1
|
Rinaldi M, Pezone A, Quadrini GI, Abbadessa G, Laezza MP, Passaro ML, Porcellini A, Costagliola C. Targeting shared pathways in tauopathies and age-related macular degeneration: implications for novel therapies. Front Aging Neurosci 2024; 16:1371745. [PMID: 38633983 PMCID: PMC11021713 DOI: 10.3389/fnagi.2024.1371745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The intricate parallels in structure and function between the human retina and the central nervous system designate the retina as a prospective avenue for understanding brain-related processes. This review extensively explores the shared physiopathological mechanisms connecting age-related macular degeneration (AMD) and proteinopathies, with a specific focus on tauopathies. The pivotal involvement of oxidative stress and cellular senescence emerges as key drivers of pathogenesis in both conditions. Uncovering these shared elements not only has the potential to enhance our understanding of intricate neurodegenerative diseases but also sets the stage for pioneering therapeutic approaches in AMD.
Collapse
Affiliation(s)
- Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gaia Italia Quadrini
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Paola Laezza
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | | | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Wouters F, van der Hilst J, Bogie J. Lipids in inflammasome activation and autoinflammatory disorders. J Allergy Clin Immunol 2024; 153:1-11. [PMID: 37871669 DOI: 10.1016/j.jaci.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Autoinflammatory diseases (AIDs) are a group of rare monogenetic disorders characterized by recurrent episodes of fever and systemic inflammation. A major pathologic hallmark of AIDs is excessive inflammasome assembly and activation, often the result of gain-of-function mutations in genes encoding core inflammasome components, including pyrin and cryopyrin. Recent advances in lipidomics have revealed that dysregulated metabolism of lipids such as cholesterol and fatty acids, especially in innate immune cells, exerts complex effects on inflammasome activation and the pathogenesis of AIDs. In this review, we summarize and discuss the impact of lipids and their metabolism on inflammasome activation and the disease pathogenesis of the most common AIDs, including familial Mediterranean fever, cryopyrin-associated periodic syndromes, and mevalonate kinase deficiency. We postulate that lipids hold diagnostic value in AIDs and that dietary and pharmacologic intervention studies could represent a promising approach to attenuate inflammasome activation and AID progression.
Collapse
Affiliation(s)
- Flore Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen van der Hilst
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; Department of Infectious Diseases and Immune Pathology, Jessa General Hospital and Limburg Clinical Research Center, Hasselt, Belgium
| | - Jeroen Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
3
|
Pezzotti G, Adachi T, Imamura H, Bristol DR, Adachi K, Yamamoto T, Kanamura N, Marin E, Zhu W, Kawai T, Mazda O, Kariu T, Waku T, Nichols FC, Riello P, Rizzolio F, Limongi T, Okuma K. In Situ Raman Study of Neurodegenerated Human Neuroblastoma Cells Exposed to Outer-Membrane Vesicles Isolated from Porphyromonas gingivalis. Int J Mol Sci 2023; 24:13351. [PMID: 37686157 PMCID: PMC10488263 DOI: 10.3390/ijms241713351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to elucidate the chemistry of cellular degeneration in human neuroblastoma cells upon exposure to outer-membrane vesicles (OMVs) produced by Porphyromonas gingivalis (Pg) oral bacteria by monitoring their metabolomic evolution using in situ Raman spectroscopy. Pg-OMVs are a key factor in Alzheimer's disease (AD) pathogenesis, as they act as efficient vectors for the delivery of toxins promoting neuronal damage. However, the chemical mechanisms underlying the direct impact of Pg-OMVs on cell metabolites at the molecular scale still remain conspicuously unclear. A widely used in vitro model employing neuroblastoma SH-SY5Y cells (a sub-line of the SK-N-SH cell line) was spectroscopically analyzed in situ before and 6 h after Pg-OMV contamination. Concurrently, Raman characterizations were also performed on isolated Pg-OMVs, which included phosphorylated dihydroceramide (PDHC) lipids and lipopolysaccharide (LPS), the latter in turn being contaminated with a highly pathogenic class of cysteine proteases, a key factor in neuronal cell degradation. Raman characterizations located lipopolysaccharide fingerprints in the vesicle structure and unveiled so far unproved aspects of the chemistry behind protein degradation induced by Pg-OMV contamination of SH-SY5Y cells. The observed alterations of cells' Raman profiles were then discussed in view of key factors including the formation of amyloid β (Aβ) plaques and hyperphosphorylated Tau neurofibrillary tangles, and the formation of cholesterol agglomerates that exacerbate AD pathologies.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy;
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Davide Redolfi Bristol
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Keiji Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
| | - Toru Kariu
- Department of Life Science, Shokei University, Chuo-ku, Kuhonji, Kumamoto 862-8678, Japan;
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Frank C. Nichols
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, 263 Farmington Avenue, Storrs, CT 06030, USA;
| | - Pietro Riello
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy;
| | - Kazu Okuma
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| |
Collapse
|
4
|
Zhang L, Li L, Meng F, Yu J, He F, Lin Y, Su Y, Hu M, Liu X, Liu Y, Luo B, Peng G. Serum Metabolites Differentiate Amnestic Mild Cognitive Impairment From Healthy Controls and Predict Early Alzheimer's Disease via Untargeted Lipidomics Analysis. Front Neurol 2021; 12:704582. [PMID: 34408722 PMCID: PMC8365883 DOI: 10.3389/fneur.2021.704582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Alzheimer's disease (AD) is the most common type of dementia and presents with metabolic perturbations early in the disease process. In order to explore biomarkers useful in predicting early AD, we compared serum metabolites among patients suffering different stages of AD. Methods: We recruited 107 participants including 23 healthy controls (HC), 21 amnestic mild cognitive impairment (aMCI), 24 non-amnestic mild cognitive impairment (naMCI) and 39 AD patients. Via liquid chromatography-mass spectrometry based serum untargeted lipidomics analysis, we compared differences in serum lipid metabolites among these patient groups and further elucidated biomarkers that differentiate aMCI from HC. Results: There were significant differences of serum lipid metabolites among the groups, and 20 metabolites were obtained under negative ion mode from HC and aMCI comparison. Notably, 16:3 cholesteryl ester, ganglioside GM3 (d18:1/9z-18:1) and neuromedin B were associated with cognition and increased the predictive effect of aMCI to 0.98 as revealed by random forest classifier. The prediction model composed of MoCA score, 16:3 cholesteryl ester and ganglioside GM3 (d18:1/9z-18:1) had good predictive performance for aMCI. Glycerophospholipid metabolism was a pathway common among HC/aMCI and aMCI/AD groups. Conclusion: This study provides preliminary evidence highlighting that 16:3 cholesteryl ester were useful for AD disease monitoring while ganglioside GM3 (d18:1/9z-18:1) and neuromedin B discriminated aMCI from HC, which can probably be applied in clinic for early predicting of AD.
Collapse
Affiliation(s)
- Lumi Zhang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingxiao Li
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fanxia Meng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Yu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangping He
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yajie Lin
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujie Su
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjie Hu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Liu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg, Germany
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Wiȩckowska-Gacek A, Mietelska-Porowska A, Chutorański D, Wydrych M, Długosz J, Wojda U. Western Diet Induces Impairment of Liver-Brain Axis Accelerating Neuroinflammation and Amyloid Pathology in Alzheimer's Disease. Front Aging Neurosci 2021; 13:654509. [PMID: 33867971 PMCID: PMC8046915 DOI: 10.3389/fnagi.2021.654509] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an aging-dependent, irreversible neurodegenerative disorder and the most common cause of dementia. The prevailing AD hypothesis points to the central role of altered cleavage of amyloid precursor protein (APP) and formation of toxic amyloid-β (Aβ) deposits in the brain. The lack of efficient AD treatments stems from incomplete knowledge on AD causes and environmental risk factors. The role of lifestyle factors, including diet, in neurological diseases is now beginning to attract considerable attention. One of them is western diet (WD), which can lead to many serious diseases that develop with age. The aim of the study was to investigate whether WD-derived systemic disturbances may accelerate the brain neuroinflammation and amyloidogenesis at the early stages of AD development. To verify this hypothesis, transgenic mice expressing human APP with AD-causing mutations (APPswe) were fed with WD from the 3rd month of age. These mice were compared to APPswe mice, in which short-term high-grade inflammation was induced by injection of lipopolysaccharide (LPS) and to untreated APPswe mice. All experimental subgroups of animals were subsequently analyzed at 4-, 8-, and 12-months of age. APPswe mice at 4- and 8-months-old represent earlier pre-plaque stages of AD, while 12-month-old animals represent later stages of AD, with visible amyloid pathology. Already short time of WD feeding induced in 4-month-old animals such brain neuroinflammation events as enhanced astrogliosis, to a level comparable to that induced by the administration of pro-inflammatory LPS, and microglia activation in 8-month-old mice. Also, WD feeding accelerated increased Aβ production, observed already in 8-month-old animals. These brain changes corresponded to diet-induced metabolic disorders, including increased cholesterol level in 4-months of age, and advanced hypercholesterolemia and fatty liver disease in 8-month-old mice. These results indicate that the westernized pattern of nourishment is an important modifiable risk factor of AD development, and that a healthy, balanced, diet may be one of the most efficient AD prevention methods.
Collapse
Affiliation(s)
| | | | | | | | | | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Li Y, Fang R, Liu Z, Jiang L, Zhang J, Li H, Liu C, Li F. The association between toxic pesticide environmental exposure and Alzheimer's disease: A scientometric and visualization analysis. CHEMOSPHERE 2021; 263:128238. [PMID: 33297185 DOI: 10.1016/j.chemosphere.2020.128238] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/16/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. The association between environmental factors (e.g., pesticide) and AD has attracted considerable attention. However, no systematic analysis has been performed and make it difficult to provide deeper insights of AD correlated with pesticide exposure. Hence, this study utilized a bibliometric and visual approach that included map collaborations, co-citations, and keywords, to identifying the knowledge structure, hot topics and the research trends based on 372 publications from the Web of Science Core Collection and PubMed databases. The results showed that 116 institutions from 52 countries published articles in this field. The United States and Israel played a leading role with numerous publications in related journals, as well as prolific institutions and authors, respectively. Three hot topics in pesticide-induced AD were recognized based on co-occurrence keywords detection, including acetylcholinesterase (AChE) inhibitor, oxidative stress, and AChE. Moreover, analysis of keywords burst suggests that some potential molecular mechanisms and therapy targets of pesticide-induced AD, especially for mitochondrial dysfunction and monoamine oxidase-B (MAO-B) that catalyzes the oxidative deamination and causes oxidative stress, are emerging trends. In addition, the study of various pesticides and the assessment method of pesticide exposure will step forward as well. To the best of our knowledge, this study is the first to specifically visualize the relationship between AD and pesticide exposure and to predict potential future research directions.
Collapse
Affiliation(s)
- Yanan Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Ruying Fang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Luping Jiang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Jingdong Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430073, China.
| | - Fei Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Key Laboratory of Virtual Geographic Environment (Ministry of Education), Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Jakhmola-Mani R, Islam A, Katare DP. Liver-Brain Axis in Sporadic Alzheimer's Disease: Role of Ten Signature Genes in a Mouse model. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 20:871-885. [PMID: 33297922 DOI: 10.2174/1871527319666201209111006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
AIM Poor nutritional effect of junk food induces injurious adversities to the liver and brain but still most of the developing nations survives on these diets to compensate for fast-paced lifestyle. Aim of the study is to infer the proteinconnections behind liver-brain axis and identify the role of these proteins in causing neurodegenerative disorders. BACKGROUND Chronic consumption of fructose and fat rich food works as a toxin in body and have the ability to cause negative metabolic shift. Recently a study was published in Annals of Internal Medicine (2019) citing the loss of vision and hearing in a 14-year-old boy whose diet was strictly restricted to fries and junk-food for almost a decade. This puts the entire body on insulin resistance and related co-morbidities and causes simultaneous damaging effects in liver as well brain. This work provides insights into liver-brain axis and explains how liver is involved in brain related disorders. OBJECTIVE In this study transcriptomic data relating to chronic eating of junk-food was analyzed and simultaneous damage that happens in liver and brain was assessed at molecular level. METHOD Transcriptomic study was taken from GEO database and analysed to find out the genes dysregulated in both liver and brain during this metabolic stress. Cytoscapev3.7 was used to decipher the signalling between liver and brain. This connection between both was called as Liver-Brain axis. RESULT The results obtained from our study indicates the role of TUBB5-HYOU1-SDF2L1-DECR1-CDH1-EGFR-SKP2- SOD1-IRAK1-FOXO1 gene signature towards the decline of concurrent liver and brain health. Dysregulated levels of these genes are linked to molecular processes like cellular senescence, hypoxia, glutathione synthesis, amino acid modification, increased nitrogen content, synthesis of BCAAs, cholesterol biosynthesis, steroid hormone signalling and VEGF pathway. CONCLUSION We strongly advocate that prolonged consumption of junk food is a major culprit in brain related disorders like Alzheimer's disease and propose that receptors for brain diseases lie outside the brain and aiming them for drug discovery and design may be beneficial in future clinical studies. This study also discusses the connection between NAFLD (nonalcoholic fatty liver disease) and sAD (sporadic Alzheimer's disease) owing to liver-brain axis.
Collapse
Affiliation(s)
- Ruchi Jakhmola-Mani
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida. India
| | - Anam Islam
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida. India
| | - Deepshikha Pande Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida. India
| |
Collapse
|
8
|
Alavez-Rubio JS, Martínez-Rodríguez N, Escobedo-de-la-Peña J, Garrido-Acosta O, Juárez-Cedillo T. Relationship Between Genetic Variants of ACAT1 and APOE with the Susceptibility to Dementia (SADEM Study). Mol Neurobiol 2020; 58:905-912. [PMID: 33057949 DOI: 10.1007/s12035-020-02162-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
Abstract
One of the hypotheses that have emerged to explain the origin of dementia relates the disease with altered lipid metabolism, particularly cholesterol. To maintain cholesterol homeostasis, the ACAT1 enzyme has an important function to regulate the production of Aβ. Moreover, APOE is the main cholesterol carrier in the brain, and it has been reported as a risk factor for this disease. This study evaluates the relationship between ACAT1 and APOE genetic variants with susceptibility for the development of Alzheimer's disease and other dementias. We examined four ACAT1 polymorphisms (rs2247071, rs2862616, rs3753526, rs1044925) and two in the APOE gene (rs7412, rs429358) in a group of 204 controls and 196 cases of dementia. Our results show one protective haplotype: CGCA (OR = 0.34, 95% CI = 0.23-0.46; p < 0.001) and one risk haplotype: CGGA (OR = 1.87, 95% CI = 1.34-2.60; p < 0.001) for the development of dementia. Subjects identified as APOE-ε4 allele carriers had a higher risk of developing dementia compared with non-carriers, OR = 13.33 (95% CI = 3.14-56.31). The results support the hypothesis that the ACAT1 gene, together with the APOE gene, plays an important role in susceptibility to the development of dementia and shows genetic characteristics of the Mexican population that can be used to identify the population at risk.
Collapse
Affiliation(s)
| | - Nancy Martínez-Rodríguez
- Epidemiology, Endocrinology and Nutrition Research Unit Hospital Infantil de México Federico Gomez Mexico City Mexico Ministry of Health (SSA), Mexico City, Mexico
| | - Jorge Escobedo-de-la-Peña
- Unidad de Investigación en Epidemiológica Clínica, Hospital General Regional Núm. 1 Dr. Carlos Mac Gregor Sánchez Navarro, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Osvaldo Garrido-Acosta
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Teresa Juárez-Cedillo
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXIAQ2 Instituto Mexicano del Seguro Social, Mexico City, Mexico. .,Unidad de Investigación en Epidemiología Clínica Hospital General Regional No 1 Carlos Mcgregor Sánchez Navarro Gabriel Mancera 222 esq. Xola. Col. Del Valle. Del. Benito Juárez CP 03100 Ciudad de Mexico, Mexico City, Mexico.
| |
Collapse
|
9
|
Alavez-Rubio JS, Juarez-Cedillo T. ACAT1 as a Therapeutic Target and its Genetic Relationship with Alzheimer's Disease. Curr Alzheimer Res 2020; 16:699-709. [PMID: 31441726 DOI: 10.2174/1567205016666190823125245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Alzheimer´s disease (AD) is a chronic and progressive disease which impacts caregivers, families and societies physically, psychologically and economically. Currently available drugs can only improve cognitive symptoms, have no impact on progression and are not curative, so identifying and studying new drug targets is important. There are evidences which indicate disturbances in cholesterol homeostasis can be related with AD pathology, especially the compartmentation of intracellular cholesterol and cytoplasmic cholesterol esters formed by acyl-CoA: cholesterol acyltransferase 1 (ACAT1) can be implicated in the regulation of amyloid-beta (Aβ) peptide, involved in AD. Blocking ACAT1 activity, beneficial effects are obtained, so it has been suggested that ACAT1 can be a potential new therapeutic target. The present review discusses the role of cholesterol homeostasis in AD pathology, especially with ACAT inhibitors, and how they have been raised as a therapeutic approach. In addition, the genetic relationship of ACAT and AD is discussed. CONCLUSION Although there are several lines of evidence from cell-based and animal studies that suggest that ACAT inhibition is an effective way of reducing cerebral Aβ, there is still an information gap in terms of mechanisms and concerns to cover before passing to the next level. Additionally, an area of interest that may be useful in understanding AD to subsequently propose new therapeutic approaches is pharmacogenetics; however, there is still a lot of missing information in this area.
Collapse
Affiliation(s)
| | - Teresa Juarez-Cedillo
- Unidad de Investigacion Epidemiologica y en Servicios de Salud, Area Envejecimiento, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (Actualmente comisionada en la Unidad de Investigacion en Epidemiologia, Clínica, Hospital Regional, Num. 1 Dr. Carlos MacGregor Sanchez Navarro IMSS), Mexico
| |
Collapse
|
10
|
Preta G. New Insights Into Targeting Membrane Lipids for Cancer Therapy. Front Cell Dev Biol 2020; 8:571237. [PMID: 32984352 PMCID: PMC7492565 DOI: 10.3389/fcell.2020.571237] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Modulation of membrane lipid composition and organization is currently developing as an effective therapeutic strategy against a wide range of diseases, including cancer. This field, known as membrane-lipid therapy, has risen from new discoveries on the complex organization of lipids and between lipids and proteins in the plasma membranes. Membrane microdomains present in the membrane of all eukaryotic cells, known as lipid rafts, have been recognized as an important concentrating platform for protein receptors involved in the regulation of intracellular signaling, apoptosis, redox balance and immune response. The difference in lipid composition between the cellular membranes of healthy cells and tumor cells allows for the development of novel therapies based on targeting membrane lipids in cancer cells to increase sensitivity to chemotherapeutic agents and consequently defeat multidrug resistance. In the current manuscript strategies based on influencing cholesterol/sphingolipids content will be presented together with innovative ones, more focused in changing biophysical properties of the membrane bilayer without affecting the composition of its constituents.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
Christ A, Lauterbach M, Latz E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2020; 51:794-811. [PMID: 31747581 DOI: 10.1016/j.immuni.2019.09.020] [Citation(s) in RCA: 494] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
The consumption of Western-type calorically rich diets combined with chronic overnutrition and a sedentary lifestyle in Western societies evokes a state of chronic metabolic inflammation, termed metaflammation. Metaflammation contributes to the development of many prevalent non-communicable diseases (NCDs), and these lifestyle-associated pathologies represent a rising public health problem with global epidemic dimensions. A better understanding of how modern lifestyle and Western diet (WD) activate immune cells is essential for the development of efficient preventive and therapeutic strategies for common NCDs. Here, we review the current mechanistic understanding of how the Western lifestyle can induce metaflammation, and we discuss how this knowledge can be translated to protect the public from the health burden associated with their selected lifestyle.
Collapse
Affiliation(s)
- Anette Christ
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, MA 01605, USA
| | - Mario Lauterbach
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, MA 01605, USA; Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway; German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany.
| |
Collapse
|
12
|
Chaudhary S, Kaushik M, Ahmed S, Kukreti R, Kukreti S. Structural Switch from Hairpin to Duplex/Antiparallel G-Quadruplex at Single-Nucleotide Polymorphism (SNP) Site of Human Apolipoprotein E ( APOE) Gene Coding Region. ACS OMEGA 2018; 3:3173-3182. [PMID: 30023863 PMCID: PMC6045395 DOI: 10.1021/acsomega.7b01654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 05/25/2023]
Abstract
A gradual dementia, which leads to the loss of memory and intellectual abilities, is the main characteristics of Alzheimer's disease. Amyloid-β (Aβ) plaques are the main components that accumulate and form clumps in the brains of people suffering from Alzheimer's disease. Apolipoprotein E (APOE), an amyloid-binding protein is considered as one of the main genetic risk factor of the late-onset Alzheimer's disease. Different isoforms of APOE gene named APOE2, APOE3, and APOE4 are known to exist, which differ from each other at certain positions involving single-nucleotide polymorphisms (SNPs). Out of these isoforms, APOE4 increases the risk of developing late-onset Alzheimer's disease, whereas APOE3 is the most common among the general population. APOE4 differs from the common APOE3 by only one nucleotide at position +2985 (T to C), which results in immense alteration in the structure and function of the APOE gene. A combination of gel electrophoresis (polyacrylamide gel electrophoresis, PAGE), circular dichroism (CD), CD melting, thermal difference spectra and UV-thermal denaturation (TM) techniques was used to investigate the structural polymorphism associated with T → C single-nucleotide polymorphism (SNP) at the GC-rich sequence (d-TGGAGGACGTGTGCGGCCGCCT; APOE22T). Herein, we report that APOE22T DNA sequence switches between hairpin to antiparallel quadruplex from low to high oligomer concentration. On the contrary, its C-counterpart (APOE22C) forms hairpin as well as intermolecular antiparallel duplex structure. This structural change may possibly contribute to the protein recognition pattern, which, in turn, might control the APOE gene expression.
Collapse
Affiliation(s)
- Swati Chaudhary
- Nucleic
Acids Research Lab, Department of Chemistry and Cluster Innovation Center, University of Delhi, Delhi 110007, India
| | - Mahima Kaushik
- Nucleic
Acids Research Lab, Department of Chemistry and Cluster Innovation Center, University of Delhi, Delhi 110007, India
| | - Saami Ahmed
- Nucleic
Acids Research Lab, Department of Chemistry and Cluster Innovation Center, University of Delhi, Delhi 110007, India
| | - Ritushree Kukreti
- CSIR-Institute
of genomics and Integrative Biology, Delhi 110007, India
| | - Shrikant Kukreti
- Nucleic
Acids Research Lab, Department of Chemistry and Cluster Innovation Center, University of Delhi, Delhi 110007, India
| |
Collapse
|
13
|
Elkana O, Dayman V, Franko M, Israel A, Springer RR, Segev S, Beeri MS. The association of total cholesterol with processing speed is moderated by age in mid- to late-age healthy adults. Exp Aging Res 2018; 44:179-186. [PMID: 29303427 DOI: 10.1080/0361073x.2017.1422585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate the nature of the association of normal levels of total cholesterol with cognitive function and the contribution of age to this association. METHODS A sample of 61 senior executives, who were summoned for an annual medical examination with approximately four measurements of total cholesterol during 4 years, were examined with a computerized cognitive battery assessing mental processing speed as a sensitive measure of cognitive decline. We examined the association of total cholesterol with processing speed and the moderating effect of age on this association. RESULTS A multiple regression analysis yielded a significant interaction between cholesterol and age for processing speed (p = .045). In order to examine the source of the interaction, simple slope analysis was performed. A significant negative high correlation was found for young subjects (p = .021), while no significant correlation was observed at middle (p = .286) or older (p = .584) age. The difference in slopes was robust to adjustment for potential confounding factors, including body mass index, and fasting glucose. CONCLUSIONS Within the normal range, higher total cholesterol levels were associated with better processing speed in younger ages and this association diminished with increasing age. Our findings highlight the important role of brain cholesterol in good cognitive functioning.
Collapse
Affiliation(s)
- Odelia Elkana
- a Behavioral Sciences , Academic College of Tel Aviv-Yaffo , Tel Aviv , Israel
| | - Vitali Dayman
- a Behavioral Sciences , Academic College of Tel Aviv-Yaffo , Tel Aviv , Israel
| | - Motty Franko
- a Behavioral Sciences , Academic College of Tel Aviv-Yaffo , Tel Aviv , Israel
| | - Ariel Israel
- b The Joseph Sagol Neuroscience Center, Sheba Medical Center , Tel Hashomer , Israel
| | | | - Shlomo Segev
- d Institute of Medical Screening , Sheba Medical Center Tel Hashomer , Ramat Gan , Israel
| | - Michal Schnaider Beeri
- b The Joseph Sagol Neuroscience Center, Sheba Medical Center , Tel Hashomer , Israel.,e The Icahn School of Medicine at Mount Sinai , Department of Psychiatry , New York , NY , USA
| |
Collapse
|
14
|
Stamerra CA, Di Giosia P, Giorgini P, De Feo M, Grassi D, Ferri C, Sahebkar A. Neurocognitive performance after PCSK9 inhibitor therapy: Current state of the evidence. J Neurosci Res 2017; 96:762-764. [PMID: 29152786 DOI: 10.1002/jnr.24199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Cosimo Andrea Stamerra
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paolo Di Giosia
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paolo Giorgini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Martina De Feo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Davide Grassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Husain I, Akhtar M, Abdin MZ, Islamuddin M, Shaharyar M, Najmi AK. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation. Hum Exp Toxicol 2017; 37:399-411. [PMID: 28441890 DOI: 10.1177/0960327117705431] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amyloid beta (Aβ) peptide aggregation and cholinergic neurodegeneration are involved in the development of cognitive impairment. Therefore, in this article, we examined rosuvastatin (RSV), an oral hypolipidemic drug, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for the treatment of cognitive impairment. Molecular docking study was done to examine the affinity of RSV with Aβ1-42 and AChE in silico. We also employed neurobehavioral activity tests, biochemical estimation, and histopathology to study the anti-Aβ1-42 aggregation capability of RSV in vivo. Molecular docking study provided evidence that RSV has the best binding conformer at its receptor site or active site of an enzyme. The cognitive impairment in female Wistar rats was induced by high-salt and cholesterol diet (HSCD) ad libitum for 8 weeks. RSV ameliorated serum cholesterol level, AChE activity, and Aβ1-42 peptide aggregations in HSCD induced cognitive impairment. In addition, RSV-treated rats showed greater scores in the open field (locomotor activity) test. Moreover, the histopathological studies in the hippocampus and cortex of rat brain also supported that RSV markedly reduced the cognitive impairment and preserved the normal histoarchitectural pattern of the hippocampus and cortex. Taken together, these data indicate that RSV may act as a dual inhibitor of AChE and Aβ1-42 peptide aggregation, therefore suggesting a therapeutic strategy for cognitive impairment treatment.
Collapse
Affiliation(s)
- I Husain
- 1 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Akhtar
- 1 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Zainul Abdin
- 2 Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Islamuddin
- 2 Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Shaharyar
- 3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - A K Najmi
- 1 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
16
|
Mirmosayyeb O, Tanhaei A, Sohrabi HR, Martins RN, Tanhaei M, Najafi MA, Safaei A, Meamar R. Possible Role of Common Spices as a Preventive and Therapeutic Agent for Alzheimer's Disease. Int J Prev Med 2017; 8:5. [PMID: 28250905 PMCID: PMC5320868 DOI: 10.4103/2008-7802.199640] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/31/2016] [Indexed: 11/05/2022] Open
Abstract
For centuries, spices have been consumed as food additives or medicinal agents. However, there is increasing evidence indicating the plant-based foods in regular diet may lower the risk of neurodegenerative diseases including Alzheimer disease. Spices, as one of the most commonly used plant-based food additives may provide more than just flavors, but as agents that may prevent or even halt neurodegenerative processes associated with aging. In this article, we review the role and application of five commonly used dietary spices including saffron turmeric, pepper family, zingiber, and cinnamon. Besides suppressing inflammatory pathways, these spices may act as antioxidant and inhibit acetyl cholinesterase and amyloid β aggregation. We summarized how spice-derived nutraceuticals mediate such different effects and what their molecular targets might be. Finally, some directions for future research are briefly discussed.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Students Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirpouya Tanhaei
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Mana Tanhaei
- Department of Horticulture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Amin Najafi
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Safaei
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rokhsareh Meamar
- Department of Medical Science, Islamic Azad University, Najafabad Branch, Isfahan, Iran; Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Protective Effect of Genistein against Neuronal Degeneration in ApoE -/- Mice Fed a High-Fat Diet. Nutrients 2016; 8:nu8110692. [PMID: 27809235 PMCID: PMC5133079 DOI: 10.3390/nu8110692] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Altered cholesterol metabolism is believed to play a causal role in major pathophysiological changes in neurodegeneration. Several studies have demonstrated that the absence of apolipoprotein E (ApoE), a predominant apolipoprotein in the brain, leads to an increased susceptibility to neurodegeneration. Previously, we observed that genistein, a soy isoflavone, significantly alleviated apoptosis and tau hyperphosphorylation in SH-SY5Y cells. Therefore, we investigated the neuroprotective effects of dietary genistein supplementation (0.5 g/kg diet) in the cortex and hippocampus of wild-type C57BL/6 (WT) and ApoE knockout (ApoE−/−) mice fed a high-fat diet (HFD) for 24 weeks. Genistein supplementation alleviated neuroinflammation and peripheral and brain insulin resistance. Reductions in oxidative and endoplasmic reticulum stress were also observed in ApoE−/− mice fed a genistein-supplemented diet. Beta-secretase 1 and presenilin 1 mRNA levels and beta-amyloid peptide (Aβ) protein levels were reduced in response to genistein supplementation in ApoE−/− mice but not in WT mice. Although the absence of ApoE did not increase tau hyperphosphorylation, genistein supplementation reduced tau hyperphosphorylation in both WT and ApoE−/− mice. Consistent with this result, we also observed that genistein alleviated activity of c-Jun N-terminal kinase and glycogen synthase kinase 3β, which are involved in tau hyperphosphorylation. Taken together, these results demonstrate that genistein alleviated neuroinflammation, Aβ deposition, and hyperphosphorylation in ApoE−/− mice fed an HFD.
Collapse
|
18
|
Metabolic reprogramming & inflammation: Fuelling the host response to pathogens. Semin Immunol 2016; 28:450-468. [PMID: 27780657 DOI: 10.1016/j.smim.2016.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
Successful immune responses to pathogens rely on efficient host innate processes to contain and limit bacterial growth, induce inflammatory response and promote antigen presentation for the development of adaptive immunity. This energy intensive process is regulated through multiple mechanisms including receptor-mediated signaling, control of phago-lysomal fusion events and promotion of bactericidal activities. Inherent macrophage activities therefore are dynamic and are modulated by signals and changes in the environment during infection. So too does the way these cells obtain their energy to adapt to altered homeostasis. It has emerged recently that the pathways employed by immune cells to derive energy from available or preferred nutrients underline the dynamic changes associated with immune activation. In particular, key breakpoints have been identified in the metabolism of glucose and lipids which direct not just how cells derive energy in the form of ATP, but also cellular phenotype and activation status. Much of this comes about through altered flux and accumulation of intermediate metabolites. How these changes in metabolism directly impact on the key processes required for anti-microbial immunity however, is less obvious. Here, we examine the 2 key nutrient utilization pathways employed by innate cells to fuel central energy metabolism and examine how these are altered in response to activation during infection, emphasising how certain metabolic switches or 'reprogramming' impacts anti-microbial processes. By examining carbohydrate and lipid pathways and how the flux of key intermediates intersects with innate immune signaling and the induction of bactericidal activities, we hope to illustrate the importance of these metabolic switches for protective immunity and provide a potential mechanism for how altered metabolic conditions in humans such as diabetes and hyperlipidemia alter the host response to infection.
Collapse
|
19
|
Ribarič S. The Rationale for Insulin Therapy in Alzheimer's Disease. Molecules 2016; 21:molecules21060689. [PMID: 27240327 PMCID: PMC6273626 DOI: 10.3390/molecules21060689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with a prevalence that increases with age. By 2050, the worldwide number of patients with AD is projected to reach more than 140 million. The prominent signs of AD are progressive memory loss, accompanied by a gradual decline in cognitive function and premature death. AD is the clinical manifestation of altered proteostasis. The initiating step of altered proteostasis in most AD patients is not known. The progression of AD is accelerated by several chronic disorders, among which the contribution of diabetes to AD is well understood at the cell biology level. The pathological mechanisms of AD and diabetes interact and tend to reinforce each other, thus accelerating cognitive impairment. At present, only symptomatic interventions are available for treating AD. To optimise symptomatic treatment, a personalised therapy approach has been suggested. Intranasal insulin administration seems to open the possibility for a safe, and at least in the short term, effective symptomatic intervention that delays loss of cognition in AD patients. This review summarizes the interactions of AD and diabetes from the cell biology to the patient level and the clinical results of intranasal insulin treatment of cognitive decline in AD.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
20
|
Mlody B, Lorenz C, Inak G, Prigione A. Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders. Semin Cell Dev Biol 2016; 52:102-9. [DOI: 10.1016/j.semcdb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
|
21
|
Kim DG, Krenz A, Toussaint LE, Maurer KJ, Robinson SA, Yan A, Torres L, Bynoe MS. Non-alcoholic fatty liver disease induces signs of Alzheimer's disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J Neuroinflammation 2016; 13:1. [PMID: 26728181 PMCID: PMC4700622 DOI: 10.1186/s12974-015-0467-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/23/2015] [Indexed: 12/31/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease afflicting about one third of the world’s population and 30 % of the US population. It is induced by consumption of high-lipid diets and is characterized by liver inflammation and subsequent liver pathology. Obesity and consumption of a high-fat diet are known to increase the risk of Alzheimer’s disease (AD). Here, we investigated NAFLD-induced liver inflammation in the pathogenesis of AD. Methods WT and APP-Tg mice were fed with a standard diet (SD) or a high-fat diet (HFD) for 2, 5 months, or 1 year to induce NAFLD. Another set of APP-Tg mice were removed from HFD after 2 months and put back on SD for 3 months. Results During acute phase NAFLD, WT and APP-Tg mice developed significant liver inflammation and pathology that coincided with increased numbers of activated microglial cells in the brain, increased inflammatory cytokine profile, and increased expression of toll-like receptors. Chronic NAFLD induced advanced pathological signs of AD in both WT and APP-Tg mice, and also induced neuronal apoptosis. We observed decreased brain expression of low-density lipoprotein receptor-related protein-1 (LRP-1) which is involved in β-amyloid clearance, in both WT and APP-Tg mice after ongoing administration of the HFD. LRP-1 expression correlated with advanced signs of AD over the course of chronic NAFLD. Removal of mice from HFD during acute NAFLD reversed liver pathology, decreased signs of activated microglial cells and neuro-inflammation, and decreased β-amyloid plaque load. Conclusions Our findings indicate that chronic inflammation induced outside the brain is sufficient to induce neurodegeneration in the absence of genetic predisposition. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0467-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Do-Geun Kim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Antje Krenz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Leon E Toussaint
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Kirk J Maurer
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA. .,Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA. .,Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive, 302 W Borwell, Lebanon, NH 03756, USA.
| | - Sudie-Ann Robinson
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Angela Yan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Luisa Torres
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Margaret S Bynoe
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Neurometabolic roles of ApoE and Ldl-R in mouse brain. J Bioenerg Biomembr 2015; 48:13-21. [PMID: 26686234 DOI: 10.1007/s10863-015-9636-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Polymorphisms in ApoE are highly correlated with the progression of neurodegenerative disease, in particular Alzheimer's disease. Little is known, however, about the role of ApoE or cholesterol metabolism on brain neurochemistry in general. To better understand the role of lipoprotein and cholesterol metabolism in the brain, we profiled 6 and 12-week old Apoe KO and Ldlr KO mouse models via unbiased metabolomics to determine which metabolites were affected at an early age to identify those that may play a role in triggering pathology later in life. Steady-state metabolomics revealed only subtle differences among Apoe KO, Ldlr KO and WT mouse brains. Ldlr KO mice exhibited alterations in metabolites involved in neurotransmitter, amino acid and cholesterol metabolism. In contrast, Apoe KO mice only showed subtle changes in amino acid and neurotransmitter metabolism. These subtle changes in a broad range of metabolites indicate that ApoE and Ldl-R alone may not play a significant role in these mouse models at an early age, but instead require the cumulative effect from different pathways that lead to dysfunction at a much later stage of life.
Collapse
|
23
|
Gardner LA, Levin MC. Importance of Apolipoprotein A-I in Multiple Sclerosis. Front Pharmacol 2015; 6:278. [PMID: 26635608 PMCID: PMC4654019 DOI: 10.3389/fphar.2015.00278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
Jean-Martin Charcot has first described multiple sclerosis (MS) as a disease of the central nervous system (CNS) over a century ago. MS remains incurable today, and treatment options are limited to disease modifying drugs. Over the years, significant advances in understanding disease pathology have been made in autoimmune and neurodegenerative components. Despite the fact that brain is the most lipid rich organ in human body, the importance of lipid metabolism has not been extensively studied in this disorder. In MS, the CNS is under attack by a person's own immune system. Autoantigens and autoantibodies are known to cause devastation of myelin through up regulation of T-cells and cytokines, which penetrate through the blood-brain barrier to cause inflammation and myelin destruction. The anti-inflammatory role of high-density lipoproteins (HDLs) has been implicated in a plethora of biological processes: vasodilation, immunity to infection, oxidation, inflammation, and apoptosis. However, it is not known what role HDL plays in neurological function and myelin repair in MS. Understanding of lipid metabolism in the CNS and in the periphery might unveil new therapeutic targets and explain the partial success of some existing MS therapies.
Collapse
Affiliation(s)
- Lidia A. Gardner
- Research Service, VA Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael C. Levin
- Research Service, VA Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
24
|
Cheng H, Shang Y, Jiang L, Shi TL, Wang L. The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer's disease and mild-to-moderate Alzheimer's disease: a meta-analysis. Int J Neurosci 2015; 126:299-307. [PMID: 26001206 DOI: 10.3109/00207454.2015.1015722] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease and there is no effective therapy for it. Peroxisome proliferators activated receptor-gamma (PPAR-γ) agonists is a promising therapeutic approach for AD and has been widely studied recently, but no consensus was available up to now. To clarify this point, a meta-analysis was performed. We searched MEDLINE, EMBASE, Cochrane Central database, PUBMED, Springer Link database, SDOS database, CBM, CNKI and Wan fang database by December 2014. Standardized mean difference (SMD), relative risk (RR) and 95% confidence interval (CI) were calculated to assess the strength of the novel therapeutics for AD and mild-to-moderate AD. A total of nine studies comprising 1314 patients and 1311 controls were included in the final meta-analysis. We found the effect of PPAR-γ agonists on Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-cog) scores by using STATA software. There was no evidence for obvious publication bias in the overall meta-analysis. There is insufficient evidence of statistically incognition of AD and mild-to-moderate AD patients have been improved who were treated with PPAR-γ agonists in our research. However, PPAR-γ agonists may be a promising therapeutic approach in future, especially pioglitazone, with large-scale randomized controlled trials to confirm.
Collapse
Affiliation(s)
- Huawei Cheng
- a Department of Pharmacy, Anhui Cancer Hospital , Hefei , China
| | - Yuping Shang
- a Department of Pharmacy, Anhui Cancer Hospital , Hefei , China
| | - Ling Jiang
- b Department of Pharmacy, Anhui Provincial Hospital , Hefei , China
| | - Tian-lu Shi
- b Department of Pharmacy, Anhui Provincial Hospital , Hefei , China
| | - Lin Wang
- c Clinical Laboratory, the First Affiliated Hospital of Anhui University of Chinese Medicine , Hefei , China
| |
Collapse
|
25
|
Naumowicz M, Figaszewski ZA. Pore formation in lipid bilayer membranes made of phosphatidylcholine and cholesterol followed by means of constant current. Cell Biochem Biophys 2013; 66:109-19. [PMID: 23104105 PMCID: PMC3627032 DOI: 10.1007/s12013-012-9459-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This paper describes the application of chronopotentiometry to lipid bilayer research. The experiments were performed on bilayer lipid membranes composed of phosphatidylcholine and cholesterol and formed using the painting technique. Chronopotentiometric (U = f(t)) measurements were used to determine the membrane capacitance, resistance, and breakdown voltage as well as pore conductance and diameter.
Collapse
Affiliation(s)
- Monika Naumowicz
- Institute of Chemistry, University of Bialystok, Al. J. Pilsudskiego 11/4, 15-443, Bialystok, Poland.
| | | |
Collapse
|
26
|
Zerbi V, Jansen D, Wiesmann M, Fang X, Broersen LM, Veltien A, Heerschap A, Kiliaan AJ. Multinutrient diets improve cerebral perfusion and neuroprotection in a murine model of Alzheimer's disease. Neurobiol Aging 2013; 35:600-13. [PMID: 24210253 DOI: 10.1016/j.neurobiolaging.2013.09.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/19/2013] [Accepted: 09/30/2013] [Indexed: 01/30/2023]
Abstract
Nutritional intervention may retard the development of Alzheimer's disease (AD). In this study we tested the effects of 2 multi-nutrient diets in an AD mouse model (APPswe/PS1dE9). One diet contained membrane precursors such as omega-3 fatty acids and uridine monophosphate (DEU), whereas another diet contained cofactors for membrane synthesis as well (Fortasyn); the diets were developed to enhance synaptic membranes synthesis, and contain components that may improve vascular health. We measured cerebral blood flow (CBF) and water diffusivity with ultra-high-field magnetic resonance imaging, as alterations in these parameters correlate with clinical symptoms of the disease. APPswe/PS1dE9 mice on control diet showed decreased CBF and changes in brain water diffusion, in accordance with findings of hypoperfusion, axonal disconnection and neuronal loss in patients with AD. Both multinutrient diets were able to increase cortical CBF in APPswe/PS1dE9 mice and Fortasyn reduced water diffusivity, particularly in the dentate gyrus and in cortical regions. We suggest that a specific diet intervention has the potential to slow AD progression, by simultaneously improving cerebrovascular health and enhancing neuroprotective mechanisms.
Collapse
Affiliation(s)
- Valerio Zerbi
- Department of Anatomy, Donders Institute for Brain Cognition & Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yang Y, Song W. Molecular links between Alzheimer's disease and diabetes mellitus. Neuroscience 2013; 250:140-50. [PMID: 23867771 DOI: 10.1016/j.neuroscience.2013.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/03/2013] [Indexed: 01/07/2023]
Abstract
Substantial epidemiological evidence shows an increased risk for developing Alzheimer's disease (AD) in people with diabetes. Yet the underlying molecular mechanisms still remain to be elucidated. This article reviews the current studies on common pathological processes of Alzheimer's disease and diabetes with particular focus on potential mechanisms through which diabetes affects the initiation and progression of Alzheimer's disease. Impairment of insulin signaling, inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, APOEε4 and cholesterol appear to be important mediators and are likely to act synergistically in promoting AD pathology.
Collapse
Affiliation(s)
- Y Yang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
28
|
Ríčný J. Overlooked Alzheimer's smoking gun? Neurochem Res 2013; 38:1774-6. [PMID: 23743622 DOI: 10.1007/s11064-013-1086-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 12/24/2022]
Abstract
Overview of Szutowicz et al. (Neurochem Res 38(8):1523-1542, 2013), is focusing on specific features of acetyl-CoA metabolism in the cholinergic compartment of the brain. Authors are suggesting that deficit of that metabolite can act as a trigger for several cholinergic encephalopathies, with special emphasis on Alzheimer disease (AD). Central role of acetyl-CoA and its metabolic paths in neurodegeneration are charted starting from its synthesis in mitochondria, followed by utilization in energy metabolism, as well as transport into cytoplasm and participation in the synthesis and turnover of neurotransmitter acetylcholine to emergence of diseased states. Various putative pathogenic signals are evaluated that might be responsible for acetyl-CoA deficit ending up in development of neurodegeneration, unraveling exceptional susceptibility of cholinergic system. They are discussed in context of other existing alternative hypotheses on AD etiology. Overview is thoroughly documented (178 references) and is supported by results accomplished by extensive research in Prof. Szutowicz's laboratory (approximately 25 original papers).
Collapse
Affiliation(s)
- Jan Ríčný
- Laboratory of Biochemistry and Brain Pathophysiology, Prague Psychiatric Center, Ústavní 91, 181 03, Prague, Czech Republic.
| |
Collapse
|
29
|
Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein. PLoS One 2013; 8:e54605. [PMID: 23382922 PMCID: PMC3558508 DOI: 10.1371/journal.pone.0054605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022] Open
Abstract
Niemann-Pick type C (NPC) disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer’s disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP)-derived β-amyloid (Aβ) peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg) mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet), Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and APP overexpression influences cerebral pathology by enhancing changes triggered by Npc1 deficiency in the bigenic line.
Collapse
|
30
|
Park SH, Kim JH, Choi KH, Jang YJ, Bae SS, Choi BT, Shin HK. Hypercholesterolemia accelerates amyloid β-induced cognitive deficits. Int J Mol Med 2013; 31:577-82. [PMID: 23314909 DOI: 10.3892/ijmm.2013.1233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/14/2012] [Indexed: 11/05/2022] Open
Abstract
Hypercholesterolemia is a known risk factor for Alzheimer's disease (AD). In the present study, we investigated whether diet-induced hypercholesterolemia affects AD-like pathologies such as amyloid β-peptide (Aβ) deposition, tau pathology, inflammation and cognitive impairment, using an Aβ25-35-injected AD-like pathological mouse model. Hypercholesterolemia was induced by providing apolipoprotein E knock out (Apo E KO) mice with a high-fat diet for 4 weeks prior to Aβ25-35 injection and for 4 weeks following Aβ25-35 injection, for a total of 8 weeks of treatment. Our data showed that intracerebroventricular injection of C57BL/6J mice with Aβ25-35 resulted in increased immunoreactivity of Aβ and phosphorylated-tau (p-tau), which was accompanied by enhanced microglial CD11b-like immunoreactivity in the brain. Moreover, hypercholesterolemia slightly increased Aβ and p-tau levels and microglial activation in the vehicle group, while further increasing the Aβ and p-tau levels and microglial activation in Aβ25-35-injected mice. Consistent with the neuropathological analysis, hypercholesterolemia resulted in significant spatial learning and memory deficits in Aβ25-35-injected mice as revealed by water maze testing. Collectively, these findings demonstrated that hypercholesterolemia accelerated Aβ accumulation and tau pathology, which was accompanied by microglial activation and subsequent aggravation of memory impairment induced by Aβ25-35. Thus, we suggest that the modulation of cholesterol can be used to reduce the risk of developing AD.
Collapse
Affiliation(s)
- Sun Haeng Park
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do 626-870, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Gutierres JM, Carvalho FB, Rosa MM, Schmatz R, Rodrigues M, Vieira JM, Mazzanti CM, Morsch VM, Rubin MA, Schetinger MRC, Spanevello RM. Protective effect of α-Tocopherol on memory deficits and Na+,K+-ATPase and acetylcholinesterase activities in rats with diet-induced hypercholesterolemia. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Oligomeric amyloid-β peptide affects the expression of genes involved in steroid and lipid metabolism in primary neurons. Neurochem Int 2012; 61:321-33. [PMID: 22579571 DOI: 10.1016/j.neuint.2012.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/10/2012] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
Abstract
Amyloid-β peptide (Aβ) is the principal component of plaques in the brains of patients with Alzheimer's disease (AD), and the most toxic form of Aβ may be as soluble oligomers. We report here the results of a microarray study of gene expression profiles in primary mouse cortical neurons in response to oligomeric Aβ(1-42). A major and unexpected finding was the down-regulation of genes involved in the biosynthesis of cholesterol and other steroids and lipids (such as Fdft1, Fdps, Idi1, Ldr, Mvd, Mvk, Nsdhl, Sc4mol), the expression of which was verified by quantitative real-time RT-PCR (qPCR). The ATP-binding cassette gene Abca1, which has a major role in cholesterol transport in brain and other tissues and has been genetically linked to AD, was notably up-regulated. The possible involvement of cholesterol and other lipids in Aβ synthesis and action in Alzheimer's disease has been studied and debated extensively but remains unresolved. These new data suggest that Aβ may influence steroid and lipid metabolism in neurons via multiple gene-expression changes.
Collapse
|
33
|
Li L, Xiao N, Yang X, Gao J, Ding J, Wang T, Hu G, Xiao M. A high cholesterol diet ameliorates hippocampus-related cognitive and pathological deficits in ovariectomized mice. Behav Brain Res 2012; 230:251-8. [DOI: 10.1016/j.bbr.2012.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/07/2012] [Accepted: 02/11/2012] [Indexed: 12/12/2022]
|
34
|
Gutierres JM, Kaizer RR, Schmatz R, Mazzanti CM, Vieira JM, Rodrigues MV, Jaques J, Carvalho F, Zanini D, Morsch VM, Schetinger MRC, Spanevello RM. α-Tocopherol regulates ectonucleotidase activities in synaptosomes from rats fed a high-fat diet. Cell Biochem Funct 2012; 30:286-92. [PMID: 22223394 DOI: 10.1002/cbf.2797] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 12/20/2022]
Abstract
α-Tocopherol (α-Toc) is involved in various physiologic processes, which present antioxidant and neuroprotective properties. High-fat diets have an important role in neurodegenerative diseases and neurological disturbances. This study aimed to investigate the effects of treatment with α-Toc and the consumption of high-fat diets on ectonucleotidase activities in synaptosomes of cerebral cortex, hippocampus and striatum of rats. Animals were divided into four different groups, which received standard diet (control), high-fat saturated diet (HF), α-Toc and high-fat saturated diet plus α-Toc (α-Toc + HF). High-fat saturated diet was administered ad libitum and α-Toc by gavage using a dose of 50 mg·kg(-1). After 3 months of treatment, animals were submitted to euthanasia, and cerebral cortex, hippocampus and striatum were collected for biochemical assays. Results showed that adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) hydrolysis in the cerebral cortex, hippocampus and striatum were decreased in HF in comparison to the other groups (P < 0·05). When rats that received HF were treated with α-Toc, the activity of the ectonucleotidases was similar to the control. ATP, ADP and AMP hydrolysis in the cerebral cortex, hippocampus and striatum were increased in the α-Toc group when compared with the other groups (P < 0·05). These findings demonstrated that the HF alters the purinergic signaling in the nervous system and that the treatment with α-Toc was capable of modulating the adenine nucleotide hydrolysis in this experimental condition.
Collapse
Affiliation(s)
- Jessié Martins Gutierres
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, Santa Maria, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
36
|
Sato K, Malchinkhuu E, Horiuchi Y, Mogi C, Tomura H, Tosaka M, Yoshimoto Y, Kuwabara A, Okajima F. Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. J Neurochem 2011; 103:2610-9. [PMID: 17931360 DOI: 10.1111/j.1471-4159.2007.04958.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sphingosine 1-phosphate (S1P) is accumulated in lipoproteins, especially high-density lipoprotein (HDL), in plasma. However, it remains uncharacterized how extracellular S1P is produced in the CNS. The treatment of rat astrocytes with retinoic acid and dibutyryl cAMP, which induce apolipoprotein E (apoE) synthesis and HDL-like lipoprotein formation, stimulated extracellular S1P accumulation in the presence of its precursor sphingosine. The released S1P was present together with apoE particles in the HDL fraction. S1P release from astrocytes was inhibited by the treatment of the cells with glybenclamide or small interfering RNAs specific to ATP-binding cassette transporter A1 (ABCA1). Astrocytes from Abca1-/- mice also showed impairment of retinoic acid/dibutyryl cAMP-induced S1P release in association with the blockage of HDL-like lipoprotein formation. However, the formation of either apoE or lipoprotein itself was not sufficient, and additional up-regulation of ABCA1 was requisite to stimulate S1P release. We conclude that the S1P release from astrocytes is coupled with lipoprotein formation through ABCA1.
Collapse
Affiliation(s)
- Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tramontina AC, Wartchow KM, Rodrigues L, Biasibetti R, Quincozes-Santos A, Bobermin L, Tramontina F, Gonçalves CA. The neuroprotective effect of two statins: simvastatin and pravastatin on a streptozotocin-induced model of Alzheimer's disease in rats. J Neural Transm (Vienna) 2011; 118:1641-9. [PMID: 21744242 DOI: 10.1007/s00702-011-0680-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/21/2011] [Indexed: 01/06/2023]
Abstract
Astrocytes play a fundamental role in glutamate metabolism by regulating the extracellular levels of glutamate and intracellular levels of glutamine. They also participate in antioxidant defenses, due to the synthesis of glutathione, coupled to glutamate metabolism. Although the cause of Alzheimer's disease (AD) remains elusive, some changes in neurochemical parameters, such as glutamate uptake, glutamine synthetase activity and glutathione have been investigated in this disease. A possible neuroprotective effect of two statins, simvastatin and pravastatin (administered p.o.), was evaluated using a model of dementia, based on the intracerebroventricular (ICV) administration of streptozotocin (STZ), and astrocyte parameters were determined. We confirmed a cognitive deficit in rats submitted to ICV-STZ, and a prevention of this deficit by statin administration. Moreover, both statins were able to prevent the decrease in glutathione content and glutamine synthetase activity in this model of AD. Interestingly, simvastatin increased per se glutamate uptake activity, while both statins increased glutamine synthetase activity per se. These results support the idea that these drugs could be effective for the prevention of alterations observed in the STZ dementia model and may contribute to reduce the cognitive impairment and brain damage observed in AD patients.
Collapse
Affiliation(s)
- Ana Carolina Tramontina
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Murray IVJ, Proza JF, Sohrabji F, Lawler JM. Vascular and metabolic dysfunction in Alzheimer's disease: a review. Exp Biol Med (Maywood) 2011; 236:772-82. [PMID: 21680755 DOI: 10.1258/ebm.2011.010355] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is thought to start years or decades prior to clinical diagnosis. Overt pathology such as protein misfolding and plaque formation occur at later stages, and factors other than amyloid misfolding contribute to the initiation of the disease. Vascular and metabolic dysfunctions are excellent candidates, as they are well-known features of AD that precede pathology or clinical dementia. While the general notion that vascular and metabolic dysfunctions contribute to the etiology of AD is becoming accepted, recent research suggests novel mechanisms by which these/such processes could possibly contribute to AD pathogenesis. Vascular dysfunction includes reduced cerebrovascular flow and cerebral amyloid angiopathy. Indeed, there appears to be an interaction between amyloid β (Aβ) and vascular pathology, where Aβ production and vascular pathology both contribute to and are affected by oxidative stress. One major player in the vascular pathology is NAD(P)H oxidase, which generates vasoactive superoxide. Metabolic dysfunction has only recently regained popularity in relation to its potential role in AD. The role of metabolic dysfunction in AD is supported by the increased epidemiological risk of AD associated with several metabolic diseases such as diabetes, dyslipidemia and hypertension, in which there is elevated oxidative damage and insulin resistance. Metabolic dysfunction is further implicated in AD as pharmacological inhibition of metabolism exacerbates pathology, and several metabolic enzymes of the glycolytic, tricarboxylic acid cycle (TCA) and oxidative phosphorylation pathways are damaged in AD. Recent studies have highlighted the role of insulin resistance, in contributing to AD. Thus, vascular and metabolic dysfunctions are key components in the AD pathology throughout the course of disease. The common denominator between vascular and metabolic dysfunction emerging from this review appears to be oxidative stress and Aβ. This review also provides a framework for evaluation of current and future therapeutics for AD.
Collapse
Affiliation(s)
- Ian V J Murray
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | |
Collapse
|
39
|
Barone E, Cenini G, Di Domenico F, Martin S, Sultana R, Mancuso C, Murphy MP, Head E, Butterfield DA. Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res 2011; 63:172-80. [PMID: 21193043 PMCID: PMC3034810 DOI: 10.1016/j.phrs.2010.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 01/12/2023]
Abstract
Alzheimer disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory loss, inability to perform the activities of daily living and personality changes. Unfortunately, drugs effective for this disease are limited to acetylcholinesterase inhibitors that do not impact disease pathogenesis. Statins, which belong to the class of cholesterol-reducing drugs, were proposed as novel agents useful in AD therapy, but the mechanism underlying their neuroprotective effect is still unknown. In this study, we show that atorvastatin may have antioxidant effects, in aged beagles, that represent a natural higher mammalian model of AD. Atorvastatin (80 mg/day for 14.5 months) significantly reduced lipoperoxidation, protein oxidation and nitration, and increased GSH levels in parietal cortex of aged beagles. This effect was specific for brain because it was not paralleled by a concomitant reduction in all these parameters in serum. In addition, atorvastatin slightly reduced the formation of cholesterol oxidation products in cortex but increased the 7-ketocholesterol/total cholesterol ratio in serum. We also found that increased oxidative damage in the parietal cortex was associated with poorer learning (visual discrimination task). Thus, a novel pharmacological effect of atorvastatin mediated by reducing oxidative damage may be one mechanism underlying benefits of this drug in AD.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Roma, Italy
| | - Giovanna Cenini
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
- Department of Molecular and Biomedical Pharmacology, and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY, USA
| | - Fabio Di Domenico
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sarah Martin
- Department of Molecular and Biomedical Pharmacology, and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Roma, Italy
| | - Michael Paul Murphy
- Department of Molecular and Cellular Biochemistry, and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY, USA
| | - Elizabeth Head
- Department of Molecular and Biomedical Pharmacology, and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY, USA
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| |
Collapse
|
40
|
Piau A, Nourhashémi F, Hein C, Caillaud C, Vellas B. Progress in the development of new drugs in Alzheimer's disease. J Nutr Health Aging 2011; 15:45-57. [PMID: 21267520 DOI: 10.1007/s12603-011-0012-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with a global prevalence estimated at 26.55 million in 2006. During the past decades, several agents have been approved that enhance cognition of AD patients. However, the effectiveness of these treatments are limited or controversial and they do not modify disease progression. Recent advances in understanding AD pathogenesis have led to the development of numerous compounds that might modify the disease process. AD is mainly characterized neuropathologically by the presence of two kinds of protein aggregates: extracellular plaques of Abeta-peptide and intracellular neurofibrillary tangles. Abeta and tau could interfere in an original way contributing to a cascade of events leading to neuronal death and transmitter deficits. Investigation for novel therapeutic approaches targeting the presumed underlying pathogenic mechanisms is major focus of research. Antiamyloid agents targeting production, accumulation, clearance, or toxicity associated with Abeta peptide, are some approaches under investigation to limit extracellular plaques of Abeta-peptide accumulation. We can state as an example: Abeta passive and active immunization, secretases modulation, Abeta degradation enhancement, or antiaggregation and antifibrillization agents. Tau-related therapies are also under clinical investigation but few compounds are available. Another alternative approach under development is neuroprotective agents such as antioxidants, anti-inflammatory drugs, compounds acting against glutamate mediated neurotoxicity. Neurorestorative approaches through neurotrophin or cell therapy also represent a minor avenue in AD research. Finally, statins, receptor for advanced glycation end products inhibitors, thiazolidinediones, insulin, and hormonal therapies are some other ways of research for a therapeutic approach of Alzheimer's disease. Taking into account AD complexity, it becomes clear that polypharmacology with drugs targeting different sites could be the future treatment approach and a majority of the recent drugs under evaluation seems to act on multiple targets. This article exposes general classes of disease-modifying therapies under investigation.
Collapse
|
41
|
Rushworth JV, Hooper NM. Lipid Rafts: Linking Alzheimer's Amyloid-β Production, Aggregation, and Toxicity at Neuronal Membranes. Int J Alzheimers Dis 2010; 2011:603052. [PMID: 21234417 PMCID: PMC3014710 DOI: 10.4061/2011/603052] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/03/2010] [Indexed: 01/03/2023] Open
Abstract
Lipid rafts are membrane microdomains, enriched in cholesterol and sphingolipids, into which specific subsets of proteins and lipids partition, creating cell-signalling platforms that are vital for neuronal functions. Lipid rafts play at least three crucial roles in Alzheimer's Disease (AD), namely, in promoting the generation of the amyloid-β (Aβ) peptide, facilitating its aggregation upon neuronal membranes to form toxic oligomers and hosting specific neuronal receptors through which the AD-related neurotoxicity and memory impairments of the Aβ oligomers are transduced. Recent evidence suggests that Aβ oligomers may exert their deleterious effects through binding to, and causing the aberrant clustering of, lipid raft proteins including the cellular prion protein and glutamate receptors. The formation of these pathogenic lipid raft-based platforms may be critical for the toxic signalling mechanisms that underlie synaptic dysfunction and neuropathology in AD.
Collapse
Affiliation(s)
- Jo V. Rushworth
- Institute of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nigel M. Hooper
- Institute of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
42
|
Abstract
Alzheimer disease (AD) is the most common causes of neurodegenerative disorder in the elderly individuals. Clinically, patients initially present with short-term memory loss, subsequently followed by executive dysfunction, confusion, agitation, and behavioral disturbances. Three causative genes have been associated with autosomal dominant familial AD (APP, PSEN1, and PSEN2) and 1 genetic risk factor (APOEε4 allele). Identification of these genes has led to a number of animal models that have been useful to study the pathogenesis underlying AD. In this article, we provide an overview of the clinical and genetic features of AD.
Collapse
Affiliation(s)
- Lynn M. Bekris
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chang-En Yu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas D. Bird
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
43
|
Schreurs BG. The effects of cholesterol on learning and memory. Neurosci Biobehav Rev 2010; 34:1366-79. [PMID: 20470821 PMCID: PMC2900496 DOI: 10.1016/j.neubiorev.2010.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 02/07/2023]
Abstract
Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, pro-inflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer's disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute and Department of Physiology and Pharmacology, West Virginia University School of Medicine, BRNI Building, Morgantown, WV 26505-3409-08, USA.
| |
Collapse
|
44
|
Kumari U, Heese K. Cardiovascular dementia - a different perspective. Open Biochem J 2010; 4:29-52. [PMID: 20448820 PMCID: PMC2864432 DOI: 10.2174/1874091x01004010029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 02/08/2023] Open
Abstract
The number of dementia patients has been growing in recent years and dementia represents a significant threat to aging people all over the world. Recent research has shown that the number of people affected by Alzheimer's disease (AD) and dementia is growing at an epidemic pace. The rapidly increasing financial and personal costs will affect the world's economies, health care systems, and many families. Researchers are now exploring a possible connection among AD, vascular dementia (VD), diabetes mellitus (type 2, T2DM) and cardiovascular diseases (CD). This correlation may be due to a strong association of cardiovascular risk factors with AD and VD, suggesting that these diseases share some biologic pathways. Since heart failure is associated with an increased risk of AD and VD, keeping the heart healthy may prove to keep the brain healthy as well. The risk for dementia is especially high when diabetes mellitus is comorbid with severe systolic hypertension or heart disease. In addition, the degree of coronary artery disease (CAD) is independently associated with cardinal neuropathological lesions of AD. Thus, the contribution of T2DM and CD to AD and VD implies that cardiovascular therapies may prove useful in preventing AD and dementia.
Collapse
Affiliation(s)
- Udhaya Kumari
- Division of Cell and Molecular Biology, School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | |
Collapse
|
45
|
Membrane rafts in Alzheimer's disease beta-amyloid production. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:860-7. [PMID: 20303415 DOI: 10.1016/j.bbalip.2010.03.007] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), the most common age-associated dementing disorder, is pathologically manifested by progressive cognitive dysfunction concomitant with the accumulation of senile plaques consisting of amyloid-beta (Abeta) peptide aggregates in the brain of affected individuals. Abeta is derived from a type I transmembrane protein, amyloid precursor protein (APP), by the sequential proteolytic events mediated by beta-site APP cleaving enzyme 1 (BACE1) and gamma-secretase. Multiple lines of evidence have implicated cholesterol and cholesterol-rich membrane microdomains, termed lipid rafts in the amyloidogenic processing of APP. In this review, we summarize the cell biology of APP, beta- and gamma-secretases and the data on their association with lipid rafts. Then, we will discuss potential raft targeting signals identified in the secretases and their importance on amyloidogenic processing of APP.
Collapse
|
46
|
Zambón D, Quintana M, Mata P, Alonso R, Benavent J, Cruz-Sánchez F, Gich J, Pocoví M, Civeira F, Capurro S, Bachman D, Sambamurti K, Nicholas J, Pappolla MA. Higher incidence of mild cognitive impairment in familial hypercholesterolemia. Am J Med 2010; 123:267-74. [PMID: 20193836 PMCID: PMC2844655 DOI: 10.1016/j.amjmed.2009.08.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 08/06/2009] [Accepted: 08/29/2009] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Hypercholesterolemia is an early risk factor for Alzheimer's disease. Low-density lipoprotein (LDL) receptors might be involved in this disorder. Our objective was to determine the risk of mild cognitive impairment in a population of patients with heterozygous familial hypercholesterolemia, a condition involving LDL receptor dysfunction and lifelong hypercholesterolemia. METHODS By using a cohort study design, patients with familial hypercholesterolemia (N=47) meeting inclusion criteria and comparison patients without familial hypercholesterolemia (N=70) were consecutively selected from academic specialty and primary care clinics, respectively. All patients were older than 50 years. Those with disorders that could affect cognition, including history of stroke or transient ischemic attacks, were excluded from both groups. Thirteen standardized neuropsychologic tests were performed in all subjects. Mutational analysis was performed in patients with familial hypercholesterolemia, and brain imaging was obtained in those with familial hypercholesterolemia and mild cognitive impairment. RESULTS Patients with familial hypercholesterolemia showed a high incidence of mild cognitive impairment compared with those without familial hypercholesterolemia (21.3% vs 2.9%; P=.00). This diagnosis was unrelated to structural pathology or white matter disease. There were significant differences, independent of apolipoprotein E4 or E2 status, between those with familial hypercholesterolemia and those with no familial hypercholesterolemia in several cognitive measures, all in the direction of worse performance for those with familial hypercholesterolemia. CONCLUSION Because prior studies have shown that older patients with sporadic hypercholesterolemia do not show a higher incidence of mild cognitive impairment, the findings presented suggest that early exposure to elevated cholesterol or LDL receptor dysfunction may be risk factors for mild cognitive impairment.
Collapse
Affiliation(s)
- Daniel Zambón
- Institut d'Investigacions Biomédiques August Pi Sunyer, Hospital Clinic, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Harris JR, Milton NGN. Cholesterol in Alzheimer's disease and other amyloidogenic disorders. Subcell Biochem 2010; 51:47-75. [PMID: 20213540 DOI: 10.1007/978-90-481-8622-8_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The complex association of cholesterol metabolism and Alzheimer's disease is presented in depth, including the possible benefits to be gained from cholesterol-lowering statin therapy. Then follows a survey of the role of neuronal membrane cholesterol in Abeta pore formation and Abeta fibrillogenesis, together with the link with membrane raft domains and gangliosides. The contribution of structural studies to Abeta fibrillogenesis, using TEM and AFM, is given some emphasis. The role of apolipoprotein E and its isoforms, in particular ApoE4, in cholesterol and Abeta binding is presented, in relation to genetic risk factors for Alzheimer's disease. Increasing evidence suggests that cholesterol oxidation products are of importance in generation of Alzheimer's disease, possibly induced by Abeta-produced hydrogen peroxide. The body of evidence for a link between cholesterol in atherosclerosis and Alzheimer's disease is increasing, along with an associated inflammatory response. The possible role of cholesterol in tau fibrillization, tauopathies and in some other non-Abeta amyloidogenic disorders is surveyed.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, D-55099, Mainz, Germany.
| | | |
Collapse
|
48
|
Insulin Action in the Brain and the Pathogenesis of Alzheimer’s Disease. DIABETES, INSULIN AND ALZHEIMER'S DISEASE 2010. [DOI: 10.1007/978-3-642-04300-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Area-Gomez E, de Groof AJC, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP, Pon LA, Schon EA. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1810-6. [PMID: 19834068 DOI: 10.2353/ajpath.2009.090219] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Presenilin-1 (PS1) and -2 (PS2), which when mutated cause familial Alzheimer disease, have been localized to numerous compartments of the cell, including the endoplasmic reticulum, Golgi, nuclear envelope, endosomes, lysosomes, the plasma membrane, and mitochondria. Using three complementary approaches, subcellular fractionation, gamma-secretase activity assays, and immunocytochemistry, we show that presenilins are highly enriched in a subcompartment of the endoplasmic reticulum that is associated with mitochondria and that forms a physical bridge between the two organelles, called endoplasmic reticulum-mitochondria-associated membranes. A localization of PS1 and PS2 in mitochondria-associated membranes may help reconcile the disparate hypotheses regarding the pathogenesis of Alzheimer disease and may explain many seemingly unrelated features of this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G. Astrocyte-neuron interactions in neurological disorders. J Biol Phys 2009; 35:317-36. [PMID: 19669420 PMCID: PMC2750745 DOI: 10.1007/s10867-009-9157-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 04/15/2009] [Indexed: 12/12/2022] Open
Abstract
Astrocytes have long been considered as just providing trophic support for neurons in the central nervous system, but recently several studies have highlighted their importance in many functions such as neurotransmission, metabolite and electrolyte homeostasis, cell signaling, inflammation, and synapse modulation. Astrocytes are, in fact, part of a bidirectional crosstalk with neurons. Moreover, increasing evidence is stressing the emerging role of astrocyte dysfunction in the pathophysiology of neurological disorders, including neurodegenerative disease, stroke, epilepsy, migraine, and neuroinflammatory diseases.
Collapse
Affiliation(s)
- G Ricci
- Neurologic Clinic, University of Pisa, Pisa, Italy.
| | | | | | | | | |
Collapse
|