1
|
Lagging C, Pedersen A, Petzold M, Furutjäll S, Samuelsson H, Jood K, Stanne TM, Jern C. Profiling 92 circulating neurobiological proteins identifies novel candidate biomarkers of long-term cognitive outcome after ischemic stroke. Sci Rep 2025; 15:15328. [PMID: 40316737 PMCID: PMC12048571 DOI: 10.1038/s41598-025-99735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
The biological underpinnings of post-stroke cognitive function are largely unknown, and protein investigations can point towards important pathways for further study. We profiled plasma levels of 91 neurology-related proteins (Olink Neurology panel) and serum Neurofilament light chain (NfL) levels in 205 cases in the Sahlgrenska Academy Study on Ischemic Stroke. Blood was sampled in the acute and convalescent (3 months post-stroke) phase. Cognitive outcome was evaluated by the Barrow Neurological Institute Screen for Higher Cerebral Functions 7 years post-stroke. In linear regression models, 6 and 5 proteins in the acute and convalescent phase, respectively, were univariably associated with cognitive outcome at False Discovery Rate (FDR) < 0.05, and 9 and 8 at p < 0.05 after adjustment for age, sex, education and sampling day (model 1) and/or additional adjustment for stroke severity (model 2). Of these, 15 proteins contributed with information in multi-protein models on at least one time-point. These included brain-expressed proteoglycans (NCAN, BCAN, GPC5, SPOCK1); contactin-5 (CNTN5); metabolic enzymes (HAGH, NMNAT1); cluster of differentiation (CD)-proteins (SIGLEC1, CLEC10A, CD200R1); GDNF family receptor alpha-1 (GFR-alpha-1); brorin (VWC2); beta-nerve growth factor (beta-NGF); myostatin (GDF-8); and NfL. We identified novel candidate protein biomarkers of post-stroke cognitive outcome that likely reflect different biological processes, warranting further exploration.
Collapse
Affiliation(s)
- Cecilia Lagging
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden.
| | - Annie Pedersen
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Max Petzold
- School of Public Health and Community Medicine, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Furutjäll
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden
| | - Hans Samuelsson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Neurology, Gothenburg, Sweden
- Department of Psychology, Faculty of Social Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Jood
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Neurology, Gothenburg, Sweden
| | - Tara M Stanne
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| |
Collapse
|
2
|
Goh Y, Jang Y, Shin SJ, Ahn SH, Mon SY, Shin YH, Chu K, Lee SK, Lee S. CSF Tau Is a Biomarker of Hippocampal Injury in Cryptogenic New-Onset Refractory Status Epilepticus. Ann Clin Transl Neurol 2025; 12:1054-1064. [PMID: 40164513 PMCID: PMC12093326 DOI: 10.1002/acn3.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
OBJECTIVE Cryptogenic new-onset refractory status epilepticus (cNORSE) is a devastating condition characterized by the de novo onset of status epilepticus with unclear etiology. The identification of relevant early biomarkers in cNORSE is important to elucidate pathophysiology, aid clinical decision-making, and prognosticate outcomes in cNORSE. METHODS CSF samples were obtained within 7 days of NORSE onset from an adult cNORSE cohort in a national referral center in South Korea. Nineteen patients with cNORSE were studied: 9 were male (47.4%) and the median age was 35.0 [IQR: 27.0-54.3] years. CSF from 21 patients with other neurological diseases (atypical parkinsonism, postural orthostatic hypotension syndrome, epilepsy, and cerebellar ataxia) was used as controls. Proteomic analysis was conducted using the Olink platform, and potential biomarker candidates were correlated with clinical data and MRI findings. RESULTS Based on correlation analyses between proteomic data and clinical outcomes, total tau (t-tau) was selected as a potential biomarker. Patients with cNORSE had higher CSF t-tau levels than controls (p < 0.001). Early detection of high CSF t-tau was associated with the presence of hippocampal atrophy in the postacute phase of cNORSE (p = 0.044). The initial elevation of t-tau levels also correlated with a higher number of anti-seizure medications used (p = 0.031) and less improvement in Clinical Assessment Scale in Autoimmune Encephalitis (CASE) scores 1 month after NORSE onset (p = 0.066). T-tau levels were correlated with CSF pro-inflammatory cytokines/chemokines and mediators of neuronal damage. INTERPRETATION Elevated CSF t-tau levels detected early after cNORSE onset may be a useful marker of initial brain injury and predict subsequent hippocampal atrophy.
Collapse
Affiliation(s)
- Yihui Goh
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
- Division of NeurologyDepartment of Medicine, National University Health SystemSingapore
- Department of MedicineYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Yoonhyuk Jang
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
- Biomedical Research Institute, Seoul National University HospitalSeoulSouth Korea
- The National Strategic Technology Research InstituteSeoulSouth Korea
| | - Soo Jean Shin
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
| | - Soo Hyun Ahn
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Su Yee Mon
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Yoon Hee Shin
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Kon Chu
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Sang Kun Lee
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Soon‐Tae Lee
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| |
Collapse
|
3
|
Lagging C, Klasson S, Pedersen A, Nilsson S, Jood K, Stanne TM, Jern C. Investigation of 91 proteins implicated in neurobiological processes identifies multiple candidate plasma biomarkers of stroke outcome. Sci Rep 2022; 12:20080. [PMID: 36418382 PMCID: PMC9684578 DOI: 10.1038/s41598-022-23288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
The inter-individual variation in stroke outcomes is large and protein studies could point to potential underlying biological mechanisms. We measured plasma levels of 91 neurobiological proteins in 209 cases included in the Sahlgrenska Academy Study on Ischemic Stroke using a Proximity Extension Assay, and blood was sampled in the acute phase and at 3-month and 7-year follow-ups. Levels were also determined once in 209 controls. Acute stroke severity and neurological outcome were evaluated by the National Institutes of Health Stroke Scale. In linear regression models corrected for age, sex, and sampling day, acute phase levels of 37 proteins were associated with acute stroke severity, and 47 with 3-month and/or 7-year outcome at false discovery rate < 0.05. Three-month levels of 8 proteins were associated with 7-year outcome, of which the associations for BCAN and Nr-CAM were independent also of acute stroke severity. Most proteins followed a trajectory with lower levels in the acute phase compared to the 3-month follow-up and the control sampling point. Conclusively, we identified multiple candidate plasma biomarkers of stroke severity and neurological outcome meriting further investigation. This study adds novel information, as most of the reported proteins have not been previously investigated in a stroke cohort.
Collapse
Affiliation(s)
- Cecilia Lagging
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Sofia Klasson
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Annie Pedersen
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Staffan Nilsson
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Division of Applied Mathematics and Statistics, Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Katarina Jood
- grid.8761.80000 0000 9919 9582Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Tara M. Stanne
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Christina Jern
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
4
|
Zhang Y, Guo X, Peng Z, Liu C, Ren L, Liang J, Wang P. Nicotinamide Mononucleotide Adenylyltransferase 1 Regulates Cerebral Ischemia-Induced Blood-Brain Barrier Disruption Through NAD +/SIRT1 Signaling Pathway. Mol Neurobiol 2022; 59:4879-4891. [PMID: 35657458 DOI: 10.1007/s12035-022-02903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms of blood-brain barrier (BBB) disruption in the early stage after ischemic stroke are poorly understood. In the present study, we investigated the potential role of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) in ischemia-induced BBB damage using an animal middle cerebral artery occlusion (MCAO) model of ischemic stroke. Recombinant human NMNAT1 (rh-NMNAT1) was administered intranasally and Sirtuin 1 (SIRT1) siRNA was administered by intracerebroventricular injection. Our results indicate that rh-NMNAT1 reduced infarct volume, improved functional outcome, and decreased BBB permeability in mice after ischemic stroke. Furthermore, rh-NMNAT1 prevented the loss of tight junction proteins (occludin and claudin-5) and reduced cell apoptosis in ischemic microvessels. NMNAT1-mediated BBB permeability was correlated with the elevation of nicotinamide adenine dinucleotide (NAD+)/NADH ratio and SIRT1 level in brain microvascular endothelial cells. In addition, rh-NMNAT1 treatment significantly decreased the levels of acetylated nuclear factor-κB, acetylated p53, and matrix metalloproteinase-9 in ischemic microvessels. Moreover, the protective effects of rh-NMNAT1 could be reversed by SIRT1 siRNA. In conclusion, these findings indicate that rh-NMNAT1 protects BBB integrity after cerebral ischemia via the NAD+/SIRT1 signaling pathway in brain microvascular endothelial cells. NMNAT1 may be a novel potential therapeutic target for reducing BBB disruption after ischemic stroke.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xun Guo
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhifeng Peng
- Department of Physiology, Shanxi Datong University, Datong, 037009, Shanxi, China
| | - Chang Liu
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Lili Ren
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Jia Liang
- Institute of Life Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Peng Wang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
5
|
GSK-126 Protects CA1 Neurons from H3K27me3-Mediated Apoptosis in Cerebral Ischemia. Mol Neurobiol 2022; 59:2552-2562. [PMID: 35091962 PMCID: PMC9016005 DOI: 10.1007/s12035-021-02677-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
Epigenetics, including histone modifications, play a significant role in central nervous system diseases, but the underlying mechanism remains to be elucidated. The aim of this study was to evaluate the role of H3K27me3 in regulating transcriptomic and pathogenic mechanisms following global ischemic stroke. Here, we found that in vivo ischemic/reperfusion (I/R) injury induced marked upregulation of H3K27me3 in the hippocampus. The administration of GSK-126 to rat brains decreased the levels of H3K27me3 in the hippocampus and reduced neuronal apoptosis after experimental stroke. Furthermore, ChIP-seq data demonstrated that the primary role of GSK-126 in the ischemic brain is to reduce H3K27me3 enrichment, mediating negative regulation of the execution phase of apoptosis and the MAPK signaling pathway. Further study suggested that the protective role of GSK-126 in ischemic rats was antagonized by U0126, an inhibitor of ERK1/2. Collectively, we demonstrated the potential of H3K27me3 as a novel stroke therapeutic target, and GSK-126 exerted a neuroprotective function in ischemic brain injury, which might be associated with activation of the MAPK/ERK pathway.
Collapse
|
6
|
Yang T, He R, Li G, Liang J, Zhao L, Zhao X, Li L, Wang P. Growth arrest and DNA damage-inducible protein 34 (GADD34) contributes to cerebral ischemic injury and can be detected in plasma exosomes. Neurosci Lett 2021; 758:136004. [PMID: 34098025 DOI: 10.1016/j.neulet.2021.136004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Growth arrest and DNA damage-inducible protein 34 (GADD34), one of the key effectors of negative feedback loops, is induced by stress and subsequently attempts to restore homeostasis. It plays a critical role in response to DNA damage and endoplasmic reticulum stress. GADD34 has opposing effects on different stimulus-induced cell apoptosis events in many nervous system diseases, but its role in ischemic stroke is unclear. In this study, we evaluated the role of GADD34 and its distribution in a rat cerebral ischemic model. The results showed that GADD34 was increased in the cortex and contributed to brain injury in ischemic rats. Furthermore, treatment with a GADD34 inhibitor reduced the infarct volume, improved functional outcomes, and inhibited neuronal apoptosis in the cortical penumbra after ischemia. The role of GADD34 in ischemic stroke was associated with the dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and phosphorylation of p53. In addition, the GADD34 level was increased in plasma exosomes of cerebral ischemic rats. These findings indicate that GADD34 could be a potential therapeutic target and biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Tianhui Yang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ruyi He
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Gongzhe Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jia Liang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Liang Zhao
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xing Zhao
- Department of Ophthalmology and Otolaryngology, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, Liaoning, China
| | - Liyang Li
- Department of Ophthalmology and Otolaryngology, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, Liaoning, China
| | - Peng Wang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
7
|
β-1, 3-galactosyltransferase 2 deficiency exacerbates brain injury after transient focal cerebral ischemia in mice. Brain Res Bull 2021; 169:104-111. [PMID: 33482286 DOI: 10.1016/j.brainresbull.2021.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
Glycosyltransferases are enzymes that catalyze the formation of a variety of glycoconjugates. Glycoconjugates play vital roles in the nervous system. β-1, 3-Galactosyltransferase 2 (B3galt2) is one of the major types of glycosyltransferases, which has not been reported in ischemia induced-brain injury. The purpose of this study was to explore the role of B3galt2 exerts and its underlying mechanism in cerebral ischemia in mice. Wild-type (WT) and heterozygous B3galt2 knockout (B3galt2-/+) mice were subjected to 90 min transient focal cerebral ischemia by middle cerebral artery occlusion (MCAO). The brain samples were analyzed at 24 h after reperfusion. The B3galt2 level in the peri-infarct penumbra was quantified. The cerebral infarct volume, neurological deficits, apoptosis and the levels of Reelin and Dab1 were assessed. Compared with control mice, B3galt2-/+ mice not only showed severe brain damage, neurologic functional deficits, but also showed severe neuronal apoptosis in the cortical penumbra after ischemia/reperfusion (I/R). The Caspase-3 activity was increased and the levels of Reelin and Dab1 were decreased in B3galt2-/+ mice. Recombinant human Reelin (rh-Reelin) administered intracerebroventricularly before MCAO significantly reduced infarct volume, and prevented neuronal loss in B3galt2-/+ mice after I/R. Our results suggest B3galt2 deficiency exacerbates ischemic brain damage in acute ischemic stroke in mice, and this was reversed by giving rh-Reelin. B3galt2 might play a beneficial role for neurons survival in the penumbra through modulation of Reelin pathway.
Collapse
|
8
|
Saito M, Saito M, Das BC. Involvement of AMP-activated protein kinase in neuroinflammation and neurodegeneration in the adult and developing brain. Int J Dev Neurosci 2019; 77:48-59. [PMID: 30707928 PMCID: PMC6663660 DOI: 10.1016/j.ijdevneu.2019.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/29/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Microglial activation followed by neuroinflammation is a defense mechanism of the brain to eliminate harmful endogenous and exogenous materials including pathogens and damaged tissues, while excessive or chronic neuroinflammation may cause or exacerbate neurodegeneration observed in brain injuries and neurodegenerative diseases. Depending on conditions/environments during activation, microglia acquire distinct phenotypes, such as pro-inflammatory, anti-inflammatory, and disease-associated phenotypes, and show their ability to phagocytose various objects and produce pro-and anti-inflammatory mediators. Prevention of excessive inflammation by regulating the microglia's pro/anti-inflammatory balance is important for alleviating progression of brain injuries and diseases. Among many factors involved in the regulation of microglial phenotypes, cellular energy status plays an important role. Adenosine monophosphate-activated protein kinase (AMPK), which serves as a master sensor and regulator of energy balance, is considered a candidate molecule. Accumulating evidence from adult rodent studies indicates that AMPK activation promotes anti-inflammatory responses in microglia exposed to danger signals or various stressors mainly through inhibition of the nuclear factor κB (NF-κB) signaling and activation of the nuclear factor erythroid-2-related factor-2 (Nrf2) pathway. However, AMPK activation in neurons exposed to stressors/insults may exacerbate neuronal damage if AMPK activation is excessive or prolonged. While AMPK affects microglial activation states and neuronal cell survival rates in both the adult and the developing brain, studies in the developing brain are still scarce, even though activated AMPK is highly expressed especially in the neonatal brain. More in depth studies in the developing brain are important, because neuroinflammation/neurodegeneration occurred during development can result in long-lasting brain damage.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center 550 First Avenue, New York, NY 10016, USA
| | - Mitsuo Saito
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg, Orangeburg, NY 10962, USA
| | - Bhaskar C. Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai 1468 Madison Avenue, Annenberg 19-201, New York, NY 10029, USA
| |
Collapse
|
9
|
Wang P, Lu Y, Han D, Wang P, Ren L, Bi J, Liang J. Neuroprotection by nicotinamide mononucleotide adenylyltransferase 1 with involvement of autophagy in an aged rat model of transient cerebral ischemia and reperfusion. Brain Res 2019; 1723:146391. [PMID: 31421130 DOI: 10.1016/j.brainres.2019.146391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/20/2019] [Accepted: 08/13/2019] [Indexed: 11/18/2022]
Abstract
Recent researches suggest that autophagic degradation declines with age, and this leads to an accumulation of damage that contributes to age-related cellular dysfunction. Nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) shows therapeutic potential for cerebral ischemia in young-adult animals. This study investigated the role of NMNAT1 in focal cerebral ischemia in aged rats with a focus on neuronal autophagy. Focal cerebral ischemia was induced in aged rats by middle cerebral artery occlusion (MCAO). NMNAT1 levels in the peri-infarct penumbra increased at 12 and 24 h after ischemia in aged rats. Knockdown of NMNAT1 significantly increased infarct volume, whereas overexpression of NMNAT1 reduced ischemia-induced cerebral injuries in aged rats with acute ischemic stroke. Meanwhile, lentiviral overexpression of NMNAT1 increased autophagy, reduced the phosphorylation of mammalian target of rapamycin (mTOR), and enhanced the sirtuin 1 (SIRT1) protein level. In cultured cortical neurons, SIRT1 regulated the mTOR-mediated autophagy upon oxygen-glucose deprivation (OGD) stress and the effect of NMNAT1 on autophagy was blocked in cultured SIRT1-knockout neurons. Furthermore, autophagy inhibitor 3-methyladenine (3-MA) partly abolished the neuroprotection induced by NMNAT1 overexpression. The results suggest NMNAT1 protects against acute ischemic stroke in aged rats by inducing autophagy via regulating the SIRT1/mTOR pathway.
Collapse
Affiliation(s)
- Peng Wang
- Liaoning Key Laboratory of Neurodegenerative Diseases and Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yijun Lu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Donghe Han
- Liaoning Key Laboratory of Neurodegenerative Diseases and Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Pan Wang
- Liaoning Key Laboratory of Neurodegenerative Diseases and Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lili Ren
- Liaoning Key Laboratory of Neurodegenerative Diseases and Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jing Bi
- Liaoning Key Laboratory of Neurodegenerative Diseases and Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jia Liang
- Institute of Life Science, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
10
|
Young Park S, Jin Kim Y, Park G, Kim HH. Neuroprotective effect of Dictyopteris divaricata extract-capped gold nanoparticles against oxygen and glucose deprivation/reoxygenation. Colloids Surf B Biointerfaces 2019; 179:421-428. [PMID: 31003168 DOI: 10.1016/j.colsurfb.2019.03.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
Abstract
Combination therapy remains a promising approach to ameliorate cerebral ischemia injury. Nevertheless, the primary mechanism of the neuroprotective properties of Dictyopteris divaricata extract-capped gold nanoparticles (DD-GNPs) is not completely understood. DD-GNPs displayed maximum absorption at 525 nm and a diameter of 62.6 ± 1.2 nm, with a zeta potential value of -26.1 ± 0.6 mV. High resolution-transmission electron microscopy confirmed the spherical shape and average diameter (28.01 ± 2.03 nm). Crystalline structure and gold nanoparticle synthesis of DD-GNPs were determined by X-ray powder diffraction, and the presence of elemental gold was confirmed by energy-dispersive X-ray spectroscopy and Fourier transform-infrared spectroscopy. We examined the neuroprotective properties of DD-GNPs and explored their potential mechanisms in human SH-SY5Y neuroblastoma cells treated with oxygen and glucose deprivation/reoxygenation (OGD/R). We found that DD-GNPs inhibited OGD/R-induced release of lactate dehydrogenase (LDH), loss of cell viability, and production of reactive oxygen species. This neuroprotection was accompanied by regulation of apoptosis-related proteins, as indicated by decreased levels of cleaved-caspase-3, cleaved-PARP, cleaved-caspase-9, p53, p21, and Bax, as well as an increased level of Bcl-2. Notably, the neuroprotective effects of DD-GNPs were partially abolished by HO-1, NQO1, Nrf2, and AMPK knockdown. Our results established that DD-GNPs effectively attenuated OGD/R-stimulated neuronal injury, as evidenced by reduced neuronal injury. Even though the accumulating evidence has indicated the low toxicity and minimal side effects of GNPs, experimental clinical trials of DD-GNPs are still limited because of the lack of knowledge regarding the effects of DD-GNPs as neuroprotective agents against neurodegenerative diseases.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Yeong Jin Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Geuntae Park
- Department of Nanomaterials Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung-Hoi Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; Department of Laboratory Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea
| |
Collapse
|
11
|
Xu N, Zhang Y, Doycheva DM, Ding Y, Zhang Y, Tang J, Guo H, Zhang JH. Adiponectin attenuates neuronal apoptosis induced by hypoxia-ischemia via the activation of AdipoR1/APPL1/LKB1/AMPK pathway in neonatal rats. Neuropharmacology 2018; 133:415-428. [PMID: 29486166 DOI: 10.1016/j.neuropharm.2018.02.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/15/2018] [Accepted: 02/23/2018] [Indexed: 02/03/2023]
Abstract
Adiponectin is an important adipocyte-derived plasma protein that has beneficial effects on cardio- and cerebrovascular diseases. A low level of plasma Adiponectin is associated with increased mortality post ischemic stroke; however, little is known about the causal role of Adiponectin as well as its molecular mechanisms in neonatal hypoxia ischemia (HI). In the present study, ten-day-old rat pups were subjected to right common carotid artery ligation followed by 2.5 h hypoxia. Recombinant human Adiponectin (rh-Adiponectin) was administered intranasally 1 h post HI. Adiponectin Receptor 1 (AdipoR1) siRNA, APPL1 siRNA, LKB1 siRNA were administered through intracerebroventricular injection 48 h before HI. Brain infarct area measurement, neurological function test, western blot, Fluoro Jade C (FJC), TUNEL, and immunofluorescence staining were conducted. Results revealed that endogenous Adiponectin, AdipoR1 and APPL1 were increased in a time dependent manner after HI. Administration of rh-Adiponectin reduced brain infarct area, neuronal apoptosis, brain atrophy and improved neurological function at 24 h and 4 weeks post HI. Furthermore, rh-Adiponectin treatment increased Adiponectin, AdipoR1, APPL1, cytosolic LKB1, p-AMPK expression levels and thereby attenuated apoptosis as shown by the decreased expression of the pro-apoptotic marker, Cleaved Caspase 3 (C-Cas3), as well as the number of FJC and TUNEL positively stained neurons. AdipoR1, APPL1 and LKB1 siRNAs abolished the anti-apoptotic effects of rh-Adiponectin at 24 h after HI. Collectively, the data provided evidence that intranasal administration of rh-Adiponectin attenuated neuronal apoptosis at least in part via activating AdipoR1/APPL1/LKB1/AMPK signaling pathway. Adiponectin could represent a therapeutic target for treatment of neonatal hypoxic ischemic encephalopathy.
Collapse
MESH Headings
- AMP-Activated Protein Kinase Kinases
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adiponectin/therapeutic use
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Body Weight/drug effects
- Brain Infarction/drug therapy
- Brain Infarction/etiology
- Caspase 3/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Escape Reaction/drug effects
- Female
- Fluoresceins/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/pathology
- In Situ Nick-End Labeling
- Male
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurologic Examination
- Neurons/drug effects
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Reflex/drug effects
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Statistics, Nonparametric
- Swimming/physiology
- Time Factors
Collapse
Affiliation(s)
- Ningbo Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yixin Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yiting Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hongbo Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
12
|
Park SY, Choi YW, Park G. Nrf2-mediated neuroprotection against oxygen-glucose deprivation/reperfusion injury by emodin via AMPK-dependent inhibition of GSK-3β. J Pharm Pharmacol 2018; 70:525-535. [DOI: 10.1111/jphp.12885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/03/2018] [Indexed: 01/10/2023]
Abstract
Abstract
Objectives
Our study verified the neuroprotective properties of emodin against oxygen-glucose deprivation/reoxygenation (OGD/R) and demonstrated its mechanism.
Methods
Human neuronal SH-SY5Y cells were investigated by analysing cell viability, lactate dehydrogenase levels, expression of molecules related to apoptotic cell death, and using biochemical techniques, flow cytometry and Western blot assays.
Key findings
Emodin reduced OGD/R-lead to neurotoxicity in SH-SY5Y cells. OGD/R significantly increased levels of cleaved poly ADP ribose polymerase, cleaved caspase-3, cleaved caspase-9, p53, p21 and Bax protein. However, emodin treatment effectively inhibited these OGD/R-induced changes. Emodin treatment also increased HO-1 and NQO1 expression in a concentration- and time-dependent manner and caused antioxidant response element (ARE) transcription activity and nuclear Nrf2 accumulation. Emodin phosphorylated AMPK and GSK3β, and pretreatment of cells with an AMPK inhibitor suppressed emodin-induced nuclear Nrf2 accumulation and HO-1 and NQO1 expression. AMPK inhibitor treatment decreased GSK3β phosphorylation, suggesting that AMPK is upstream of GSK3β, Nrf2, HO-1 and NQO1. Emodin's neuroprotective effect was completely blocked by HO-1, NQO1 and Nrf2 knock-down and an AMPK inhibitor, indicating the action of AMPK/GSK3β/Nrf2/ARE in the neuroprotective effect of emodin subjected to OGD/R.
Conclusions
Emodin treatment protected against OGD/R-lead to neurotoxicity by potentiating Nrf2/ARE-regulated neuroprotection through the AMPK/GSK3β pathway, indicating that emodin may be useful for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang, Korea
| | - Geuntae Park
- Department of Nanomaterials Engineering, Pusan National University, Busan, Korea
| |
Collapse
|
13
|
Sultani G, Samsudeen AF, Osborne B, Turner N. NAD + : A key metabolic regulator with great therapeutic potential. J Neuroendocrinol 2017; 29. [PMID: 28718934 DOI: 10.1111/jne.12508] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is a ubiquitous metabolite that serves an essential role in the catabolism of nutrients. Recently, there has been a surge of interest in NAD+ biology, with the recognition that NAD+ influences many biological processes beyond metabolism, including transcription, signalling and cell survival. There are a multitude of pathways involved in the synthesis and breakdown of NAD+ , and alterations in NAD+ homeostasis have emerged as a common feature of a range of disease states. Here, we provide an overview of NAD+ metabolism and summarise progress on the development of NAD+ -related therapeutics.
Collapse
Affiliation(s)
- G Sultani
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| | - A F Samsudeen
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| | - B Osborne
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| | - N Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| |
Collapse
|
14
|
Wang W, Li M, Wang Y, Wang Z, Zhang W, Guan F, Chen Q, Wang J. GSK-3β as a target for protection against transient cerebral ischemia. Int J Med Sci 2017; 14:333-339. [PMID: 28553165 PMCID: PMC5436475 DOI: 10.7150/ijms.17514] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022] Open
Abstract
Stroke remains the leading cause of death and disability worldwide. This fact highlights the need to search for potential drug targets that can reduce stroke-related brain damage. We showed recently that a glycogen synthase kinase-3β (GSK-3β) inhibitor attenuates tissue plasminogen activator-induced hemorrhagic transformation after permanent focal cerebral ischemia. Here, we examined whether GSK-3β inhibition mitigates early ischemia-reperfusion stroke injury and investigated its potential mechanism of action. We used the rat middle cerebral artery occlusion (MCAO) model to mimic transient cerebral ischemia. At 3.5 h after MCAO, cerebral blood flow was restored, and rats were administered DMSO (vehicle, 1% in saline) or GSK-3β inhibitor TWS119 (30 mg/kg) by intraperitoneal injection. Animals were sacrificed 24 h after MCAO. TWS119 treatment reduced neurologic deficits, brain edema, infarct volume, and blood-brain barrier permeability compared with those in the vehicle group. TWS119 treatment also increased the protein expression of β-catenin and zonula occludens-1 but decreased β-catenin phosphorylation while suppressing the expression of GSK-3β. These results indicate that GSK-3β inhibition protects the blood-brain barrier and attenuates early ischemia-reperfusion stroke injury. This protection may be related to early activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Yuefei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Zhongyu Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
15
|
Proteomic response of mouse pituitary gland under heat stress revealed active regulation of stress responsive proteins. J Therm Biol 2016; 61:82-90. [DOI: 10.1016/j.jtherbio.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 11/22/2022]
|