1
|
Dobrachinski F, Ribeiro KA, Bezerra IC, da Silva AJ, Pereira CMM, Vellasques K, Padilha HA, Haas SE, de Ávila DS, Gubert P. Nutraceutical approaches for Autism Spectrum Disorder treatment. Behav Brain Res 2025:115653. [PMID: 40409375 DOI: 10.1016/j.bbr.2025.115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/06/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
The Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that has been increasing in prevalence and is characterized by some degree of difficulty with social interaction, communication, and sensory response. According to the World Health Organization, ASD affects 1 in 100 children, and many factors may cause brain alterations, such as genetic and environmental factors. Currently, there is no standard treatment for ASD. Notably, one of the hallmarks of this condition is neuroinflammation since it has been suggested that autism results from central nervous system derangements due to chronic inflammatory reactions, with activation of microglial cells. Therefore, antioxidant and anti-inflammatory compounds may be nutraceutical supplements of interest to attenuate the impacts of neuroinflammation in ASD subjects. This review highlights the main molecules that have been successful in preclinical and clinical trials, as well as potential associations that might be further strategies to investigate.
Collapse
Affiliation(s)
- Fernando Dobrachinski
- Department of Basic Health Sciences, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Kátia Alves Ribeiro
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
| | - Iverson Conrado Bezerra
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife, Brazil
| | - Artur José da Silva
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife, Brazil
| | | | - Kelle Vellasques
- Pharmacology and Pharmacometrics Laboratory, LABFAR, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Heloísa Aiolfi Padilha
- Graduate Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Sandra Elisa Haas
- Pharmacology and Pharmacometrics Laboratory, LABFAR, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Daiana Silva de Ávila
- Graduate Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil; Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, Brazil
| | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Pure and Applied Chemistry, POSQUIPA, Federal University of Western of Bahia, Bahia, Brazil.
| |
Collapse
|
2
|
Vrillon A, Ashton NJ, Bouaziz-Amar E, Mouton-Liger F, Cognat E, Dumurgier J, Lilamand M, Karikari TK, Prevot V, Zetterberg H, Blennow K, Paquet C. Dissection of blood-brain barrier dysfunction through CSF PDGFRβ and amyloid, tau, neuroinflammation, and synaptic CSF biomarkers in neurodegenerative disorders. EBioMedicine 2025; 115:105694. [PMID: 40239464 PMCID: PMC12020895 DOI: 10.1016/j.ebiom.2025.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction is an early event in neurodegenerative disorders. Pericytes are key cells for BBB maintenance. Upon pericyte injury, the platelet-derived growth factor receptor-β (PDGFRβ) is released in the cerebrospinal fluid (CSF). The relation of CSF PDGFRβ with markers of amyloid pathology, neuroinflammation, and axonal and synaptic damage across dementia remains unclear. METHODS Retrospectively, we quantified CSF PDGFRβ and CSF core Alzheimer's disease (AD), astrocytic (GFAP), microglial (sTREM 2, YKL-40), axonal (NfL), and synaptic (GAP-43, neurogranin) biomarkers in 210 patients from the Cognitive Neurology Centre, Paris, France, including n = 23 neurological controls (NC), n = 84 patients with mild cognitive impairment (MCI) [AD, n = 41; non-AD, n = 43], and n = 103 patients with dementia (AD, n = 73; non-AD, n = 30). FINDINGS Comparing clinical stages, CSF PDGFRβ levels were increased at the MCI stage (Cohen's d = 0.55 [CI95% 0.066, 1.0], P = 0.025) compared with NC. Non-AD MCI displayed higher levels than controls (Cohen's d = 0.74 [CI95% 0.22, 1.3], P = 0.042). No association was observed with CSF Aβ42/Aβ40 ratio but with p-tau 181 (β = 0.102 [CI95% 0.027, 0.176], P = 0.0080) and t-tau levels (β = 0.133 [0.054, 0.213], P = 0.0010). CSF PDGFRβ levels were positively associated with CSF neuroinflammation and synaptic markers levels. Higher CSF PDGFRβ levels were associated with lower MMSE scores at MCI (β = -1.23 [CI95% -2.33, -0.260], P = 0.015) and dementia stages (β = -2.24 [CI95% -3.62, -0.85], P = 0.0020). CSF neuroinflammation biomarkers mediated the association of CSF PDGFRβ with neurodegeneration and synaptic integrity markers. INTERPRETATION CSF PDGFRβ, a candidate biomarker of BBB dysfunction, is increased in the early stages of neurodegenerative disorders, in association with neuroinflammation and axonal and synaptic damage. FUNDING Association des Anciens Internes des Hôpitaux de Paris, Edmond de Rothschild Program, Fondation Vaincre Alzheimer, Demensförbundet, Gamla Tjänarinnor, Anna-Lisa och Bror Björnssons Stiftelse.
Collapse
Affiliation(s)
- Agathe Vrillon
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France; University of California San Francisco, San Francisco, CA, USA.
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Banner Alzheimer's Institute and University of Arizona, Phoenix, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ 85351, USA; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Elodie Bouaziz-Amar
- INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France; Biochemistry Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | | | - Emmanuel Cognat
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Julien Dumurgier
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Matthieu Lilamand
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, DISTALZ, Lille, France
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Hong Kong Centre for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Special Administrative Region of China; Wisconsin Alzheimer's Disease Research Centre, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Centre, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Claire Paquet
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| |
Collapse
|
3
|
Kang X, Xie Z, Yang Y, Wu L, Xu H, Zhang S, Liang Y, Wu X. Hippocampal GPR35 is involved in the depression-like behaviors induced by inflammation and mediates the antidepressant effects of fluoxetine in mice. Brain Behav Immun 2025; 126:189-213. [PMID: 39978696 DOI: 10.1016/j.bbi.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/23/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Neuroinflammation plays a pivotal role in the pathogenesis of depression. G protein-coupled receptor 35 (GPR35) is expressed in the brain and plays a role in regulating inflammatory processes. However, its specific role in depression remains unclear. Herein, we investigate the role of GPR35 in depressive behaviors induced by lipopolysaccharide (LPS) in mice. METHODS We employed an LPS-induced depression mouse model and conducted behavioral tests, molecular analyses, and morphological assessments, along with chemogenetic techniques, to investigate the role of GPR35 in depression. RESULTS Our results showed a significant increase in GPR35 expression in the brain of LPS-treated mice. Both pharmacological inhibition and genetic knockdown of GPR35 alleviated LPS-induced depressive-like behaviors by mitigating neuroinflammation, oxidative stress, synaptic plasticity deficits, and TLR4/NF-κB signaling in mice. Conversely, pharmacological activation of GPR35 notably exacerbated LPS-induced depressive-like behaviors in mice. Additionally, the GPR35 antagonist ML-145 effectively prevented LPS-induced inflammation responses in BV-2 microglia cells. Moreover, fluoxetine treatment effectively mitigated the upregulation of hippocampal GPR35 expression induced by LPS in mice. However, administration of the GPR35 agonist zaprinast reversed the antidepressant effects of fluoxetine. Chemogenetic activation of hippocampal glutamatergic neurons attenuated LPS-induced depression-like behaviors, accompanied by decreased GPR35 expression. CONCLUSION Hippocampal GPR35 is closely associated with depressive behaviors in the inflammatory model, highlighting its potential as a therapeutic target for antidepressant drug development.
Collapse
Affiliation(s)
- Xu Kang
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Zhi Xie
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yan Yang
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Lei Wu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Heng Xu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Shuai Zhang
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - YuSheng Liang
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xian Wu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
4
|
Wei C, Liu J, Wu B, Shen T, Fan J, Lin Y, Li K, Guo Y, Shang Y, Zhou B, Xie H. Blockage of CCL3 with neutralizing antibody reduces neuroinflammation and reverses Alzheimer disease phenotypes. Brain Behav Immun 2025; 128:400-415. [PMID: 40268067 DOI: 10.1016/j.bbi.2025.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/12/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Accumulating evidence indicates that neuroinflammation is involved in the pathogenesis of Alzheimer's disease (AD). According to RNA sequencing and quantitative PCR (qPCR), we found that chemokine CCL3 mRNA expression was abnormally upregulated in the brains of AD transgenic mice. Moreover, the levels of CCL3 in the serum of AD patients were significantly elevated and negatively correlated with their cognitive abilities. However, the role of CCL3 in AD neuroinflammation and pathological damages remains elusive. METHODS Using behavioral, histological, and biochemical methods, outcomes of CCL3 antibody treatment on neuropathology and cognitive deficits were studied in the APPswe/PS1dE9 mice. RESULTS In the present study, we reported that CCL3 protein expression was increased in the APPswe/PS1dE9 mice, whereas blockage of CCL3 with neutralizing antibody potently inhibited CCL3 activation in the APPswe/PS1dE9 mice down to the levels of wild-type mice. Specifically, CCL3 antibody significantly improved the learning and memory abilities of APPswe/PS1dE9 mice. In addition, CCL3 antibody treatment decreased cerebral amyloid-β (Aβ) levels and plaque burden via inhibiting amyloid precursor protein (APP) processing by reducing beta-site APP cleaving enzyme 1 (BACE1) expression in the APPswe/PS1dE9 mice. We also found that CCL3 antibody treatment alleviated neuroinflammation and reduced synaptic defects in the APPswe/PS1dE9 mice. Furthermore, the activated NF-κB signaling pathway in APPswe/PS1dE9 mice was inhibited by CCL3 antibody treatment. CONCLUSIONS Collectively, our findings provide evidence that CCL3 activation may contribute to the AD pathogenesis and may serve as a novel therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- Chao Wei
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| | - Jing Liu
- Institute of Geriatrics, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Bing Wu
- Department of Geriatrics, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730050, China
| | - Tianhao Shen
- Peking University Health Science Center, Beijing 100191, China
| | - Jiao Fan
- Institute of Geriatrics, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Ye Lin
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ke Li
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yane Guo
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanchang Shang
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Zhou
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| | - Hengge Xie
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Pawlak WA, Howard N. Neuromorphic algorithms for brain implants: a review. Front Neurosci 2025; 19:1570104. [PMID: 40292025 PMCID: PMC12021827 DOI: 10.3389/fnins.2025.1570104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Neuromorphic computing technologies are about to change modern computing, yet most work thus far has emphasized hardware development. This review focuses on the latest progress in algorithmic advances specifically for potential use in brain implants. We discuss current algorithms and emerging neurocomputational models that, when implemented on neuromorphic hardware, could match or surpass traditional methods in efficiency. Our aim is to inspire the creation and deployment of models that not only enhance computational performance for implants but also serve broader fields like medical diagnostics and robotics inspiring next generations of neural implants.
Collapse
|
6
|
Ratne N, Jari S, Tadas M, Katariya R, Kale M, Kotagale N, Madia D, Umekar M, Taksande B. Neurobiological role and therapeutic potential of exercise-induced irisin in Alzheimer's disease management. Ageing Res Rev 2025; 105:102687. [PMID: 39938597 DOI: 10.1016/j.arr.2025.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Alzheimer's disease (AD) poses a significant obstacle in today's healthcare landscape, with limited effective treatments. Recent studies have revealed encouraging findings about how exercise-triggered irisin might help slow down the advancement of AD. Irisin, a myokine, released during physical activity, has garnered significant attention for its pleiotropic effects, extending beyond its traditional role in metabolic regulation. This review explores irisin's multifaceted potential in combating AD. Research indicates that irisin enhances synaptic plasticity, crucial for learning and memory, and exhibits neuroprotective properties that may slow AD progression by safeguarding neurons from degeneration. Additionally, irisin's ability to modulate inflammatory responses is significant, as neuroinflammation is a key feature of AD pathology. Irisin may also influence the metabolism and clearance of amyloid-beta plaques and tau tangles, hallmark pathological markers of AD. Furthermore, irisin boosts brain-derived neurotrophic factor expression, vital for neuronal health, and improves insulin glucose regulation, addressing impaired brain insulin signaling observed in AD. Exercise-induced irisin presents a non-pharmacological strategy, leveraging physical activity's brain health benefits. Future research should focus on elucidating irisin's mechanisms and conducting clinical trials to assess its therapeutic efficacy and safety in AD patients. Overall, irisin therapy offers a promising avenue for AD treatment, potentially slowing disease progression and enhancing cognitive function, paving the way for innovative therapeutic strategies in the fight against AD.
Collapse
Affiliation(s)
- Nandini Ratne
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | - Sakshi Jari
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | - Manasi Tadas
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | - Raj Katariya
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | - Mayur Kale
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | | | - Dilip Madia
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DMIHER), Deemed to be University, Sawangi (Meghe), Wardha, MS 442 001, India
| | - Milind Umekar
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India
| | - Brijesh Taksande
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India.
| |
Collapse
|
7
|
Jimenez-Harrison DM, Butler MJ, Ijaz H, Alsabbagh R, Bettes MN, DeMarsh JW, Mackey-Alfonso SE, Muscat SM, Alvarez BD, Blackwell JA, Taylor A, Jantsch J, Sanchez AA, Peters SB, Barrientos RM. Ligature-induced periodontitis in a transgenic mouse model of Alzheimer's disease dysregulates neuroinflammation, exacerbates cognitive impairment, and accelerates amyloid pathology. Brain Behav Immun Health 2025; 44:100969. [PMID: 40094122 PMCID: PMC11909722 DOI: 10.1016/j.bbih.2025.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
A growing body of literature has identified periodontal disease among the modifiable risk factors for Alzheimer's disease (AD), but the mechanisms underlying this relationship is unknown. This study investigated this relationship using a ligature-induced preclinical periodontitis (Pd) model in non-transgenic (non-Tg) and 3xTg-AD mice. We found that ligature placement caused significant alveolar bone loss, with 3xTg-AD mice exhibiting exacerbated bone loss, suggesting AD-related genetic risk may amplify disease progression. Pd induced robust local inflammatory gene expression in both genotypes, but 3xTg-AD mice indicated a dysregulated immune response. Cognitive deficits were observed only in Pd-afflicted 3xTg-AD mice, specifically in hippocampus-mediated spatial memory and perirhinal cortex-mediated object recognition memory, while non-Tg mice remained unaffected. Neuroinflammatory responses varied by brain region, with the hippocampus and prefrontal cortex (PFC) showing the most pronounced changes. In these regions, 3xTg-AD mice exhibited significantly altered cytokine gene expression compared to non-Tg mice, particularly at later time points. Synaptic markers revealed vulnerabilities in 3xTg-AD mice, including reduced baseline Syp expression and dysregulated Synpo post-ligature. Pd transiently reduced glutamate receptor gene expression in both genotypes, with non-Tg mice showing persistent changes, potentially linked to preserved memory. Pd also accelerated amyloid-β (Aβ) deposition and sustained neurodegeneration in 3xTg-AD mice. Overall, this study shows that combining Pd and AD-related genetic risk exacerbates inflammation, cognitive impairment, synaptic dysfunction, Aβ pathology, and neurodegeneration. Neither insult alone was sufficient to produce these effects, highlighting the synergistic impact. These findings emphasize the need to explore anti-inflammatory interventions and downstream mechanisms to mitigate the confluence of these diseases.
Collapse
Affiliation(s)
- Daniela M. Jimenez-Harrison
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
- Medical Scientist Training Program, The Ohio State University College of Medicine, USA
- Neuroscience Graduate Program, The Ohio State University, USA
| | - Michael J. Butler
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Haanya Ijaz
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Rami Alsabbagh
- Division of Periodontology, The Ohio State University College of Dentistry, USA
- Division of Biosciences, The Ohio State University College of Dentistry, USA
| | - Menaz N. Bettes
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - James W. DeMarsh
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Sabrina E. Mackey-Alfonso
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
- Medical Scientist Training Program, The Ohio State University College of Medicine, USA
- Neuroscience Graduate Program, The Ohio State University, USA
| | - Stephanie M. Muscat
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Bryan D. Alvarez
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
- Neuroscience Graduate Program, The Ohio State University, USA
| | - Jade A. Blackwell
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, USA
| | - Ashton Taylor
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Jeferson Jantsch
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Andrew A. Sanchez
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Sarah B. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, USA
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ruth M. Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, USA
- Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA
- Department of Psychiatry and Behavioral Health, Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
8
|
Nascimento Pires G, Pereira Laurindo R, Dos Santos Heringer L, Calixto da Silva S, Magalhães Portela D, Cardoso R, de Pádua AC, Miranda De Sá AB, Alves Da Cruz SA, Espírito Santo Araújo S, Blanco Martinez AM, Batista Carneiro M, Rocha Mendonça H. Therapeutic potential of pranlukast against cuprizone-induced inflammatory demyelination and sensory impairment in mice: Comparison with fingolimod. Neurotoxicology 2025; 107:37-52. [PMID: 39894255 DOI: 10.1016/j.neuro.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Inflammatory demyelination is present in debilitating diseases such as Multiple Sclerosis (MS). Several drugs are available for MS treatment, with fingolimod as a first-line oral option in the United States. However, a cure has yet to be established, and therapeutic failures are common, highlighting the need for continued research into new pharmacological targets. Pranlukast has shown positive effects on myelination in cell cultures and after LPC-induced demyelination in mice, but it is not yet part of the therapeutic arsenal for this disease. This study investigates pranlukast's effect on demyelination protection in an MS animal model, compared to fingolimod. For this purpose, young adult Swiss mice were treated for five weeks with a 0.2 % cuprizone diet and received daily intraperitoneal injections of pranlukast (0.1 mg/kg), fingolimod (1 mg/kg), or vehicle. Pranlukast treatment, like fingolimod, partially preserved sensory function in the tactile sensitivity test. Both treatments partially preserved myelin basic protein (MBP) levels, but only fingolimod preserved lipids and myelinated fibers in the corpus callosum (CC) at all g-ratio ranges. Cuprizone and Pranlukast groups presented more microglia/macrophages in the CC, but fewer presenting reactive microglia/macrophages and less NOS2 staining in pranlukast-treated when compared to the cuprizone group, while fingolimod treatment prevented the increase in Iba1 in the CC. In summary, this study demonstrated that pranlukast is a good candidate as a novel drug for use in conditions of inflammatory demyelination, such as MS, by restoring function through modulation of the inflammatory environment.
Collapse
Affiliation(s)
- Greice Nascimento Pires
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil
| | - Renata Pereira Laurindo
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Luiza Dos Santos Heringer
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Stefanny Calixto da Silva
- Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil
| | - Débora Magalhães Portela
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil
| | - Ricardo Cardoso
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Souza Marques School of Medicine, Avenue Ernani Cardoso, 335 - Campinho, Rio de Janeiro, RJ 21310-310, Brazil
| | - Ana Carolina de Pádua
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Ana Beatriz Miranda De Sá
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Saulo Augusto Alves Da Cruz
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Sheila Espírito Santo Araújo
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Ana Maria Blanco Martinez
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Milena Batista Carneiro
- Physiopathology Lab LAFISP - IMCT. Federal University of Rio de Janeiro, Street Alcides da Conceição, 159 - Granja dos Cavaleiros, Macaé, RJ 27930-480, Brazil
| | - Henrique Rocha Mendonça
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil.
| |
Collapse
|
9
|
Wang J, Du H, Li M, Yan T, Jia Y. Schisandra chinensis lignans exerts endocannabinoids-like antidepressive effect: The phagocytotic relationship of activated CB2R-mediated M2 microglia and "stressed-but-viable" neuron. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119385. [PMID: 39832627 DOI: 10.1016/j.jep.2025.119385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandrachinensis, a traditional functional Chinese medicine, is known for its ability to tonify the kidneys, calm the heart, and tranquilize the mind. Recent pharmacological research has demonstrated its anti-inflammatory and neuroprotective effects. AIM OF THE STUDY We had previously demonstrated that Schisandra chinensis lignans (SCL) promote microglia polarization to M2 phenotype via targeting cannabinoid receptor type-2 (CB2R) to exert antidepressant effects. Considering the pathological features of abnormal microglial phagocytosis in chronic unpredictable mild stress (CUMS)-induced depression model, the current study aimed to build relationship between microglial phagocytosis and phenotype, further to explore whether SCL exerts antidepression by ameliorating abnormal phagocytotic "stressed-but-viable" neuron by targeting microglial CB2R. MATERIALS AND METHODS Endocannabinoid levels were analyzed using Triple Quadrupole LC/MS. In vivo immunofluorescence assay was employed to evaluate the microglial abnormal phagocytosis. Then, we build models which one was microglia BV2 phagocytized FITC-IgG conjugated latex beads, the other was BV2 co-cultured with stressed-but-viable neurons. Phagocytosis was quantified using flow cytometry. The expression of calreticulin (CRT) in total, intracellular, and surface fractions was validated by Western blot, flow cytometry, and immunofluorescence. The other proteins, such as LRP1, microglial phenotype markers and the PERK-eIF2α pathway, were assessed by Western blot. The qRT-PCR was used to evaluate microglial phenotype markers. Based on the interaction between endocannabinoids and SCL with CB2R, we conducted a CB2R pharmacological antagonist in the CUMS model and used siRNA against CB2R in BV2 cells to verify the findings. RESULTS SCL improved the disrupted levels of endocannabinoids induced by CUMS. In vivo studies revealed that the CB2R antagonist AM630 reversed the SCL-reduced efficiency of microglial mistakenly phagocytosed stressed-but-viable neurons and the up-regulated level of M2 phenotype. In the in vitro studies, we identified SCL activated M2 microglia via CB2R targeting, leading to a reduction in the neuronal cell-surface CRT, inhibition of the "eat-me" signaling, and alleviation abnormal phagocytosis. In-depth investigation performed in the co-culture model revealed that this mechanism involved the inactivation of the PERK-eIF2α pathway in neuronal cells by M2 microglia to exert the above-mentioned effects. CONCLUSION Overall, the improved abnormal phagocytotic process appears to be influenced by SCL and endocannabinoids, promoting microglial polarization toward the M2 phenotype in a CB2R-dependent manner. Specifically, this mechanism involves M2 microglia inactivation of the PERK-eIF2α pathway in stressed-but-viable neurons, thereby reducing CRT translocation to the cell surface and enhancing the regulation of abnormal phagocytosis, ultimately contributing to an antidepressant effect.
Collapse
Affiliation(s)
- Jinyu Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Haoyu Du
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Mengru Li
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Tingxu Yan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
10
|
Li S, You M, Chen C, Fu J, Xu Y, Pi J, Wang Y. Direct engulfment of synapses by overactivated microglia due to cadmium exposure and the protective role of Nrf2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117620. [PMID: 39732062 DOI: 10.1016/j.ecoenv.2024.117620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Cadmium (Cd), a notorious environmental pollutant, has been linked to neurological disorders, but the underlying mechanism remains elusive. We aimed to explore the role of microglia in Cd-induced synaptic damages at environmentally relevant doses and whether microglia directly engulf synaptic structures. Nrf2 is deeply implicated in the status of microglial activation; therefore, we also investigated whether it is involved in the above process. Nrf2 knockout mice and wild-type mice were used to explore prolonged Cd exposure-induced synaptic damages, learning-memory impairments, and microglial activation. We also created Nrf2 knockdown (KD) BV2 microglia to investigate the role of cell-specific Nrf2 in Cd-induced microglial activation. Finally, we developed co-culture systems of either Nrf2-KD or Scramble microglia and primary neurons or HT22 neurons to study the effects of Nrf2-regulated microglial activation on synaptic damages induced by Cd. Moreover, the direct engulfment, a main avenue in microglia that may be responsible for Cd-induced synaptic damages and regulated by Nrf2, was specifically studied in vivo and in vitro, along with underlying specific mechanisms. We found that Cd exposure induced microglial overactivation, and Cd-overactivated microglia impaired synapses through direct engulfment of synaptic structures, which may contribute to learning-memory impairments. Both fractalkine and complement pathways underlay microglial engulfment of synapses due to Cd exposure. Nrf2 was essential in preventing microglial overactivation and subsequent direct engulfment, thus preventing the consequent synaptic damages due to Cd exposure. Overall, the findings suggest that Cd-overactivated microglia damage synapses through direct engulfment, resulting from the activation of fractalkine and complement pathways.
Collapse
Affiliation(s)
- Siyao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education (Guizhou Medical University), Guiyang, Guizhou 550025, China
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
11
|
Chu CT, Uruno A, Katsuoka F, Yamamoto M. Role of NRF2 in Pathogenesis of Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1529. [PMID: 39765857 PMCID: PMC11727090 DOI: 10.3390/antiox13121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Alzheimer's disease (AD) is a polygenic, multifactorial neurodegenerative disorder and remains the most prevalent form of dementia, globally. Despite decades of research efforts, there is still no effective cure for this debilitating condition. AD research has increasingly focused on transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) as a potential therapeutic target. NRF2 plays a crucial role in protecting cells and tissues from environmental stressors, such as electrophiles and reactive oxygen species. Recently, an increasing number of studies have demonstrated that NRF2 is a key regulator in AD pathology. NRF2 is highly expressed in microglia, resident macrophages in the central nervous system, and contributes to neuroinflammation, phagocytosis and neurodegeneration in AD. NRF2 has been reported to modulate microglia-induced inflammation and facilitate the transition from homeostatic microglia to a disease-associated microglia subset. Genetic and pharmacological activation of NRF2 has been demonstrated to improve cognitive function. Here, we review the current understanding of the involvement of NRF2 in AD and the critical role that NRF2 plays in microglia in the context of AD. Our aim is to highlight the potential of targeting NRF2 in the microglia as a promising therapeutic strategy for mitigating the progression of AD.
Collapse
Affiliation(s)
- Ching-Tung Chu
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Akira Uruno
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan;
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| |
Collapse
|
12
|
Li L, Sun J, Chen F, Xiong L, She L, Hao T, Zeng Y, Li L, Wang W, Zhao X, Liang G. Pedunculoside alleviates cognitive deficits and neuronal cell apoptosis by activating the AMPK signaling cascade. Chin Med 2024; 19:163. [PMID: 39574131 PMCID: PMC11583384 DOI: 10.1186/s13020-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction emerges as an early pathological hallmark of Alzheimer's disease (AD). The reduction in mitochondrial membrane potential and the elevation of reactive oxygen species (ROS) production are pivotal in the initiation of neuronal cell apoptosis. Pedunculoside(Ped), a novel triterpene saponin derived from the dried barks of Ilex rotunda Thunb, exhibits a potent anti-inflammatory effect. In the course of drug screening, we discovered that Ped offers significant protection against apoptosis induced by Aβ1-42. Nevertheless, the role and mechanism of Ped in AD are yet to be elucidated. METHODS Oxidative stress was evaluated by measuring mitochondrial membrane potential and intracellular ROS production. The expression of proteins associated with apoptosis was determined using western blot analysis and flow cytometry. In vivo, the pathological characteristics of AD were investigated through Western blot and tissue immunofluorescence techniques. Cognitive function was assessed using the Morris Water Maze and Novel Object Recognition tests. RESULTS We demonstrated that Ped decreased apoptosis in PC12 cells, reduced the generation of intracellular ROS, and restored mitochondrial membrane potential. Mechanistically, we found that the protective effect of Ped against Aβ-induced neurotoxicity was associated with activation of the AMPK/GSK-3β/Nrf2 signaling pathway. In vivo, Ped alleviated memory deficits and inhibited neuronal apoptosis, inflammation, and oxidative stress in the hippocampus of 3 × Tg AD mice, along with the activation of the AMPK signaling pathway. CONCLUSION The findings indicate that Ped exerts its neuroprotective effects against oxidative stress and apoptosis through the AMPK signaling cascade. The results demonstrate that Ped is a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Liwei Li
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jinfeng Sun
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Fan Chen
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Li Xiong
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Lingyu She
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Tang Hao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yuqing Zeng
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luyao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, 325035, Zhejiang, China
| | - Wei Wang
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, 321399, Zhejiang, China
| | - Xia Zhao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| | - Guang Liang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| |
Collapse
|
13
|
Mazzoli A, Spagnuolo MS, De Palma F, Petecca N, Di Porzio A, Barrella V, Troise AD, Culurciello R, De Pascale S, Scaloni A, Mauriello G, Iossa S, Cigliano L. Limosilactobacillus reuteri DSM 17938 relieves inflammation, endoplasmic reticulum stress, and autophagy in hippocampus of western diet-fed rats by modulation of systemic inflammation. Biofactors 2024; 50:1236-1250. [PMID: 38801155 PMCID: PMC11627471 DOI: 10.1002/biof.2082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
The consumption of western diets, high in fats and sugars, is a crucial contributor to brain molecular alterations, cognitive dysfunction and neurodegenerative diseases. Therefore, a mandatory challenge is the individuation of strategies capable of preventing diet-induced impairment of brain physiology. A promising strategy might consist in the administration of probiotics that are known to influence brain function via the gut-brain axis. In this study, we explored whether Limosilactobacillus reuteri DSM 17938 (L. reuteri)-based approach can counteract diet-induced neuroinflammation, endoplasmic reticulum stress (ERS), and autophagy in hippocampus, an area involved in learning and memory, in rat fed a high fat and fructose diet. The western diet induced a microbiota reshaping, but L. reuteri neither modulated this change, nor the plasma levels of short-chain fatty acids. Interestingly, pro-inflammatory signaling pathway activation (increased NFkB phosphorylation, raised amounts of toll-like receptor-4, tumor necrosis factor-alpha, interleukin-6, GFAP, and Haptoglobin), as well as activation of ERS (increased PERK and eif2α phosphorylation, higher C/EBP-homologous protein amounts) and autophagy (increased beclin, P62-sequestosome-1, and LC3 II) was revealed in hippocampus of western diet fed rats. All these hippocampal alterations were prevented by L. reuteri administration, showing for the first time a neuroprotective role of this specific probiotic strain, mainly attributable to its ability to regulate western diet-induced metabolic endotoxemia and systemic inflammation, as decreased levels of lipopolysaccharide, plasma cytokines, and adipokines were also found. Therapeutic strategies based on the use of L. reuteri DSM17938 could be beneficial in reversing metabolic syndrome-mediated brain dysfunction and cognitive decline.
Collapse
Affiliation(s)
- Arianna Mazzoli
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean EnvironmentNational Research CouncilPorticiItaly
| | - Francesca De Palma
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Natasha Petecca
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Angela Di Porzio
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Valentina Barrella
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Antonio Dario Troise
- Institute for the Animal Production System in the Mediterranean EnvironmentNational Research CouncilPorticiItaly
| | - Rosanna Culurciello
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Sabrina De Pascale
- Institute for the Animal Production System in the Mediterranean EnvironmentNational Research CouncilPorticiItaly
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean EnvironmentNational Research CouncilPorticiItaly
| | - Gianluigi Mauriello
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| | - Susanna Iossa
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IIPorticiItaly
| | - Luisa Cigliano
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IIPorticiItaly
| |
Collapse
|
14
|
Bae JS, Heo JE, Ryu KY. Proteasome inhibition suppresses the induction of lipocalin-2 upon systemic lipopolysaccharide challenge in mice. Mol Brain 2024; 17:73. [PMID: 39363318 PMCID: PMC11451108 DOI: 10.1186/s13041-024-01147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
Lipocalin-2 (Lcn2), a protein secreted by immune-activated cells, including reactive astrocytes, is detrimental to the brain and induces neurodegeneration. We previously showed that Lcn2 levels are reduced in primary mouse astrocytes after treatment with the proteasome inhibitor bortezomib (BTZ). However, it remains unknown whether a decrease in Lcn2 levels after BTZ treatment can also be observed in vivo and whether it reduces neurotoxicity during lipopolysaccharide (LPS)-induced systemic inflammation in vivo. To answer these questions, we performed LPS challenge experiments by intraperitoneal injection in mice and found that Lcn2 levels were significantly increased in the brain, recapitulating in vitro experiments using astrocytes. Co-administration of LPS and BTZ reduced the Lcn2 levels compared to the levels in LPS-treated controls. Upon LPS challenge, the expression levels of glial marker genes were upregulated in the mouse brain. Of note, this upregulation was hampered by the co-administration of BTZ. Taken together, our results suggested that BTZ can reduce LPS-induced Lcn2 levels and may alleviate LPS-induced neuroinflammation and neurotoxicity in mice.
Collapse
Affiliation(s)
- Jin-Sil Bae
- Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Ji-Eun Heo
- Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
15
|
Chen J, Sanchez-Iranzo H, Diotel N, Rastegar S. Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration. FEBS J 2024; 291:4193-4205. [PMID: 39108082 DOI: 10.1111/febs.17231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024]
Abstract
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
Collapse
Affiliation(s)
- Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Hector Sanchez-Iranzo
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
16
|
Gladen-Kolarsky N, Monestime O, Bollen M, Choi J, Yang L, Magaña AA, Maier CS, Soumyanath A, Gray NE. Withania somnifera (Ashwagandha) Improves Spatial Memory, Anxiety and Depressive-like Behavior in the 5xFAD Mouse Model of Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1164. [PMID: 39456417 PMCID: PMC11504317 DOI: 10.3390/antiox13101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Withania somnifera (WS), also known as ashwagandha, is a popular botanical supplement used to treat various conditions including memory loss, anxiety and depression. Previous studies from our group showed an aqueous extract of WS root (WSAq) enhances cognition and alleviates markers for depression in Drosophila. Here, we sought to confirm these effects in the 5xFAD mouse model of β-amyloid (Aβ) accumulation. Six- to seven-month-old male and female 5xFAD mice were treated with WSAq in their drinking water at 0 mg/mL, 0.5 mg/mL or 2.5 mg/mL for four weeks. In the fourth week of treatment, spatial memory, anxiety and depressive-like symptoms were evaluated. At the conclusion of behavioral testing, brain tissue was harvested, immunohistochemistry was performed, and the cortical expression of antioxidant response genes was evaluated. Both concentrations of WSAq improved spatial memory and reduced depressive and anxiety-related behavior. These improvements were accompanied by a reduction in Aβ plaque burden in the hippocampus and cortex and an attenuation of activation of microglia and astrocytes. Antioxidant response genes were upregulated in the cortex of WSAq-treated mice. Oral WSAq treatment could be beneficial as a therapeutic option in AD for improving disease pathology and behavioral symptoms. Future studies focused on dose optimization of WSAq administration and further assessment of the mechanisms by which WSAq elicits its beneficial effects will help inform the clinical potential of this promising botanical therapy.
Collapse
Affiliation(s)
- Noah Gladen-Kolarsky
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Olivia Monestime
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Melissa Bollen
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
| | - Jaewoo Choi
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Liping Yang
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Armando Alcazar Magaña
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Portland, OR 97239, USA (A.A.M.)
| |
Collapse
|
17
|
Alateeq K, Walsh EI, Ambikairajah A, Cherbuin N. Association between dietary magnesium intake, inflammation, and neurodegeneration. Eur J Nutr 2024; 63:1807-1818. [PMID: 38597977 PMCID: PMC11329609 DOI: 10.1007/s00394-024-03383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Consistent evidence shows that magnesium (Mg) intake is associated with lower blood pressure (BP), and that lower BP is associated with improved cerebral health. However, recent findings indicate that the positive effect of dietary Mg intake on cerebral health is not mediated by a decrease in BP. As Mg's anti-inflammatory action is a plausible alternative mechanism, the objective of this study was to investigate the associations between Mg intake and inflammation to determine whether it mediates any neuroprotective effect. METHODS Participants from the UK Biobank (n = 5775, aged 40-73 years, 54.7% female) were assessed for dietary magnesium using an online food questionnaire, brain and white matter lesion (WML) volumes were segmented with FreeSurfer software, and inflammation markers including high-sensitivity C-reactive protein (hs-CRP), leukocyte, erythrocyte count, and Glycoprotein acetylation (GlycA) were measured using specific laboratory techniques such as immunoturbidimetry, automated cell counting, and nuclear magnetic resonance. Hierarchical linear regression models were performed to investigate the association between dietary Mg, and inflammatory markers and between dietary Mg, brain and WMLs volumes. Mediation analysis was performed to test a possible mediation role of inflammation on the association between dietary Mg and brain and WMLs volumes. RESULTS Higher dietary Mg intake was associated with lower inflammation: hs-CRP level (- 0.0497%; 95% confidence interval [CI] - 0.0497%, - 0.0199%) leukocytes count (- 0.0015%; 95%CI - 0.00151%, - 0.0011%), and GlycA (- 0.0519%; 95%CI - 0.1298%, - 0.0129%). Moreover, higher dietary Mg intake was associated with larger grey matter volume (0.010%; 95%CI 0.004%, 0.017%), white matter volume (0.012%; 95%CI 0.003, 0.022) and right hippocampal volume (0.002%; 95%CI 0.0007, -0.0025%). Lower hs-CRP levels mediated the positive association between higher dietary Mg intake and larger grey matter volume. CONCLUSIONS The anti-inflammatory effects of dietary Mg intake in the general population, appears to mediate its neuroprotective effect.
Collapse
Affiliation(s)
- Khawlah Alateeq
- National Centre for Epidemiology and Population Health, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia.
- Radiological Science, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia.
| | - Erin I Walsh
- National Centre for Epidemiology and Population Health, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
| | - Ananthan Ambikairajah
- National Centre for Epidemiology and Population Health, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, 2617, Australia
- Centre for Ageing Research and Translation, Faculty of Health, University of Canberra, Canberra, 2617, Australia
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
| |
Collapse
|
18
|
Müller L, Di Benedetto S. Aging brain: exploring the interplay between bone marrow aging, immunosenescence, and neuroinflammation. Front Immunol 2024; 15:1393324. [PMID: 38638424 PMCID: PMC11024322 DOI: 10.3389/fimmu.2024.1393324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Aging is a complex process characterized by a myriad of physiological changes, including alterations in the immune system termed immunosenescence. It exerts profound effects on both the bone marrow and the central nervous system, with significant implications for immunosenescence in neurological contexts. Our mini-review explores the complex relationship between bone marrow aging and its impact on immunosenescence, specifically within the context of neurological diseases. The bone marrow serves as a crucial hub for hematopoiesis and immune cell production, yet with age, it undergoes significant alterations, including alterations in hematopoietic stem cell function, niche composition, and inflammatory signaling. These age-related shifts in the bone marrow microenvironment contribute to dysregulation of immune cell homeostasis and function, impacting neuroinflammatory processes and neuronal health. In our review, we aim to explore the complex cellular and molecular mechanisms that link bone marrow aging to immunosenescence, inflammaging, and neuroinflammation, with a specific focus on their relevance to the pathophysiology of age-related neurological disorders. By exploring this interplay, we strive to provide a comprehensive understanding of how bone marrow aging impacts immune function and contributes to the progression of neurological diseases in aging individuals. Ultimately, this knowledge can hold substantial promise for the development of innovative therapeutic interventions aimed at preserving immune function and mitigating the progression of neurological disorders in the elderly population.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
19
|
Manuweera T, Wagenknecht A, Kleckner AS, Dorsey SG, Zhu S, Tivarus ME, Kesler SR, Ciner A, Kleckner IR. Preliminary evaluation of novel Bodily Attention Task to assess the role of the brain in chemotherapy-induced peripheral neurotoxicity (CIPN). Behav Brain Res 2024; 460:114803. [PMID: 38070689 PMCID: PMC10860373 DOI: 10.1016/j.bbr.2023.114803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common, sometimes dose-limiting side effect of neurotoxic chemotherapy. Treatment is limited because its pathophysiology is poorly understood. Compared to research on peripheral mechanisms, the role of the brain in CIPN is understudied and it may be important to develop better treatments. We propose a novel task that assesses brain activation associated with attention to bodily sensations (interoception), without the use of painful stimulation, to understand how CIPN symptoms may be processed in the brain. The goals of this preliminary study were to assess, 1) feasibility of the task, 2) sensitivity to changes in brain activity, and 3) suitability for assessing relationships between brain activation and CIPN severity. Eleven participants with varying types of cancer completed a brain fMRI scan and rated CIPN severity (CIPN-20) before and/or 12 weeks after starting neurotoxic chemotherapy. The Bodily Attention Task is a 7.5-min long fMRI task involving attentional focus on the left fingertips, the heart, or a flashing word "target" for visual attention (reference condition). Feasibility was confirmed, as 73% of all data collected were usable and participants reported feeling or focus during 75% of the trials. Regarding brain activity, finger attention increased activation in somatosensory regions (primary sensory cortex, insula) and sensory integration regions (precuneus, dorsolateral prefrontal cortex). Exploratory analyses suggested that brain activation may be associated with CIPN severity. A larger sample size and accounting of confounding factors is needed to test for replication and to identify brain and interoceptive biomarkers to help improve the prediction, prevention, and treatment of CIPN.
Collapse
Affiliation(s)
- Thushini Manuweera
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA.
| | - Amelia Wagenknecht
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Amber S Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Shijun Zhu
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Madalina E Tivarus
- Department of Imaging Sciences and Department of Neuroscience University of Rochester Medical Center, Rochester, NY, USA
| | - Shelli R Kesler
- Department of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | - Aaron Ciner
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ian R Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| |
Collapse
|
20
|
Ntoulas G, Brakatselos C, Nakas G, Asprogerakas MZ, Delis F, Leontiadis LJ, Trompoukis G, Papatheodoropoulos C, Gkikas D, Valakos D, Vatsellas G, Politis PK, Polissidis A, Antoniou K. Multi-level profiling of the Fmr1 KO rat unveils altered behavioral traits along with aberrant glutamatergic function. Transl Psychiatry 2024; 14:104. [PMID: 38378836 PMCID: PMC10879511 DOI: 10.1038/s41398-024-02815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disabilities and the most prevalent monogenic cause of autism. Although the knockout (KO) of the Fmr1 gene homolog in mice is primarily used for elucidating the neurobiological substrate of FXS, there is limited association of the experimental data with the pathophysiological condition in humans. The use of Fmr1 KO rats offers additional translational validity in this regard. Therefore, we employed a multi-level approach to study the behavioral profile and the glutamatergic and GABAergic neurotransmission status in pathophysiology-associated brain structures of Fmr1 KO rats, including the recordings of evoked and spontaneous field potentials from hippocampal slices, paralleled with next-generation RNA sequencing (RNA-seq). We found that these rats exhibit hyperactivity and cognitive deficits, along with characteristic bidirectional glutamatergic and GABAergic alterations in the prefrontal cortex and the hippocampus. These results are coupled to affected excitability and local inhibitory processes in the hippocampus, along with a specific transcriptional profile, highlighting dysregulated hippocampal network activity in KO rats. Overall, our data provide novel insights concerning the biobehavioral profile of FmR1 KO rats and translationally upscales our understanding on pathophysiology and symptomatology of FXS syndrome.
Collapse
Affiliation(s)
- George Ntoulas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences University of Ioannina, Ioannina, Greece
| | - Charalampos Brakatselos
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences University of Ioannina, Ioannina, Greece
| | - Gerasimos Nakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences University of Ioannina, Ioannina, Greece
| | - Michail-Zois Asprogerakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences University of Ioannina, Ioannina, Greece
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences University of Ioannina, Ioannina, Greece
| | - Leonidas J Leontiadis
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George Trompoukis
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | | | - Dimitrios Gkikas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios Valakos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Giannis Vatsellas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panagiotis K Politis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alexia Polissidis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences University of Ioannina, Ioannina, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences University of Ioannina, Ioannina, Greece.
| |
Collapse
|
21
|
Penney J, Ralvenius WT, Loon A, Cerit O, Dileep V, Milo B, Pao PC, Woolf H, Tsai LH. iPSC-derived microglia carrying the TREM2 R47H/+ mutation are proinflammatory and promote synapse loss. Glia 2024; 72:452-469. [PMID: 37969043 PMCID: PMC10904109 DOI: 10.1002/glia.24485] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 11/17/2023]
Abstract
Genetic findings have highlighted key roles for microglia in the pathology of neurodegenerative conditions such as Alzheimer's disease (AD). A number of mutations in the microglial protein triggering receptor expressed on myeloid cells 2 (TREM2) have been associated with increased risk for developing AD, most notably the R47H/+ substitution. We employed gene editing and stem cell models to gain insight into the effects of the TREM2 R47H/+ mutation on human-induced pluripotent stem cell-derived microglia. We found transcriptional changes affecting numerous cellular processes, with R47H/+ cells exhibiting a proinflammatory gene expression signature. TREM2 R47H/+ also caused impairments in microglial movement and the uptake of multiple substrates, as well as rendering microglia hyperresponsive to inflammatory stimuli. We developed an in vitro laser-induced injury model in neuron-microglia cocultures, finding an impaired injury response by TREM2 R47H/+ microglia. Furthermore, mouse brains transplanted with TREM2 R47H/+ microglia exhibited reduced synaptic density, with upregulation of multiple complement cascade components in TREM2 R47H/+ microglia suggesting inappropriate synaptic pruning as one potential mechanism. These findings identify a number of potentially detrimental effects of the TREM2 R47H/+ mutation on microglial gene expression and function likely to underlie its association with AD.
Collapse
Affiliation(s)
- Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - William T Ralvenius
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anjanet Loon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Oyku Cerit
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Blerta Milo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hannah Woolf
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
22
|
Bhushan B, Singh NK. Role of Astrogliosis in the Pathogenesis of Parkinson's Disease: Insights into Astrocytic Nrf2 Pathway as a Potential Therapeutic Target. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1015-1029. [PMID: 37817521 DOI: 10.2174/0118715273270473231002104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023]
Abstract
Recently, Parkinson's disease (PD) has become a remarkable burden on families and society with an acceleration of population aging having several pathological hallmarks such as dopaminergic neuronal loss of the substantia nigra pars compacta, α-synucleinopathy, neuroinflammation, autophagy, last but not the least astrogliosis. Astrocyte, star-shaped glial cells perform notable physiological functions in the brain through several molecular and cellular mechanisms including nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. It has been well established that the downregulation of the astrocytic Nrf2 signaling pathway plays a crucial role in the pathogenesis of PD because it is a master regulator of cellular defense mechanism along with a regulator of numerous detoxifying and antioxidant enzymes gene expression. Fascinatingly, upregulation of the astrocytic Nrf2 signaling pathway attenuates the degeneration of nigrostriatal neurons, restores neuronal proliferation, rejuvenates astrocytic functions, and exhibits neuroprotective effects via numerous cellular and molecular mechanisms in the PD-like brain of the experimental animal. Here, we discuss the numerous in-vitro and in-vivo studies that evaluate the neuroprotective potential of the astrocytic Nrf2 signaling pathway against experimentally-induced PD-like manifestation. In conclusion, based on available preclinical reports, it can be assumed that the astrocytic Nrf2 signaling pathway could be an alternative target in the drug discovery process for the prevention, management, and treatment of PD.
Collapse
Affiliation(s)
- Bharat Bhushan
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, NH-19, Mathura-Delhi Road, Chaumuhan, Mathura 281406, U.P. India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, NH-19, Mathura-Delhi Road, Chaumuhan, Mathura 281406, U.P. India
| |
Collapse
|
23
|
Gong L, Liang J, Xie L, Zhang Z, Mei Z, Zhang W. Metabolic Reprogramming in Gliocyte Post-cerebral Ischemia/ Reperfusion: From Pathophysiology to Therapeutic Potential. Curr Neuropharmacol 2024; 22:1672-1696. [PMID: 38362904 PMCID: PMC11284719 DOI: 10.2174/1570159x22666240131121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/17/2024] Open
Abstract
Ischemic stroke is a leading cause of disability and death worldwide. However, the clinical efficacy of recanalization therapy as a preferred option is significantly hindered by reperfusion injury. The transformation between different phenotypes of gliocytes is closely associated with cerebral ischemia/ reperfusion injury (CI/RI). Moreover, gliocyte polarization induces metabolic reprogramming, which refers to the shift in gliocyte phenotype and the overall transformation of the metabolic network to compensate for energy demand and building block requirements during CI/RI caused by hypoxia, energy deficiency, and oxidative stress. Within microglia, the pro-inflammatory phenotype exhibits upregulated glycolysis, pentose phosphate pathway, fatty acid synthesis, and glutamine synthesis, whereas the anti-inflammatory phenotype demonstrates enhanced mitochondrial oxidative phosphorylation and fatty acid oxidation. Reactive astrocytes display increased glycolysis but impaired glycogenolysis and reduced glutamate uptake after CI/RI. There is mounting evidence suggesting that manipulation of energy metabolism homeostasis can induce microglial cells and astrocytes to switch from neurotoxic to neuroprotective phenotypes. A comprehensive understanding of underlying mechanisms and manipulation strategies targeting metabolic pathways could potentially enable gliocytes to be reprogrammed toward beneficial functions while opening new therapeutic avenues for CI/RI treatment. This review provides an overview of current insights into metabolic reprogramming mechanisms in microglia and astrocytes within the pathophysiological context of CI/RI, along with potential pharmacological targets. Herein, we emphasize the potential of metabolic reprogramming of gliocytes as a therapeutic target for CI/RI and aim to offer a novel perspective in the treatment of CI/RI.
Collapse
Affiliation(s)
- Lipeng Gong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Junjie Liang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhanwei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
24
|
Liang Y, Kang X, Zhang H, Xu H, Wu X. Knockdown and inhibition of hippocampal GPR17 attenuates lipopolysaccharide-induced cognitive impairment in mice. J Neuroinflammation 2023; 20:271. [PMID: 37990234 PMCID: PMC10662506 DOI: 10.1186/s12974-023-02958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Previously we reported that inhibition of GPR17 prevents amyloid β 1-42 (Aβ1-42)-induced cognitive impairment in mice. However, the role of GPR17 on cognition is still largely unknown. METHODS Herein, we used a mouse model of cognitive impairment induced by lipopolysaccharide (LPS) to further investigate the role of GPR17 in cognition and its potential mechanism. The mice were pretreated with GPR17 shRNA lentivirus and cangrelor by microinjection into the dentate gyrus (DG) region of the hippocampus. After 21 days, LPS (0.25 mg/kg, i.p.) was administered for 7 days. Animal behavioral tests as well as pathological and biochemical assays were performed to evaluate the cognitive function in mice. RESULTS LPS exposure resulted in a significant increase in GPR17 expression at both protein and mRNA levels in the hippocampus. Gene reduction and pharmacological blockade of GPR17 improved cognitive impairment in both the Morris water maze and novel object recognition tests. Knockdown and inhibition of GPR17 inhibited Aβ production, decreased the expression of NF-κB p65, increased CREB phosphorylation and elevated BDNF expression, suppressed the accumulation of pro-inflammatory cytokines, inhibited Glial cells (microglia and astrocytes) activation, and increased Bcl-2, PSD-95, and SYN expression, reduced Bax expression as well as decreased caspase-3 activity and TUNEL-positive cells in the hippocampus of LPS-treated mice. Notably, knockdown and inhibition of GPR17 not only provided protective effects against cholinergic dysfunction but also facilitated the regulation of oxidative stress. In addition, cangrelor pretreatment can effectively inhibit the expression of inflammatory cytokines by suppressing NF-κB/CREB/BDNF signaling in BV-2 cells stimulated by LPS. However, activation of hippocampal GPR17 with MDL-29951 induced cognitive impairment in normal mice. CONCLUSIONS These observations indicate that GPR17 may possess a neuroprotective effect against LPS-induced cognition deficits, and neuroinflammation by modulation of NF-κB/CREB/BDNF signaling in mice, indicating that GPR17 may be a promising new target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yusheng Liang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xu Kang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Haiwang Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Heng Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xian Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
25
|
Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. Neurobiol Aging 2023; 131:182-195. [PMID: 37677864 PMCID: PMC10538380 DOI: 10.1016/j.neurobiolaging.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023]
Abstract
A missense variant in the tetratricopeptide repeat domain 3 (TTC3) gene (rs377155188, p.S1038C, NM_003316.4:c 0.3113C>G) was found to segregate with disease in a multigenerational family with late-onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing, and the resulting isogenic pair of iPSC lines was differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3-dimensional morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolina L Duarte
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mayra J Laverde-Paz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaina A Simon
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek J Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amanda T Miyares
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; JJ Vance Memorial Summer Internship in Biological and Computational Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Larry D Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina M Carney
- Mental Health & Behavioral Science Service, Bruce W. Carter VA Medical Center, Miami, FL, USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
26
|
Archie SR, Sifat AE, Mara D, Ahn Y, Akter KA, Zhang Y, Cucullo L, Abbruscato TJ. Impact of in-utero electronic cigarette exposure on neonatal neuroinflammation, oxidative stress and mitochondrial function. Front Pharmacol 2023; 14:1227145. [PMID: 37693917 PMCID: PMC10484598 DOI: 10.3389/fphar.2023.1227145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Despite the prevalence of the perception that electronic cigarettes (e-cig) are a safer alternative to tobacco smoke, growing concern about their potential toxic impact warrants adequate investigation focusing on special populations like maternal and pediatric groups. This study evaluated the consequences of maternal e-cig use on neonatal neuroinflammation, oxidative stress, and mitochondrial function in primary cultured neurons and postnatal day (PD) 7 and 90 brain. Methodology: Pregnant CD1 mice were exposed to e-cig vapor (2.4% nicotine) from gestational day 5 (E5) till PD7, and the primary neurons were isolated from pups at E16/17. Cellular total reactive oxygen species (ROS) and mitochondrial superoxide were measured in primary neurons using CM-H2DCFDA and Mitosox red, respectively. Mitochondrial function was assessed by Seahorse XF Cell Mitostress analysis. The level of pro-inflammatory cytokines was measured in primary neurons and PD7 and PD90 brains by RT-PCR and immunobead assay. Western blot analysis evaluated the expression of antioxidative markers (SOD-2, HO-1, NRF2, NQO1) and that of the proinflammatory modulator NF-κB. Results: Significantly higher level of total cellular ROS (p < 0.05) and mitochondrial superoxide (p < 0.01) was observed in prenatally e-cig-exposed primary neurons. We also observed significantly reduced antioxidative marker expression and increased proinflammatory modulator and cytokines expression in primary neurons and PD7 (p < 0.05) but not in PD90 postnatal brain. Conclusion: Our findings suggest that prenatal e-cig exposure induces postnatal neuroinflammation by promoting oxidative stress (OS), increasing cytokines' levels, and disrupting mitochondrial function. These damaging events can alter the fetal brain's immune functions, making such offspring more vulnerable to brain insults.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - David Mara
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Thomas J. Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| |
Collapse
|
27
|
Liu S, Chen L, Li J, Sun Y, Xu Y, Li Z, Zhu Z, Li X. Asiaticoside Mitigates Alzheimer's Disease Pathology by Attenuating Inflammation and Enhancing Synaptic Function. Int J Mol Sci 2023; 24:11976. [PMID: 37569347 PMCID: PMC10418370 DOI: 10.3390/ijms241511976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, hallmarked by the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles. Due to the uncertainty of the pathogenesis of AD, strategies aimed at suppressing neuroinflammation and fostering synaptic repair are eagerly sought. Asiaticoside (AS), a natural triterpenoid derivative derived from Centella asiatica, is known for its anti-inflammatory, antioxidant, and wound-healing properties; however, its neuroprotective function in AD remains unclear. Our current study reveals that AS, when administered (40 mg/kg) in vivo, can mitigate cognitive dysfunction and attenuate neuroinflammation by inhibiting the activation of microglia and proinflammatory factors in Aβ1-42-induced AD mice. Further mechanistic investigation suggests that AS may ameliorate cognitive impairment by inhibiting the activation of the p38 MAPK pathway and promoting synaptic repair. Our findings propose that AS could be a promising candidate for AD treatment, offering neuroinflammation inhibition and enhancement of synaptic function.
Collapse
Affiliation(s)
- Sai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Long Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinran Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Xinuo Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
28
|
Ospondpant D, Xia Y, Lai QWS, Yuen GKW, Yang M, Chanthanam K, Dong TT, Tsim KWK. The extracts of Dracaena cochinchinensis stemwood suppress inflammatory response and phagocytosis in lipopolysaccharide-activated microglial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154936. [PMID: 37385071 DOI: 10.1016/j.phymed.2023.154936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Neuroinflammation is a pivotal process in the brain that contributes to the development of neurodegenerative diseases, such as Alzheimer's disease (AD). During neuroinflammation, the over-activation of microglial cells can drive the pathological processes underlying AD, including an increase in amyloid β (Aβ) production and accumulation, ultimately leading to neuronal and synaptic loss. Dracaena cochinchinensis (Lour.) S.C. Chen, also known as "Chan-daeng" in Thai, belongs to the Asparagaceae family. In Thai traditional medicine, it has been used as an antipyretic, pain reliever, and anti-inflammatory agent. However, the effects of D. cochinchinensis on neuroinflammation are yet to be determined. PURPOSE We aimed to evaluate the anti-neuroinflammatory activities of D. cochinchinensis stemwood extract in activated microglia. METHODS In this study, lipopolysaccharide (LPS), a potent pro-inflammatory stimulus, was used to activate microglial BV2 cells, as a cell model of neuroinflammation. Our investigation included several techniques, including qRT-PCR, ELISA, Western blotting, phagocytosis, and immunofluorescence staining, to examine the potential anti-inflammatory effects of D. cochinchinensis stemwood. RESULTS D. cochinchinensis stemwood, named DCS, was extracted with ethanol and water. The extracts of DCS showed dose-dependent anti-inflammatory effects, markedly suppressing the LPS-mediated mRNA expression of pro-inflammatory factors, including IL-1β, TNF-α, and iNOS, while increasing expression of the anti-inflammatory biomarker Arg1 in both BV2 microglia and RAW264.7 macrophages. DCS extracts also decreased the protein levels of IL-1β, TNF-α, and iNOS. These findings were correlated with the suppression of phosphorylated proteins of p38, JNK, and Akt in the LPS-activated microglia. Moreover, DCS extracts significantly attenuated excessive phagocytosis of beads and Aβ fibrils during the LPS-mediated microglial activation. CONCLUSION Taken together, our results indicated that DCS extracts had anti-neuroinflammatory properties by suppressing the expression of pro-inflammatory factors, increasing the expression of the anti-inflammatory biomarker Arg1, and modulating excessive phagocytosis in activated microglia. These findings suggested that DCS extract could be a promising natural product for the treatment of neuroinflammatory and neurodegenerative diseases, like AD.
Collapse
Affiliation(s)
- Dusadee Ospondpant
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yingjie Xia
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Queenie Wing Sze Lai
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Gary Ka-Wing Yuen
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Meixia Yang
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Kanlayakorn Chanthanam
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina Tingxia Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
29
|
Li Puma DD, Colussi C, Bandiera B, Puliatti G, Rinaudo M, Cocco S, Paciello F, Re A, Ripoli C, De Chiara G, Bertozzi A, Palamara AT, Piacentini R, Grassi C. Interleukin 1β triggers synaptic and memory deficits in Herpes simplex virus type-1-infected mice by downregulating the expression of synaptic plasticity-related genes via the epigenetic MeCP2/HDAC4 complex. Cell Mol Life Sci 2023; 80:172. [PMID: 37261502 DOI: 10.1007/s00018-023-04817-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Extensive research provides evidence that neuroinflammation underlies numerous brain disorders. However, the molecular mechanisms by which inflammatory mediators determine synaptic and cognitive dysfunction occurring in neurodegenerative diseases (e.g., Alzheimer's disease) are far from being fully understood. Here we investigated the role of interleukin 1β (IL-1β), and the molecular cascade downstream the activation of its receptor, to the synaptic dysfunction occurring in the mouse model of multiple Herpes simplex virus type-1 (HSV-1) reactivations within the brain. These mice are characterized by neuroinflammation and memory deficits associated with a progressive accumulation of neurodegenerative hallmarks (e.g., amyloid-β protein and tau hyperphosphorylation). Here we show that mice undergone two HSV-1 reactivations in the brain exhibited increased levels of IL-1β along with significant alterations of: (1) cognitive performances; (2) hippocampal long-term potentiation; (3) expression synaptic-related genes and pre- and post-synaptic proteins; (4) dendritic spine density and morphology. These effects correlated with activation of the epigenetic repressor MeCP2 that, in association with HDAC4, affected the expression of synaptic plasticity-related genes. Specifically, in response to HSV-1 infection, HDAC4 accumulated in the nucleus and promoted MeCP2 SUMOylation that is a post-translational modification critically affecting the repressive activity of MeCP2. The blockade of IL-1 receptors by the specific antagonist Anakinra prevented the MeCP2 increase and the consequent downregulation of gene expression along with rescuing structural and functional indices of neurodegeneration. Collectively, our findings provide novel mechanistic evidence on the role played by HSV-1-activated IL-1β signaling pathways in synaptic deficits leading to cognitive impairment.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | - Bruno Bandiera
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Giulia Puliatti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Agnese Re
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council (CNR), 00133, Rome, Italy
| | - Alessia Bertozzi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Cenci Bolognetti Foundation, 00185, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
30
|
Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542316. [PMID: 37292815 PMCID: PMC10246004 DOI: 10.1101/2023.05.25.542316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A missense variant in the tetratricopeptide repeat domain 3 ( TTC3 ) gene (rs377155188, p.S1038C, NM_003316.4:c.3113C>G) was found to segregate with disease in a multigenerational family with late onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing and the resulting isogenic pair of iPSC lines were differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3D morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant. Highlights The AD risk variant TTC3 p.S1038C reduces the expression levels of TTC3 The variant modifies the expression of AD specific genes BACE1 , INPP5F , and UNC5C Neurons with the variant are enriched for genes in the PI3K-Akt pathwayiPSC-derived neurons with the alteration have increased neurite length and branchingThe variant interferes with actin cytoskeleton and is ameliorated by Cytochalasin D.
Collapse
|
31
|
Ailes I, Syed M, Matias CM, Krisa L, Miao J, Sathe A, Fayed I, Alhussein A, Natale P, Mohamed FB, Talekar K, Alizadeh M. Case report: Utilizing diffusion-weighted MRI on a patient with chronic low back pain treated with spinal cord stimulation. FRONTIERS IN NEUROIMAGING 2023; 2:1137848. [PMID: 37554655 PMCID: PMC10406238 DOI: 10.3389/fnimg.2023.1137848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/20/2023] [Indexed: 08/10/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (dwMRI) has increasingly demonstrated greater utility in analyzing neuronal microstructure. In patients with chronic low back pain (cLBP), using dwMRI to observe neuronal microstructure can lead to non-invasive biomarkers which could provide clinicians with an objective quantitative prognostic tool. In this case report, we investigated dwMRI for the development of non-invasive biomarkers by conducting a region-based analysis of a 55-year-old male patient with failed back surgery syndrome (FBSS) treated with spinal cord stimulation (SCS). We hypothesized that dwMRI could safely generate quantitative data reflecting cerebral microstructural alterations driven by neuromodulation. Neuroimaging was performed at 6- and 12- months post-SCS implantation. The quantitative maps generated included diffusion tensor imaging (DTI) parameters; fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) computed from whole brain tractography. To examine specific areas of the brain, 44 regions of interest (ROIs), collectively representing the pain NeuroMatrix, were extracted and registered to the patient's diffusion space. Average diffusion indices were calculated from the ROIs at both 6- and 12- months. Regions with >10% relative change in at least 3 of the 4 maps were reported. Using this selection criterion, 8 ROIs demonstrated over 10% relative changes. These ROIs were mainly located in the insular gyri. In addition to the quantitative data, a series of questionnaires were administered during the 6- and 12-month visits to assess pain intensity, functional disability, and quality of life. Overall improvements were observed in these components, with the Pain Catastrophizing Scale (PCS) displaying the greatest change. Lastly, we demonstrated the safety of dwMRI for a patient with SCS. In summary, the results from the case report prompt further investigation in applying dwMRI in a larger cohort to better correlate the influence of SCS with brain microstructural alterations, supporting the utility of dwMRI to generate non-invasive biomarkers for prognostication.
Collapse
Affiliation(s)
- Isaiah Ailes
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mashaal Syed
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio M. Matias
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Laura Krisa
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jingya Miao
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Anish Sathe
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Islam Fayed
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdulaziz Alhussein
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Peter Natale
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kiran Talekar
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
32
|
Bassi TG, Rohrs EC, Fernandez KC, Ornowska M, Nicholas M, Wittmann J, Gani M, Evans D, Reynolds SC. Phrenic nerve stimulation mitigates hippocampal and brainstem inflammation in an ARDS model. Front Physiol 2023; 14:1182505. [PMID: 37215178 PMCID: PMC10196250 DOI: 10.3389/fphys.2023.1182505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: In porcine healthy-lung and moderate acute respiratory distress syndrome (ARDS) models, groups that received phrenic nerve stimulation (PNS) with mechanical ventilation (MV) showed lower hippocampal apoptosis, and microglia and astrocyte percentages than MV alone. Objectives: Explore whether PNS in combination with MV for 12 h leads to differences in hippocampal and brainstem tissue concentrations of inflammatory and synaptic markers compared to MV-only animals. Methods: Compare tissue concentrations of inflammatory markers (IL-1α, IL-1β, IL-6, IL-8, IL-10, IFN-γ, TNFα and GM-CSF), pre-synaptic markers (synapsin and synaptophysin) and post-synaptic markers (disc-large-homolog 4, N-methyl-D-aspartate receptors 2A and 2B) in the hippocampus and brainstem in three groups of mechanically ventilated pigs with injured lungs: MV only (MV), MV plus PNS every other breath (MV + PNS50%), and MV plus PNS every breath (MV + PNS100%). MV settings in volume control were tidal volume 8 ml/kg, and positive end-expiratory pressure 5 cmH2O. Moderate ARDS was achieved by infusing oleic acid into the pulmonary artery. Measurements and Main Results: Hippocampal concentrations of GM-CSF, N-methyl-D-aspartate receptor 2B, and synaptophysin were greater in the MV + PNS100% group compared to the MV group, p = 0.0199, p = 0.0175, and p = 0.0479, respectively. The MV + PNS100% group had lower brainstem concentrations of IL-1β, and IL-8 than the MV group, p = 0.0194, and p = 0.0319, respectively; and greater brainstem concentrations of IFN-γ and N-methyl-D-aspartate receptor 2A than the MV group, p = 0.0329, and p = 0.0125, respectively. Conclusion: In a moderate-ARDS porcine model, MV is associated with hippocampal and brainstem inflammation, and phrenic nerve stimulation on every breath mitigates that inflammation.
Collapse
Affiliation(s)
| | - Elizabeth C. Rohrs
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Karl C. Fernandez
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Marlena Ornowska
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Michelle Nicholas
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Jessica Wittmann
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Matt Gani
- Lungpacer Medical Inc., Vancouver, BC, Canada
| | - Doug Evans
- Lungpacer Medical Inc., Vancouver, BC, Canada
| | - Steven C. Reynolds
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| |
Collapse
|
33
|
Siddiqui F, Gallagher D, Shuster-Hyman H, Lopez L, Gauthier-Fisher A, Librach CL. First trimester human umbilical cord perivascular cells (HUCPVC) modulate the kynurenine pathway and glutamate neurotransmission in an LPS-induced mouse model of neuroinflammation. J Inflamm (Lond) 2023; 20:15. [PMID: 37127610 PMCID: PMC10152638 DOI: 10.1186/s12950-023-00340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The Kynurenine Pathway (KP) of tryptophan degradation and glutamate toxicity is implicated in several neurological disorders, including depression. The therapeutic potential of mesenchymal stromal cells (MSC), owing to their well documented phagocytosis-driven mechanism of immunomodulation and neuroprotection, has been tested in many neurological disorders. However, their potential to influence KP and the glutamatergic system has not yet been investigated. Hence, this study sought to investigate the effect of HUCPVC, a rich and potent source of MSC, on Lipopolysaccharide (LPS)-activated KP metabolites, KP enzymes, and key components of glutamate neurotransmission. METHODS The immunomodulatory effect of peripherally administered HUCPVC on the expression profile of kynurenine pathway metabolites and enzymes was assessed in the plasma and brain of mice treated with LPS using LCMS and QPCR. An assessment of the glutamatergic system, including selected receptors, transporters and related proteins was also conducted by QPCR, immunohistochemistry and Western blot. RESULTS HUCPVC were found to modulate LPS-induced activation of KP enzymes and metabolites in the brain associated with neurotoxicity. Moreover, the reduced expression of the glutamatergic components due to LPS was also found to be significantly improved by HUCPVC. CONCLUSIONS The immunomodulatory properties of HUCPVC appear to confer neuroprotection, at least in part, through their ability to modulate the KP in the brain. This KP modulation enhances neuroprotective regulators and downregulates neurotoxic consequences, including glutamate neurotoxicity, which is associated with neuroinflammation and depressive behavior.
Collapse
Affiliation(s)
- Fyyaz Siddiqui
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada.
| | - Denis Gallagher
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada
| | - Hannah Shuster-Hyman
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lianet Lopez
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada
| | | | - Clifford L Librach
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada.
- Department of Obstetrics and Gynecology, Toronto, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Wang S, Ning H, Wang X, Chen L, Hua L, Ren F, Hu D, Li R, Ma Z, Ge Y, Yin Z. Exposure to bisphenol A induces neurotoxicity associated with synaptic and cytoskeletal dysfunction in neuro-2a cells. Toxicol Ind Health 2023; 39:325-335. [PMID: 37122122 DOI: 10.1177/07482337231172827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bisphenol A (BPA) has been reported to injure the developing and adult brain. However, the underlying mechanism still remains elusive. This study used neuro-2a cells as a cellular model to investigate the neurotoxic effects of BPA. Microtubule-associated protein 2 (MAP2) and tau protein maintain microtubule normal function and promote the normal development of the nervous system. Synaptophysin (SYP) and drebrin (Dbn) proteins are involved in regulating synaptic plasticity. Cells were exposed to the minimum essential medium (MEM), 0.01% (v/v) DMSO, and 150 μM BPA for 12, 24, or 36 h. Morphological analysis revealed that the cells in the BPA-treated groups shrank and collapsed compared with those in the control groups. CCK-8 and lactate dehydrogenase assay (LDH) assays showed that the mortality of neuro-2a cells increased as the BPA treatment time was prolonged. Ultrastructural analysis further revealed that cells demonstrated nucleolar swelling, dissolution of nuclear and mitochondrial membranes, and partial mitochondrial condensation following exposure to BPA. BPA also decreased the relative protein expression levels of MAP2, tau, and Dbn. Interestingly, the relative protein expression levels of SYP increased. These results indicated that BPA inhibited the proliferation and disrupted cytoskeleton and synaptic integrity of neuro-2a cells.
Collapse
Affiliation(s)
- Siting Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Xinrui Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Liushuai Hua
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Fei Ren
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Rongbo Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Zhisheng Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| |
Collapse
|
35
|
Ma X, Li Q, Chen G, Xie J, Wu M, Meng F, Liu J, Liu Y, Zhao D, Wang W, Wang D, Liu C, Dai J, Li C, Cui M. Role of Hippocampal miR-132-3p in Modifying the Function of Protein Phosphatase Mg2+/Mn2+-dependent 1 F in Depression. Neurochem Res 2023:10.1007/s11064-023-03926-8. [PMID: 37036545 DOI: 10.1007/s11064-023-03926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Depression is a common, severe, and debilitating psychiatric disorder of unclear etiology. Our previous study has shown that protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) in the hippocampal dentate gyrus (DG) displays significant regulatory effects in depression-related behaviors. miR-132-3p plays a potential role in the etiology of depression. This study explored the effect of miR-132-3p on the onset of depression and the possible underlying mechanism for modulating PPM1F expression during the pathology of depression. We found that miR-132-3p levels in the hippocampus of depressed mice subjected to chronic unpredictable stress (CUS) were dramatically reduced, which were correlated with depression-related behaviors. Knockdown of miR-132-3p in hippocampal DG resulted in depression-related phenotypes and increased susceptibility to stress. miR-132-3p overexpression in hippocampal DG alleviated CUS-induced depression-related performance. We then screened out the potential target genes of miR-132-3p, and we found that the expression profiles of sterol regulatory element-binding transcription factor 1 (Srebf1) and forkhead box protein O3a (FOXO3a) were positively correlated with PPM1F under the condition of miR-132-3p knockdown. Finally, as anticipated, we revealed that the activities of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were reduced, which underlies the target signaling pathway of PPM1F. In conclusion, our study suggests that miR-132-3p was designed to regulate depression-related behaviors by indirectly regulating PPM1F and targeting Srebf1 and FOXO3a, which have been linked to the pathogenesis and treatment of depression.
Collapse
Affiliation(s)
- Xiangxian Ma
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qiongyu Li
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guanhong Chen
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Junjie Xie
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Min Wu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yong Liu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Physiology, Binzhou Medical University, Shandong, China
| | - Di Zhao
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Juanjuan Dai
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
36
|
Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide 2023; 134-135:23-37. [PMID: 37019299 DOI: 10.1016/j.niox.2023.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Nitric oxide (NO), an enzymatic product of nitric oxide synthase (NOS), has been associated with a variety of neurological diseases such as Alzheimer's disease (AD). NO has long been thought to contribute to neurotoxic insults caused by neuroinflammation in AD. This perception shifts as more attention is paid to the early stages before cognitive problems manifest. However, it has revealed a compensatory neuroprotective role for NO that protects synapses by increasing neuronal excitability. NO can positively affect neurons by inducing neuroplasticity, neuroprotection, and myelination, as well as having cytolytic activity to reduce inflammation. NO can also induce long-term potentiation (LTP), a process by which synaptic connections among neurons become more potent. Not to mention that such functions give rise to AD protection. Notably, it is unquestionably necessary to conduct more research to clarify NO pathways in neurodegenerative dementias because doing so could help us better understand their pathophysiology and develop more effective treatment options. All these findings bring us to the prevailing notion that NO can be used either as a therapeutic agent in patients afflicted with AD and other memory impairment disorders or as a contributor to the neurotoxic and aggressive factor in AD. In this review, after presenting a general background on AD and NO, various factors that have a pivotal role in both protecting and exacerbating AD and their correlation with NO will be elucidated. Following this, both the neuroprotective and neurotoxic effects of NO on neurons and glial cells among AD cases will be discussed in detail.
Collapse
|
37
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:673-688. [PMID: 36961665 DOI: 10.1007/s10787-023-01192-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Parkinson's disease (PD) is an advanced neurodegenerative disease (NDD) caused by the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). As PD is an age-related disorder, the majority of PD patients are associated with musculoskeletal disorders with prolonged use of analgesic and anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (NSAIDs). Therefore, NSAIDs can affect PD neuropathology in different ways. Thus, the objective of the present narrative review was to clarify the potential role of NSAIDs in PD according to the assorted view of preponderance. Inhibition of neuroinflammation and modulation of immune response by NSAIDs could be an effective way in preventing the development of NDD. NSAIDs affect PD neuropathology in different manners could be beneficial or detrimental effects. Inhibition of cyclooxygenase 2 (COX2) by NSAIDs may prevent the development of PD. NSAIDs afforded a neuroprotective role against the development and progression of PD neuropathology through the modulation of neuroinflammation. Though, NSAIDs may lead to neutral or harmful effects by inhibiting neuroprotective prostacyclin (PGI2) and accentuation of pro-inflammatory leukotrienes (LTs). In conclusion, there is still a potential conflict regarding the effect of NSAIDs on PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
38
|
Identification of LRRK2 gene related to sarcopenia and neuroticism using weighted gene co-expression network analysis. J Affect Disord 2023; 325:675-681. [PMID: 36690080 DOI: 10.1016/j.jad.2023.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Sarcopenia is reported to be associated with neuroticism, but the mechanisms are not fully understood. Thus, it's of vital importance to elucidate the molecular mechanism of sarcopenia and neuroticism and to explore the potential molecular target of medical therapies for sarcopenia and neuroticism. METHODS The expression datasets (sarcopenia: GSE111006 and neuroticism: GSE60491) were downloaded from the Gene Expression Omnibus. Weighted gene co-expression network analysis (WGCNA) was used to build the gene co-expression network, screen important modules, and filter the hub genes. Genes with significance over 0.2 and a module membership over 0.8 were hub genes. The overlapped hub genes between sarcopenia and neuroticism were defined as key genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the genes in modules with clinical interest. RESULTS In this study, we identified 28 gene modules for sarcopenia and 7 for neuroticism by WGCNA. The key modules of sarcopenia and neuroticism were the tan and turquoise modules, respectively. Hub genes of sarcopenia and neuroticism were 20 genes and 107 genes, respectively. The function enrichment found that apoptosis was the common pathway for sarcopenia and neuroticism. Finally, LRRK2 was identified as key genes. LIMITATIONS The sarcopenia dataset contained fewer samples. CONCLUSION Based on WGCNA, our study identified apoptosis pathway and LRRK2 that acted as essential components in the etiology of sarcopenia and neuroticism, which may enhance our fundamental knowledge of the molecular mechanisms underlying the disease.
Collapse
|
39
|
Arvidsson Rådestig M, Skoog I, Skillbäck T, Zetterberg H, Kern J, Zettergren A, Andreasson U, Wetterberg H, Kern S, Blennow K. Cerebrospinal fluid biomarkers of axonal and synaptic degeneration in a population-based sample. Alzheimers Res Ther 2023; 15:44. [PMID: 36869347 PMCID: PMC9983206 DOI: 10.1186/s13195-023-01193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Neurofilament light (NfL) and neurogranin (Ng) are promising candidate AD biomarkers, reflecting axonal and synaptic damage, respectively. Since there is a need to understand the synaptic and axonal damage in preclinical Alzheimer's disease (AD), we aimed to determine the cerebrospinal fluid (CSF) levels of NfL and Ng in cognitively unimpaired elderly from the Gothenburg H70 Birth Cohort Studies classified according to the amyloid/tau/neurodegeneration (A/T/N) system. METHODS The sample consisted of 258 cognitively unimpaired older adults (age 70, 129 women and 129 men) from the Gothenburg Birth Cohort Studies. We compared CSF NfL and Ng concentrations in A/T/N groups using Student's T-test and ANCOVA. RESULTS CSF NfL concentration was higher in the A-T-N+ group (p=0.001) and the A-T+N+ group (p=0.006) compared with A-T-N-. CSF Ng concentration was higher in the A-T-N+, A-T+N+, A+T-N+, and A+T+N+ groups (p<0.0001) compared with A-T-N-. We found no difference in NfL or Ng concentration in A+ compared with A- (disregarding T- and N- status), whereas those with N+ had higher concentrations of NfL and Ng compared with N- (p<0.0001) (disregarding A- and T- status). CONCLUSIONS CSF NfL and Ng concentrations are increased in cognitively normal older adults with biomarker evidence of tau pathology and neurodegeneration.
Collapse
Affiliation(s)
- Maya Arvidsson Rådestig
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingmar Skoog
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tobias Skillbäck
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. .,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London, WC1N 3BG, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jürgen Kern
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Zettergren
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Hanna Wetterberg
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Silke Kern
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
40
|
Li Y, Cao Q, Hou Z, Tang B, Shen Y. Transcranial Sonography as a Diagnostic Tool for Depressive Disorders. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:687-699. [PMID: 36047031 DOI: 10.1002/jum.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Transcranial sonography (TCS) is an available and noninvasive neuroimaging method that has been found to reduce the echogenicity of the brainstem raphe (BR) in patients with depression. Applying the criteria of the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV), we performed a meta-analysis of the diagnostic accuracy of TCS. METHODS A systematic search was conducted in PubMed, EMBASE, The Cochrane Library, and Web of Science. The databases were searched from inception to December 2021. The quality of the included literature was assessed using the QUADAS-2. Heterogeneity analysis was performed. A summary receiver operating characteristic (SROC) curve was generated to evaluate the diagnostic accuracy of TCS. RESULTS We included 12 studies with 809 patients. The pooled sensitivity was 0.66 (95% confidence interval [CI]: 0.61-0.71), and the specificity was 0.84 (95% CI: 0.80-0.87). The combined positive likelihood ratio (LR) was 3.84 (95% CI: 2.68-5.51), the negative LR was 0.41 (95% CI: 0.29-0.57), and the diagnostic odds ratio (DOR) was 11.45 (95% CI: 5.57-23.02). The area under the curve (AUC) of the plotted SROC curve was 0.86 (95% CI: 0.83-0.89). The meta-regression and subgroup analyses found no source of heterogeneity. CONCLUSION TCS has high potential and efficacy in diagnosing depression and may be a reasonable test to perform clinically for the assessment of depression.
Collapse
Affiliation(s)
- Yanping Li
- Department of neuroelectrophysiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Cao
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhuo Hou
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Boji Tang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Shen
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
41
|
Robertson JW, Aristi G, Hashmi JA. White matter microstructure predicts measures of clinical symptoms in chronic back pain patients. Neuroimage Clin 2023; 37:103309. [PMID: 36621020 PMCID: PMC9850203 DOI: 10.1016/j.nicl.2022.103309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Chronic back pain (CBP) has extensive clinical and social implications for its sufferers and is a major source of disability. Chronic pain has previously been shown to have central neural factors underpinning it, including the loss of white matter (WM), however traditional methods of analyzing WM microstructure have produced mixed and unclear results. To better understand these factors, we assessed the WM microstructure of 50 patients and 40 healthy controls (HC) using diffusion-weighted imaging. The data were analyzed using fixel-based analysis (FBA), a higher-order diffusion modelling technique applied to CBP for the first time here. Subjects also answered questionnaires relating to pain, disability, catastrophizing, and mood disorders, to establish the relationship between fixelwise metrics and clinical symptoms. FBA determined that, compared to HC, CBP patients had: 1) lower fibre density (FD) in several tracts, specifically the right anterior and bilateral superior thalamic radiations, right spinothalamic tract, right middle cerebellar peduncle, and the body and splenium of corpus callosum; 2) higher FD in the genu of corpus callosum; and 3) lower FDC - a combined fibre density and cross-section measure - in the bilateral spinothalamic tracts and right anterior thalamic radiation. Exploratory correlations showed strong negative relationships between fixelwise metrics and clinical questionnaire scores, especially pain catastrophizing. These results have important implications for the intake and processing of sensory data in CBP that warrant further investigation.
Collapse
Affiliation(s)
- Jason W Robertson
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada.
| | - Guillermo Aristi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada
| | - Javeria A Hashmi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada.
| |
Collapse
|
42
|
Demuth H, Hosseini S, Düsedeau HP, Dunay IR, Korte M, Zagrebelsky M. Deletion of p75 NTR rescues the synaptic but not the inflammatory status in the brain of a mouse model for Alzheimer's disease. Front Mol Neurosci 2023; 16:1163087. [PMID: 37213691 PMCID: PMC10198655 DOI: 10.3389/fnmol.2023.1163087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Alzheimer's disease (AD), is characterized by a gradual cognitive decline associated with the accumulation of Amyloid beta (Aβ)-oligomers, progressive neuronal degeneration and chronic neuroinflammation. Among the receptors shown to bind and possibly transduce the toxic effects of Aβ-oligomers is the p75 neurotrophin receptor (p75NTR). Interestingly, p75NTR mediates several crucial processes in the nervous system, including neuronal survival and apoptosis, maintenance of the neuronal architecture, and plasticity. Furthermore, p75NTR is also expressed in microglia, the resident immune cells of the brain, where it is markedly increased under pathological conditions. These observations indicate p75NTR as a potential candidate for mediating Aβ-induced toxic effects at the interface between the nervous and the immune system, thereby potentially participating in the crosstalk between these two systems. Methods Here we used APP/PS1 transgenic mice (APP/PS1tg) and compared the Aβ-induced alterations in neuronal function, chronic inflammation as well as their cognitive consequences between 10 months old APP/PS1tg and APP/PS1tg x p75NTRexonIV knockout mice. Results Electrophysiological recordings show that a loss of p75NTR rescues the impairment in long-term potentiation at the Schaffer collaterals in the hippocampus of APP/PS1tg mice. Interestingly, however loss of p75NTR does not influence the severity of neuroinflammation, microglia activation or the decline in spatial learning and memory processes observed in APP/PS1tg mice. Conclusion Together these results indicate that while a deletion of p75NTR rescues the synaptic defect and the impairment in synaptic plasticity, it does not affect the progression of the neuroinflammation and the cognitive decline in a mouse model for AD.
Collapse
Affiliation(s)
- Hendrik Demuth
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Shirin Hosseini
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Henning Peter Düsedeau
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von- Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von- Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- *Correspondence: Marta Zagrebelsky,
| |
Collapse
|
43
|
Abstract
Microglia and astrocytes are regarded as active participants in the central nervous system under various neuropathological conditions, including Alzheimer's disease (AD). Both microglia and astrocyte activation have been reported to occur with a spatially and temporarily distinct pattern. Acting as a double-edged sword, glia-mediated neuroinflammation may be both detrimental and beneficial to the brain. In a variety of neuropathologies, microglia are activated before astrocytes, which facilitates astrocyte activation. Yet reactive astrocytes can also prevent the activation of adjacent microglia in addition to helping them become activated. Studies describe changes in the genetic profile as well as cellular and molecular responses of these two types of glial cells that contribute to dysfunctional immune crosstalk in AD. In this paper, we construct current knowledge of microglia-astrocyte communication, highlighting the multifaceted functions of microglia and astrocytes and their role in AD. A thorough comprehension of microglia-astrocyte communication could hasten the creation of novel AD treatment approaches.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
Behl T, Rana T, Sehgal A, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bhatia S, Sachdeva M. Phytochemicals targeting nitric oxide signaling in neurodegenerative diseases. Nitric Oxide 2023; 130:1-11. [PMID: 36375788 DOI: 10.1016/j.niox.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Neurodegenerative diseases are a set of diseases in which slow and progressive neuronal loss occurs. Nitric oxide (NO) as a neurotransmitter performs key roles in the stimulation and blockade of various inflammatory processes. Although physiological NO is necessary for protection against a variety of pathogens, reactive oxygen species-mediated oxidative stress induces inflammatory cascades and apoptosis. Activation of glial cells particularly astrocytes and microglia induce overproduction of NO, resulting in neuroinflammation and neurodegenerative disorders. Hence, inhibiting the overproduction of NO is a beneficial therapeutic approach for numerous neuroinflammatory conditions. Several compounds have been explored for the management of neurodegenerative disorders, but they have minor symptomatic benefits and several adverse effects. Phytochemicals have currently gained more consideration owing to their ability to reduce the overproduction of NO in neurodegenerative disorders. Furthermore, phytochemicals are generally considered to be safe and beneficial. The mechanisms of NO generation and their implications in neurodegenerative disorders are explored in this review article, as well as several newly discovered phytochemicals that might have NO inhibitory activity. The current review could aid in the discovery of new anti-neuroinflammatory drugs that can suppress NO generation, particularly during neuroinflammatory and neurodegenerative conditions.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Monika Sachdeva
- Fatima College of Health Science, Al Ain, United Arab Emirates
| |
Collapse
|
45
|
Wiklund L, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Nozari A, Feng L, Sharma HS. TiO 2-Nanowired Delivery of Chinese Extract of Ginkgo biloba EGb-761 and Bilobalide BN-52021 Enhanced Neuroprotective Effects of Cerebrolysin Following Spinal Cord Injury at Cold Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:353-384. [PMID: 37480466 DOI: 10.1007/978-3-031-32997-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel during combat or peacekeeping operations are exposed to extreme climates of hot or cold environments for longer durations. Spinal cord injury is quite common in military personnel following central nervous system (CNS) trauma indicating a possibility of altered pathophysiological responses at different ambient temperatures. Our previous studies show that the pathophysiology of brain injury is exacerbated in animals acclimated to cold (5 °C) or hot (30 °C) environments. In these diverse ambient temperature zones, trauma exacerbated oxidative stress generation inducing greater blood-brain barrier (BBB) permeability and cell damage. Extracts of Ginkgo biloba EGb-761 and BN-52021 treatment reduces brain pathology following heat stress. This effect is further improved following TiO2 nanowired delivery in heat stress in animal models. Several studies indicate the role of EGb-761 in attenuating spinal cord induced neuronal damages and improved functional deficit. This is quite likely that these effects are further improved following nanowired delivery of EGb-761 and BN-52021 with cerebrolysin-a balanced composition of several neurotrophic factors and peptide fragments in spinal cord trauma. In this review, TiO2 nanowired delivery of EGb-761 and BN-52021 with nanowired cerebrolysin is examined in a rat model of spinal cord injury at cold environment. Our results show that spinal cord injury aggravates cord pathology in cold-acclimated rats and nanowired delivery of EGb-761 and BN-52021 with cerebrolysin significantly induced superior neuroprotection, not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Hari Shanker Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
46
|
Novoa C, Salazar P, Cisternas P, Gherardelli C, Vera-Salazar R, Zolezzi JM, Inestrosa NC. Inflammation context in Alzheimer's disease, a relationship intricate to define. Biol Res 2022; 55:39. [PMID: 36550479 PMCID: PMC9784299 DOI: 10.1186/s40659-022-00404-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by the accumulation of amyloid β (Aβ) and hyperphosphorylated tau protein aggregates. Importantly, Aβ and tau species are able to activate astrocytes and microglia, which release several proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), together with reactive oxygen (ROS) and nitrogen species (RNS), triggering neuroinflammation. However, this inflammatory response has a dual function: it can play a protective role by increasing Aβ degradation and clearance, but it can also contribute to Aβ and tau overproduction and induce neurodegeneration and synaptic loss. Due to the significant role of inflammation in the pathogenesis of AD, several inflammatory mediators have been proposed as AD markers, such as TNF-α, IL-1β, Iba-1, GFAP, NF-κB, TLR2, and MHCII. Importantly, the use of anti-inflammatory drugs such as NSAIDs has emerged as a potential treatment against AD. Moreover, diseases related to systemic or local inflammation, including infections, cerebrovascular accidents, and obesity, have been proposed as risk factors for the development of AD. In the following review, we focus on key inflammatory processes associated with AD pathogenesis.
Collapse
Affiliation(s)
- Catalina Novoa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Roberto Vera-Salazar
- Facultad de Ciencias Médicas, Escuela de Kinesiología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
47
|
Tang C, Jin Y, Wang H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy. Front Synaptic Neurosci 2022; 14:1054605. [PMID: 36530954 PMCID: PMC9755596 DOI: 10.3389/fnsyn.2022.1054605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/18/2022] [Indexed: 06/12/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication caused by sepsis, and is responsible for increased mortality and poor outcomes in septic patients. Neurological dysfunction is one of the main manifestations of SAE patients. Patients may still have long-term cognitive impairment after hospital discharge, and the underlying mechanism is still unclear. Here, we first outline the pathophysiological changes of SAE, including neuroinflammation, glial activation, and blood-brain barrier (BBB) breakdown. Synapse dysfunction is one of the main contributors leading to neurological impairment. Therefore, we summarized SAE-induced synaptic dysfunction, such as synaptic plasticity inhibition, neurotransmitter imbalance, and synapses loss. Finally, we discuss the alterations in the synapse, synapse formation, and mediators associated with synapse formation during SAE. In this review, we focus on the changes in synapse/synapse formation caused by SAE, which can further understand the synaptic dysfunction associated with neurological impairment in SAE and provide important insights for exploring appropriate therapeutic targets of SAE.
Collapse
Affiliation(s)
| | | | - Huan Wang
- College of Life and Health, Dalian University, Dalian, China
| |
Collapse
|
48
|
Lee WS, Lee HJ, Yang JY, Shin HL, Choi SW, Kim JK, Seo WD, Kim EH. The Potential Neuroprotective Effects of Extracts from Oat Seedlings against Alzheimer's Disease. Nutrients 2022; 14:4103. [PMID: 36235754 PMCID: PMC9571310 DOI: 10.3390/nu14194103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
The physiological or dietary advantages of germinated grains have been the subject of numerous discussions over the past decade. Around 23 million tons of oats are consumed globally, making up a sizeable portion of the global grain market. Oat seedlings contain more protein, beta-glucan, free amino acids, and phenolic compounds than seeds. The progressive neurodegenerative disorder of Alzheimer's is accompanied by worsening memory and cognitive function. A key indicator of this disorder is the unusual buildup of amyloid-beta protein (or Aβ) in human brains. In this context, oat seedling extract (OSE) has been identified as a new therapeutic candidate for AD, due to its antioxidant activity and AD-specific mechanism of action. This study directly investigated how OSE affected AD and its impacts by examining the cognitive function and exploring the inflammatory response mechanism. The dried oat seedlings were grounded finely with a grinder, inserted with 50% fermented ethanol 10 times (w/v), and extracted by stirring for 10 h at 45 °C. After filtering the extract by 0.22 um filter, some of it was used for UHPLC analysis. The results indicated that the treatment with OSE protects against Aβ25-35-induced cytotoxicity in BV2 cells. Tg-5Xfad AD mice had strong deposition of Aβ throughout their brains, while WT mice did not exhibit any such deposition within their brains. A drastic reduction was observed in terms of numbers, as well as the size, of Aβ plaques within Tg-5Xfad AD mice exposed to OSE. This study indicated OSE's neuroprotective impacts against neurodegeneration, synaptic dysfunction, and neuroinflammation induced by amyloid-beta. Our results suggest that OSE acts as a neuroprotective agent to combat AD-specific apoptotic cell death, neuroinflammation, amyloid-beta accumulation, as well as synaptic dysfunction in AD mice's brains. Furthermore, the study indicated that OSE treatment affects JNK/ERK/p38 MAPK signaling, with considerable inhibition in p-JNK, p-p38, and p-ERK levels seen in the brain of OSE-treated Tg-5Xfad AD mice.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Ji Yeong Yang
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do, Deokjin-gu, Jeonju 55365, Korea
| | - Hye-Lim Shin
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Korea Forest Service (KFS), Jinju 52817, Korea
| | - Sik-Won Choi
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Korea Forest Service (KFS), Jinju 52817, Korea
| | - Jong-Ki Kim
- Department of Biomedical Engineering & Radiology, School of Medicine, Daegu Catholic University, Daegu 42472, Korea
| | - Woo Duck Seo
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do, Deokjin-gu, Jeonju 55365, Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Korea
| |
Collapse
|
49
|
CX3CL1 Derived from Bone Marrow Mesenchymal Stem Cells Inhibits Aβ1-42-Induced SH-SY5Y Cell Pathological Damage through TXNIP/NLRP3 Signaling Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1949344. [PMID: 36118839 PMCID: PMC9477634 DOI: 10.1155/2022/1949344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most commonly seen neurodegenerative brain disorder. The paracrine effects of mesenchymal stem cells (MSCs) signify to trigger immunomodulation and neural regeneration. However, the role and mechanism of bone marrow MSC- (BMSC-) derived CX3CL1 in AD remains elusive. In this study, Aβ1-42-intervened SH-SY5Y cells were used for AD cell model construction. pcDNA-ligated CX3CL1 overexpression plasmids were transfected into BMSCs. The levels of soluble and membrane-bound CX3CL1 were detected by ELISA and Western blotting (WB), respectively. The growth, apoptosis, and pathology of AD model cells were evaluated by CCK-8, flow cytometry, immunofluorescence, morphology observation, biochemical examination, and WB. It was found that Aβ1-42 significantly reduced CX3CL1 expression either in soluble or membrane-bound form, cell viability, relative protein expression of synaptic markers, SOD, CAT, and GSH-Px contents, as well as Trx protein expression; in addition, it enhanced the apoptosis rate, the relative expression of cleaved caspase-3, Aβ, tau, p-Tau, Iba1, MDA, TXNIP, and NLRP3 in SH-SY5Y cells; however, the above effects were prominently reversed by the coculture of BMSCs. Moreover, overexpression of CX3CL1 in BMSCs observably strengthened the corresponding tendency caused by BMSCs. In conclusion, through the TXNIP/NLRP3 pathway, CX3CL1 derived from BMSCs inhibited pathological damage in Aβ1-42-induced SH-SY5Y.
Collapse
|
50
|
Gutierrez BA, Limon A. Synaptic Disruption by Soluble Oligomers in Patients with Alzheimer's and Parkinson's Disease. Biomedicines 2022; 10:1743. [PMID: 35885050 PMCID: PMC9313353 DOI: 10.3390/biomedicines10071743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases are the result of progressive dysfunction of the neuronal activity and subsequent neuronal death. Currently, the most prevalent neurodegenerative diseases are by far Alzheimer's (AD) and Parkinson's (PD) disease, affecting millions of people worldwide. Although amyloid plaques and neurofibrillary tangles are the neuropathological hallmarks for AD and Lewy bodies (LB) are the hallmark for PD, current evidence strongly suggests that oligomers seeding the neuropathological hallmarks are more toxic and disease-relevant in both pathologies. The presence of small soluble oligomers is the common bond between AD and PD: amyloid β oligomers (AβOs) and Tau oligomers (TauOs) in AD and α-synuclein oligomers (αSynOs) in PD. Such oligomers appear to be particularly increased during the early pathological stages, targeting synapses at vulnerable brain regions leading to synaptic plasticity disruption, synapse loss, inflammation, excitation to inhibition imbalance and cognitive impairment. Absence of TauOs at synapses in individuals with strong AD disease pathology but preserved cognition suggests that mechanisms of resilience may be dependent on the interactions between soluble oligomers and their synaptic targets. In this review, we will discuss the current knowledge about the interactions between soluble oligomers and synaptic dysfunction in patients diagnosed with AD and PD, how it affects excitatory and inhibitory synaptic transmission, and the potential mechanisms of synaptic resilience in humans.
Collapse
Affiliation(s)
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| |
Collapse
|