller
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Diego J. Walther
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
34
|
Tiozzo S, Murray M, Degnan BM, De Tomaso AW, Croll RP. Development of the neuromuscular system during asexual propagation in an invertebrate chordate. Dev Dyn 2009; 238:2081-94. [DOI: 10.1002/dvdy.22023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
Reisoli E, De Lucchini S, Anelli T, Biagioni S, Nardi I, Ori M. Overexpression of 5-HT2B receptor results in retinal dysplasia and defective ocular morphogenesis in Xenopus embryos. Brain Res 2008; 1244:32-9. [DOI: 10.1016/j.brainres.2008.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
36
|
Pavone LM, Spina A, Muto RL, Santoro D, Mastellone V, Avallone L. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT. Biochem Biophys Res Commun 2008; 377:419-422. [DOI: 10.1016/j.bbrc.2008.09.152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
|
37
|
Buznikov GA, Nikitina LA, Seidler FJ, Slotkin TA, Bezuglov VV, Milosević I, Lazarević L, Rogac L, Ruzdijić S, Rakić LM. Amyloid precursor protein 96-110 and beta-amyloid 1-42 elicit developmental anomalies in sea urchin embryos and larvae that are alleviated by neurotransmitter analogs for acetylcholine, serotonin and cannabinoids. Neurotoxicol Teratol 2008; 30:503-9. [PMID: 18565728 PMCID: PMC2579926 DOI: 10.1016/j.ntt.2008.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/28/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
Amyloid precursor protein (APP) is overexpressed in the developing brain and portions of its extracellular domain, especially amino acid residues 96-110, play an important role in neurite outgrowth and neural cell differentiation. In the current study, we evaluated the developmental abnormalities caused by administration of exogenous APP(96-110) in sea urchin embryos and larvae, which, like the developing mammalian brain, utilize acetylcholine and other neurotransmitters as morphogens; effects were compared to those of beta-amyloid 1-42 (Abeta42), the neurotoxic APP fragment contained within neurodegenerative plaques in Alzheimer's Disease. Although both peptides elicited dysmorphogenesis, Abeta42 was far more potent; in addition, whereas Abeta42 produced abnormalities at developmental stages ranging from early cleavage divisions to the late pluteus, APP(96-110) effects were restricted to the intermediate, mid-blastula stage. For both agents, anomalies were prevented or reduced by addition of lipid-permeable analogs of acetylcholine, serotonin or cannabinoids; physostigmine, a carbamate-derived cholinesterase inhibitor, was also effective. In contrast, agents that act on NMDA receptors (memantine) or alpha-adrenergic receptors (nicergoline), and that are therapeutic in Alzheimer's Disease, were themselves embryotoxic, as was tacrine, a cholinesterase inhibitor from a different chemical class than physostigmine. Protection was also provided by agents acting downstream from receptor-mediated events: increasing cyclic AMP with caffeine or isobutylmethylxanthine, or administering the antioxidant, a-tocopherol, were all partially effective. Our findings reinforce a role for APP in development and point to specific interactions with neurotransmitter systems that act as morphogens in developing sea urchins as well as in the mammalian brain.
Collapse
Affiliation(s)
- Gennady A Buznikov
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710-3813, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Janusonis S. Origin of the blood hyperserotonemia of autism. Theor Biol Med Model 2008; 5:10. [PMID: 18498654 PMCID: PMC2488334 DOI: 10.1186/1742-4682-5-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/22/2008] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Research in the last fifty years has shown that many autistic individuals have elevated serotonin (5-hydroxytryptamine, 5-HT) levels in blood platelets. This phenomenon, known as the platelet hyperserotonemia of autism, is considered to be one of the most well-replicated findings in biological psychiatry. Its replicability suggests that many of the genes involved in autism affect a small number of biological networks. These networks may also play a role in the early development of the autistic brain. RESULTS We developed an equation that allows calculation of platelet 5-HT concentration as a function of measurable biological parameters. It also provides information about the sensitivity of platelet 5-HT levels to each of the parameters and their interactions. CONCLUSION The model yields platelet 5-HT concentrations that are consistent with values reported in experimental studies. If the parameters are considered independent, the model predicts that platelet 5-HT levels should be sensitive to changes in the platelet 5-HT uptake rate constant, the proportion of free 5-HT cleared in the liver and lungs, the gut 5-HT production rate and its regulation, and the volume of the gut wall. Linear and non-linear interactions among these and other parameters are specified in the equation, which may facilitate the design and interpretation of experimental studies.
Collapse
Affiliation(s)
- Skirmantas Janusonis
- Department of Psychology, University of California, Santa Barbara, CA 93106-9660, USA.
| |
Collapse
|
39
|
Basu B, Desai R, Balaji J, Chaerkady R, Sriram V, Maiti S, Panicker MM. Serotonin in pre-implantation mouse embryos is localized to the mitochondria and can modulate mitochondrial potential. Reproduction 2008; 135:657-69. [PMID: 18304982 DOI: 10.1530/rep-07-0577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serotonin is reported to be present in early embryos of many species and plays an important role in early patterning. Since it is a fluorophore, it can be directly visualized using fluorescence microscopy. Here, we use three-photon microscopy to image serotonin in live pre-implantation mouse embryos. We find that it is present as puncta averaging 1.3 square microns and in concentrations as high as 442 mM. The observed serotonin puncta were found to co-localize with mitochondria. Live embryos pre-incubated with serotonin showed a higher mitochondrial potential, indicating that it can modulate mitochondrial potential. Pre-implantation mouse embryos were also examined at various developmental stages for the presence of transcripts of the peripheral and neuronal forms of tryptophan hydroxylase (Tph1 and Tph2 respectively) and the classical serotonin transporter (Slc6a4). Transcripts of Tph2 were seen in oocytes and in two-cell stages, whereas transcripts of Tph1 were not detected at any stage. Transcripts of the transporter, Slc6a4, were present in all pre-implantation stages investigated. These results suggest that serotonin in embryos can arise from a combination of synthesis and uptake from the surrounding milieu.
Collapse
Affiliation(s)
- Basudha Basu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India.
| | | | | | | | | | | | | |
Collapse
|
40
|
Murphy DL, Lesch KP. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 2008; 9:85-96. [DOI: 10.1038/nrn2284] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Buznikov GA, Nikitina LA, Bezuglov VV, Milosević I, Lazarević L, Rogac L, Ruzdijić S, Slotkin TA, Rakić LM. Sea urchin embryonic development provides a model for evaluating therapies against beta-amyloid toxicity. Brain Res Bull 2007; 75:94-100. [PMID: 18158101 DOI: 10.1016/j.brainresbull.2007.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 02/07/2023]
Abstract
Accumulation of beta-amyloid protein is an Alzheimer's disease hallmark but also may be mechanistically involved in neurodegeneration. One of its cleavage peptides, Abeta42, has been used to evaluate the mechanisms underlying amyloid-induced cytotoxicity and targeting of acetylcholine systems. We studied Sphaerechinus granularis sea urchin embryos which utilize acetylcholine and other neurotransmitters as morphogens. At a threshold concentration of 0.1 microM Abeta42, there was damage to the larval skeleton, accumulation of ectodermal cells in the blastocoele and underdevelopment of larval arms. Raising the Abeta42 concentration to 0.2-0.4 microM produced anomalies depending on the stage at which Abeta42 was introduced: at the first cleavage divisions, abnormalities appeared within 1-2 cell cycles; at the mid-blastula stage, the peak period of sensitivity to Abeta42, gastrulation was blocked; at later stages, there was progressive damage to the larval skeleton, digestive tract and larval spicules, as well as regression of larval arms. Each of these anomalies could be offset by the addition of lipid-permeable analogs of acetylcholine (arachidonoyl dimethylaminoethanol), serotonin (arachidonoyl serotonin) and cannabinoids (arachidonoyl vanillylamine), with the greatest activity exhibited by the acetylcholine analog. These results indicate that sea urchin embryos provide a model suitable to characterize the mechanisms underlying the cytotoxicity of Abeta42, as well as providing a system that enables the rapid screening of potential therapeutic interventions. The protection provided by neurotransmitter analogs, especially that for acetylcholine, points to unsuspected advantages of existing therapies that enhance cholinergic function, as well as indicating novel approaches that may prove protective in Alzheimer's disease.
Collapse
|
42
|
Buznikov GA. Preneural transmitters as regulators of embryogenesis. Current state of problem. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Trandaburu T, Trandaburu I. Serotonin (5-hydroxytryptamine, 5-HT) immunoreactive endocrine and neural elements in the chromaffin enteropancreatic system of amphibians and reptiles. Acta Histochem 2007; 109:237-47. [PMID: 17125818 DOI: 10.1016/j.acthis.2006.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 10/03/2006] [Accepted: 10/15/2006] [Indexed: 12/31/2022]
Abstract
The diffuse chromaffin enteropancreatic system of nine species of amphibians (newts, frogs) and reptiles (turtles, lizards, snakes) was investigated immunohistochemically for the presence and topographic distribution of serotonin (5-hydroxytryptamine, 5-HT). The study revealed various numbers of serotonin-producing cells in the pancreas and intestinal epithelium and also immunolabelled nerve profiles in the villi of all species studied. In addition, two different morphological populations of serotonin cells ("open" and "closed") were localized in the functional segments of the intestines in the representative species of all the taxa investigated. Semi-quantitative evaluation of the immunolabelled pancreatic and enteric cells revealed significantly different mean numbers of labelled cells in different amphibian and reptilian taxa, and also between the various successive gut segments of each taxon. The ratio between "open" and "closed" varieties of serotonin cells recorded along the intestines followed a decreasing trend, progressive in lizards and snakes and more abrupt in newts, frogs and turtles. The above findings may help resolve several key stages of the phylogenetic evolution of poikilothermic vertebrates.
Collapse
Affiliation(s)
- Tiberiu Trandaburu
- Laboratory of Histology and Embryology, Faculty of Sciences, University of Pitesti, Targul din Vale 1, 110040 Pitesti, Romania
| | | |
Collapse
|
44
|
Adams DS, Levin M. Inverse drug screens: a rapid and inexpensive method for implicating molecular targets. Genesis 2007; 44:530-40. [PMID: 17078061 PMCID: PMC3142945 DOI: 10.1002/dvg.20246] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identification of gene products that function in some specific process of interest is a common goal in developmental biology. Although use of drug compounds to probe biological systems has a very long history in teratology and toxicology, systematic hierarchical drug screening has not been capitalized upon by the developmental biology community. This "chemical genetics" approach can greatly benefit the study of embryonic and regenerative systems, and we have formalized a strategy for using known pharmacological compounds to implicate specific molecular candidates in any chosen biological phenomenon. Taking advantage of a hierarchical structure that can be imposed on drug reagents in a number of fields such as ion transport, neurotransmitter function, metabolism, and cytoskeleton, any assay can be carried out as a binary search algorithm. This inverse drug screen methodology is much more efficient than exhaustive testing of large numbers of drugs, and reveals the identity of a manageable number of specific molecular candidates that can then be validated and targeted using more expensive and specific molecular reagents. Here, we describe the process of this loss-of-function screen and illustrate its use in uncovering novel bioelectrical and serotonergic mechanisms in embryonic patterning. This technique is an inexpensive and rapid complement to existing molecular screening strategies. Moreover, it is applicable to maternal proteins, and model species in which traditional genetic screens are not feasible, significantly extending the opportunities to identify key endogenous players in biological processes.
Collapse
Affiliation(s)
| | - Michael Levin
- Correspondence to: Michael Levin, Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115.
| |
Collapse
|
45
|
Levin M, Buznikov GA, Lauder JM. Of minds and embryos: left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Dev Neurosci 2006; 28:171-85. [PMID: 16679764 DOI: 10.1159/000091915] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 01/22/2023] Open
Abstract
Serotonin is a clinically important neurotransmitter regulating diverse aspects of cognitive function, sleep, mood, and appetite. Increasingly, it is becoming appreciated that serotonin signaling among non-neuronal cells is a novel patterning mechanism existing throughout diverse phyla. Here, we review the evidence implicating serotonergic signaling in embryonic morphogenesis, including gastrulation, craniofacial and bone patterning, and the generation of left-right asymmetry. We propose two models suggesting movement of neurotransmitter molecules as a novel mechanism for how bioelectrical events may couple to downstream signaling cascades and gene activation networks. The discovery of serotonin-dependent patterning events occurring long before the development of the nervous system opens exciting new avenues for future research in evolutionary, developmental, and clinical biology.
Collapse
Affiliation(s)
- Michael Levin
- The Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | | | |
Collapse
|