1
|
Feng C, Jiang Y, Wang Y, Zhang Y, Liu Y, Li J. Protocatechualdehyde improves cyclophosphamide-induced premature ovarian insufficiency by inhibiting granulosa cell apoptosis and senescence through the SIRT1/p53 axis. Reprod Toxicol 2025; 135:108903. [PMID: 40228705 DOI: 10.1016/j.reprotox.2025.108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
Premature ovarian insufficiency (POI) is a prevalent gynecological disorder. Cyclophosphamide (CP), as a chemotherapeutic drug, particularly plays an important role in inducing POI. Protocatechualdehyde (PCA) is a major phenolic acid in Chinese herb Danshen, and has been reported to have beneficial effects on anti-inflammatory, anti-apoptotic, and anti-oxidant functions. We aimed to investigate the effect of different doses of PCA on ovarian function and the underlying molecular mechanisms. PCA administration reduced estrous cycle disorders, increased ovarian weight, promoted the secretion of serum hormone levels, and improved the CP-damaged ovarian microenvironment. Importantly, the administration of PCA contributed to the recovery of ovarian function with POI by inhibiting the senescence and apoptosis of granulosa cells. In vitro assay further confirmed the protective effect of PCA on CP-induced senescence and apoptosis of granulosa cells. Mechanistically, both in vivo and in vitro experiments proved that PCA administration promoted activation of the Sirt1/p53 signaling cascade, ultimately improving ovarian function. In conclusion, PCA might protect against ovarian damage in CP-induced POI that might be related to its activity on senescence and apoptosis of granulosa cells by the Sirt1/p53 pathway.
Collapse
Affiliation(s)
- Cong Feng
- Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yue Jiang
- Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yi Wang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yuehui Zhang
- Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yu Liu
- Department of Plastic and Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Jia Li
- Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
AlHayani DA, Kubaev A, Uthirapathy S, Mandaliya V, Ballal S, Kalia R, Arya R, Gabble BC, Alasheqi MQ, Kadhim AJ. Insights Into the Therapeutic Potential of SIRT1-modifying Compounds for Alzheimer's Disease: A Focus on Molecular Mechanisms. J Mol Neurosci 2025; 75:29. [PMID: 40000535 DOI: 10.1007/s12031-025-02324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss, significantly impacting patients' quality of life. Recent studies have highlighted the roles of sirtuin 1 (SIRT1), a NAD + -dependent deacetylase, in regulating various biological pathways associated with AD pathology, including amyloid-beta metabolism, tau hyperphosphorylation, and neuroinflammation. This review focuses on the therapeutic potential of synthetic and natural compounds that modulate SIRT1 levels, emphasizing their molecular mechanisms of action. We explore a range of SIRT1-modifying agents, including polyphenols such as resveratrol, as well as synthetic analogs and novel pharmaceuticals that aim to enhance SIRT1 activity. Additionally, we discuss emerging innovative therapies, including pharmacological agents that improve SIRT1 signaling through mechanisms like photobiomodulation and nutritional interventions. These compounds not only target SIRT1 but also integrate into broader metabolic and neuroprotective pathways, presenting a promising approach to ameliorating AD symptoms. By elucidating the intricate interactions between SIRT1-modifying compounds and their effects on AD pathology, this review aims to advance the understanding of potential therapeutic strategies that could delay or prevent the progression of AD.
Collapse
Affiliation(s)
- Dhyauldeen Aftan AlHayani
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, 31003, Ramadi, Al Anbar, Iraq
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Baneen C Gabble
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | | | - Abed J Kadhim
- Department of Medical Engineering/Al, Nisour University College, Baghdad, Iraq
| |
Collapse
|
3
|
Lin ZX, Wang CJ, Tu HW, Tsai MT, Yu MH, Huang HP. The Neuroprotective Effects of Primary Functional Components Mulberry Leaf Extract in Diabetes-Induced Oxidative Stress and Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3680-3691. [PMID: 39893686 PMCID: PMC11826978 DOI: 10.1021/acs.jafc.4c09422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Diabetes-associated neurodegeneration may result from increased oxidative stress in the brain under hyperglycemic conditions, which leads to neuronal cell death. The current study employs the neuroblastoma cell line SH-SY5Y and db/db mouse model of diabetes maintained on a high-fat diet to investigate the neuroprotective effects of the primary functional components of mulberry (Morus alba Linn) leaf extract (MLE), chlorogenic acid (CGA), and neochlorogenic acid (NCGA). CGA and NCGA demonstrated the ability to enhance the activities of the antioxidant enzymes superoxide dismutase and glutathione peroxidase, and attenuate inflammation via regulating nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-κB (NFκB), and inflammatory cytokines, thereby protecting SH-SY5Y cells from oxidative damage induced by palmitic acid and high glucose. CGA and NCGA were found to decrease the expression of proinflammatory proteins α-synuclein and amyloid-β (Aβ). In addition, CGA and NCGA treatments increased the expression of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF). Furthermore, MLE supplementation in the animal model resulted in decreased levels of α-synuclein and Aβ concomitant with an elevated expression of TH. These experimental findings suggest that the neuroprotective effects of CGA and NCGA may be mediated via three pathways: reducing oxidative stress, decreasing neuronal inflammation, and enhancing BDNF expression.
Collapse
Affiliation(s)
- Zi-Xiang Lin
- School
of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chau-Jong Wang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 40201, Taiwan
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 40201, Taiwan
| | - Hsin-Wei Tu
- School
of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Ministry
of Health and Welfare, Shuang-Ho Hospital, New Taipei City 23561, Taiwan
| | - Meng-Ting Tsai
- Institute
of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Meng-Hsun Yu
- Department
of Nutrition, Chung Shan Medical University
Hospital, Taichung 40201, Taiwan
- Department
of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hui-Pei Huang
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 40201, Taiwan
- Department
of Biochemistry, School of Medicine, Chung
Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
4
|
Ruankham W, Pingaew R, Prachayasittikul V, Worachartcheewan A, Sathuphong S, Apiraksattayakul S, Tantimongcolwat T, Prachayasittikul V, Prachayasittikul S, Phopin K. Neuroprotective thiazole sulfonamides against 6-OHDA-induced Parkinsonian model: in vitro biological and in silico pharmacokinetic assessments. RSC Adv 2025; 15:4281-4295. [PMID: 39931414 PMCID: PMC11809491 DOI: 10.1039/d4ra04941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
The limitations of currently existing medications in delaying or halting the development of Parkinson's disease (PD) remain dramatically problematic, making it the second most prevalent neurodegenerative disorder. Moreover, it is expected that the number of PD cases will double within the next 30 years. Herein, to discover a novel neuroprotective therapeutic strategy, a series of multifunctional thiazole sulfonamides underwent preliminary assessment owing to their neuroprotective capabilities against 6-hydroxydopamine (6-OHDA)-induced damage in human neuronal SH-SY5Y cells. Pretreatment with novel synthetic hybrids, including 1, 2, and 8, significantly improved cell viability, reduced lactate dehydrogenase (LDH) leakage, prevented mitochondrial dysfunction, and mitigated intracellular oxidative stress. Insight molecular mechanisms and potential targets of these compounds were elucidated through their activation and binding interaction with sirtuin 1 (SIRT1), suggesting their influencing roles on relevant downstream cascades of PD. Furthermore, in silico pharmacokinetic analysis revealed the drug-likeness of these three hybrids, which are capable of being distributed into the central nervous system (CNS) with slight toxicity. Therefore, these novel neuroprotective thiazole sulfonamides are promising candidates for further development (i.e., in vivo and clinical trials) of effective PD therapy.
Collapse
Affiliation(s)
- Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand +66 2 441 4380 +66 2 441 4376
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University Bangkok 10110 Thailand
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand +66 2 441 4380 +66 2 441 4376
| | - Apilak Worachartcheewan
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand
| | - Suphissara Sathuphong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand +66 2 441 4380 +66 2 441 4376
| | - Setthawut Apiraksattayakul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand +66 2 441 4380 +66 2 441 4376
| | - Tanawut Tantimongcolwat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand +66 2 441 4380 +66 2 441 4376
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand +66 2 441 4380 +66 2 441 4376
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand +66 2 441 4380 +66 2 441 4376
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand
| |
Collapse
|
5
|
Fajardo JB, Vianna MH, Polo AB, Cordeiro Comitre MR, de Oliveira DA, Ferreira TG, de Oliveira Lemos AS, Souza TDF, Campos LM, de Lima Paula P, Barbosa AF, Geraldo de Carvalho M, Machado Resende Guedes MC, Coimbra ES, da Costa Macedo G, Tavares GD, Barradas TN, Fabri RL. Insights into the bioactive potential of the Amazonian species Acmella oleracea leaves extract: A focus on wound healing applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118866. [PMID: 39357584 DOI: 10.1016/j.jep.2024.118866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acmella oleracea is traditionally used by Amazonian folks to treat skin and mucous wounds, influenza, cough, toothache, bacterial and fungal infections. Its phytoconstituents, such as alkylamides, phenolic compounds, and terpenes, are reported to produce therapeutic effects, which justify the medicinal use of A. oleracea extracts. However, the scientific evidence supporting the application A. oleracea bioactive products for wound treatment of remains unexplored so far. OBJECTIVE This work aimed to characterize the phytochemical composition of methanolic extract of A. oleracea leaves (AOM) and to investigate their antioxidant, anti-inflammatory, antimicrobial and healing potential focusing on its application for wound healing. MATERIAL AND METHODS The dried leaves from A. oleracea submitted to static maceration in methanol for 40 days. The phytochemical constitution of AOM was analyzed based on the total phenolic dosage method and by UFLC-QTOF-MS analysis. Antioxidant activity was assessed by DPPH and NO scavenging activities, as well as MDA formation, evaluation of ROS levels, and phosphomolybdenum assays. In vitro anti-inflammatory activities were assessed by reduction of NO, IL-6, and TNF-α production and accumulation of LDs in peritoneal macrophages cells. Antimicrobial activity was evaluated by determining MIC and MBC/MFC values against P. aeruginosa, E. coli, S. epidermidis, S. aureus and C. albicans, bacterial killing assay, and biofilm adhesion assessment. In vitro wound healing activity was determined by means of the scratch assay with L929 fibroblasts. RESULTS Vanillic acid, quercetin, and seven other alkamides, including spilanthol, were detected in the UFLC-QTOF-MS spectrum of AOM. Regarding the biocompatibility, AOM did not induce cytotoxicity in L929 fibroblasts and murine macrophages. The strong anti-inflammatory activity was evidenced by the fact that AOM reduced the cellular production of inflammatory mediators IL-6, TNF-α, NO, and LDs in macrophages by 100%, 96.66 ± 1.95%, 99.21 ± 3.82%, and 67.51 ± 0.72%, respectively. The antioxidant effects were confirmed, since AOM showed IC50 values of 44.50 ± 4.46 and 127.60 ± 14.42 μg/mL in the DPPH and NO radical inhibition assays, respectively. Additionally, AOM phosphomolybdenium reducing power was 63.56 ± 13.01 (RAA% of quercetin) and 104.01 ± 21.29 (RAA% of rutin). Finally, in the MDA quantification assay, AOM showed 63,69 ± 3.47% of lipid peroxidation inhibition. It was also observed that the production of ROS decreased by 69.03 ± 3.85%. The MIC values of AOM ranged from 1000 to 125 μg/mL. Adhesion of S. aureus, P. Aeruginosa, and mixed biofilms was significantly reduced by 44.71 ± 4.44%, 95.50 ± 6.37 %, and 51.83 ± 1.50%, respectively. AOM also significantly inhibited the growth of S. aureus (77.17 ± 1.50 %) and P. aeruginosa (62.36 ± 1.01%). Furthermore, AOM significantly enhanced the in vitro migration of L929 fibroblasts by 97.86 ± 0.82% compared to the control (P < 0.05). CONCLUSIONS This study is the first to report total antioxidant capacity and intracellular LD reduction by AOM. The results clearly demonstrated that AOM exerts potent anti-inflammatory, antioxidant, antimicrobial, and wound healing effects, encouraging its further investigation and promising application in wound treatment.
Collapse
Affiliation(s)
- Júlia Bertolini Fajardo
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Hauck Vianna
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ana Barbara Polo
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariane Rocha Cordeiro Comitre
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Débora Almeida de Oliveira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thayná Gomes Ferreira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thalita de Freitas Souza
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lara Melo Campos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Priscila de Lima Paula
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Alan Franco Barbosa
- Federal Institute of Education, Science and Technology of Mato Grosso, Sorriso, MG, Brazil
| | - Mário Geraldo de Carvalho
- Department of Chemistry, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Maria Clara Machado Resende Guedes
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gilson da Costa Macedo
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | - Rodrigo Luiz Fabri
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Jongwachirachai P, Ruankham W, Apiraksattayakul S, Intharakham S, Prachayasittikul V, Suwanjang W, Prachayasittikul V, Prachayasittikul S, Phopin K. Neuroprotective Properties of Coriander-Derived Compounds on Neuronal Cell Damage under Oxidative Stress-Induced SH-SY5Y Neuroblastoma and in Silico ADMET Analysis. Neurochem Res 2024; 49:3308-3325. [PMID: 39298035 PMCID: PMC11502562 DOI: 10.1007/s11064-024-04239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
An imbalance between reactive oxygen species (ROS) production and antioxidant defense driven by oxidative stress and inflammation is a critical factor in the progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. Coriander (Coriandrum sativum L.), a culinary plant in the Apiaceae family, displays various biological activities, including anticancer, antimicrobial, and antioxidant effects. Herein, neuroprotective properties of three major bioactive compounds derived from coriander (i.e., linalool, linalyl acetate, and geranyl acetate) were investigated on hydrogen peroxide-induced SH-SY5Y neuroblastoma cell death by examining cell viability, ROS production, mitochondrial membrane potential, and apoptotic profiles. Moreover, underlying mechanisms of the compounds were determined by measuring intracellular sirtuin 1 (SIRT1) enzyme activity incorporated with molecular docking. The results showed that linalool, linalyl acetate, and geranyl acetate elicited their neuroprotection against oxidative stress via protecting cell death, reducing ROS production, preventing cell apoptosis, and modulating SIRT1 longevity. Additionally, in silico pharmacokinetic predictions indicated that these three compounds are drug-like agents with a high probability of absorption and distribution, as well as minimal potential toxicities. These findings highlighted the potential neuroprotective linalool, linalyl acetate, and geranyl acetate for developing alternative natural compound-based neurodegenerative therapeutics and prevention.
Collapse
Affiliation(s)
- Papitcha Jongwachirachai
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Setthawut Apiraksattayakul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Saruta Intharakham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Wilasinee Suwanjang
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
7
|
Vadak N, Borkar MR, Bhatt LK. Deciphering neuroprotective mechanism of nitroxoline in cerebral ischemia: network pharmacology and molecular modeling-based investigations. Mol Divers 2024; 28:3993-4015. [PMID: 38233690 DOI: 10.1007/s11030-023-10791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Cerebral ischemia is one of the major causes of death and disability worldwide. Currently, existing approved therapies are based on reperfusion and there is an unmet need to search for drugs with neuroprotective effects. The present study aims to investigate the neuroprotective mechanisms of nitroxoline, a nitro derivative of 8-Hydroxyquinoline, against cerebral ischemia using integrated network pharmacology and molecular docking approaches. Critical analytical tools used were SwissTarget, PharmMapper, BindingDB, DisGeNet, Cytoscape, GeneMANIA, ShinyGo, Metascape, GeneCodis, and Schrodinger GLIDE. Thirty-six overlapping drug and disease targets were identified and used for further analysis. Gene Ontology results showed that nitroxoline enriched the genes involved in biological processes of oxidative stress and apoptotic cell death that are highly implicated in hypoxic injury. KEGG enrichment analysis showed nitroxoline influenced a total of 159 biological pathways, out of which, top pathways involved in cerebral ischemia included longevity regulating pathway, VEGF signaling, EGFR tyrosine kinase inhibitor resistance, IL-17 and HIF-1 pathways, FoxO signaling, and AGE-RAGE pathway. Protein-protein interaction analysis using string database showed PARP1, EGFR, PTEN, BRD4, RAC1, NOS2, MTOR, MAPK3, BCL2, MAPK1, APP, METAP2, MAPK14, SIRT1, PRKAA1, and MCL1 as highly interactive proteins involved in pathogenesis of ischemic stroke regulated by nitroxoline. The highly interactive protein targets were validated by molecular docking studies and molecular dynamic simulations. Amongst all these targets, nitroxoline showed the highest binding affinity towards BRD4 followed by PARP1 and PTEN. Nitroxoline, through network pharmacology analysis, showed a role in regulating proteins, biological processes, and pathways crucial in cerebral ischemia. The current study thus provides a preliminary insight that nitroxoline might be used as a neuroprotectant against cerebral ischemia via modulating the epigenetic reader BRD4 and transcription factors such as RELA, NF-κβ1, and SP1. However, further in-vitro and preclinical studies need to be performed for concrete evidence.
Collapse
Affiliation(s)
- Namrata Vadak
- Department of Pharmacology, SVKM's Dr Bhanuben, Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr, Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr Bhanuben, Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
8
|
Gogna T, Housden BE, Houldsworth A. Exploring the Role of Reactive Oxygen Species in the Pathogenesis and Pathophysiology of Alzheimer's and Parkinson's Disease and the Efficacy of Antioxidant Treatment. Antioxidants (Basel) 2024; 13:1138. [PMID: 39334797 PMCID: PMC11429442 DOI: 10.3390/antiox13091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's (AD) and Parkinson's Disease (PD) are life-altering diseases that are characterised by progressive memory loss and motor dysfunction. The prevalence of AD and PD is predicted to continuously increase. Symptoms of AD and PD are primarily mediated by progressive neuron death and dysfunction in the hippocampus and substantia nigra. Central features that drive neurodegeneration are caspase activation, DNA fragmentation, lipid peroxidation, protein carbonylation, amyloid-β, and/or α-synuclein formation. Reactive oxygen species (ROS) increase these central features. Currently, there are limited therapeutic options targeting these mechanisms. Antioxidants reduce ROS levels by the induction of antioxidant proteins and direct neutralisation of ROS. This review aims to assess the effectiveness of antioxidants in reducing ROS and neurodegeneration. Antioxidants enhance major endogenous defences against ROS including superoxide dismutase, catalase, and glutathione. Direct neutralisation of ROS by antioxidants protects against ROS-induced cytotoxicity. The combination of Indirect and direct protective mechanisms prevents ROS-induced α-synuclein and/or amyloid-β formation. Antioxidants ameliorate ROS-mediated oxidative stress and subsequent deleterious downstream effects that promote apoptosis. As a result, downstream harmful events including neuron death, dysfunction, and protein aggregation are decreased. The protective effects of antioxidants in human models have yet to directly replicate the success seen in cell and animal models. However, the lack of diversity in antioxidants for clinical trials prevents a definitive answer if antioxidants are protective. Taken together, antioxidant treatment is a promising avenue in neurodegenerative disease therapy and subsequent clinical trials are needed to provide a definitive answer on the protective effects of antioxidants. No current treatment strategies have significant impact in treating advanced AD and PD, but new mimetics of endogenous mitochondrial antioxidant enzymes (Avasopasem Manganese, GC4419 AVA) may be a promising innovative option for decelerating neurodegenerative progress in the future at the mitochondrial level of OS.
Collapse
Affiliation(s)
- Talin Gogna
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Living Systems Institute, Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
9
|
Missiego-Beltrán J, Beltrán-Velasco AI. The Role of Microbial Metabolites in the Progression of Neurodegenerative Diseases-Therapeutic Approaches: A Comprehensive Review. Int J Mol Sci 2024; 25:10041. [PMID: 39337526 PMCID: PMC11431950 DOI: 10.3390/ijms251810041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The objective of this review is to provide a comprehensive examination of the role of microbial metabolites in the progression of neurodegenerative diseases, as well as to investigate potential therapeutic interventions targeting the microbiota. A comprehensive literature search was conducted across the following databases: PubMed, Scopus, Web of Science, ScienceDirect, and Wiley. Key terms related to the gut microbiota, microbial metabolites, neurodegenerative diseases, and specific metabolic products were used. The review included both preclinical and clinical research articles published between 2000 and 2024. Short-chain fatty acids have been demonstrated to play a crucial role in modulating neuroinflammation, preserving the integrity of the blood-brain barrier, and influencing neuronal plasticity and protection. Furthermore, amino acids and their derivatives have been demonstrated to exert a significant influence on CNS function. These microbial metabolites impact CNS health by regulating intestinal permeability, modulating immune responses, and directly influencing neuroinflammation and oxidative stress, which are integral to neurodegenerative diseases. Therapeutic strategies, including prebiotics, probiotics, dietary modifications, and fecal microbiota transplantation have confirmed the potential to restore microbial balance and enhance the production of neuroprotective metabolites. Furthermore, novel drug developments based on microbial metabolites present promising therapeutic avenues. The gut microbiota and its metabolites represent a promising field of research with the potential to advance our understanding of and develop treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ana Isabel Beltrán-Velasco
- NBC Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28015 Madrid, Spain;
| |
Collapse
|
10
|
Aluksanasuwan S, Somsuan K, Chiangjong W, Rongjumnong A, Jaidee W, Rujanapun N, Chutipongtanate S, Laphookhieo S, Charoensup R. SWATH-proteomics reveals Mathurameha, a traditional anti-diabetic herbal formula, attenuates high glucose-induced endothelial dysfunction through the EGF/NO/IL-1β regulatory axis. J Proteomics 2024; 306:105263. [PMID: 39047940 DOI: 10.1016/j.jprot.2024.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Mathurameha is a traditional Thai herbal formula with a clinically proven effect of blood sugar reduction in patients with diabetes mellitus, but its anti-diabetic complication potential is largely unknown. This study aimed to elucidate the effects of Mathurameha and its underlying mechanisms against high glucose-induced endothelial dysfunction in human endothelial EA.hy926 cells. After confirming no cytotoxic effects, the cells were treated with normal glucose (NG), high glucose (HG), or high glucose plus Mathurameha (HG + M) for 24 h. A quantitative label-free proteomic analysis using the sequential window acquisition of all theoretical mass spectra (SWATH-MS) approach identified 24 differentially altered proteins among the three groups: 7 between HG and NG, 9 between HG + M and NG, and 13 between HG + M and HG. Bioinformatic analyses suggested a potential anti-diabetic action through the epidermal growth factor (EGF) pathway. Subsequent functional validations demonstrated that Mathurameha reduced the EGF secretion and the intracellular reactive oxygen species (ROS) level in high glucose-treated cells. Mathurameha also exhibited a stimulatory effect on nitric oxide (NO) production while significantly reducing the secretion of endothelin-1 (ET-1) and interleukin-1β (IL-1β) in high glucose-treated cells. In conclusion, our findings demonstrated that Mathurameha attenuated high glucose-induced endothelial dysfunction through the EGF/NO/IL-1β regulatory axis. SIGNIFICANCE: This study reveals the potential of Mathurameha, a traditional Thai herbal formula, in mitigating high glucose-induced endothelial dysfunction, a common complication in diabetes mellitus. Using proteomics and bioinformatic analyses followed by functional validations, the present study highlights the protective effects of Mathurameha through the EGF/NO/IL-1β regulatory axis. These findings support its potential use as a therapeutic intervention for diabetic vascular complications and provide valuable information for developing more effective anti-diabetic drugs.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand.
| | - Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Artitaya Rongjumnong
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Narawadee Rujanapun
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Somchai Chutipongtanate
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Surat Laphookhieo
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand; Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Rawiwan Charoensup
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| |
Collapse
|
11
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Dassamiour S, Bensaad MS, Ghebache W. Utility of phenolic acids in neurological disorders. ADVANCEMENT OF PHENOLIC ACIDS IN DRUG DISCOVERY 2024:295-344. [DOI: 10.1016/b978-0-443-18538-0.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Ruankham W, Songtawee N, Prachayasittikul V, Worachartcheewan A, Suwanjang W, Pingaew R, Prachayasittikul V, Prachayasittikul S, Phopin K. Promising 8-Aminoquinoline-Based Metal Complexes in the Modulation of SIRT1/3-FOXO3a Axis against Oxidative Damage-Induced Preclinical Neurons. ACS OMEGA 2023; 8:46977-46988. [PMID: 38107906 PMCID: PMC10720006 DOI: 10.1021/acsomega.3c06764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
The discovery of novel bioactive molecules as potential multifunctional neuroprotective agents has clinically drawn continual interest due to devastating oxidative damage in the pathogenesis and progression of neurodegenerative diseases. Synthetic 8-aminoquinoline antimalarial drug is an attractive pharmacophore in drug development and chemical modification owing to its wide range of biological activities, yet the underlying molecular mechanisms are not fully elucidated in preclinical models for oxidative damage. Herein, the neuroprotective effects of two 8-aminoquinoline-uracil copper complexes were investigated on the hydrogen peroxide-induced human neuroblastoma SH-SY5Y cells. Both metal complexes markedly restored cell survival, alleviated apoptotic cascades, maintained antioxidant defense, and prevented mitochondrial function by upregulating the sirtuin 1 (SIRT1)/3-FOXO3a signaling pathway. Intriguingly, in silico molecular docking and pharmacokinetic prediction suggested that these synthetic compounds acted as SIRT1 activators with potential drug-like properties, wherein the uracil ligands (5-iodoracil and 5-nitrouracil) were essential for effective binding interactions with the target protein SIRT1. Taken together, the synthetic 8-aminoquinoline-based metal complexes are promising brain-targeting drugs for attenuating neurodegenerative diseases.
Collapse
Affiliation(s)
- Waralee Ruankham
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Napat Songtawee
- Department
of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Veda Prachayasittikul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Apilak Worachartcheewan
- Department
of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Wilasinee Suwanjang
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Kamonrat Phopin
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
14
|
Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco-Velázquez MA. Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules 2023; 13:1585. [PMID: 38002267 PMCID: PMC10669388 DOI: 10.3390/biom13111585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru;
| | - Clara Espitia
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Karen L. Reyes-Barrera
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
15
|
Apiraksattayakul S, Pingaew R, Leechaisit R, Prachayasittikul V, Ruankham W, Songtawee N, Tantimongcolwat T, Ruchirawat S, Prachayasittikul V, Prachayasittikul S, Phopin K. Aminochalcones Attenuate Neuronal Cell Death under Oxidative Damage via Sirtuin 1 Activity. ACS OMEGA 2023; 8:33367-33379. [PMID: 37744807 PMCID: PMC10515382 DOI: 10.1021/acsomega.3c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Encouraged by the lack of effective treatments and the dramatic growth in the global prevalence of neurodegenerative diseases along with various pharmacological properties of chalcone pharmacophores, this study focused on the development of aminochalcone-based compounds, organic molecules characterized by a chalcone backbone (consisting of two aromatic rings connected by a three-carbon α,β-unsaturated carbonyl system) with an amino group attached to one of the aromatic rings, as potential neuroprotective agents. Thus, the aminochalcone-based compounds in this study were designed by bearing a -OCH3 moiety at different positions on the ring and synthesized by the Claisen-Schmidt condensation. The compounds exhibited strong neuroprotective effects against hydrogen peroxide-induced neuronal death in the human neuroblastoma (SH-SY5Y) cell line (i.e., by improving cell survival, reducing reactive oxygen species production, maintaining mitochondrial function, and preventing cell membrane damage). The aminochalcone-based compounds showed mild toxicity toward a normal embryonic lung cell line (MRC-5) and a human neuroblastoma cell line, and were predicted to have preferable pharmacokinetic profiles with potential for oral administration. Molecular docking simulation indicated that the studied aminochalcones may act as competitive activators of the well-known protective protein, SIRT1, and provided beneficial knowledge regarding the essential key chemical moieties and interacting amino acid residues. Collectively, this work provides a series of four promising candidate agents that could be developed for neuroprotection.
Collapse
Affiliation(s)
- Setthawut Apiraksattayakul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Ronnakorn Leechaisit
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Veda Prachayasittikul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Waralee Ruankham
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Napat Songtawee
- Department
of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry, Chulabhorn Research Institute, and Program
in Chemical Science, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Center of
Excellence on Environmental Health and Toxicology (EHT), Commission
on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Kamonrat Phopin
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
16
|
Martinez-Vega MV, Galván-Menéndez-Conde S, Freyre-Fonseca V. Possible Signaling Pathways in the Gut Microbiota-Brain Axis for the Development of Parkinson's Disease Caused by Chronic Consumption of Food Additives. ACS Chem Neurosci 2023. [PMID: 37171224 DOI: 10.1021/acschemneuro.3c00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
It is well-known that consumption of synthetic and natural food additives has both positive and negative effects in the human body. However, it is not clear yet how food additives are related to the development of Parkinson's disease. Therefore, in this review work, the food additive effects related to the gut microbiota-brain axis and the processes that are carried out to develop Parkinson's disease are studied. To this end, a systematic literature analysis is performed with the selected keywords and the food additive effects are studied to draw possible routes of action. This analysis leads to the proposition of a model that explains the pathways that relate the ingestion of food additives to the development of Parkinson's disease. This work motivates further research that ponders the safety of food additives by measuring their impacts over the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Melanie Verónica Martinez-Vega
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico, Av. Universidad Anahuac 46, Naucalpan de Juarez 52786, Mexico
| | | | - Verónica Freyre-Fonseca
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Campus Norte, Huixquilucan, Estado de México 52786, Mexico
| |
Collapse
|
17
|
Pakravan S, Hemmati-Dinarvand M, Moghaddasi M, Fathi J, Nowrouzi-Sohrabi P, Hormozi M. Hydroxytyrosol's effect on the expression of apoptosis and oxidative stress related genes in BE (2)-C neuroblastoma cell line. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
18
|
da Costa FP, Henriques RO, Furigo Junior A. Practical and Rapid Membrane-Based Biosensor for Phenol Using Copper/Calcium-Enzyme Hybrid Nanoflowers. Appl Biochem Biotechnol 2023; 195:86-106. [PMID: 35980513 DOI: 10.1007/s12010-022-04101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
Phenol, a pollutant frequently found in chemical industries effluents, is highly toxic even in low concentrations. This study reports a green, simple, and rapid method for qualitative phenol biosensing using horseradish peroxidase (HRP) hybrid nanoflowers made with copper (Cu2+-hNF) or calcium (Ca2+-hNF) ions. The enzyme was immobilized through protein-inorganic self-assembly into hybrid structures and subsequently supported onto a polyvinylidene fluoride (PVDF) membrane. SEM, EDS, FTIR, and XRD techniques sustained the effective enzyme encapsulation into hybrid structures. The protein concentration in the structures was 0.25 mg.mL-1 for both ions. The best temperature and pH were 60 °C and 7.4, respectively, for both hybrids and the free enzyme, suggesting that the immobilization did not affect the optimal conditions of the free HRP. Thermal stability from 25 to 70 °C and pH stability from 4.0 to 9.0 of the hybrids were also determined. Finally, using copper and calcium hybrids, both biosensors produced onto a PVDF membrane could detect phenol in concentrations ranging from 0.72 to 24.00 µmol.mL-1 in 1 min. In contrast, control biosensors produced with free enzyme have not presented a visible color change in the same conditions. The findings suggest a promising application of the developed biosensors in functional phenol detection.
Collapse
Affiliation(s)
- Felipe Pereira da Costa
- Department of Chemical and Food Engineering, Federal University of Santa Catarina - UFSC, CEP, Florianópolis, SC, 88040-900, Brazil
| | - Rosana Oliveira Henriques
- Department of Chemical and Food Engineering, Federal University of Santa Catarina - UFSC, CEP, Florianópolis, SC, 88040-900, Brazil.
| | - Agenor Furigo Junior
- Department of Chemical and Food Engineering, Federal University of Santa Catarina - UFSC, CEP, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
19
|
Lu C, Qu S, Zhong Z, Luo H, Lei SS, Zhong HJ, Su H, Wang Y, Chong CM. The effects of bioactive components from the rhizome of gastrodia elata blume (Tianma) on the characteristics of Parkinson's disease. Front Pharmacol 2022; 13:963327. [PMID: 36532787 PMCID: PMC9748092 DOI: 10.3389/fphar.2022.963327] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/07/2022] [Indexed: 08/04/2023] Open
Abstract
Parkinson's disease (PD) is an age-related chronic neurodegenerative disease caused by the death and degeneration of dopaminergic neurons in the substantia nigra of the midbrain. The decrease of the neurotransmitter dopamine in the patient's brain leads to various motor symptoms. PD drugs mainly enhance dopamine levels but cannot prevent or slow down the loss of dopaminergic neurons. In addition, they exhibit significant side effects and addiction issues during long-term use. Therefore, it is particularly urgent to develop novel drugs that have fewer side effects, can improve PD symptoms, and prevent the death of dopaminergic neurons. The rhizome of Gastrodia elata Blume (Tianma) is a well-known medicinal herb and has long been used as a treatment of nervous system-related diseases in China. Several clinical studies showed that formula comprising Tianma could be used as an add-on therapy for PD patients. Pharmacological studies indicated that Tianma and its bioactive components can reduce the death of dopaminergic neurons, α-synuclein accumulation, and neuroinflammation in various PD models. In this review, we briefly summarize studies regarding the effects of Tianma and its bioactive components' effects on major PD features and explore the potential use of Tianma components for the treatment of PD.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shuhui Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hai-Jing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
20
|
Apiraksattayakul S, Pingaew R, Prachayasittikul V, Ruankham W, Jongwachirachai P, Songtawee N, Suwanjang W, Tantimongcolwat T, Prachayasittikul S, Prachayasittikul V, Phopin K. Neuroprotective Properties of Bis-Sulfonamide Derivatives Against 6-OHDA-Induced Parkinson's Model via Sirtuin 1 Activity and in silico Pharmacokinetic Properties. Front Mol Neurosci 2022; 15:890838. [PMID: 35935335 PMCID: PMC9354714 DOI: 10.3389/fnmol.2022.890838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is considered one of the health problems in the aging society. Due to the limitations of currently available drugs in preventing disease progression, the discovery of novel neuroprotective agents has been challenged. Sulfonamide and its derivatives were reported for several biological activities. Herein, a series of 17 bis-sulfonamide derivatives were initially tested for their neuroprotective potential and cytotoxicity against the 6-hydroxydopamine (6-OHDA)-induced neuronal death in SH-SY5Y cells. Subsequently, six compounds (i.e., 2, 4, 11, 14, 15, and 17) were selected for investigations on underlying mechanisms. The data demonstrated that the pretreatment of selected compounds (5 μM) can significantly restore the level of cell viability, protect against mitochondrial membrane dysfunction, decrease the activity of lactate dehydrogenase (LDH), decrease the intracellular oxidative stress, and enhance the activity of NAD-dependent deacetylase sirtuin-1 (SIRT1). Molecular docking was also performed to support that these compounds could act as SIRT1 activators. In addition, in silico pharmacokinetic and toxicity profile prediction was also conducted for guiding the potential development. Thus, the six neuroprotective bis-sulfonamides were highlighted as potential agents to be further developed for PD management.
Collapse
Affiliation(s)
- Setthawut Apiraksattayakul
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Ratchanok Pingaew
| | - Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Papitcha Jongwachirachai
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- *Correspondence: Kamonrat Phopin
| |
Collapse
|
21
|
A Comprehensive Review of C. capsularis and C. olitorious: A Source of Nutrition, Essential Phytoconstituents and Pharmacological Activities. Antioxidants (Basel) 2022; 11:antiox11071358. [PMID: 35883849 PMCID: PMC9311623 DOI: 10.3390/antiox11071358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Plant bioactive compounds have gained global significance in terms of both medicinal and economic ramifications due to being easily accessible and are believed to be effective with fewer side effects. Growing relevant clinical and scientific evidence has become an important criterion for accepting traditional health claims of medicinal plants and also supports the traditional uses of Corchorus as folk medicine. C. capsularis and C. olitorius have broad applications ranging from textile to biocomposite, and young leaves and shoots are used as healthy vegetables and have long been used as traditional remedies for fever, ascites, algesia, liver disorders, piles, and tumors in many cultures. This review systematically summarized and emphasized the nutritional attributes, mostly available bioactive compounds, and biological and potential pharmaceutical properties of C. capsularis and C. olitorius, disclosed to users and non-users. Results suggest that various phytochemicals such as cardiac glycosides, phenols, flavonoids, sterols, lipids, and fatty acids were found or analytically identified in different plant parts (leaf, stem, seed, and root), and many of them are responsible for pharmacological properties and their antitumor, anticancer, antioxidant, antinociceptive, anti-inflammatory, analgesic, antipyretic, antiviral, antibacterial, anticonvulsant, antidiabetic and antiobesity, and cardiovascular properties help to prevent and cure many chronic diseases. In addition to their use in traditional food and medicine, their leaves have also been developed for skin care products, and some other possible uses are described. From this review, it is clear that the isolated compounds of both species have great potential to prevent and treat various diseases and be used as functional foods. In conclusion, this comprehensive review establishes a significant reference base for future research into various medical and functional food applications.
Collapse
|
22
|
Sánchez-Martínez JD, Valdés A, Gallego R, Suárez-Montenegro ZJ, Alarcón M, Ibañez E, Alvarez-Rivera G, Cifuentes A. Blood–Brain Barrier Permeability Study of Potential Neuroprotective Compounds Recovered From Plants and Agri-Food by-Products. Front Nutr 2022; 9:924596. [PMID: 35782945 PMCID: PMC9243654 DOI: 10.3389/fnut.2022.924596] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Plants and agri-food by-products represent a wide and renewable source of bioactive compounds with neuroprotective properties. In this research, various green extraction techniques were employed to recover bioactive molecules from Kalanchoe daigremontiana (kalanchoe), epicarp of Cyphomandra betacea (tamarillo), and cooperage woods from Robinia pseudoacacia (acacia) and Nothofagus pumilio (lenga), as well as a reference extract (positive control) from Rosmarinus officinalis L. (rosemary). The neuroprotective capacity of these plant extracts was evaluated in a set of in vitro assays, including enzymatic [acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and lipoxygenase (LOX)] and antioxidant [ABTS, and reactive oxygen and nitrogen species (ROS and RNS)] bioactivity tests. Extracts were also submitted to a parallel artificial membrane permeability assay mimicking the blood–brain barrier (PAMPA-BBB) and to two cell viability assays in HK-2 and SH-SY5Y cell lines. Comprehensive phytochemical profiling based on liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) analysis showed enriched content of phenolic and terpenoid compounds in the target extracts. Moreover, in vitro bioactivity tests showed promising neuroprotective capacity, particularly for supercritical-fluid extraction (SFE) extract from acacia (ABTS IC50 = 0.11 μg ml−1; ROS IC50 = 1.56 μg ml−1; AChE IC50 = 4.23 μg ml−1; BChE IC50 = 1.20 μg ml−1; and LOX IC50 = 4.37 μg ml−1), whereas PAMPA-BBB assays revealed high perfusion capacity of some representative compounds, such as phenolic acids or flavonoids. Regarding cytotoxic assays, tamarillo and rosemary SFE extracts can be considered as non-toxic, acacia SFE extract and lenga pressurized liquid extraction (PLE) extract as mild-cytotoxic, and kalanchoe as highly toxic extracts. The obtained results demonstrate the great potential of the studied biomass extracts to be transformed into valuable food additives, food supplements, or nutraceuticals with promising neuroprotective properties.
Collapse
Affiliation(s)
- José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Rocio Gallego
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Zully Jimena Suárez-Montenegro
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marina Alarcón
- Area of Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
- *Correspondence: Gerardo Alvarez-Rivera
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, Spanish National Research Council (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Alejandro Cifuentes
| |
Collapse
|
23
|
Tie F, Fu Y, Hu N, Wang H. Silibinin Protects against H2O2-Induced Oxidative Damage in SH-SY5Y Cells by Improving Mitochondrial Function. Antioxidants (Basel) 2022; 11:antiox11061101. [PMID: 35739997 PMCID: PMC9219938 DOI: 10.3390/antiox11061101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress plays a critical role in the pathogenesis of various neurodegenerative diseases. Increasing evidence suggests the association of mitochondrial abnormalities with oxidative stress-related neural damage. Silibinin, a natural flavonol compound isolated from Silybum marianum, exhibits multiple biological activities. The present study investigated the effects of silibinin on H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Exposure to H2O2 (750 µM) reduced the viability of SH-SY5Y cells, which was coupled with increased reactive oxygen species (ROS), abnormal cell morphology, and mitochondrial dysfunction. Remarkably, silibinin (1, 5, and 10 µM) treatment attenuated the H2O2-induced cell death. Moreover, silibinin reduced ROS production and the levels of malondialdehyde (MDA), increased the levels of superoxide dismutase (SOD) and glutathione (GSH), and increased mitochondrial membrane potential. Moreover, silibinin normalized the expression of nuclear factor 2-related factor 2 (Nrf2)-related and mitochondria-associated proteins. Taken together, our findings demonstrated that silibinin could attenuate H2O2-induced oxidative stress by regulating Nrf2 signaling and improving mitochondrial function in SH-SY5Y cells. The protective effect against oxidative stress suggests silibinin as a potential candidate for preventing neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Honglun Wang
- Correspondence: ; Tel.: +86-139-9738-4106; Fax: +86-971-6143-857
| |
Collapse
|
24
|
Zhang Q, Yang T, Li D, Ma M, Liang X, Ma Z, Ye Q, Yang H, Li M, Qu A, Chen Y. The synergistic effect of
Angelica sinensis (Oliv.) Diels
and
Rehmannia glutinosa (Gaertn.) DC
. on antioxidant activity and protective ability against cell injury. J Food Biochem 2022; 46:e14196. [DOI: 10.1111/jfbc.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Qingying Zhang
- Chemistry and Materials School Jinan University Guangzhou China
- Singwong Asia Pacific and Jinan University Joint R & D Center Guangzhou China
| | - Tianzhi Yang
- Chemistry and Materials School Jinan University Guangzhou China
- Singwong Asia Pacific and Jinan University Joint R & D Center Guangzhou China
| | - Dongmei Li
- Chemistry and Materials School Jinan University Guangzhou China
- Singwong Asia Pacific and Jinan University Joint R & D Center Guangzhou China
| | - Mengyu Ma
- Chemistry and Materials School Jinan University Guangzhou China
| | - Xiaoling Liang
- Chemistry and Materials School Jinan University Guangzhou China
| | - Zixing Ma
- Chemistry and Materials School Jinan University Guangzhou China
| | - Qianglong Ye
- Chemistry and Materials School Jinan University Guangzhou China
| | - Hantao Yang
- Chemistry and Materials School Jinan University Guangzhou China
| | - Minghui Li
- Chemistry and Materials School Jinan University Guangzhou China
| | - Ailan Qu
- Chemistry and Materials School Jinan University Guangzhou China
- Singwong Asia Pacific and Jinan University Joint R & D Center Guangzhou China
| | - Yao Chen
- Chemistry and Materials School Jinan University Guangzhou China
| |
Collapse
|
25
|
Goksu Erol AY, Kocanci FG, Demir-Dora D, Uysal H. Additive cell protective and oxidative stress reducing effects of combined treatment with cromolyn sodium and masitinib on MPTP-induced toxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 2022; 354:109808. [PMID: 35007524 DOI: 10.1016/j.cbi.2022.109808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
The suppression of oxidative-stress induced neurotoxicity by antioxidants serves as a potential preventive strategy for neurodegenerative diseases. In this study, we aimed to investigate the cell protective and antioxidant effects of masitinib and cromolyn sodium against toxin-induced neurodegeneration. First, human neuroblastoma SH-SY5Y cells were differentiated into neuron-like (d)-SH-SY5Y cells. The differentiated cells were confirmed by immuno-staining with anti-PGP9.5 antibody, a neuronal marker. Cell culture groups were formed, and a neurotoxin, 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP) was applied on cells followed by masitinib and/or cromolyn sodium treatments. Survival rate of cells were detected by MTT assay. Anti-inflammatory Transforming Growth Factor-β1 (TGF-β1) and nitric oxide (NO) levels and total oxidant and antioxidant capacities (TOC and TAC) in cell conditioned media (CM) were measured. Morphological analysis and apoptotic nuclear assessment of cells were also noted. When (d)-SH-SY5Y cells were exposed to neurotoxin, cell viability rates of these cells were found to be decreased in a concentration-dependent manner. CM of toxin applied group displayed higher levels of TOC/TAC ratios and NO levels compared to control (p < 0.01). Both masitinib and cromolyn sodium protected cells from toxin-induced cell death as revealed by ameliorated rates of viability, reversed toxin-induced elevation of TOC/TAC ratios, and decreased NO levels in their CM (p < 0.01). Combined treatment significantly reduced TOC/TAC ratios and NO levels more effectively compared to mono-treatments. Both drugs also increased TGF-β1 levels significantly in cell CM. When these agents were tested for therapeutic effects against toxin-induced cell degeneration, better viability results were obtained by both masitinib and cromolyn sodium treatment, with significantly better amelioration provided by combined application of these drugs (p < 0.01). This study demonstrated new findings that combined treatment with cromolyn sodium, an FDA-approved drug of asthma, and masitinib, an orally administered drug with a low toxicity, exert neuroprotective and additive therapeutic effects. We propose that combination therapy of masitinib and cromolyn sodium may represent an innovative treatment in neurodegenerative diseases. Combination therapy may be more advantageous that it enables combined application of lower doses of both drugs, providing less side effects.
Collapse
Affiliation(s)
- Azize Yasemin Goksu Erol
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Gene and Cell Therapy, Antalya, Turkey.
| | - Fatma Gonca Kocanci
- Alanya Alaaddin Keykubat University, Vocational High School of Health Services, Department of Medical Laboratory Techniques, Alanya, Antalya, Turkey
| | - Devrim Demir-Dora
- Akdeniz University, Faculty of Medicine, Department of Gene and Cell Therapy, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey
| | - Hilmi Uysal
- Akdeniz University, Faculty of Medicine, Department of Neurology, Antalya, Turkey
| |
Collapse
|
26
|
Design and Synthesis of Arylpiperazine Serotonergic/Dopaminergic Ligands with Neuroprotective Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041297. [PMID: 35209087 PMCID: PMC8877291 DOI: 10.3390/molecules27041297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
Long-chain arylpiperazine scaffold is a versatile template to design central nervous system (CNS) drugs that target serotonin and dopamine receptors. Here we describe the synthesis and biological evaluation of ten new arylpiperazine derivatives designed to obtain an affinity profile at serotonin 5-HT1A, 5-HT2A, 5-HT7 receptor, and dopamine D2 receptor of prospective drugs to treat the core symptoms of autism spectrum disorder (ASD) or psychosis. Besides the structural features required for affinity at the target receptors, the new compounds incorporated structural fragments with antioxidant properties to counteract oxidative stress connected with ASD and psychosis. All the new compounds showed CNS MultiParameter Optimization score predictive of desirable ADMET properties and cross the blood–brain barrier. We identified compound 12a that combines an affinity profile compatible with antipsychotic activity (5-HT1AKi = 41.5 nM, 5-HT2AKi = 315 nM, 5-HT7Ki = 42.5 nM, D2Ki = 300 nM), and compound 9b that has an affinity profile consistent with studies in the context of ASD (5-HT1AKi = 23.9 nM, 5-HT2AKi = 39.4 nM, 5-HT7Ki = 45.0 nM). Both compounds also had antioxidant properties. All compounds showed low in vitro metabolic stability, the only exception being compound 9b, which might be suitable for studies in vivo.
Collapse
|
27
|
Ticinesi A, Mancabelli L, Carnevali L, Nouvenne A, Meschi T, Del Rio D, Ventura M, Sgoifo A, Angelino D. Interaction Between Diet and Microbiota in the Pathophysiology of Alzheimer's Disease: Focus on Polyphenols and Dietary Fibers. J Alzheimers Dis 2022; 86:961-982. [PMID: 35147544 DOI: 10.3233/jad-215493] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal studies increasingly indicate that the gut microbiota composition and function can be involved in the pathophysiology and progression of Alzheimer's disease (AD) at multiple levels. However, few studies have investigated this putative gut-brain axis in human beings, and none of them considered diet as a determinant of intestinal microbiota composition. Epidemiological studies highlight that a high intake of fruit and vegetables, such as that typical of the Mediterranean diet, can modulate AD progression. Thus, nutritional interventions are being increasingly studied as a possible non-pharmacological strategy to slow down the progression of AD. In particular, polyphenols and fibers represent the nutritional compounds with the higher potential of counterbalancing the pathophysiological mechanisms of dementia due to their antioxidant, anti-inflammatory, and anti-apoptotic properties. These actions are mediated by the gut microbiota, that can transform polyphenols and fibers into biologically active compounds including, among others, phenyl-γ-valerolactones, urolithins, butyrate, and other short-chain fatty acids. In this review, the complex mechanisms linking nutrition, gut microbiota composition, and pathophysiology of cognitive decline in AD are discussed, with a particular focus on the role of polyphenols and fibers. The gaps between pre-clinical and clinical studies are particularly emphasized, as well as the urgent need for studies comprehensively evaluating the link between nutrition, microbiome, and clinical aspects of AD.
Collapse
Affiliation(s)
- Andrea Ticinesi
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Medicine and Surgery, Parma, Italy.,Parma University-Hospital, Geriatric-Rehabilitation Department, Parma, Italy
| | - Leonardo Mancabelli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Luca Carnevali
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Antonio Nouvenne
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Medicine and Surgery, Parma, Italy.,Parma University-Hospital, Geriatric-Rehabilitation Department, Parma, Italy
| | - Tiziana Meschi
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Medicine and Surgery, Parma, Italy.,Parma University-Hospital, Geriatric-Rehabilitation Department, Parma, Italy
| | - Daniele Del Rio
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Food and Drugs, Parma, Italy
| | - Marco Ventura
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Andrea Sgoifo
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Donato Angelino
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| |
Collapse
|
28
|
Ruankham W, Suwanjang W, Phopin K, Songtawee N, Prachayasittikul V, Prachayasittikul S. Modulatory Effects of Alpha-Mangostin Mediated by SIRT1/3-FOXO3a Pathway in Oxidative Stress-Induced Neuronal Cells. Front Nutr 2022; 8:714463. [PMID: 35155508 PMCID: PMC8835347 DOI: 10.3389/fnut.2021.714463] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Backgroundalpha-Mangostin, a polyphenolic xanthone, is primarily found in the pericarp of mangosteen throughout Southeast Asia and is considered as the “Queen of Fruit” in Thailand. Nonetheless, it is not clarified how alpha-mangostin protects neuronal cells against oxidative stress.ObjectiveIn this study, molecular mechanisms underlying the neuroprotective effect of alpha-mangostin in defending hydrogen peroxide (H2O2)-induced neurotoxicity was explored.Methodscytotoxicity, reactive oxygen species (ROS) generation, apoptotic cascades, and protein expression profiles were performed incorporation of molecular docking.ResultsHuman SH-SY5Y cells were pretreated with 1 μM alpha-mangostin for 3 h prior to exposure to 400 μM H2O2. alpha-Mangostin significantly inhibited oxidative stress-induced cell death in neuronal cells by reducing BAX protein, decreasing caspase-3/7 activation, and increasing anti-apoptotic BCL-2 protein. Collectively, alpha-mangostin was demonstrated to be a prominent ROS suppressor which reversed the reduction of antioxidant enzymes (CAT and SOD2). Surprisingly, alpha-mangostin significantly promoted the expression of the sirtuin family and the FOXO3a transcription factor exerting beneficial effects on cell survival and longevity. A molecular docking study predicted that alpha-mangostin is directly bound to the active site of SIRT1.ConclusionFindings from this study suggest that alpha-mangostin potentially serves as a promising therapeutic compound against oxidative stress by activation of the SIRT1/3-FOXO3a pathway comparable to the effect of memantine, an anti-AD drug used for the treatment of moderate to severe dementia.
Collapse
Affiliation(s)
- Waralee Ruankham
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
- *Correspondence: Wilasinee Suwanjang
| | - Kamonrat Phopin
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Gonçalves AC, Costa AR, Flores-Félix JD, Falcão A, Alves G, Silva LR. Anti-Inflammatory and Antiproliferative Properties of Sweet Cherry Phenolic-Rich Extracts. Molecules 2022; 27:268. [PMID: 35011501 PMCID: PMC8747005 DOI: 10.3390/molecules27010268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/18/2022] Open
Abstract
Cherries have largely been investigated due to their high content in phenolics in order to fully explore their health-promoting properties. Therefore, this work aimed to assess, for the first time, the anti-inflammatory potential of phenolic-targeted fractions of the Saco cherry, using RAW 264.7 macrophages stimulated with lipopolysaccharide. Additionally, the cytotoxic effects on gastric adenocarcinoma (AGS), neuroblastoma (SH-SY5Y) and normal human dermal fibroblast (NHDF) cells were evaluated, as well as the ability to protect these cellular models against induced oxidative stress. The obtained data revealed that cherry fractions can interfere with cellular nitric oxide (NO) levels by capturing NO radicals and decreasing inducible nitric oxide synthase and cyclooxygenase-2 expression. Furthermore, it was observed that all cherry fractions exhibited dose-dependent cytotoxicity against AGS cells, presenting cytotoxic selectivity for these cancer cells when compared to SH-SY5Y and NHDF cells. Regarding their capacity to protect cancer cells against oxidative injury, in most assays, the total cherry extract was the most effective. Overall, this study reinforces the idea that sweet cherries can be incorporated into new pharmaceutical products, smart foods and nutraceuticals.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.C.G.); (A.R.C.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal;
| | - Ana R. Costa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.C.G.); (A.R.C.); (J.D.F.-F.); (G.A.)
| | - José D. Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.C.G.); (A.R.C.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.C.G.); (A.R.C.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.C.G.); (A.R.C.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
30
|
Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6139308. [PMID: 34790246 PMCID: PMC8592717 DOI: 10.1155/2021/6139308] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Phenolic compounds are naturally present as secondary metabolites in plant-based sources such as fruits, vegetables, and spices. They have received considerable attention for their antioxidant, anti-inflammatory, and anti-carcinogenic properties for protection against many chronic disorders such as neurodegenerative diseases, diabetes, cardiovascular diseases, and cancer. They are categorized into various groups based on their chemical structure and include phenolic acids, flavonoids, curcumins, tannins, and quinolones. Their structural variations contribute to their specific beneficial effects on human health. The antioxidant property of phenolic compounds protects against oxidative stress by up-regulation of endogenous antioxidants, scavenging free radicals, and anti-apoptotic activity. Protocatechuic acid (PCA; 3,4-dihydroxy benzoic acid) and protocatechuic aldehyde (PAL; 3,4-dihydroxybenzaldehyde) are naturally occurring polyphenols found in vegetables, fruits, and herbs. PCA and PAL are the primary metabolites of anthocyanins and proanthocyanidins, which have been shown to possess pharmacological actions including antioxidant activity in vitro and in vivo. This review aims to explore the therapeutic potential of PCA and PAL by comprehensively summarizing their pharmacological properties reported to date, with an emphasis on their mechanisms of action and biological properties.
Collapse
Affiliation(s)
- Shijun Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Qingfa Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
31
|
|
32
|
Protocatechuic aldehyde protects cardiomycoytes against ischemic injury via regulation of nuclear pyruvate kinase M2. Acta Pharm Sin B 2021; 11:3553-3566. [PMID: 34900536 PMCID: PMC8642444 DOI: 10.1016/j.apsb.2021.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Rescuing cells from stress damage emerges a potential therapeutic strategy to combat myocardial infarction. Protocatechuic aldehyde (PCA) is a major phenolic acid in Chinese herb Danshen (Salvia miltiorrhiza root). This study investigated whether PCA regulated nuclear pyruvate kinase isoform M2 (PKM2) function to protect cardiomyocytes. In rats subjected to isoprenaline, PCA attenuated heart injury and protected cardiomyocytes from apoptosis. Through DARTS and CETSA assays, we identified that PCA bound and promoted PKM2 nuclear translocation in cardiomyocytes exposed to oxygen/glucose deprivation (OGD). In the nucleus, PCA increased the binding of PKM2 to β-catenin via preserving PKM2 acetylation, and the complex, in cooperation with T-cell factor 4 (TCF4), was required for transcriptional induction of genes encoding anti-apoptotic proteins, contributing to rescuing cardiomyocyte survival. In addition, PCA ameliorated mitochondrial dysfunction and prevented mitochondrial apoptosis dependent on PKM2. Consistently, PCA increased the binding of PKM2 to β-catenin, improved heart contractive function, normalized heart structure and attenuated oxidative damage in mice subjected to artery ligation, but the protective effects were lost in Pkm2-deficient heart. Together, we showed that PCA regulated nuclear PKM2 function to rescue cardiomyocyte survival via β-catenin/TCF4 signaling cascade, suggesting the potential of pharmacological intervention of PKM2 shuttle to protect the heart.
Collapse
Key Words
- Apoptosis
- CETSA, cellular thermal shift assay
- CK-MB, creatine kinase isoenzyme-MB
- DARTS, drug affinity responsive target stability
- Heart ischemia
- ISO, isoprenaline
- LDH, lactate dehydrogenase
- Mitochondrial damage
- Myocardial infarction
- NRVMs, neonatal rat ventricular myocytes
- Nuclear translocation
- OGD, oxygen and glucose deprivation
- PCA, protocatechuic aldehyde
- PKM2
- PKM2, pyruvate kinase isoform M2
- Protocatechuic aldehyde
- ROS, reactive oxygen species
- TCF4
- TCF4, T-cell factor 4
- TUNEL, deoxynucleotidyl transferase-mediated dUTP nick end-labeling
- shRNA, short hairpin RNA
- β-Catenin
Collapse
|
33
|
Jiang J, Hai J, Liu W, Luo Y, Chen K, Xin Y, Pan J, Hu Y, Gao Q, Xiao F, Luo H. Gallic Acid Induces Neural Stem Cell Differentiation into Neurons and Proliferation through the MAPK/ERK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12456-12464. [PMID: 34647728 DOI: 10.1021/acs.jafc.1c04011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neural stem cell (NSC) differentiation and proliferation are important biological processes in the cerebral neural network. However, these two abilities of NSCs are limited. Thus, the induction of differentiation and/or proliferation through the administration of plant-derived small-molecule compounds could be used to repair damaged neural networks. The present study reported that gallic acid (GA), an important phenolic acid found in tea, selectively caused NSCs to differentiate into immature neurons and promoted NSC proliferation by activating the mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK) pathway. In addition, it was found that 3,4-dihydroxybenzoic acid was the main active structure exhibiting neurotrophic activity. The substitution of the carboxyl group on the benzene ring with the ester group may promote differentiation based on the structure of 3,4-dihydroxybenzoic acid. Furthermore, the introduction of the 5-hydroxyl group may promote proliferation. The present study identified that GA can promote the differentiation and proliferation of NSCs in vitro and exert pharmacological activity on NSCs.
Collapse
Affiliation(s)
- Junxing Jiang
- Department of Pharmacology, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jitao Hai
- Department of Pharmacology, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Weiyi Liu
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yan Luo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Keqi Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yirong Xin
- Department of Pharmacology, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Junping Pan
- Department of Pharmacology, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Yang Hu
- Department of Pharmacology, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Guangdong Reproductive Hospital, Guangzhou 510000, China
| | - Qin Gao
- Department of Pharmacology, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Fei Xiao
- Department of Pharmacology, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Huanmin Luo
- Department of Pharmacology, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Institute of Brain Sciences, Jinan University, Guangzhou 510632, China
- Yunkang School of Medicine and Health, Nanfang University, Guangzhou 510970, China
| |
Collapse
|
34
|
Srivastava R, Choudhury PK, Dev SK, Rathore V. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-Parkinson's effect. J Biochem Mol Toxicol 2021; 35:e22902. [PMID: 34464010 DOI: 10.1002/jbt.22902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
Oxidative stress (OS) is involved in the multifaceted pathogenic paradigm of neurodegenerative diseases like Parkinson's disease (PD). Monoterpenes like α-pinene (ALP) is considered to be a therapeutically potent antioxidant agent able to attenuate and scavenge various reactive oxygen species and reactive nitrogen species. The present study aimed to evaluate the in vitro and in vivo neuroprotective effect of α-pinene self-emulsifying nanoformulation (ALP-SENF) for PD. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was done to evaluate the neurotoxic dose of the ALP-SENF; however, the neuroprotective effect was assessed by 6-hydroxydopamine (6-OHDA) induced neurotoxicity model on SH-SY5Y taking NAC (N-acetyl-l-cysteine) as standard. The in vivo anti-Parkinson's activity of the ALP-SENF was compared with that of the plain ALP suspension by using reserpine antagonism and haloperidol-induced Parkinsonism model in rats. Various behavioral tests and biochemical antioxidant enzymes were estimated. The in vitro results revealed that treatment with ALP-SENF at a concentration of 100 and 200 µM was found to show significant neuronal SH-SY5Y cell viability against 50 µM 6-OHDA. ALP-SENF treated animals have seen significant neurobehavioral improvement. Furthermore, the levels of antioxidative enzymes in biochemical test reveals a marked enhancement in the expression of antioxidant enzymes that significantly attenuated the OS induced neurodegeneration. Due to the mechanisms of their antioxidant action, it was probably due to the scavenging of free radicals and the expression of antioxidant enzymes. It also improved neurobehavioral changes induced by reserpine and haloperidol.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Pratim K Choudhury
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Suresh K Dev
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Vaibhav Rathore
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
35
|
Carregosa D, Mota S, Ferreira S, Alves-Dias B, Loncarevic-Vasiljkovic N, Crespo CL, Menezes R, Teodoro R, dos Santos CN. Overview of Beneficial Effects of (Poly)phenol Metabolites in the Context of Neurodegenerative Diseases on Model Organisms. Nutrients 2021; 13:2940. [PMID: 34578818 PMCID: PMC8464690 DOI: 10.3390/nu13092940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
The rise of neurodegenerative diseases in an aging population is an increasing problem of health, social and economic consequences. Epidemiological and intervention studies have demonstrated that diets rich in (poly)phenols can have potent health benefits on cognitive decline and neurodegenerative diseases. Meanwhile, the role of gut microbiota is ever more evident in modulating the catabolism of (poly)phenols to dozens of low molecular weight (poly)phenol metabolites that have been identified in plasma and urine. These metabolites can reach circulation in higher concentrations than parent (poly)phenols and persist for longer periods of time. However, studies addressing their potential brain effects are still lacking. In this review, we will discuss different model organisms that have been used to study how low molecular weight (poly)phenol metabolites affect neuronal related mechanisms gathering critical insight on their potential to tackle the major hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Diogo Carregosa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Sara Mota
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| | - Sofia Ferreira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Beatriz Alves-Dias
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Natasa Loncarevic-Vasiljkovic
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Carolina Lage Crespo
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Rita Teodoro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Cláudia Nunes dos Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
36
|
Oli V, Gupta R, Kumar P. FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. J Chem Neuroanat 2021; 116:102012. [PMID: 34400291 DOI: 10.1016/j.jchemneu.2021.102012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 12/16/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and others, are characterized by progressive loss of neuronal cells, which causes memory impairment and cognitive decline. Mounting evidence demonstrated the possible implications of diverse biological processes, namely oxidative stress, mitochondrial dysfunction, aberrant cell cycle re-entry, post-translational modifications, protein aggregation, impaired proteasome dysfunction, autophagy, and many others that cause neuronal cell death. The condition worsens as there is no effective treatment for such diseases due to their complex pathogenesis and mechanism. Mounting evidence demonstrated the role of regulatory transcription factors, such as NFκβ, FoxO, Myc, CREB, and others that regulate the biological processes and diminish the disease progression and pathogenesis. Studies demonstrated that forkhead box O (FoxO) transcription factors had been implicated in the regulation of aging and longevity. Further, the functions of FoxO proteins are regulated by different post-translational modifications (PTMs), namely acetylation, and ubiquitination. Various studies concluded that FoxO proteins exert both neuroprotective and neurotoxic properties depending on their regulation mechanism and activity in the brain. Thus, understanding the nature of FoxO expression and activity in the brain will help develop effective therapeutic strategies. Herein, firstly, we discuss the role of FoxO protein in cell cycle regulation and cell proliferation, followed by the regulation of FoxO proteins through acetylation and ubiquitination. We also briefly explain the activity and expression pattern of FoxO proteins in the neuronal cells and explain the mechanism through which FoxO proteins are rescued from oxidative stress-induced neurotoxicity. Later on, we present a detailed view of the implication of FoxO proteins in neurodegenerative disease and FoxO proteins as an effective therapeutic target.
Collapse
Affiliation(s)
- Vaibhav Oli
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
37
|
Wu S, Chen M, Liao X, Huang R, Wang J, Xie Y, Hu H, Zhang J, Wu Q, Ding Y. Protein hydrolysates from Pleurotus geesteranus obtained by simulated gastrointestinal digestion exhibit neuroprotective effects in H 2 O 2 -injured PC12 cells. J Food Biochem 2021; 46:e13879. [PMID: 34309037 DOI: 10.1111/jfbc.13879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Neurodegenerative diseases are considered to be among the diseases most threatening to human beings. Increasing evidence shows that antioxidant hydrolysates/peptides with neuroprotective effects may relieve neurodegenerative diseases. However, related research in mushrooms, one of the richest sources of antioxidant hydrolysates/peptides, is in its infancy. Therefore, the in vitro neuroprotective effects of protein hydrolysates from Pleurotus geesteranus were researched in this study. Proteins were extracted from P. geesteranus and then hydrolyzed by simulated gastrointestinal digestion. The neuroprotective effects of the protein hydrolysates were evaluated by H2 O2 -injured PC12 cells. The hydrolysates showed a superior antioxidative ability and had a higher abundance of hydrophobic amino acids (e.g., leucine, alanine, and phenylalanine). Neither cytotoxicity nor the increase of ROS in PC12 cells was observed under treatment with the hydrolysates. However, pre-treatment with the hydrolysates in PC12 cells, which were then injured by H2 O2 , markedly attenuated ROS generation and enhanced the activities and mRNA expression of the endogenous antioxidant enzymes (catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)), leading to a 26.68% increase in cell viability. The hydrolysates exhibited strong neuroprotective activity in H2 O2 -injured PC12 cells, possibly by reducing ROS generation and enhancing the activity of the antioxidant enzymatic system. PRACTICAL APPLICATIONS: Antioxidant hydrolysates with neuroprotection were obtained from Pleurotus geesteranus proteins by simulating gastrointestinal digestion, which exhibited an excellent pre-protective effect in oxidatively damaged PC12 cells. Further study showed that hydrolysates pre-protection may exert antioxidant activities not only as an exogenous antioxidant to scavenge ROS but also as a gene regulator to modulate the endogenous antioxidant enzymes gene expression. These results indicated that the potential of antioxidant peptides, derived from P. geesteranus through gastrointestinal digestion, could serve as a source of bioactive molecules in the prevention, relief or even treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shujian Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mengfei Chen
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiyu Liao
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
38
|
Pratiwi R, Nantasenamat C, Ruankham W, Suwanjang W, Prachayasittikul V, Prachayasittikul S, Phopin K. Mechanisms and Neuroprotective Activities of Stigmasterol Against Oxidative Stress-Induced Neuronal Cell Death via Sirtuin Family. Front Nutr 2021; 8:648995. [PMID: 34055852 PMCID: PMC8149742 DOI: 10.3389/fnut.2021.648995] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Accumulating studies have confirmed that oxidative stress leads to the death of neuronal cells and is associated with the progression of neurodegenerative diseases, including Alzheimer's disease (AD). Despite the compelling evidence, there is a drawback to the use of the antioxidant approach for AD treatment, partly due to limited blood-brain barrier (BBB) permeability. Phytosterol is known to exhibit BBB penetration and exerts various bioactivities such as antioxidant and anticancer effects, and displays a potential treatment for dyslipidemia, cardiovascular disease, and dementia. Objective: In this study, the protective effects of stigmasterol, a phytosterol compound, on cell death induced by hydrogen peroxide (H2O2) were examined in vitro using human neuronal cells (SH-SY5Y cells). Methods: MTT assay, reactive oxygen species measurement, mitochondrial membrane potential assay, apoptotic cell measurement, and protein expression profiles were performed to determine the neuroprotective properties of stigmasterol. Results: H2O2 exposure significantly increased the levels of reactive oxygen species (ROS) within the cells thereby inducing apoptosis. On the contrary, pretreatment with stigmasterol maintained ROS levels inside the cells and prevented oxidative stress-induced cell death. It was found that pre-incubation with stigmasterol also facilitated the upregulation of forkhead box O (FoxO) 3a, catalase, and anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in the neurons. In addition, the expression levels of sirtuin 1 (SIRT1) were also increased while acetylated lysine levels were decreased, indicating that SIRT1 activity was stimulated by stigmasterol, and the result was comparable with the known SIRT1 activator, resveratrol. Conclusion: Taken together, these results suggest that stigmasterol could be potentially useful to alleviate neurodegeneration induced by oxidative stress.
Collapse
Affiliation(s)
- Reny Pratiwi
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Medical Laboratory Technology, Faculty of Health Science, Setia Budi University, Surakarta, Indonesia
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
39
|
Othman A, Amen Y, Shimizu K. A novel acylated flavonol tetraglycoside and rare oleanane saponins with a unique acetal-linked dicarboxylic acid substituent from the xero-halophyte Bassia indica. Fitoterapia 2021; 152:104907. [PMID: 33892125 DOI: 10.1016/j.fitote.2021.104907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
In recent years, the scientific interest and particularly the economic significance of halophytic plants has been highly demanding due to the medicinal and nutraceutical potential of its bioactive compounds. A xero-halophyte Bassia indica is deemed to be a very cheap source of natural entities without chemical or biological investigation. In this context, a new acylated flavonol tetraglycoside, kaempferol-3-O-β-d-glucopyranosyl-(1→6)-O-[β-D-galactopyranosyl-(1→3)-2-O-trans-feruloyl-α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (14), together with rare occurring flavonol triglycoside, isorhamnetin-3-O-β-d-glucopyranosyl-(1→6)-O-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (15), were isolated from the aqueous methanol extract of the aerial parts of B. indica. The study also reported an optimal separation and characterization of a new seco-glycosidic oleanane saponin with 2'R,3'S stereocenters, identified as (2'R,3'S)-3-O-[2'-hydroxy-3'-(2"-O-glycolyl)-oxo-propionic acid-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranosyl-olean-12-en-3β-ol-28-oic acid (17), in addition to its derivative, 3-O-[2'-(2"-O-glycolyl)-glyoxylyl-β-D-glucuronopyranosyl]-28-O-β-d-glucopyranosyl-olean-12-en-3β-ol-28-oic acid (16). The structures of all isolated compounds were elucidated based on 1D, 2D NMR, and HR-MS analysis, as well as comparing with similar derivatives published in the literature. Furthermore, thirteen known compounds were isolated and identified as β-sitosterol (1), vanillic acid (2), o-hydroxybenzoic acid (3), р-hydroxybenzoic acid (4), 6,7-dihydroxycoumarin (5), methyl caffeate (6), caffeic acid (7), quercetin (8), uracil (9), thymidine (10), tachioside (11), isorhamnetin-3-O-β-D-glucopyranoside (12), kaempferol-3-O-rutinoside (13). The anticholinesterase activity of all isolated compounds was evaluated.
Collapse
Affiliation(s)
- Ahmed Othman
- Department of Agro-environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Yhiya Amen
- Department of Agro-environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-environmental Sciences, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
40
|
Galaup C, Picard C, Couderc F, Gilard V, Collin F. Luminescent lanthanide complexes for reactive oxygen species biosensing and possible application in Alzheimer's diseases. FEBS J 2021; 289:2516-2539. [PMID: 33811448 DOI: 10.1111/febs.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Histopathological hallmarks of Alzheimer's disease (AD) are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the aggregated amyloid-beta peptide along with metal ions (copper, iron or zinc). In addition, oxidative stress is considered as an important factor in the etiology of AD and a multitude of metalloproteins and transporters is affected, leading to metal ion misregulation. Redox-active metal ions (e.g., copper) can catalyze the production of reactive oxygen species (ROS) in the presence of molecular oxygen and a reductant such as ascorbate. The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative stress conditions. Thus, detecting ROS in vivo or in biological models of AD is of interest for better understanding AD etiology. The use of biocompatible and highly specific and sensitive probes is needed for such a purpose, since ROS are transient species whose steady-state concentrations are very low. Luminescent lanthanide complexes are sensitive probes that can meet these criteria. The present review focuses on the recent advances in the use of luminescent lanthanide complexes for ROS biosensing. It shows why the use of luminescent lanthanide complexes is of particular interest for selectively detecting ROS ( O 2 · - , HO• , 1 O2 , H2 O2 , etc.) in biological samples in the µM-nM range. It particularly focuses on the most recent strategies and discusses what could be expected with the use of luminescent lanthanide complexes for better understanding some of the molecular mechanisms underlying the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Chantal Galaup
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - Claude Picard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - François Couderc
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Véronique Gilard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| |
Collapse
|
41
|
Abdul Rahim R, Jayusman PA, Muhammad N, Mohamed N, Lim V, Ahmad NH, Mohamad S, Abdul Hamid ZA, Ahmad F, Mokhtar N, Shuid AN, Mohamed IN. Potential Antioxidant and Anti-Inflammatory Effects of Spilanthes acmella and Its Health Beneficial Effects: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3532. [PMID: 33805420 PMCID: PMC8036807 DOI: 10.3390/ijerph18073532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
Oxidative stress and inflammation are two common risk factors of various life-threatening disease pathogenesis. In recent years, medicinal plants that possess antioxidant and anti-inflammatory activities were extensively studied for their potential role in treating and preventing diseases. Spilanthes acmella (S. acmella), which has been traditionally used to treat toothache in Malaysia, contains various active metabolites responsible for its anti-inflammatory, antiseptic, and anesthetic bioactivities. These bioactivities were attributed to bioactive compounds, such as phenolic, flavonoids, and alkamides. The review focused on the summarization of in vitro and in vivo experimental reports on the antioxidant and anti-inflammatory actions of S. acmella, as well as how they contributed to potential health benefits in lowering the risk of diseases that were related to oxidative stress. The molecular mechanism of S. acmella in reducing oxidative stress and inflammatory targets, such as inducible nitric oxide synthase (iNOS), transcription factors of the nuclear factor-κB family (NF-κB), cyclooxygenase-2 (COX-2), and mitogen-activated protein kinase (MAPK) signaling pathways were discussed. Besides, the antioxidant potential of S. acmella was measured by total phenolic content (TPC), total flavonid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and superoxide anion radical scavenging (SOD) and thiobarbituric acid reactive substance (TBARS) assays. This review revealed that S. acmella might have a potential role as a reservoir of bioactive agents contributing to the observed antioxidant, anti-inflammatory, and health beneficial effects.
Collapse
Affiliation(s)
- Rohanizah Abdul Rahim
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (N.M.)
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia; (V.L.); (N.H.A.); (S.M.)
| | - Putri Ayu Jayusman
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (N.M.)
| | - Norliza Muhammad
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (N.M.)
| | - Norazlina Mohamed
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (N.M.)
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia; (V.L.); (N.H.A.); (S.M.)
| | - Nor Hazwani Ahmad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia; (V.L.); (N.H.A.); (S.M.)
| | - Sharlina Mohamad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia; (V.L.); (N.H.A.); (S.M.)
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, NibongTebal 14300, Malaysia;
| | - Fairus Ahmad
- Anatomy Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Norfilza Mokhtar
- Physiology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | | | - Isa Naina Mohamed
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.A.R.); (P.A.J.); (N.M.); (N.M.)
| |
Collapse
|
42
|
Li F, Song X, Xu J, Shi Y, Hu R, Ren Z, Qi Q, Lü H, Cheng X, Hu J. Morroniside protects OLN-93 cells against H 2O 2-induced injury through the PI3K/Akt pathway-mediated antioxidative stress and antiapoptotic activities. Cell Cycle 2021; 20:661-675. [PMID: 33734020 DOI: 10.1080/15384101.2021.1889186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative disorders, including spinal cord injury (SCI), result in oxidative stress-induced cell damage. Morroniside (MR), a major active ingredient of the Chinese herb Shan Zhu Yu, has been shown to ameliorate oxidative stress and inflammatory response. Our previous study also confirmed that morroniside protects SK-N-SH cell line (human neuroblastoma cells) against oxidative impairment. However, it remains unclear whether MR also plays a protective role for oligodendrocytes that are damaged following SCI. The present study investigated the protective effects of MR against hydrogen peroxide (H2O2)-induced cell death in OLN-93 cells. MR protected OLN-93 cells from H2O2-induced injury, attenuated H2O2-induced increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and blocked the reduction of mitochondrial membrane potential (MMP) induced by H2O2. MR enhanced the activity of the antioxidant enzyme superoxide dismutase (SOD) and suppressed H2O2-induced downregulation of the antiapoptotic protein Bcl-2 and activation of the proapoptotic protein caspase-3. Finally, we found that LY294002, a specific inhibitor of the PI3K/Akt pathway, inhibited the protective effect of MR against H2O2-induced OLN-93 cell injury in the MTT and TUNEL assays. LY294002 also inhibited the expression of SOD and Bcl-2, and increased the expression of iNOS and c-caspase-3 induced by MR treatment. MR exerts protective effects against H2O2-induced OLN-93 cell injury through the PI3K/Akt signaling pathway-mediated antioxidative stress and antiapoptotic activities. MR may provide a potential strategy for SCI treatment or other related neurodegeneration.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Xue Song
- Department of Central Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Jiaxin Xu
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Yujiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Ruina Hu
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Zhen Ren
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Hezuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Xiaoxin Cheng
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Jianguo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| |
Collapse
|
43
|
Ruankham W, Suwanjang W, Wongchitrat P, Prachayasittikul V, Prachayasittikul S, Phopin K. Sesamin and sesamol attenuate H 2O 2-induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutr Neurosci 2021; 24:90-101. [PMID: 30929586 DOI: 10.1080/1028415x.2019.1596613] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: An imbalance of free radicals and antioxidant defense systems in physiological processes can result in protein/DNA damage, inflammation, and cellular apoptosis leading to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sesamin and sesamol, compounds derived from sesame seeds and oil, have been reported to exert various pharmacological effects, especially antioxidant activity. However, their molecular mechanisms against the oxidative stress induced by exogenous hydrogen peroxide (H2O2) remain to be elucidated. Aim: In this study, neuroprotective effects of sesamin and sesamol on H2O2-induced human neuroblastoma (SH-SY5Y) cell death and possible signaling pathways in the cells were explored. Methods: MTT assay and flow cytometry were conducted to determine cell viability and apoptotic profiles of neuronal cells treated with sesamin and sesamol. Carboxy-DCFDA assay was used to measure reactive oxygen species (ROS). Moreover, Western blot analysis was performed to investigate protein profiles associated with neuroprotection. Results: Pretreatment of the cells with 1 µM of sesamin and sesamol remarkably reduced the SH-SY5Y cell death induced by 400 µM H2O2 as well as the intracellular ROS production. Moreover, the molecular mechanisms underlying neuroprotection of the compounds were associated with activating SIRT1-SIRT3-FOXO3a expression, inhibiting BAX (proapoptotic protein), and upregulating BCL-2 (anti-apoptotic protein). Conclusion: The findings suggest that sesamin and sesamol are compounds that potentially protect neuronal cells against oxidative stress similar to that of the resveratrol, the reference compound. These antioxidants are thus of interest for further investigation in in vivo models of neuroprotection.
Collapse
Affiliation(s)
- Waralee Ruankham
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
44
|
Synthesis and neuroprotective effects of novel chalcone-triazole hybrids. Bioorg Chem 2020; 105:104384. [DOI: 10.1016/j.bioorg.2020.104384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
|
45
|
Neuroprotective Potential of Verbascoside Isolated from Acanthus mollis L. Leaves through Its Enzymatic Inhibition and Free Radical Scavenging Ability. Antioxidants (Basel) 2020; 9:antiox9121207. [PMID: 33266151 PMCID: PMC7759776 DOI: 10.3390/antiox9121207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of today’s ageing population has increased interest in the search for new active substances that delay the onset and development of neurodegenerative diseases. In this respect, the search for natural compounds, mainly phenolic compounds, with neuroprotective activity has become the focus of growing interest. Verbascoside is a phenylethanoid that has already presented several pharmacological activities. The purpose of this study is to isolate and identify verbascoside from Acanthus mollis leaves. Consequently, its neuroprotective ability through enzymatic inhibition and free radical scavenging ability has been analyzed both in vitro and in cell culture assays. The antioxidant capacity of verbascoside was evaluated in vitro through total antioxidant capacity, DPPH•, •OH, and O2•—scavenging activity assays. The effect of verbascoside on intracellular reactive oxygen species (ROS) levels of HepG2 and SH-SY5Y cell lines was studied in normal culture and under induced oxidative stress. The inhibitory ability of the phenylethanoid against several enzymes implied in neurodegenerative diseases (tyrosinase, MAO-A, and AChE) was analyzed in vitro. Verbascoside neuroprotective activity is at least in part related to its free radical scavenging ability. The effect of verbascoside on ROS production suggests its potential in the prevention of harmful cell redox changes and in boosting neuroprotection.
Collapse
|
46
|
Zhang RR, Hu RD, Lu XY, Ding XY, Huang GY, Duan LX, Zhang SJ. Polyphenols from the flower of Hibiscus syriacus Linn ameliorate neuroinflammation in LPS-treated SH-SY5Y cell. Biomed Pharmacother 2020; 130:110517. [PMID: 32688141 DOI: 10.1016/j.biopha.2020.110517] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
The flower of Hibiscus syriacus Linn is a well-known traditional Chinese medicine (TCM) and health food in China, which has been used to treat dysentery, vaginal discharge, and hemorrhoids. In this study, five polyphenols (compounds 1-5) and five fatty acids (compounds 6-10) were isolated from the ethanol extract of the flower of H. syriacus. The isolated compounds were characterized by spectroscopic techniques. Polyphenols, an important type of natural product, have variety of biological activities. Here, we employed LPS or H2O2-treated SH-SY5Y cell models to test the neuroprotective effect of compounds 1-10. Results found compounds 1-5 (concentration range was around 20 μM on LPS model, concentration range was around 13 μM on H2O2 model), not compounds 6-10, exhibited neuroprotective effect in LPS or H2O2-treated SH-SY5Y cell. PCR analysis showed that compounds 1-5 can effectively improve the mRNA expression of synapse-related gene and neurotrophic factors (Syp, NGF and BDNF) in LPS-treated SH-SY5Y cell. In addition, compounds 1-5 decreased the levels of ROS and MDA and increased the activities of SOD, GSH-Px and CAT in LPS-treated SH-SY5Y cell. Furthermore, compounds 1-5 inhibited neuroinflammation (TNF-α, IL-1β and IL-6) in LPS-treated SH-SY5Y cell. In conclusion, the polyphenols in the flower of H. syriacus could be a promising candidate for preventive effect of neuroinflammation.
Collapse
Affiliation(s)
- Rong-Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Dan Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-Yi Lu
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ying Ding
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guo-Yong Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Xin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
47
|
Buccarello L, Dragotto J, Iorio F, Hassanzadeh K, Corbo M, Feligioni M. The pivotal role of SUMO-1-JNK-Tau axis in an in vitro model of oxidative stress counteracted by the protective effect of curcumin. Biochem Pharmacol 2020; 178:114066. [PMID: 32502496 DOI: 10.1016/j.bcp.2020.114066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Oxidative stress is a toxic cellular condition, strictly related to inflammation and known to be a common feature of many neurodegenerative diseases. The imbalanced redox state modifies several molecular processes including protein SUMOylation, JNK and Tau protein activation, important actors in Alzheimer's disease. In this study, we showed a strong interaction among SUMO-1-JNK-Tau proteins and their molecular targets in an in vitro model (SHSY5Y cell line) of oxidative stress in which a significant reduction of cell viability and an augmented cell death was induced by increased doses of H2O2. The evoked oxidative stress led to a deficiency in the degradation system showing altered levels of Caspase-3, LC3BII/I and Ubiquitin. Curcumin, a natural compound with anti-oxidant and anti-inflammatory effects, demonstrated to tackle oxidative stress re-equilibrating SUMO-1, JNK and Tau functions. Importantly, 5 μM of curcumin induced an efficient recovery of cell viability, a reduction of cell death and a normalization of altered protein degradation marker levels. Interestingly, we found that H2O2 treatment induced a strong co-localization of SUMO-1-p-JNK-Tau proteins in nuclear bodies (NBs) and that curcumin was able to reduce these nuclear aggregates. These results highlight the SUMO-1-JNK-Tau axis key role in oxidative stress and the protective effect of curcumin against this pathological event, focusing on the importance of SUMO/deSUMOylation balance to regulate essential cellular processes.
Collapse
Affiliation(s)
- Lucia Buccarello
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Jessica Dragotto
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Federico Iorio
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Kambiz Hassanzadeh
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy; Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Marco Feligioni
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy; Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy.
| |
Collapse
|
48
|
New benzimidazole-aldehyde hybrids as neuroprotectors with hypochlorite and superoxide radical-scavenging activity. Pharmacol Rep 2020; 72:846-856. [PMID: 32125683 DOI: 10.1007/s43440-020-00077-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Many neurodegenerative disorders include oxidative stress-mediated pathology. Melatonin and its metabolites act as endogenous reactive oxygen species (ROS) scavengers and antioxidants. N,N'-Disubstituted benzimidazole-2-thiones with extended side chains could exert antioxidant and neuroprotective properties due to structural similarities to melatonin. METHODS The toxicological potential of the compounds was evaluated by monitoring the synaptosomal viability and the levels of reduced glutathione (GSH) in isolated rat brain synaptosomes. The neuroprotective effects were assessed in vitro in a model of 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. The capability to decrease superoxide anion radical and hypochlorite was evaluated by luminol-dependent chemiluminescent assays. RESULTS Compounds 5-7 containing residues of veratraldehyde, vanillin, and syringaldehyde at concentration 250 μM, preserved at the highest degree the synaptosomal viability and GSH levels. Further screening of compounds 5-7 at lower concentrations of 100 μM, 10 μM, and 1 μM, respectively, demonstrated that 6 and 7 do not show any toxicity within this concentration range. In the model of 6-OHDA-induced oxidative stress, 6 revealed concentration-dependent, neuroprotective, and antioxidant activities similar to melatonin. All the three compounds demonstrated ability to decrease the chemiluminescent scavenging index (CL-SI) in the hypochlorite containing system. In the superoxide system, the hydrazones exhibited different effects on the signal. CONCLUSIONS Our studies suggest that the benzimidazole-aldehyde hybrids act as direct ROS scavengers and membranes' stabilizers against free radicals. Thus, they play a role in the antioxidative defense system and have a promising potential as therapeutic neuroprotective agents for the treatment of neurodegenerative disorders.
Collapse
|
49
|
Wang S, Zheng L, Zhao T, Zhang Q, Liu Y, Sun B, Su G, Zhao M. Inhibitory Effects of Walnut ( Juglans regia) Peptides on Neuroinflammation and Oxidative Stress in Lipopolysaccharide-Induced Cognitive Impairment Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2381-2392. [PMID: 32037817 DOI: 10.1021/acs.jafc.9b07670] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing level of inflammation and oxidative stress could lead to memory impairment. The purpose of this study was to determine the neuroprotective effects of walnut peptides against memory deficits induced by lipopolysaccharide (LPS) in mice and further to explore the underlying anti-inflammatory mechanisms against LPS-elicited inflammation in BV-2 cells. Results showed that walnut protein hydrolysate (WPH) and its low-molecular-weight fraction (WPHL) could ameliorate the memory deficits induced by LPS via normalizing the inflammatory response and oxidative stress in brain, especially WPHL. Furthermore, 18 peptides with anti-inflammatory activities on LPS-activated BV-2 cells were identified from WPHL and it was found that Trp, Gly, and Leu residues in peptides might contribute to the anti-inflammation. Meanwhile, the strong anti-inflammatory effects of LPF, GVYY, and APTLW might be related to their hydrophobic and aromatic amino acid residues as well. LPF, GVYY, and APTLW could reduce the content of proinflammatory mediators and cytokines by downregulating related enzyme expressions and mRNA expressions. Additionally, ROS and mitochondria homeostasis might also contribute to their anti-inflammatory effects.
Collapse
Affiliation(s)
- Shuguang Wang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Lin Zheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Tiantian Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Qi Zhang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Yang Liu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 100048 , China
| | - Guowan Su
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 100048 , China
| |
Collapse
|
50
|
Kaewmool C, Kongtawelert P, Phitak T, Pothacharoen P, Udomruk S. Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis. J Neuroimmunol 2020; 341:577164. [PMID: 32007785 DOI: 10.1016/j.jneuroim.2020.577164] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
SIRT1 exhibits inhibitory effects on microglial activation-induced neurodegeneration. Regulating SIRT1 may become a novel approach for curing neurodegenerative diseases. Protocatechuic acid (PA), a phenolic acid, has anti-neuroinflammatory effects. The effect of PA on SIRT1 in activated microglia remains unknown. Here, we examined whether PA has anti-inflammatory effects against microglial activation-induced neuronal cell death via regulating SIRT1 in microglia. We found that PA inhibited the release of inflammatory mediators in LPS-activated BV2 microglia via the SIRT1/NF-κB pathway and thereby attenuated microglial activation-induced PC12 cell apoptosis. This suggests that SIRT1 mediates the anti-neuroinflammatory effects of PA to ameliorate microglial activation-induced neuron death.
Collapse
Affiliation(s)
- Chayanut Kaewmool
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thanyaluck Phitak
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasimol Udomruk
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|