1
|
Choudhury C, Butcher NJ, Minchin RF. Arylamine N-acetyltransferase 1 expression predicts glucose dependence and mitochondrial bioenergetics in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119929. [PMID: 40054776 DOI: 10.1016/j.bbamcr.2025.119929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/30/2025] [Accepted: 03/01/2025] [Indexed: 03/18/2025]
Abstract
To investigate the effects of varying NAT1 activity in different cell lines, mitochondrial oxidative phosphorylation, aerobic glycolysis and mitochondrial fuel usage was quantified in a panel of human cell lines. As NAT1 activity increased, mitochondrial reserve respiratory capacity increased while aerobic glycolysis decreased. In addition, phosphorylation of PDH-E1α in these cells limited their ability to use glucose as a primary fuel source. Those cells with high NAT1 activity exhibited a quiescent metabolic phenotype and proliferated more slowly. This might explain, in part, why some cancer patients with low NAT1 expression in their tumour tissue show poorer survival outcomes compared to those with high NAT1 expression. The current study demonstrated that NAT1 enzymatic activity is important for metabolism in cancer cell lines and increasing NAT1 activity may better equip cells to survive under stressed conditions by increasing reserve respiratory capacity.
Collapse
Affiliation(s)
- Chandra Choudhury
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Neville J Butcher
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Rodney F Minchin
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
El-Sehrawy AAMA, Ayoub II, Uthirapathy S, Ballal S, Gabble BC, Singh A, V K, Panigrahi R, Kamali M, Khosravi M. The microbiota-gut-brain axis in myalgic encephalomyelitis/chronic fatigue syndrome: a narrative review of an emerging field. Eur J Transl Myol 2025; 35. [PMID: 39937103 DOI: 10.4081/ejtm.2025.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The intricate relationship between gut microbiota and the brain has emerged as a pivotal area of research, particularly in understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). This complex condition is characterized by debilitating fatigue, cognitive dysfunction, and a wide array of systemic manifestations, posing significant challenges for diagnosis and treatment. Recent studies highlight the microbiota-gut-brain axis as a crucial pathway in ME/CFS pathophysiology, suggesting that alterations in gut microbial composition may impact immune responses, neurochemical signaling, and neuronal health. This narrative review systematically explores English-language scholarly articles from January 1995 to January 2025, utilizing databases such as PubMed, Scopus, and Web of Science. The findings underscore the potential for targeted therapeutic interventions aimed at correcting gut dysbiosis. As research progresses, a deeper understanding of the microbiota-gut-brain connection could lead to innovative approaches for managing ME/CFS, ultimately enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
| | | | - Subasini Uthirapathy
- Faculty of Pharmacy, Department of Pharmacology, Tishk International University, Erbil, Kurdistan Region.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka.
| | - Baneen C Gabble
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon.
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab.
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu.
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar.
| | - Mostafa Kamali
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan.
| | - Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan.
| |
Collapse
|
3
|
Pradeepkiran JA, Islam MA, Sehar U, Reddy AP, Vijayan M, Reddy PH. Impact of diet and exercise on mitochondrial quality and mitophagy in Alzheimer's disease. Ageing Res Rev 2025; 108:102734. [PMID: 40120948 DOI: 10.1016/j.arr.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects millions of people worldwide. It is characterized by the accumulation of beta-amyloid and phosphorylated tau, synaptic damage, and mitochondrial abnormalities in the brain, leading to the progressive loss of cognitive function and memory. In AD, emerging research suggests that lifestyle factors such as a healthy diet and regular exercise may play a significant role in delaying the onset and progression of the disease. Mitochondria are often referred to as the powerhouse of the cell, as they are responsible for producing the energy to cells, including neurons to maintain cognitive function. Our article elaborates on how mitochondrial quality and function decline with age and AD, leading to an increase in oxidative stress and a decrease in ATP production. Decline in mitochondrial quality can impair cellular functions contributing to the development and progression of disease with the loss of neuronal functions in AD. This article also covered mitophagy, the process by which damaged or dysfunctional mitochondria are selectively removed from the cell to maintain cellular homeostasis. Impaired mitophagy has been implicated in the progression and pathogenesis of AD. We also discussed the impact of impaired mitophagy implicated in AD, as the accumulation of damaged mitochondria can lead to increased oxidative stress. We expounded how dietary interventions and exercise can help to improve mitochondrial quality, and mitochondrial function and enhance mitophagy in AD. A diet rich in antioxidants, polyphenols, and mitochondria-targeted small molecules has been shown to enhance mitochondrial function and protect against oxidative stress, particularly in neurons with aged and mild cognitively impaired subjects and AD patients. Promoting a healthy lifestyle, mainly balanced diet and regular exercise that support mitochondrial health, in an individual can potentially delay the onset and progression of AD. In conclusion, a healthy diet and regular exercise play a crucial role in maintaining mitochondrial quality and mitochondrial function, in turn, enhancing mitophagy and synaptic activities that delay AD in the elderly populations.
Collapse
Affiliation(s)
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
4
|
Saenz C, Lavin KM, Lee EC, Maresh CM, Kraemer WJ, Bamman MM, Broderick TJ, Volek JS. Muscle transcriptome profiles in elite male ultra-endurance athletes acclimated to a high-carbohydrate versus low-carbohydrate diet. Sci Rep 2025; 15:8419. [PMID: 40069235 PMCID: PMC11897176 DOI: 10.1038/s41598-025-88963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Low-carbohydrate, high-fat diets enhance lipid metabolism and decrease reliance on glucose oxidation in athletes, but the associated gene expression patterns remain unclear. The purpose of this study was to determine whether coordinated molecular pathways in skeletal muscle may be revealed by differential expression of genes driven by dietary profile, exercise, and/or their interaction. We investigated the skeletal muscle transcriptome in elite ultra-endurance athletes habitually (~ 20 months) consuming a high-carbohydrate, low-fat (HC, n = 10, 33 ± 6y, VO2max = 63.4 ± 6.2 mL O2•kg-1•min-1) or low-carbohydrate, high-fat (LC, n = 10, 34 ± 7y, VO2max = 64.7 ± 3.7 mL O2•kg-1•min-1) diet. Skeletal muscle gene expression was measured at baseline (BL), immediately-post (H0), and 2 h (H2) after 3 h submaximal treadmill running. Diet induced a coordinated but divergent expression pattern at BL where LC had higher expression of genes associated with lipid metabolism. Exercise resulted in a dynamic but uniform gene response, with no major differences between groups (H0). At H2, gene expression patterns were associated with differential pathway activity, including inflammation/immunity, suggesting a diet-specific influence on early muscle recovery. These results indicate that low-carbohydrate, high-fat diets lead to differences in resting and exercise-induced skeletal muscle gene expression patterns, underlying our previous findings of differential fuel utilization in elite ultra-endurance athletes.
Collapse
Affiliation(s)
- Catherine Saenz
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA.
- College of Education and Human Ecology, Department of Human Science, The Ohio State University, Exercise Science Program A048 PAES Building 305 Annie & John Glenn Avenue, Columbus, OH, 43210, USA.
| | - Kaleen M Lavin
- Florida Institute for Human and Machine Cognition, Pensacola, FL, USA
| | - Elaine C Lee
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - Carl M Maresh
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Marcas M Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, FL, USA
| | | | - Jeff S Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Ruskin DN, Martinez LA, Masino SA. Ketogenic diet, adenosine, and dopamine in addiction and psychiatry. Front Nutr 2025; 12:1492306. [PMID: 40129664 PMCID: PMC11932665 DOI: 10.3389/fnut.2025.1492306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
Adhering to the ketogenic diet can reduce or stop seizures, even when other treatments fail, via mechanism(s) distinct from other available therapies. These results have led to interest in the diet for treating conditions such as Alzheimer's disease, depression and schizophrenia. Evidence points to the neuromodulator adenosine as a key mechanism underlying therapeutic benefits of a ketogenic diet. Adenosine represents a unique and direct link among cell energy, neuronal activity, and gene expression, and adenosine receptors form functional heteromers with dopamine receptors. The importance of the dopaminergic system is established in addiction, as are the challenges of modulating the dopamine system directly. A mediator that could antagonize dopamine's effects would be useful, and adenosine is such a mediator due to its function and location. Studies report that the ketogenic diet improves cognition, sociability, and perseverative behaviors, and might improve depression. Many of the translational opportunities based on the ketogenic diet/adenosine link have come to the fore, including addiction, autism spectrum disorder, painful conditions, and a range of hyperdopaminergic disorders.
Collapse
|
6
|
Phitsanuwong C, Schimpf S, Yano ST. Favorable response to ketogenic diet therapy in a patient with DYNC1H1-related epilepsy. Epilepsy Behav Rep 2025; 29:100740. [PMID: 39834654 PMCID: PMC11743897 DOI: 10.1016/j.ebr.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Dynein Cytoplasmic 1 Heavy chain 1 (DYNC1H1)-related disorders are a spectrum of conditions including neurodevelopmental disorders, congenital brain malformations, and neuromuscular diseases. These clinical features may co-occur, with four main disease entities including epilepsy with developmental epileptic encephalopathy such as infantile epileptic spasms syndrome (IESS) and Lennox-Gastaut syndrome (LGS), axonal Charcot-Marie-Tooth disease type 2O, spinal muscular atrophy with lower extremity-predominance (SMALED), and congenital cortical malformations. Epilepsy associated with this disorder often becomes drug-resistant and requires multiple medications and, in some cases, non-pharmacological treatments. To date, there is no specific epilepsy treatment that is particularly effective in this disorder. We report our experience in a case of a 3-year-old girl with a pathogenic variant in DYNC1H1 who presented with a developmental epileptic encephalopathy consistent with IESS and achieved seizure freedom on classic ketogenic diet (KD) after failing Adrenocorticotropic Hormone (ACTH), vigabatrin, and clobazam. The patient remained seizure free for more than 2 years on dietary monotherapy and had reported improvement in alertness, cognitive ability, muscle tone, and a normalized EEG. The ketogenic diet therapy, therefore, has shown to be highly effective in this case with DYNC1H1-related epilepsy.
Collapse
Affiliation(s)
- Chalongchai Phitsanuwong
- Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, IL, United States
- The Ketogenic Diet Program, The University of Chicago Comer Children’s Hospital, Chicago, IL, United States
| | - Stephanie Schimpf
- Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, IL, United States
- The Ketogenic Diet Program, The University of Chicago Comer Children’s Hospital, Chicago, IL, United States
| | - Sho T. Yano
- Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Schrickel A, Groeneweg J, Dekeyster E. Exploring the potential of the ketogenic diet in autism spectrum disorder: metabolic, genetic, and therapeutic insights. Metab Brain Dis 2025; 40:94. [PMID: 39776279 PMCID: PMC11711257 DOI: 10.1007/s11011-024-01518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
Current treatment approaches for Autism spectrum disorder (ASD) primarily focus on symptom management rather than addressing underlying dysfunctions. The ketogenic diet (KD), a high-fat, low-carbohydrate diet inducing nutritional ketosis, has shown promise in treating epilepsy and may offer therapeutic benefits for ASD by modulating metabolic and neuroprotective pathways. This review examined the potential impact of KD on underlying mechanisms in ASD. While evidence from human studies on underlying mechanisms is limited, animal research has shown a large overlap of mechanisms modulated by KD and dysfunctions in ASD. As such, targeting multiple disrupted pathways at once, KD presents a potential multifaceted treatment approach for ASD. However, more evidence from human studies is needed on the effectiveness of KD in the modulation of underlying dysfunctions in ASD. Additionally, precision medicine approaches could help identify individuals who would benefit most from the intervention, potentially extending its use to other psychiatric conditions with similar metabolic patterns. Consequently, KD interventions might show the potential to induce a drastic paradigm shift in understanding and treating ASD.
Collapse
Affiliation(s)
- Alexa Schrickel
- Institute of Psychology, Leiden University, Wassenaarseweg 52, Leiden, 2333 AK, The Netherlands
| | - Jop Groeneweg
- Institute of Psychology, Leiden University, Wassenaarseweg 52, Leiden, 2333 AK, The Netherlands
- Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, Delft, 2628 BX, The Netherlands
| | - Eline Dekeyster
- Institute of Psychology, Leiden University, Wassenaarseweg 52, Leiden, 2333 AK, The Netherlands.
| |
Collapse
|
8
|
Zharikova AA, Andrianova NV, Silachev DN, Nebogatikov VO, Pevzner IB, Makievskaya CI, Zorova LD, Maleev GV, Baydakova GV, Chistyakov DV, Goriainov SV, Sergeeva MG, Burakova IY, Gureev AP, Popkov VA, Ustyugov AA, Plotnikov EY. Analysis of the brain transcriptome, microbiome and metabolome in ketogenic diet and experimental stroke. Brain Behav Immun 2025; 123:571-585. [PMID: 39378970 DOI: 10.1016/j.bbi.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
The ketogenic diet (KD) has been shown to be effective in treating various brain pathologies. In this study, we conducted detailed transcriptomic and metabolomic profiling of rat brains after KD and ischemic stroke in order to investigate the effects of KD and its underlying mechanisms. We evaluated the effect of a two-month KD on gene expression in intact brain tissue and after middle cerebral artery occlusion (MCAO). We analyzed the effects of KD on gut microbiome composition and blood metabolic profile as well as investigated the correlation between severity of neurological deficits and KD-induced changes. We found transcriptional reprogramming in the brain after stroke and KD treatment. The KD altered the expression of genes involved in the regulation of glucose and fatty acid metabolism, mitochondrial function, the immune response, Wnt-associated signaling, stem cell development, and neurotransmission, both in intact rats and after MCAO. The KD led to a significant change in the composition of gut microbiome and the levels of amino acids, acylcarnitines, polyunsaturated fatty acids, and oxylipins in the blood. However, the KD slightly worsened the neurological functions after MCAO, so that the therapeutic effect of the diet remained unproven.
Collapse
Affiliation(s)
- Anastasia A Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Nadezda V Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir O Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ciara I Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ljubava D Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Grigoriy V Maleev
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | | | - Dmitry V Chistyakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Peoples' Friendship University of Russia, (RUDN University), Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia, (RUDN University), Moscow, Russia
| | - Marina G Sergeeva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Inna Y Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Artem P Gureev
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, Voronezh, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily A Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
9
|
Tabassum S, Wu S, Lee CH, Yang BSK, Gusdon AM, Choi HA, Ren XS. Mitochondrial-targeted therapies in traumatic brain injury: From bench to bedside. Neurotherapeutics 2025; 22:e00515. [PMID: 39721917 PMCID: PMC11840356 DOI: 10.1016/j.neurot.2024.e00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide, with limited effective therapeutic options currently available. Recent research has highlighted the pivotal role of mitochondrial dysfunction in the pathophysiology of TBI, making mitochondria an attractive target for therapeutic intervention. This review comprehensively examines advancements in mitochondrial-targeted therapies for TBI, bridging the gap from basic research to clinical applications. We discuss the underlying mechanisms of mitochondrial damage in TBI, including oxidative stress, impaired bioenergetics, mitochondrial dynamics, and apoptotic pathways. Furthermore, we highlight the complex interplay between mitochondrial dysfunction, inflammation, and blood-brain barrier (BBB) integrity, elucidating how these interactions exacerbate injury and impede recovery. We also evaluate various preclinical studies exploring pharmacological agents, gene therapy, and novel drug delivery systems designed to protect and restore mitochondrial function. Clinical trials and their outcomes are assessed to evaluate the translational potential of mitochondrial-targeted therapies in TBI. By integrating findings from bench to bedside, this review emphasizes promising therapeutic avenues and addresses remaining challenges. It also provides guidance for future research to pave the way for innovative treatments that improve patient outcomes in TBI.
Collapse
Affiliation(s)
- Sidra Tabassum
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Silin Wu
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Bosco Seong Kyu Yang
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Aaron M Gusdon
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Huimahn A Choi
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xuefang S Ren
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
10
|
Lounici A, Iacob A, Hongler K, Mölling MA, Drechsler M, Hersberger L, Sethi S, Lang UE, Liwinski T. Ketogenic Diet as a Nutritional Metabolic Intervention for Obsessive-Compulsive Disorder: A Narrative Review. Nutrients 2024; 17:31. [PMID: 39796465 PMCID: PMC11723184 DOI: 10.3390/nu17010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The substantial evidence supporting the ketogenic diet (KD) in epilepsy management has spurred research into its effects on other neurological and psychiatric conditions. Despite differences in characteristics, symptoms, and underlying mechanisms, these conditions share common pathways that the KD may influence. The KD reverses metabolic dysfunction. Moreover, it has been shown to support neuroprotection through mechanisms such as neuronal energy support, inflammation reduction, amelioration of oxidative stress, and reversing mitochondrial dysfunction. The adequate intake of dietary nutrients is essential for maintaining normal brain functions, and strong evidence supports the role of nutrition in the treatment and prevention of many psychiatric and neurological disorders. Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition marked by persistent, distressing thoughts or impulses (obsessions) and repetitive behaviors performed in response to these obsessions (compulsions). Recent studies have increasingly examined the role of nutrition and metabolic disorders in OCD. This narrative review examines current evidence on the potential role of the KD in the treatment of OCD. We explore research on the KD's effects on psychiatric disorders to assess its potential relevance for OCD treatment. Additionally, we identify key gaps in the preclinical and clinical research that warrant further study in applying the KD as a metabolic therapy for OCD.
Collapse
Affiliation(s)
- Astrid Lounici
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | - Ana Iacob
- Pôle de Psychiatrie et Psychothérapie (PPP), Unité de Psychiatrie de Liaison, Hôpital du Valais, 1950 Sion, Switzerland;
| | - Katarzyna Hongler
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | | | - Maria Drechsler
- Stiftung für Ganzheitliche Medizin (SGM), Klinik SGM Langenthal, 4900 Langenthal, Switzerland; (M.D.); (L.H.)
| | - Luca Hersberger
- Stiftung für Ganzheitliche Medizin (SGM), Klinik SGM Langenthal, 4900 Langenthal, Switzerland; (M.D.); (L.H.)
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Undine E. Lang
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | - Timur Liwinski
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| |
Collapse
|
11
|
Malinowska D, Żendzian-Piotrowska M. Ketogenic Diet: A Review of Composition Diversity, Mechanism of Action and Clinical Application. J Nutr Metab 2024; 2024:6666171. [PMID: 39463845 PMCID: PMC11511599 DOI: 10.1155/2024/6666171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
The ketogenic diet (KD) is a special high-fat, very low-carbohydrate diet with the amount of protein adjusted to one's requirements. By lowering the supply of carbohydrates, this diet induces a considerable change in metabolism (of protein and fat) and increases the production of ketone bodies. The purpose of this article is to review the diversity of composition, mechanism of action, clinical application and risk associated with the KD. In the last decade, more and more results of the diet's effects on obesity, diabetes and neurological disorders, among other examples have appeared. The beneficial effects of the KD on neurological diseases are related to the reconstruction of myelin sheaths of neurons, reduction of neuron inflammation, decreased production of reactive oxygen species, support of dopamine production, repair of damaged mitochondria and formation of new ones. Minimizing the intake of carbohydrates results in the reduced absorption of simple sugars, thereby decreasing blood glucose levels and fluctuations of glycaemia in diabetes. Studies on obesity indicate an advantage of the KD over other diets in terms of weight loss. This may be due to the upregulation of the biological activity of appetite-controlling hormones, or to decreased lipogenesis, intensified lipolysis and increased metabolic costs of gluconeogenesis. However, it is important to be aware of the side effects of the KD. These include disorders of the digestive system as well as headaches, irritability, fatigue, the occurrence of vitamin and mineral deficiencies and worsened lipid profile. Further studies aimed to determine long-term effects of the KD are required.
Collapse
Affiliation(s)
- Dominika Malinowska
- Medical University of Bialystok, Department of Hygiene, Epidemiology and Ergonomy, ul. Jana Kilińskiego 1, Białystok 15-089, Poland
| | - Małgorzata Żendzian-Piotrowska
- Medical University of Bialystok, Department of Hygiene, Epidemiology and Ergonomy, ul. Jana Kilińskiego 1, Białystok 15-089, Poland
| |
Collapse
|
12
|
Spaggiari R, Angelini S, Di Vincenzo A, Scaglione G, Morrone S, Finello V, Fagioli S, Castaldo F, Sanz JM, Sergi D, Passaro A. Ceramides as Emerging Players in Cardiovascular Disease: Focus on Their Pathogenetic Effects and Regulation by Diet. Adv Nutr 2024; 15:100252. [PMID: 38876397 PMCID: PMC11263787 DOI: 10.1016/j.advnut.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Impaired lipid metabolism is a pivotal driver of cardiovascular disease (CVD). In this regard, the accumulation of ceramides within the circulation as well as in metabolically active tissues and atherosclerotic plaques is a direct consequence of derailed lipid metabolism. Ceramides may be at the nexus between impaired lipid metabolism and CVD. Indeed, although on one hand ceramides have been implicated in the pathogenesis of CVD, on the other specific ceramide subspecies have also been proposed as predictors of major adverse cardiovascular events. This review will provide an updated overview of the role of ceramides in the pathogenesis of CVD, as well as their pathogenetic mechanisms of action. Furthermore, the manuscript will cover the importance of ceramides as biomarkers to predict cardiovascular events and the role of diet, both in terms of nutrients and dietary patterns, in modulating ceramide metabolism and homeostasis.
Collapse
Affiliation(s)
- Riccardo Spaggiari
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sharon Angelini
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Alessandra Di Vincenzo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Gerarda Scaglione
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sara Morrone
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Veronica Finello
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sofia Fagioli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Fabiola Castaldo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Juana M Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy.
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| |
Collapse
|
13
|
Ildarabadi A, Mir Mohammad Ali SN, Rahmani F, Mosavari N, Pourbakhtyaran E, Rezaei N. Inflammation and oxidative stress in epileptic children: from molecular mechanisms to clinical application of ketogenic diet. Rev Neurosci 2024; 35:473-488. [PMID: 38347675 DOI: 10.1515/revneuro-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 06/02/2024]
Abstract
Childhood epilepsy affects up to 1 % of children. It has been shown that 30 % of patients are resistant to drug treatments, making further investigation of other potential treatment strategies necessary. One such approach is the ketogenic diet (KD) showing promising results and potential benefits beyond the use of current antiepileptic drugs. This study aims to investigate the effects of KD on inflammation and oxidative stress, as one of the main suggested mechanisms of neuroprotection, in children with epilepsy. This narrative review was conducted using the Medline and Google Scholar databases, and by searching epilepsy, drug-resistant epilepsy, child, children, ketogenic, ketogenic diet, diet, ketogenic, keto, ketone bodies (BHB), PUFA, gut microbiota, inflammation, inflammation mediators, neurogenic inflammation, neuroinflammation, inflammatory marker, adenosine modulation, mitochondrial function, MTOR pathway, Nrf2 pathway, mitochondrial dysfunction, PPARɣ, oxidative stress, ROS/RNS, and stress oxidative as keywords. Compelling evidence underscores inflammation and oxidative stress as pivotal factors in epilepsy, even in cases with genetic origins. The ketogenic diet effectively addresses these factors by reducing ROS and RNS, enhancing antioxidant defenses, improving mitochondrial function, and regulating inflammatory genes. Additionally, KD curbs pro-inflammatory cytokine and chemokine production by dampening NF-κB activation, inhibiting the NLRP3 inflammasome, increasing brain adenosine levels, mTOR pathway inhibition, upregulating PPARɣ expression, and promoting a healthy gut microbiota while emphasizing the consumption of healthy fats. KD could be considered a promising therapeutic intervention in patients with epilepsy particularly in drug-resistant epilepsy cases, due to its targeted approach addressing oxidative stress and inflammatory mechanisms.
Collapse
Affiliation(s)
- Azam Ildarabadi
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Shodada Hesarak Blvd, Tehran 1477893855, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Seyedeh Nooshan Mir Mohammad Ali
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66502, USA
| | - Fatemeh Rahmani
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Shodada Hesarak Blvd, Tehran 1477893855, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Narjes Mosavari
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Elham Pourbakhtyaran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Department of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Tehran 1419733151, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Tehran 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Pour Sina St, Tehran 1461884513, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| |
Collapse
|
14
|
Acuña-Catalán D, Shah S, Wehrfritz C, Nomura M, Acevedo A, Olmos C, Quiroz G, Huerta H, Bons J, Ampuero E, Wyneken U, Sanhueza M, Arancibia F, Contreras D, Cárdenas JC, Morales B, Schilling B, Newman JC, González-Billault C. Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice. Cell Rep Med 2024; 5:101593. [PMID: 38843842 PMCID: PMC11228662 DOI: 10.1016/j.xcrm.2024.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.
Collapse
Affiliation(s)
- Diego Acuña-Catalán
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Samah Shah
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | - Alejandro Acevedo
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Cristina Olmos
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Gabriel Quiroz
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Hernán Huerta
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Estibaliz Ampuero
- Neurobiology of Behavior Laboratory, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Ursula Wyneken
- IMPACT, Center for Interventional Medicine for Precision and Advanced Cellular Therapy, and Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Arancibia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Julio César Cárdenas
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Department of Chemistry and Biochemistry and Center for Aging and Longevity Studies University of California, Santa Barbara, CA, USA
| | - Bernardo Morales
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | | | - John C Newman
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Christian González-Billault
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA; Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
15
|
Chrysafi M, Jacovides C, Papadopoulou SK, Psara E, Vorvolakos T, Antonopoulou M, Dakanalis A, Martin M, Voulgaridou G, Pritsa A, Mentzelou M, Giaginis C. The Potential Effects of the Ketogenic Diet in the Prevention and Co-Treatment of Stress, Anxiety, Depression, Schizophrenia, and Bipolar Disorder: From the Basic Research to the Clinical Practice. Nutrients 2024; 16:1546. [PMID: 38892480 PMCID: PMC11174630 DOI: 10.3390/nu16111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD) has been highly developed in the past for the treatment of epileptic pathological states in children and adults. Recently, the current re-emergence in its popularity mainly focuses on the therapy of cardiometabolic diseases. The KD can also have anti-inflammatory and neuroprotective activities which may be applied to the prevention and/or co-treatment of a diverse range of psychiatric disorders. PURPOSE This is a comprehensive literature review that intends to critically collect and scrutinize the pre-existing research basis and clinical data of the potential advantageous impacts of a KD on stress, anxiety, depression, schizophrenia and bipolar disorder. METHODS This literature review was performed to thoroughly represent the existing research in this topic, as well as to find gaps in the international scientific community. In this aspect, we carefully investigated the ultimate scientific web databases, e.g., PubMed, Scopus, and Web of Science, to derive the currently available animal and clinical human surveys by using efficient and representative keywords. RESULTS Just in recent years, an increasing amount of animal and clinical human surveys have focused on investigating the possible impacts of the KD in the prevention and co-treatment of depression, anxiety, stress, schizophrenia, and bipolar disorder. Pre-existing basic research with animal studies has consistently demonstrated promising results of the KD, showing a propensity to ameliorate symptoms of depression, anxiety, stress, schizophrenia, and bipolar disorder. However, the translation of these findings to clinical settings presents a more complex issue. The majority of the currently available clinical surveys seem to be moderate, usually not controlled, and have mainly assessed the short-term effects of a KD. In addition, some clinical surveys appear to be characterized by enormous dropout rates and significant absence of compliance measurement, as well as an elevated amount of heterogeneity in their methodological design. CONCLUSIONS Although the currently available evidence seems promising, it is highly recommended to accomplish larger, long-term, randomized, double-blind, controlled clinical trials with a prospective design, in order to derive conclusive results as to whether KD could act as a potential preventative factor or even a co-treatment agent against stress, anxiety, depression, schizophrenia, and bipolar disorder. Basic research with animal studies is also recommended to examine the molecular mechanisms of KD against the above psychiatric diseases.
Collapse
Affiliation(s)
- Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Constantina Jacovides
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Theophanis Vorvolakos
- Department of Psychiatry, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Marina Antonopoulou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Antonios Dakanalis
- Department of Mental Health, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy;
- Department of Medicine and Surgery, University of Milan Bicocca, Via Cadore 38, 20900 Monza, Italy
| | - Mato Martin
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Gavriela Voulgaridou
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| |
Collapse
|
16
|
Hahm JH, Nirmala FS, Ha TY, Ahn J. Nutritional approaches targeting mitochondria for the prevention of sarcopenia. Nutr Rev 2024; 82:676-694. [PMID: 37475189 DOI: 10.1093/nutrit/nuad084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
A decline in function and loss of mass, a condition known as sarcopenia, is observed in the skeletal muscles with aging. Sarcopenia has a negative effect on the quality of life of elderly. Individuals with sarcopenia are at particular risk for adverse outcomes, such as reduced mobility, fall-related injuries, and type 2 diabetes mellitus. Although the pathogenesis of sarcopenia is multifaceted, mitochondrial dysfunction is regarded as a major contributor for muscle aging. Hence, the development of preventive and therapeutic strategies to improve mitochondrial function during aging is imperative for sarcopenia treatment. However, effective and specific drugs that can be used for the treatment are not yet approved. Instead studies on the relationship between food intake and muscle aging have suggested that nutritional intake or dietary control could be an alternative approach for the amelioration of muscle aging. This narrative review approaches various nutritional components and diets as a treatment for sarcopenia by modulating mitochondrial homeostasis and improving mitochondria. Age-related changes in mitochondrial function and the molecular mechanisms that help improve mitochondrial homeostasis are discussed, and the nutritional components and diet that modulate these molecular mechanisms are addressed.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Farida S Nirmala
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Tae Youl Ha
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Jiyun Ahn
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| |
Collapse
|
17
|
Choi J, Kang J, Kim T, Nehs CJ. Sleep, mood disorders, and the ketogenic diet: potential therapeutic targets for bipolar disorder and schizophrenia. Front Psychiatry 2024; 15:1358578. [PMID: 38419903 PMCID: PMC10899493 DOI: 10.3389/fpsyt.2024.1358578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Bipolar disorder and schizophrenia are serious psychiatric conditions that cause a significant reduction in quality of life and shortened life expectancy. Treatments including medications and psychosocial support exist, but many people with these disorders still struggle to participate in society and some are resistant to current therapies. Although the exact pathophysiology of bipolar disorder and schizophrenia remains unclear, increasing evidence supports the role of oxidative stress and redox dysregulation as underlying mechanisms. Oxidative stress is an imbalance between the production of reactive oxygen species generated by metabolic processes and antioxidant systems that can cause damage to lipids, proteins, and DNA. Sleep is a critical regulator of metabolic homeostasis and oxidative stress. Disruption of sleep and circadian rhythms contribute to the onset and progression of bipolar disorder and schizophrenia and these disorders often coexist with sleep disorders. Furthermore, sleep deprivation has been associated with increased oxidative stress and worsening mood symptoms. Dysfunctional brain metabolism can be improved by fatty acid derived ketones as the brain readily uses both ketones and glucose as fuel. Ketones have been helpful in many neurological disorders including epilepsy and Alzheimer's disease. Recent clinical trials using the ketogenic diet suggest positive improvement in symptoms for bipolar disorder and schizophrenia as well. The improvement in psychiatric symptoms from the ketogenic diet is thought to be linked, in part, to restoration of mitochondrial function. These findings encourage further randomized controlled clinical trials, as well as biochemical and mechanistic investigation into the role of metabolism and sleep in psychiatric disorders. This narrative review seeks to clarify the intricate relationship between brain metabolism, sleep, and psychiatric disorders. The review will delve into the initial promising effects of the ketogenic diet on mood stability, examining evidence from both human and animal models of bipolar disorder and schizophrenia. The article concludes with a summary of the current state of affairs and encouragement for future research focused on the role of metabolism and sleep in mood disorders.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Jiseung Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Christa J. Nehs
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
19
|
Jang J, Kim SR, Lee JE, Lee S, Son HJ, Choe W, Yoon KS, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms of Neuroprotection by Ketone Bodies and Ketogenic Diet in Cerebral Ischemia and Neurodegenerative Diseases. Int J Mol Sci 2023; 25:124. [PMID: 38203294 PMCID: PMC10779133 DOI: 10.3390/ijms25010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ketone bodies (KBs), such as acetoacetate and β-hydroxybutyrate, serve as crucial alternative energy sources during glucose deficiency. KBs, generated through ketogenesis in the liver, are metabolized into acetyl-CoA in extrahepatic tissues, entering the tricarboxylic acid cycle and electron transport chain for ATP production. Reduced glucose metabolism and mitochondrial dysfunction correlate with increased neuronal death and brain damage during cerebral ischemia and neurodegeneration. Both KBs and the ketogenic diet (KD) demonstrate neuroprotective effects by orchestrating various cellular processes through metabolic and signaling functions. They enhance mitochondrial function, mitigate oxidative stress and apoptosis, and regulate epigenetic and post-translational modifications of histones and non-histone proteins. Additionally, KBs and KD contribute to reducing neuroinflammation and modulating autophagy, neurotransmission systems, and gut microbiome. This review aims to explore the current understanding of the molecular mechanisms underpinning the neuroprotective effects of KBs and KD against brain damage in cerebral ischemia and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Rim Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jo Eun Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seoyeon Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeong Jig Son
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Charlot A, Lernould A, Plus I, Zoll J. [Beneficial effects of ketogenic diet for Alzheimer's disease management]. Biol Aujourdhui 2023; 217:253-263. [PMID: 38018953 DOI: 10.1051/jbio/2023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 11/30/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects almost 1 million people in France and 55 million in the world. This pathology is a global health preoccupation because of the lack of efficient curative treatment and the increase of its prevalence. During the last decade, the comprehension of pathophysiological mechanisms involved in AD have been improved. Amyloid plaques and neurofibrillary tangles accumulation are characteristic of Alzheimer's brain patients, accompanied by increased brain inflammation and oxidative stress, impaired cerebral metabolism of glucose and mitochondrial function. Treatment of AD includes different approaches, as pharmacology, psychology support, physiotherapy, and speech therapy. However, these interventions do not have a curative effect, but only compensatory on the disease. Ketogenic diet (KD), a low-carbohydrates and high-fat diet, associated with a medium-chain triglycerides intake (MCTs) might induce benefices for Alzheimer disease patients. Carbohydrate restriction and MCTs promotes the production of ketone bodies from fatty acid degradation. These metabolites replacing glucose, serve the brain as energetic substrates, and induce neuroprotective effects. Such a nutritional support might slow down the disease progression and improve cognitive abilities of patients. This review aims to examine the neuroprotective mechanisms of KD in AD progression and describes the advantages and limitations of KD as a therapeutic strategy.
Collapse
Affiliation(s)
- Anouk Charlot
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Alix Lernould
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Irène Plus
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Joffrey Zoll
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
21
|
Kumar A, Karuppagounder SS, Chen Y, Corona C, Kawaguchi R, Cheng Y, Balkaya M, Sagdullaev BT, Wen Z, Stuart C, Cho S, Ming GL, Tuvikene J, Timmusk T, Geschwind DH, Ratan RR. 2-Deoxyglucose drives plasticity via an adaptive ER stress-ATF4 pathway and elicits stroke recovery and Alzheimer's resilience. Neuron 2023; 111:2831-2846.e10. [PMID: 37453419 PMCID: PMC10528360 DOI: 10.1016/j.neuron.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Intermittent fasting (IF) is a diet with salutary effects on cognitive aging, Alzheimer's disease (AD), and stroke. IF restricts a number of nutrient components, including glucose. 2-deoxyglucose (2-DG), a glucose analog, can be used to mimic glucose restriction. 2-DG induced transcription of the pro-plasticity factor, Bdnf, in the brain without ketosis. Accordingly, 2-DG enhanced memory in an AD model (5xFAD) and functional recovery in an ischemic stroke model. 2-DG increased Bdnf transcription via reduced N-linked glycosylation, consequent ER stress, and activity of ATF4 at an enhancer of the Bdnf gene, as well as other regulatory regions of plasticity/regeneration (e.g., Creb5, Cdc42bpa, Ppp3cc, and Atf3) genes. These findings demonstrate an unrecognized role for N-linked glycosylation as an adaptive sensor to reduced glucose availability. They further demonstrate that ER stress induced by 2-DG can, in the absence of ketosis, lead to the transcription of genes involved in plasticity and cognitive resilience as well as proteostasis.
Collapse
Affiliation(s)
- Amit Kumar
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Saravanan S Karuppagounder
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Yingxin Chen
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Carlo Corona
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuyan Cheng
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mustafa Balkaya
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Botir T Sagdullaev
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA; Regeneron Pharmaceuticals, Tarrytown, New York, NY, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Charles Stuart
- East Tennessee State University Quillen College of Medicine, Johnson City, TN, USA
| | - Sunghee Cho
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajiv R Ratan
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA.
| |
Collapse
|
22
|
Fehsel K. Why Is Iron Deficiency/Anemia Linked to Alzheimer's Disease and Its Comorbidities, and How Is It Prevented? Biomedicines 2023; 11:2421. [PMID: 37760862 PMCID: PMC10526115 DOI: 10.3390/biomedicines11092421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Impaired iron metabolism has been increasingly observed in many diseases, but a deeper, mechanistic understanding of the cellular impact of altered iron metabolism is still lacking. In addition, deficits in neuronal energy metabolism due to reduced glucose import were described for Alzheimer's disease (AD) and its comorbidities like obesity, depression, cardiovascular disease, and type 2 diabetes mellitus. The aim of this review is to present the molecular link between both observations. Insufficient cellular glucose uptake triggers increased ferritin expression, leading to depletion of the cellular free iron pool and stabilization of the hypoxia-induced factor (HIF) 1α. This transcription factor induces the expression of the glucose transporters (Glut) 1 and 3 and shifts the cellular metabolism towards glycolysis. If this first line of defense is not adequate for sufficient glucose supply, further reduction of the intracellular iron pool affects the enzymes of the mitochondrial electron transport chain and activates the AMP-activated kinase (AMPK). This enzyme triggers the translocation of Glut4 to the plasma membrane as well as the autophagic recycling of cell components in order to mobilize energy resources. Moreover, AMPK activates the autophagic process of ferritinophagy, which provides free iron urgently needed as a cofactor for the synthesis of heme- and iron-sulfur proteins. Excessive activation of this pathway ends in ferroptosis, a special iron-dependent form of cell death, while hampered AMPK activation steadily reduces the iron pools, leading to hypoferremia with iron sequestration in the spleen and liver. Long-lasting iron depletion affects erythropoiesis and results in anemia of chronic disease, a common condition in patients with AD and its comorbidities. Instead of iron supplementation, drugs, diet, or phytochemicals that improve energy supply and cellular glucose uptake should be administered to counteract hypoferremia and anemia of chronic disease.
Collapse
Affiliation(s)
- Karin Fehsel
- Neurobiochemical Research Unit, Department of Psychiatry, Medical Faculty, Heinrich-Heine-University, 240629 Düsseldorf, Germany
| |
Collapse
|
23
|
Sun S, Qin J, Liao W, Gao X, Shang Z, Luo D, Xiong S. Mitochondrial Dysfunction in Cardiotoxicity Induced by BCR-ABL1 Tyrosine Kinase Inhibitors -Underlying Mechanisms, Detection, Potential Therapies. Cardiovasc Toxicol 2023; 23:233-254. [PMID: 37479951 DOI: 10.1007/s12012-023-09800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The advent of BCR-ABL tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. Mitochondria are the key organelles for the maintenance of myocardial tissue homeostasis. However, cardiotoxicity associated with BCR-ABL1 TKIs can directly or indirectly cause mitochondrial damage and dysfunction, playing a pivotal role in cardiomyocytes homeostatic system and putting the cancer survivors at higher risk. In this review, we summarize the cardiotoxicity caused by BCR-ABL1 TKIs and the underlying mechanisms, which contribute dominantly to the damage of mitochondrial structure and dysfunction: endoplasmic reticulum (ER) stress, mitochondrial stress, damage of myocardial cell mitochondrial respiratory chain, increased production of mitochondrial reactive oxygen species (ROS), and other kinases and other potential mechanisms of cardiotoxicity induced by BCR-ABL1 TKIs. Furthermore, detection and management of BCR-ABL1 TKIs will promote our rational use, and cardioprotection strategies based on mitochondria will improve our understanding of the cardiotoxicity from a mitochondrial perspective. Ultimately, we hope shed light on clinical decision-making. By integrate and learn from both research and practice, we will endeavor to minimize the mitochondria-mediated cardiotoxicity and reduce the adverse sequelae associated with BCR-ABL1 TKIs.
Collapse
Affiliation(s)
- Sheng Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jiqiu Qin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhoubiao Shang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehua Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaoquan Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
24
|
Kong D, Sun JX, Yang JQ, Li YS, Bi K, Zhang ZY, Wang KH, Luo HY, Zhu M, Xu Y. Ketogenic diet: a potential adjunctive treatment for substance use disorders. Front Nutr 2023; 10:1191903. [PMID: 37575322 PMCID: PMC10414993 DOI: 10.3389/fnut.2023.1191903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Substance use disorders (SUD) can lead to serious health problems, and there is a great interest in developing new treatment methods to alleviate the impact of substance abuse. In recent years, the ketogenic diet (KD) has shown therapeutic benefits as a dietary therapy in a variety of neurological disorders. Recent studies suggest that KD can compensate for the glucose metabolism disorders caused by alcohol use disorder by increasing ketone metabolism, thereby reducing withdrawal symptoms and indicating the therapeutic potential of KD in SUD. Additionally, SUD often accompanies increased sugar intake, involving neural circuits and altered neuroplasticity similar to substance addiction, which may induce cross-sensitization and increased use of other abused substances. Reducing carbohydrate intake through KD may have a positive effect on this. Finally, SUD is often associated with mitochondrial damage, oxidative stress, inflammation, glia dysfunction, and gut microbial disorders, while KD may potentially reverse these abnormalities and serve a therapeutic role. Although there is much indirect evidence that KD has a positive effect on SUD, the small number of relevant studies and the fact that KD leads to side effects such as metabolic abnormalities, increased risk of malnutrition and gastrointestinal symptoms have led to the limitation of KD in the treatment of SUD. Here, we described the organismal disorders caused by SUD and the possible positive effects of KD, aiming to provide potential therapeutic directions for SUD.
Collapse
Affiliation(s)
- Deshenyue Kong
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-xue Sun
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji-qun Yang
- Third People’s Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, China
| | - Yuan-sen Li
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ke Bi
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zun-yue Zhang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Kun-hua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Hua-you Luo
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Xu
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
25
|
Ramakrishnan S, Mooli RGR, Han Y, Fiorenza E, Kumar S, Bello F, Nallanagulagari A, Karra S, Teng L, Jurczak M. Hepatic ketogenesis regulates lipid homeostasis via ACSL1-mediated fatty acid partitioning. RESEARCH SQUARE 2023:rs.3.rs-3147009. [PMID: 37503004 PMCID: PMC10371136 DOI: 10.21203/rs.3.rs-3147009/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Liver-derived ketone bodies play a crucial role in fasting energy homeostasis by fueling the brain and peripheral tissues. Ketogenesis also acts as a conduit to remove excess acetyl-CoA generated from fatty acid oxidation and protects against diet-induced hepatic steatosis. Surprisingly, no study has examined the role of ketogenesis in fasting-associated hepatocellular lipid metabolism. Ketogenesis is driven by the rate-limiting mitochondrial enzyme 3-hydroxymethylglutaryl CoA synthase (HMGCS2) abundantly expressed in the liver. Here, we show that ketogenic insufficiency via disruption of hepatic HMGCS2 exacerbates liver steatosis in fasted chow and high-fat-fed mice. We found that the hepatic steatosis is driven by increased fatty acid partitioning to the endoplasmic reticulum (ER) for re-esterification via acyl-CoA synthetase long-chain family member 1 (ACSL1). Mechanistically, acetyl-CoA accumulation from impaired hepatic ketogenesis is responsible for the elevated translocation of ACSL1 to the ER. Moreover, we show increased ER-localized ACSL1 and re-esterification of lipids in human NASH displaying impaired hepatic ketogenesis. Finally, we show that L-carnitine, which buffers excess acetyl-CoA, decreases the ER-associated ACSL1 and alleviates hepatic steatosis. Thus, ketogenesis via controlling hepatocellular acetyl-CoA homeostasis regulates lipid partitioning and protects against hepatic steatosis.
Collapse
|
26
|
Liebers DT, Ebina W, Iosifescu DV. Sodium-Glucose Cotransporter-2 Inhibitors in Depression. Harv Rev Psychiatry 2023; 31:214-221. [PMID: 37437254 DOI: 10.1097/hrp.0000000000000374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
ABSTRACT Novel treatment strategies that refract existing treatment algorithms for depressive disorders are being sought. Abnormal brain bioenergetic metabolism may represent an alternative, therapeutically targetable neurobiological basis for depression. A growing body of research points to endogenous ketones as candidate neuroprotective metabolites with the potential to enhance brain bioenergetics and improve mood. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for the treatment of diabetes, induce ketogenesis and are associated with mood improvement in population-based studies. In this column, we highlight the rationale for the hypothesis that ketogenesis induced by SGLT2 inhibitors may be an effective treatment for depressive disorders.
Collapse
Affiliation(s)
- David T Liebers
- From Department of Psychiatry, New York University Grossman School of Medicine (Drs. Liebers and Iosifescu); Division of Hematology and Medical Oncology, New York University Grossman School of Medicine (Dr. Ebina); Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Dr. Iosifescu)
| | | | | |
Collapse
|
27
|
Paoli A, Cerullo G. Investigating the Link between Ketogenic Diet, NAFLD, Mitochondria, and Oxidative Stress: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051065. [PMID: 37237931 DOI: 10.3390/antiox12051065] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Together with the global rise in obesity and metabolic syndrome, the prevalence of individuals who suffer from nonalcoholic fatty liver disease (NAFLD) has risen dramatically. NAFLD is currently the most common chronic liver disease and includes a continuum of liver disorders from initial fat accumulation to nonalcoholic steatohepatitis (NASH), considered the more severe forms, which can evolve in, cirrhosis, and hepatocellular carcinoma. Common features of NAFLD includes altered lipid metabolism mainly linked to mitochondrial dysfunction, which, as a vicious cycle, aggravates oxidative stress and promotes inflammation and, as a consequence, the progressive death of hepatocytes and the severe form of NAFLD. A ketogenic diet (KD), i.e., a diet very low in carbohydrates (<30 g/die) that induces "physiological ketosis", has been demonstrated to alleviate oxidative stress and restore mitochondrial function. Based on this, the aim of the present review is to analyze the body of evidence regarding the potential therapeutic role of KD in NAFLD, focusing on the interplay between mitochondria and the liver, the effects of ketosis on oxidative stress pathways, and the impact of KD on liver and mitochondrial function.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
28
|
Mishra Y, Kumar Kaundal R. Role of SIRT3 in mitochondrial biology and its therapeutic implications in neurodegenerative disorders. Drug Discov Today 2023; 28:103583. [PMID: 37028501 DOI: 10.1016/j.drudis.2023.103583] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
Sirtuin 3 (SIRT3), a mitochondrial deacetylase expressed preferentially in high-metabolic-demand tissues including the brain, requires NAD+ as a cofactor for catalytic activity. It regulates various processes such as energy homeostasis, redox balance, mitochondrial quality control, mitochondrial unfolded protein response (UPRmt), biogenesis, dynamics and mitophagy by altering protein acetylation status. Reduced SIRT3 expression or activity causes hyperacetylation of hundreds of mitochondrial proteins, which has been linked with neurological abnormalities, neuro-excitotoxicity and neuronal cell death. A body of evidence has suggested, SIRT3 activation as a potential therapeutic modality for age-related brain abnormalities and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India.
| |
Collapse
|
29
|
Cerasuolo M, Papa M, Colangelo AM, Rizzo MR. Alzheimer’s Disease from the Amyloidogenic Theory to the Puzzling Crossroads between Vascular, Metabolic and Energetic Maladaptive Plasticity. Biomedicines 2023; 11:biomedicines11030861. [PMID: 36979840 PMCID: PMC10045635 DOI: 10.3390/biomedicines11030861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive and degenerative disease producing the most common type of dementia worldwide. The main pathogenetic hypothesis in recent decades has been the well-known amyloidogenic hypothesis based on the involvement of two proteins in AD pathogenesis: amyloid β (Aβ) and tau. Amyloid deposition reported in all AD patients is nowadays considered an independent risk factor for cognitive decline. Vascular damage and blood–brain barrier (BBB) failure in AD is considered a pivotal mechanism for brain injury, with increased deposition of both immunoglobulins and fibrin. Furthermore, BBB dysfunction could be an early sign of cognitive decline and the early stages of clinical AD. Vascular damage generates hypoperfusion and relative hypoxia in areas with high energy demand. Long-term hypoxia and the accumulation within the brain parenchyma of neurotoxic molecules could be seeds of a self-sustaining pathological progression. Cellular dysfunction comprises all the elements of the neurovascular unit (NVU) and neuronal loss, which could be the result of energy failure and mitochondrial impairment. Brain glucose metabolism is compromised, showing a specific region distribution. This energy deficit worsens throughout aging. Mild cognitive impairment has been reported to be associated with a glucose deficit in the entorhinal cortex and in the parietal lobes. The current aim is to understand the complex interactions between amyloid β (Aβ) and tau and elements of the BBB and NVU in the brain. This new approach aimed at the study of metabolic mechanisms and energy insufficiency due to mitochondrial impairment would allow us to define therapies aimed at predicting and slowing down the progression of AD.
Collapse
Affiliation(s)
- Michele Cerasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- SYSBIO Centre of Systems Biology ISBE-IT, 20126 Milan, Italy
- Correspondence:
| | - Anna Maria Colangelo
- SYSBIO Centre of Systems Biology ISBE-IT, 20126 Milan, Italy
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
30
|
Xu Y, Zheng F, Zhong Q, Zhu Y. Ketogenic Diet as a Promising Non-Drug Intervention for Alzheimer’s Disease: Mechanisms and Clinical Implications. J Alzheimers Dis 2023; 92:1173-1198. [PMID: 37038820 DOI: 10.3233/jad-230002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is mainly characterized by cognitive deficits. Although many studies have been devoted to developing disease-modifying therapies, there has been no effective therapy until now. However, dietary interventions may be a potential strategy to treat AD. The ketogenic diet (KD) is a high-fat and low-carbohydrate diet with adequate protein. KD increases the levels of ketone bodies, providing an alternative energy source when there is not sufficient energy supply because of impaired glucose metabolism. Accumulating preclinical and clinical studies have shown that a KD is beneficial to AD. The potential underlying mechanisms include improved mitochondrial function, optimization of gut microbiota composition, and reduced neuroinflammation and oxidative stress. The review provides an update on clinical and preclinical research on the effects of KD or medium-chain triglyceride supplementation on symptoms and pathophysiology in AD. We also detail the potential mechanisms of KD, involving amyloid and tau proteins, neuroinflammation, gut microbiota, oxidative stress, and brain metabolism. We aimed to determine the function of the KD in AD and outline important aspects of the mechanism, providing a reference for the implementation of the KD as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Fuxiang Zheng
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Qi Zhong
- Department of Neurology, Shenzhen Luohu People’s Hospital; The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem Res 2023; 48:697-712. [PMID: 36342577 DOI: 10.1007/s11064-022-03809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.
Collapse
|
32
|
Effect of the Ketone Body, D-β-Hydroxybutyrate, on Sirtuin2-Mediated Regulation of Mitochondrial Quality Control and the Autophagy-Lysosomal Pathway. Cells 2023; 12:cells12030486. [PMID: 36766827 PMCID: PMC9914182 DOI: 10.3390/cells12030486] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial activity and quality control are essential for neuronal homeostasis as neurons rely on glucose oxidative metabolism. The ketone body, D-β-hydroxybutyrate (D-BHB), is metabolized to acetyl-CoA in brain mitochondria and used as an energy fuel alternative to glucose. We have previously reported that D-BHB sustains ATP production and stimulates the autophagic flux under glucose deprivation in neurons; however, the effects of D-BHB on mitochondrial turnover under physiological conditions are still unknown. Sirtuins (SIRTs) are NAD+-activated protein deacetylases involved in the regulation of mitochondrial biogenesis and mitophagy through the activation of transcription factors FOXO1, FOXO3a, TFEB and PGC1α coactivator. Here, we aimed to investigate the effect of D-BHB on mitochondrial turnover in cultured neurons and the mechanisms involved. Results show that D-BHB increased mitochondrial membrane potential and regulated the NAD+/NADH ratio. D-BHB enhanced FOXO1, FOXO3a and PGC1α nuclear levels in an SIRT2-dependent manner and stimulated autophagy, mitophagy and mitochondrial biogenesis. These effects increased neuronal resistance to energy stress. D-BHB also stimulated the autophagic-lysosomal pathway through AMPK activation and TFEB-mediated lysosomal biogenesis. Upregulation of SIRT2, FOXOs, PGC1α and TFEB was confirmed in the brain of ketogenic diet (KD)-treated mice. Altogether, the results identify SIRT2, for the first time, as a target of D-BHB in neurons, which is involved in the regulation of autophagy/mitophagy and mitochondrial quality control.
Collapse
|
33
|
Jayashankar SS, Arifin KT, Nasaruddin ML. β-Hydroxybutyrate Regulates Activated Microglia to Alleviate Neurodegenerative Processes in Neurological Diseases: A Scoping Review. Nutrients 2023; 15:524. [PMID: 36771231 PMCID: PMC9921456 DOI: 10.3390/nu15030524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
This scoping review aimed to summarise the effects of the ketone body β-hydroxybutyrate. The review details the revealed pathways and functional properties following its intervention in the context of neurodegenerative diseases. In this study, 5 research publications that met the inclusion and exclusion criteria were shortlisted. Following the intervention, we discovered a tendency of reduced inflammatory status in microglia, as evidenced by lower levels of pro-inflammatory mediators produced, reduced microgliosis in afflicted tissues, and enhanced cognitive functions in neurodegenerative models. We found that there is a significant overlap in the mechanism of action of β-hydroxybutyrate (BHB) via activation of the G-protein-Coupled Receptor 109A (GPR109a) receptor and deactivation of the inflammasome complex. Furthermore, although comparing outcomes can be challenging due to the heterogeneity in the study model, the results we have assembled here were consistent, giving us confidence in the intervention's efficacy. We also discussed new studies where BHB is involved in various roles in regulating inflammation in microglia, allowing for fresh therapeutic targets against neurodegeneration. This brief review provides evidence to support the huge potential of BHB in the treatment of neurodegenerative illnesses.
Collapse
Affiliation(s)
| | | | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKM-MC), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
34
|
Abstract
The prevalence of neonatal hypoxic-ischemic encephalopathy (HIE), a devastating neurological injury, is increasing; thus, effective treatments and preventions are urgently needed. The underlying pathology of HIE remains unclear; recent research has focused on elucidating key features of the disease. A variety of diseases can be alleviated by consuming a ketogenic diet (KD) despite differences in pathogenesis and features, given the common mechanisms of KD-induced effects. Dietary modification is the most translatable, cost-efficient, and safest approach to treat acute or chronic neurological disorders and reduces reliance on pharmaceutical treatments. Evidence suggests that the KD can exert beneficial effects in animal models and in humans with brain injuries. The efficacy of the KD in preventing neuronal damage, motor alterations, and cognitive decline varies. Moreover, the KD may provide an alternative source of energy, enhance mitochondrial function, and reduce the expression of inflammatory and apoptotic mediators. Thus, this diet has attracted interest as a potential therapy for HIE. This review examined the role of the KD in HIE treatment and described the mechanisms by which ketone bodies (KBs) exert effects under pathological conditions and protect against brain damage; the evidence supports the implementation of dietary interventions as a therapeutic strategy for HIE. Future research should aim to elucidate the underlying mechanisms of the KD in patients with HIE and determine whether the effect of the KD on clinical outcomes can be reproduced in humans.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, 610500 Chengdu, China
| | - Luqiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Haichuan Wang
- Department of Paediatrics, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, China
| |
Collapse
|
35
|
Heo J, Noble EE, Call JA. The role of exerkines on brain mitochondria: a mini-review. J Appl Physiol (1985) 2023; 134:28-35. [PMID: 36417200 PMCID: PMC9799148 DOI: 10.1152/japplphysiol.00565.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from peripheral systems, such as skeletal muscle, mediates the effects of exercise on the brain. Consequently, it has been proposed that factors secreted by all organs in response to physical exercise should be more broadly termed the "exerkines." Accumulating findings suggest that exerkines derived from skeletal muscle, liver, and adipose tissues directly impact brain mitochondrial function. Mitochondria play a pivotal role in regulating neuronal energy metabolism, neurotransmission, cell repair, and maintenance in the brain, and therefore exerkines may act via impacting brain mitochondria to improve brain function and disease resistance. Therefore, herein we review studies investigating the impact of muscle-, liver-, and adipose tissue-derived exerkines on brain cognitive and metabolic function via modulating mitochondrial bioenergetics, content, and dynamics under healthy and/or disease conditions.
Collapse
Affiliation(s)
- Junwon Heo
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Emily E Noble
- Department of Nutritional Science, College of Family and Consumer Sciences, University of Georgia, Athens, Georgia
| | - Jarrod A Call
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
36
|
PGC-1α participates in tumor chemoresistance by regulating glucose metabolism and mitochondrial function. Mol Cell Biochem 2023; 478:47-57. [PMID: 35713741 DOI: 10.1007/s11010-022-04477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/10/2022] [Indexed: 01/22/2023]
Abstract
Chemotherapy resistance is the main reason for the failure of cancer treatment. The mechanism of drug resistance is complex and diverse. In recent years, the role of glucose metabolism and mitochondrial function in cancer resistance has gathered considerable interest. The increase in metabolic plasticity of cancer cells' mitochondria and adaptive changes to the mitochondrial function are some of the mechanisms through which cancer cells resist chemotherapy. As a key molecule regulating the mitochondrial function and glucose metabolism, PGC-1α plays an indispensable role in cancer progression. However, the role of PGC-1α in chemotherapy resistance remains controversial. Here, we discuss the role of PGC-1α in glucose metabolism and mitochondrial function and present a comprehensive overview of PGC-1α in chemotherapy resistance.
Collapse
|
37
|
Yu BJ, Oz RS, Sethi S. Ketogenic diet as a metabolic therapy for bipolar disorder: Clinical developments. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2022.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
38
|
Li Y, Li J, Wu G, Yang H, Yang X, Wang D, He Y. Role of SIRT3 in neurological diseases and rehabilitation training. Metab Brain Dis 2023; 38:69-89. [PMID: 36374406 PMCID: PMC9834132 DOI: 10.1007/s11011-022-01111-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Sirtuin3 (SIRT3) is a deacetylase that plays an important role in normal physiological activities by regulating a variety of substrates. Considerable evidence has shown that the content and activity of SIRT3 are altered in neurological diseases. Furthermore, SIRT3 affects the occurrence and development of neurological diseases. In most cases, SIRT3 can inhibit clinical manifestations of neurological diseases by promoting autophagy, energy production, and stabilization of mitochondrial dynamics, and by inhibiting neuroinflammation, apoptosis, and oxidative stress (OS). However, SIRT3 may sometimes have the opposite effect. SIRT3 can promote the transfer of microglia. Microglia in some cases promote ischemic brain injury, and in some cases inhibit ischemic brain injury. Moreover, SIRT3 can promote the accumulation of ceramide, which can worsen the damage caused by cerebral ischemia-reperfusion (I/R). This review comprehensively summarizes the different roles and related mechanisms of SIRT3 in neurological diseases. Moreover, to provide more ideas for the prognosis of neurological diseases, we summarize several SIRT3-mediated rehabilitation training methods.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Jing Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Guangbin Wu
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Hua Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Xiaosong Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Dongyu Wang
- Department of Neurology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Yanhui He
- Department of Radiology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China.
| |
Collapse
|
39
|
Haghshenas L, Nabi-Afjadi M, Zalpoor H, Bakhtiyari M, Marotta F. Energy Restriction on Cellular and Molecular Mechanisms in Aging. EVIDENCE-BASED FUNCTIONAL FOODS FOR PREVENTION OF AGE-RELATED DISEASES 2023:297-323. [DOI: 10.1007/978-981-99-0534-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
40
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Mitochondrial function and nutrient sensing pathways in ageing: enhancing longevity through dietary interventions. Biogerontology 2022; 23:657-680. [PMID: 35842501 DOI: 10.1007/s10522-022-09978-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Ageing is accompanied by alterations in several biochemical processes, highly influenced by its environment. It is controlled by the interactions at various levels of biological hierarchy. To maintain homeostasis, a number of nutrient sensors respond to the nutritional status of the cell and control its energy metabolism. Mitochondrial physiology is influenced by the energy status of the cell. The alterations in mitochondrial physiology and the network of nutrient sensors result in mitochondrial damage leading to age related metabolic degeneration and diseases. Calorie restriction (CR) has proved to be as the most successful intervention to achieve the goal of longevity and healthspan. CR elicits a hormetic response and regulates metabolism by modulating these networks. In this review, the authors summarize the interdependent relationship between mitochondrial physiology and nutrient sensors during the ageing process and their role in regulating metabolism.
Collapse
|
42
|
Field R, Field T, Pourkazemi F, Rooney K. Ketogenic diets and the nervous system: a scoping review of neurological outcomes from nutritional ketosis in animal studies. Nutr Res Rev 2022; 35:268-281. [PMID: 34180385 DOI: 10.1017/s0954422421000214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Ketogenic diets have reported efficacy for neurological dysfunctions; however, there are limited published human clinical trials elucidating the mechanisms by which nutritional ketosis produces therapeutic effects. The purpose of this present study was to investigate animal models that report variations in nervous system function by changing from a standard animal diet to a ketogenic diet, synthesise these into broad themes, and compare these with mechanisms reported as targets in pain neuroscience to inform human chronic pain trials. METHODS An electronic search of seven databases was conducted in July 2020. Two independent reviewers screened studies for eligibility, and descriptive outcomes relating to nervous system function were extracted for a thematic analysis, then synthesised into broad themes. RESULTS In total, 170 studies from eighteen different disease models were identified and grouped into fourteen broad themes: alterations in cellular energetics and metabolism, biochemical, cortical excitability, epigenetic regulation, mitochondrial function, neuroinflammation, neuroplasticity, neuroprotection, neurotransmitter function, nociception, redox balance, signalling pathways, synaptic transmission and vascular supply. DISCUSSION The mechanisms presented centred around the reduction of inflammation and oxidative stress as well as a reduction in nervous system excitability. Given the multiple potential mechanisms presented, it is likely that many of these are involved synergistically and undergo adaptive processes within the human body, and controlled animal models that limit the investigation to a particular pathway in isolation may reach differing conclusions. Attention is required when translating this information to human chronic pain populations owing to the limitations outlined from the animal research.
Collapse
Affiliation(s)
- Rowena Field
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| | - Tara Field
- The New South Wales Ministry of Health (NSW Health), Sydney, Australia
| | | | - Kieron Rooney
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
43
|
Dyńka D, Kowalcze K, Paziewska A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients 2022; 14:5003. [PMID: 36501033 PMCID: PMC9739023 DOI: 10.3390/nu14235003] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Over a hundred years of study on the favourable effect of ketogenic diets in the treatment of epilepsy have contributed to a long-lasting discussion on its potential influence on other neurological diseases. A significant increase in the number of scientific studies in that field has been currently observed. The aim of this paper is a widespread, thorough analysis of the available scientific evidence in respect of the role of the ketogenic diet in the therapy of neurological diseases such as: epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A wide range of the mechanisms of action of the ketogenic diet has been demonstrated in neurological diseases, including, among other effects, its influence on the reduction in inflammatory conditions and the amount of reactive oxygen species (ROS), the restoration of the myelin sheath of the neurons, the formation and regeneration of mitochondria, neuronal metabolism, the provision of an alternative source of energy for neurons (ketone bodies), the reduction in glucose and insulin concentrations, the reduction in amyloid plaques, the induction of autophagy, the alleviation of microglia activation, the reduction in excessive neuronal activation, the modulation of intestinal microbiota, the expression of genes, dopamine production and the increase in glutamine conversion into GABA. The studies discussed (including randomised controlled studies), conducted in neurological patients, have stressed the effectiveness of the ketogenic diet in the treatment of epilepsy and have demonstrated its promising therapeutic potential in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A frequent advantage of the diet was demonstrated over non-ketogenic diets (in the control groups) in the therapy of neurological diseases, with simultaneous safety and feasibility when conducting the nutritional model.
Collapse
Affiliation(s)
- Damian Dyńka
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Katarzyna Kowalcze
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
44
|
Mohammadifard N, Haghighatdoost F, Rahimlou M, Rodrigues APS, Gaskarei MK, Okhovat P, de Oliveira C, Silveira EA, Sarrafzadegan N. The Effect of Ketogenic Diet on Shared Risk Factors of Cardiovascular Disease and Cancer. Nutrients 2022; 14:nu14173499. [PMID: 36079756 PMCID: PMC9459811 DOI: 10.3390/nu14173499] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer are the first and second leading causes of death worldwide, respectively. Epidemiological evidence has demonstrated that the incidence of cancer is elevated in patients with CVD and vice versa. However, these conditions are usually regarded as separate events despite the presence of shared risk factors between both conditions, such as metabolic abnormalities and lifestyle. Cohort studies suggested that controlling for CVD risk factors may have an impact on cancer incidence. Therefore, it could be concluded that interventions that improve CVD and cancer shared risk factors may potentially be effective in preventing and treating both diseases. The ketogenic diet (KD), a low-carbohydrate and high-fat diet, has been widely prescribed in weight loss programs for metabolic abnormalities. Furthermore, recent research has investigated the effects of KD on the treatment of numerous diseases, including CVD and cancer, due to its role in promoting ketolysis, ketogenesis, and modifying many other metabolic pathways with potential favorable health effects. However, there is still great debate regarding prescribing KD in patients either with CVD or cancer. Considering the number of studies on this topic, there is a clear need to summarize potential mechanisms through which KD can improve cardiovascular health and control cell proliferation. In this review, we explained the history of KD, its types, and physiological effects and discussed how it could play a role in CVD and cancer treatment and prevention.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Fahimeh Haghighatdoost
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Correspondence: ; Tel.: +98-31-36115318
| | - Mehran Rahimlou
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4515863994, Iran
| | | | - Mohammadamin Khajavi Gaskarei
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Paria Okhovat
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
45
|
Gao L, Cao M, Du GH, Qin XM. Huangqin Decoction Exerts Beneficial Effects on Rotenone-Induced Rat Model of Parkinson's Disease by Improving Mitochondrial Dysfunction and Alleviating Metabolic Abnormality of Mitochondria. Front Aging Neurosci 2022; 14:911924. [PMID: 35912075 PMCID: PMC9334858 DOI: 10.3389/fnagi.2022.911924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and the pathogenesis of PD is closely related to mitochondrial dysfunction. Previous studies have indicated that traditional Chinese medicine composition of Huangqin Decoction (HQD), including Scutellariae Radix, licorice, and Paeoniae Radix Alba, has therapeutic effects on PD, but whether HQD has a therapeutic effect on PD has not been reported. In this study, the protective effects of HQD on rotenone-induced PD rats were evaluated by behavioral assays (open field, rotating rod, suspension, gait, inclined plate, and grid) and immunohistochemistry. The mechanisms of HQD on attenuation of mitochondrial dysfunction were detected by biochemical assays and mitochondrial metabolomics. The results showed that HQD (20 g/kg) can protect rats with PD by improving motor coordination and muscle strength, increasing the number of tyrosine hydroxylase (TH)-positive neurons in rats with PD. Besides, HQD can improve mitochondrial dysfunction by increasing the content of adenosine triphosphate (ATP) and mitochondrial complex I. Mitochondrial metabolomics analysis revealed that the ketone body of acetoacetic acid (AcAc) in the rotenone group was significantly higher than that of the control group. Ketone bodies have been known to be used as an alternative energy source to provide energy to the brain when glucose was deficient. Further studies demonstrated that HQD could increase the expression of glucose transporter GLUT1, the content of tricarboxylic acid cycle rate-limiting enzyme citrate synthase (CS), and the level of hexokinase (HK) in rats with PD but could decrease the content of ketone bodies [AcAc and β-hydroxybutyric acid (β-HB)] and the expression of their transporters (MCT1). Our study revealed that the decrease of glucose metabolism in the rotenone group was parallel to the increase of substitute substrates (ketone bodies) and related transporters, and HQD could improve PD symptoms by activating the aerobic glycolysis pathway.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- *Correspondence: Li Gao
| | - Min Cao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-hua Du
- Peking Union Medical College, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- Xue-mei Qin
| |
Collapse
|
46
|
Zhang Z, Zhang A, Liu Y, Hu X, Fang Y, Wang X, Luo Y, Lenahan C, Chen S. New Mechanisms and Targets of Subarachnoid Hemorrhage: A Focus on Mitochondria. Curr Neuropharmacol 2022; 20:1278-1296. [PMID: 34720082 PMCID: PMC9881073 DOI: 10.2174/1570159x19666211101103646] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for 5-10% of all strokes and is a subtype of hemorrhagic stroke that places a heavy burden on health care. Despite great progress in surgical clipping and endovascular treatment for ruptured aneurysms, cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) threaten the long-term outcomes of patients with SAH. Moreover, there are limited drugs available to reduce the risk of DCI and adverse outcomes in SAH patients. New insight suggests that early brain injury (EBI), which occurs within 72 h after the onset of SAH, may lay the foundation for further DCI development and poor outcomes. The mechanisms of EBI mainly include excitotoxicity, oxidative stress, neuroinflammation, blood-brain barrier (BBB) destruction, and cellular death. Mitochondria are a double-membrane organelle, and they play an important role in energy production, cell growth, differentiation, apoptosis, and survival. Mitochondrial dysfunction, which can lead to mitochondrial membrane potential (Δψm) collapse, overproduction of reactive oxygen species (ROS), release of apoptogenic proteins, disorders of mitochondrial dynamics, and activation of mitochondria-related inflammation, is considered a novel mechanism of EBI related to DCI as well as post-SAH outcomes. In addition, mitophagy is activated after SAH. In this review, we discuss the latest perspectives on the role of mitochondria in EBI and DCI after SAH. We emphasize the potential of mitochondria as therapeutic targets and summarize the promising therapeutic strategies targeting mitochondria for SAH.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital, Taizhou, Zhejiang Province, China;
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,Address correspondence to this author at the Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Tel: +86-571-87784815; Fax: +86-571-87784755; E-mail:
| |
Collapse
|
47
|
Persad KL, Lopaschuk GD. Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Front Cell Dev Biol 2022; 10:886393. [PMID: 35865630 PMCID: PMC9294643 DOI: 10.3389/fcell.2022.886393] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Alterations in energy metabolism play a major role in the lineage of cardiomyocytes, such as the dramatic changes that occur in the transition from neonate to newborn. As cardiomyocytes mature, they shift from a primarily glycolytic state to a mitochondrial oxidative metabolic state. Metabolic intermediates and metabolites may have epigenetic and transcriptional roles in controlling cell fate by increasing mitochondrial biogenesis. In the maturing cardiomyocyte, such as in the postnatal heart, fatty acid oxidation increases in conjunction with increased mitochondrial biogenesis driven by the transcriptional coregulator PGC1-α. PGC1-α is necessary for mitochondrial biogenesis in the heart at birth, with deficiencies leading to postnatal cardiomyopathy. While stem cell therapy as a treatment for heart failure requires further investigation, studies suggest that adult stem cells may secrete cardioprotective factors which may regulate cardiomyocyte differentiation and survival. This review will discuss how metabolism influences mitochondrial biogenesis and how mitochondrial biogenesis influences cell fate, particularly in the context of the developing cardiomyocyte. The implications of energy metabolism on stem cell differentiation into cardiomyocytes and how this may be utilized as a therapy against heart failure and cardiovascular disease will also be discussed.
Collapse
|
48
|
Taylor MK, Sullivan DK, Keller JE, Burns JM, Swerdlow RH. Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer’s Disease. Front Neurosci 2022; 16:899612. [PMID: 35784855 PMCID: PMC9243383 DOI: 10.3389/fnins.2022.899612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by clinical decline in memory and other cognitive functions. A classic AD neuropathological hallmark includes the accumulation of amyloid-β (Aβ) plaques, which may precede onset of clinical symptoms by over a decade. Efforts to prevent or treat AD frequently emphasize decreasing Aβ through various mechanisms, but such approaches have yet to establish compelling interventions. It is still not understood exactly why Aβ accumulates in AD, but it is hypothesized that Aβ and other downstream pathological events are a result of impaired bioenergetics, which can also manifest prior to cognitive decline. Evidence suggests that individuals with AD and at high risk for AD have functional brain ketone metabolism and ketotherapies (KTs), dietary approaches that produce ketone bodies for energy metabolism, may affect AD pathology by targeting impaired brain bioenergetics. Cognitively normal individuals with elevated brain Aβ, deemed “preclinical AD,” and older adults with peripheral metabolic impairments are ideal candidates to test whether KTs modulate AD biology as they have impaired mitochondrial function, perturbed brain glucose metabolism, and elevated risk for rapid Aβ accumulation and symptomatic AD. Here, we discuss the link between brain bioenergetics and Aβ, as well as the potential for KTs to influence AD risk and progression.
Collapse
Affiliation(s)
- Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- *Correspondence: Matthew K. Taylor,
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
49
|
Pietrzak D, Kasperek K, Rękawek P, Piątkowska-Chmiel I. The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022; 14:1952. [PMID: 35565918 PMCID: PMC9102882 DOI: 10.3390/nu14091952] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate and adequate-protein diet that has gained popularity in recent years in the context of neurological diseases (NDs). The complexity of the pathogenesis of these diseases means that effective forms of treatment are still lacking. Conventional therapy is often associated with increasing tolerance and/or drug resistance. Consequently, more effective therapeutic strategies are being sought to increase the effectiveness of available forms of therapy and improve the quality of life of patients. For the moment, it seems that KD can provide therapeutic benefits in patients with neurological problems by effectively controlling the balance between pro- and antioxidant processes and pro-excitatory and inhibitory neurotransmitters, and modulating inflammation or changing the composition of the gut microbiome. In this review we evaluated the potential therapeutic efficacy of KD in epilepsy, depression, migraine, Alzheimer's disease and Parkinson's disease. In our opinion, KD should be considered as an adjuvant therapeutic option for some neurological diseases.
Collapse
Affiliation(s)
- Diana Pietrzak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| | | | | | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| |
Collapse
|
50
|
USE OF KETOGENIC DIET THERAPY IN EPILEPSY WITH MITOCHONDRIAL DYSFUNCTION: A SYSTEMATIC AND CRITICAL REVIEW. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the development of molecular techniques over time more than %60 of epilepsy has associated with mitochondrial (mt) dysfunction. Ketogenic diet (KD) has been used in the treatment of epilepsy since the 1920s. Aim. To evaluate the evidence behind KD in mt dysfunction in epilepsy. Methods. Databases PubMed, Google Scholar and MEDLINE were searched in an umbrella approach to 12 March 2021 in English. To identify relevant studies specific search strategies were devised for the following topics: (1) mitochondrial dysfunction (2) epilepsy (3) KD treatment. Results. From 1794 papers, 36 articles were included in analysis: 16 (%44.44) preclinical studies, 11 (%30.55) case reports, 9 (%25) clinical studies. In all the preclinic studies, KD regulated the number of mt profiles, transcripts of metabolic enzymes and encoding mt proteins, protected the mice against to seizures and had an anticonvulsant mechanism. Case reports and clinical trials have reported patients with good results in seizure control and mt functions, although not all of them give good results as well as preclinical. Conclusion. Healthcare institutions, researchers, neurologists, health promotion organizations, and dietitians should consider these results to improve KD programs and disease outcomes for mt dysfunction in epilepsy.
Collapse
|