1
|
Hadkar VM, Mohanty C, Selvaraj CI. Biopolymeric nanocarriers in cancer therapy: unleashing the potency of bioactive anticancer compounds for enhancing drug delivery. RSC Adv 2024; 14:25149-25173. [PMID: 39139249 PMCID: PMC11317881 DOI: 10.1039/d4ra03911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Effective cancer treatment is becoming a global concern, and recent developments in nanomedicine are essential for its treatment. Cancer is a severe metabolic syndrome that affects the human population and is a significant contributing factor to deaths globally. In science, nanotechnology offers rapidly developing delivery methods for natural bioactive compounds that are becoming increasingly prominent and can be used to treat diseases in a site-specific way. Chemotherapy and radiotherapy are conventional approaches for preventing cancer progression and have adverse effects on the human body. Many chemically synthesized drugs are used as anticancer agents, but they have several side effects; hence, they are less preferred. Medicinal plants and marine microorganisms represent a vast, mostly untapped reservoir of bioactive compounds for cancer treatment. However, they have several limitations, including nonspecific targeting, weak water solubility and limited therapeutic potential. An alternative option is the use of biopolymeric nanocarriers, which can generate effective targeted treatment therapies when conjugated with natural anticancer compounds. The present review focuses on biopolymeric nanocarriers utilizing natural sources as anticancer drugs with improved tumor-targeting efficiency. This review also covers various natural anticancer compounds, the advantages and disadvantages of natural and synthetic anticancer compounds, the problems associated with natural anticancer drugs and the advantages of biopolymeric nanocarriers over synthetic nanocarriers as drug delivery agents. This review also discusses various biopolymeric nanocarriers for enhancing the controlled delivery of anticancer compounds and the future development of nanomedicines for treating cancer.
Collapse
Affiliation(s)
- Vrushali Manoj Hadkar
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chirasmita Mohanty
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Sciences and Advanced Learning (VAIAL), VIT Vellore 632014 Tamil Nadu India
| |
Collapse
|
2
|
Babayan-Mashhadi F, Rezvani-Noghani A, Mokaberi P, Amiri-Tehranizadeh Z, Saberi MR, Chamani J. Exploring the binding behavior mechanism of vitamin B 12 to α-Casein and β-Casein: multi-spectroscopy and molecular dynamic approaches. J Biomol Struct Dyn 2024; 42:5995-6012. [PMID: 37403294 DOI: 10.1080/07391102.2023.2230295] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
The aim of this study was to investigate the behavior interaction of α-Casein-B12 and β-Casein-B12 complexes as binary systems through the methods of multiple spectroscopic, zeta potential, calorimetric, and molecular dynamics (MD) simulation. Fluorescence spectroscopy denoted the role ofB12as a quencher in both cases of α-Casein and β-Casein fluorescence intensities, which also verifies the existence of interactions. The quenching constants of α-Casein-B12 and β-Casein-B12 complexes at 298 K in the first set of binding sites were 2.89 × 104 and 4.41 × 104 M-1, while the constants of second set of binding sites were 8.56 × 104 and 1.58 × 105 M-1, respectively. The data of synchronized fluorescence spectroscopy at Δλ = 60 nm were indicative of the closer location of β-Casein-B12 complex to the Tyr residues. Additionally, the binding distance between B12 and the Trp residues of α-Casein and β-Casein were obtained in accordance to the Förster's theory of nonradioactive energy transfer to be 1.95 nm and 1.85 nm, respectively. Relatively, the RLS results demonstrated the production of larger particles in both systems, while the outcomes of zeta potential confirmed the formation of α-Casein-B12 and β-Casein-B12 complexes and approved the existence of electrostatic interactions. We also evaluated the thermodynamic parameters by considering the fluorescence data at three varying temperatures. According to the nonlinear Stern-Volmer plots of α-Casein and β-Casein in the presence of B12 in binary systems, the two sets of binding sites indicated the detection of two types of interaction behaviors. Time-resolved fluorescence results revealed that the fluorescence quenching of complexes are static mechanism. Furthermore, the outcomes of circular dichroism (CD) represented the occurrence of conformational changes in α-Casein and β-Casein upon their binding to B12 as the binary system. The experimental results that were obtained throughout the binding of α-Casein-B12 and β-Casein-B12 complexes were confirmed by molecular modeling.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Parisa Mokaberi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
3
|
Tang H, Dong L, Xia X, Chen X, Ren M, Shu G, Fu H, Lin J, Zhao L, Zhang L, Cheng G, Wang X, Zhang W. Preparation, Optimization, and Anti-Pulmonary Infection Activity of Casein-Based Chrysin Nanoparticles. Int J Nanomedicine 2024; 19:5511-5522. [PMID: 38895144 PMCID: PMC11182753 DOI: 10.2147/ijn.s457643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Chrysin has a wide range of biological activities, but its poor bioavailability greatly limits its use. Here, we attempted to prepare casein (cas)-based nanoparticles to promote the biotransfer of chrysin, which demonstrated better bioavailability and anti-infection activity compared to free chrysin. Methods Cas-based chrysin nanoparticles were prepared and characterized, and most of the preparation process was optimized. Then, the in vitro and in vivo release characteristics were studied, and anti-pulmonary infection activity was evaluated. Results The constructed chrysin-cas nanoparticles exhibited nearly spherical morphology with particle size and ζ potential of 225.3 nm and -33 mV, respectively. These nanoparticles showed high encapsulation efficiency and drug-loading capacity of 79.84% ± 1.81% and 11.56% ± 0.28%, respectively. In vitro release studies highlighted a significant improvement in the release profile of the chrysin-cas nanoparticles (CCPs). In vivo experiments revealed that the relative oral bioavailability of CCPs was approximately 2.01 times higher than that of the free chrysin suspension. Further investigations indicated that CCPs effectively attenuated pulmonary infections caused by Acinetobacter baumannii by mitigating oxidative stress and reducing pro-inflammatory cytokines levels, and the efficacy was better than that of the free chrysin suspension. Conclusion The findings underscore the advantageous bioavailability of CCPs and their protective effects against pulmonary infections. Such advancements position CCPs as a promising pharmaceutical agent and candidate for future therapeutic drug innovations.
Collapse
Affiliation(s)
- Huaqiao Tang
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Liying Dong
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Xue Xia
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Xinling Chen
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Meichen Ren
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Gang Shu
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Hualin Fu
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Juchun Lin
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Ling Zhao
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Li Zhang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, People’s Republic of China
| | - Guoqiang Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, People’s Republic of China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Wei Zhang
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| |
Collapse
|
4
|
Casein-Based Nanoparticles: A Potential Tool for the Delivery of Daunorubicin in Acute Lymphocytic Leukemia. Pharmaceutics 2023; 15:pharmaceutics15020471. [PMID: 36839793 PMCID: PMC9967267 DOI: 10.3390/pharmaceutics15020471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to develop casein-based nanoscale carriers as a potential delivery system for daunorubicin, as a pH-responsive targeting tool for acute lymphocytic leukemia. A coacervation technique followed by nano spray-drying was used for the preparation of drug-loaded casein nanoparticles. Four batches of drug-loaded formulations were developed at varied drug-polymer ratios using a simple coacervation technique followed by spray-drying. They were further characterized using scanning electron microscopy, dynamic light scattering, FTIR spectroscopy, XRD diffractometry, and differential scanning calorimetry. Drug release was investigated in different media (pH 5 and 7.4). The cytotoxicity of the daunorubicin-loaded nanoparticles was compared to that of the pure drug. The influence of the polymer-to-drug ratio on the nanoparticles' properties such as their particle size, surface morphology, production yield, drug loading, entrapment efficiency, and drug release behavior was studied. Furthermore, the cytotoxicity of the drug-loaded nanoparticles was investigated confirming their potential as carriers for daunorubicin delivery.
Collapse
|
5
|
France TC, Kelly AL, Crowley SV, O’Mahony JA. Influence of processing temperature on plasmin activity and proteolysis in process streams from cold microfiltration of skim milk. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
A comparative evaluation of anti-tumor activity following oral and intravenous delivery of doxorubicin in a xenograft model of breast tumor. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
Natural materials have been extensively studied for oral drug delivery due to their biodegradability and other unique properties. In the current research, we fabricated sodium caseinate nanomicelles (NaCNs) using casein as a natural polymer to develop a controlled-release oral delivery system that would improve the therapeutic potential of doxorubicin (DOX) and reduce its toxicity.
Methods
DOX-loaded NaCNs were synthesized and thoroughly characterized, then subjected to in vivo anti-tumor evaluation and bio-distribution analysis in a 4T1-induced breast cancer model.
Results
Our findings indicated that the tumor would shrink by eight-fold in the group orally treated with DOX-NaCNs when compared to free DOX. The tumor accumulated drug 1.27-fold more from the orally administered DOX-NaCNs compared to the intravenously administered DOX-NaCNs, 6.8-fold more compared to free DOX, and 8.34-times more compared to orally administered free DOX. In comparison, the orally administered DOX-NaCNs lead to a significant reduction in tumor size (5.66 ± 4.36 mm3) compared to intravenously administered DOX-NaCNs (10.29 ± 4.86 mm3) on day 17 of the experiment. NaCNs were well tolerated at a single dose of 2000 mg/kg in an acute oral toxicity study.
Conclusion
The enhanced anti-tumor effects of oral DOX-NaCNs might be related to the controlled release of DOX from the delivery system when compared to free DOX and the intravenous formulation of DOX-NaCNs. Moreover, NaCNs is recognized as a safe and non-toxic delivery system with excellent bio-distribution profile and high anti-tumor effects that has a potential for oral chemotherapy.
Collapse
|
7
|
Tasleem, Shanthi N, Mahato AK, Bahuguna R. Oral delivery of butoconazole nitrate nanoparticles for systemic treatment of chronic paracoccidioidomycosis: A future aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Semwal R, Joshi SK, Semwal RB, Sodhi M, Upadhyaya K, Semwal DK. Effects of A1 and A2 variants of β-casein on human health—is β-casomorphin-7 really a harmful peptide in cow milk? NUTRIRE 2022; 47:8. [DOI: 10.1186/s41110-022-00159-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/19/2022] [Indexed: 01/03/2025]
|
9
|
Wang Q, Li M, Zheng Z, Niu Y, Xue X, Ao C, Zhang W, Lu C. Polyethylenimine-Functionalized Nanofiber Nonwovens Electrospun from Cotton Cellulose for Wound Dressing with High Drug Loading and Sustained Release Properties. Polymers (Basel) 2022; 14:polym14091748. [PMID: 35566917 PMCID: PMC9105497 DOI: 10.3390/polym14091748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Electrospun cellulose nanofiber nonwovens have shown promise in wound dressing owing to the highly interconnected pore structure, high hydrophilicity coupled with other coveted characteristics of biodegradability, biocompatibility and renewability. However, electrospun cellulose wound dressings with loaded drugs for better wound healing have been rarely reported. In this study, a novel wound dressing with a high drug loading capacity and sustained drug release properties was successfully fabricated via electropinning of cellulose followed by polyethylenimine (PEI)-functionalization. Remarkably, the grafted PEI chains on the surface of electrospun cellulose nanofibers provided numerous active amino groups, while the highly porous structure of nonwovens could be well retained after modification, which resulted in enhanced adsorption performance against the anionic drug of sodium salicylate (NaSA). More specifically, when immersed in 100 mg/L NaSA solution for 24 h, the as-prepared cellulose-PEI nonwoven displayed a multilayer adsorption behavior. And at the optimal pH of 3, a high drug loading capacity of 78 mg/g could be achieved, which was 20 times higher than that of pristine electrospun cellulose nonwoven. Furthermore, it was discovered that the NaSA-loaded cellulose-PEI could continuously release the drug for 12 h in simulated body fluid (SBF), indicating the versatility of cellulose-PEI as an advanced wound dressing with drug carrier functionalities.
Collapse
Affiliation(s)
- Qunhao Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
| | - Mei Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
| | - Yan Niu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
| | - Xiaolin Xue
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
| | - Chenghong Ao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
- Correspondence: (W.Z.); (C.L.); Tel.: +86-28-85460607 (W.Z.); Fax: +86-28-85402465 (W.Z.)
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
- Correspondence: (W.Z.); (C.L.); Tel.: +86-28-85460607 (W.Z.); Fax: +86-28-85402465 (W.Z.)
| |
Collapse
|
10
|
Zare Karizak A, Divsalar A, Leilabadi Asl A, Fateminasab F, Shityakov S, Saboury AA. Molecular insights into the interaction of 5-fluorouracil and Fe 3O 4 nanoparticles with beta-casein: An experimental and theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120538. [PMID: 34749259 DOI: 10.1016/j.saa.2021.120538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/12/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
We investigated the potential carrier of milk beta-casein (β-CN) and its interactions with 5-fluorouracil (5-FU) and iron oxide nanoparticles (Fe3O4 NPs). We used different spectroscopic methods of fluorescence, UV-Visble, circular dichroism (CD), synchronous fluorescence, zeta potential assay, and computational studies to clarify the protein interaction with 5-FU and Fe3O4 NPs. The fluorescence data indicated both Fe3O4 NPs and 5-FU could quench the intrinsic fluorescence of β-CN. Fluorescence measurements showed that the single interaction of β-CN with 5-FU or Fe3O4 NPs was static, while reacted β-CN with both 5-FU and Fe3O4 NPs simultaneously showed a dynamic quenching. Synchronous fluorescence data in both tests revealed that the tryptophan (Trp) residue of β-CN had a dominant role in quenching and the polarity of its microenvironment more than tyrosine (Tyr) increased in interaction with 5-FU. All the binding sites and thermodynamic parameters were obtained at 25, 37, and 42 °C. The analysis of thermodynamic parameters and Job's plot techniques pointed to that both of these complexes with the 1:1 M ratio were exothermic (ΔH°<0) driven with the van der Waals and H-bonding interactions (in agreement with the docking results). The CD spectra in the region of far-UV and thermal denaturation study indicated minor changes in the secondary structure of β-CN in the presence of various concentrations of Fe3O4 NPs and 5-FU. Also, from the molecular dynamics (MD) analysis, as a result, the protein structure was stable during 100 ns. The outcomes highlighted that β-CN protein could form a great bind with 5-FU and Fe3O4 NPs ligands (supporting the zeta potential assay results) by independent binding sites. These results would be helpful insight to construct a potential magnetic nanocarrier β-CN base for 5-FU drug delivery.
Collapse
Affiliation(s)
- Ashkan Zare Karizak
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Amineh Leilabadi Asl
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | | | - Sergey Shityakov
- ITMO University, Infochemistry Scientific Center, Division of Chemoinformatics, Saint-Petersburg 191002, Russian Federation
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Zagury Y, David S, Edelman R, Hazan Brill R, Livney YD. Sugar beet pectin as a natural carrier for curcumin, a water-insoluble bioactive for food and beverage enrichment: Formation and characterization. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Azarakhsh F, Divsalar A, Saboury AA, Eidi A. Simultaneous delivery of oxali-palladium and iron nanoparticles by β-casein. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Tang CH. Assembled milk protein nano-architectures as potential nanovehicles for nutraceuticals. Adv Colloid Interface Sci 2021; 292:102432. [PMID: 33934002 DOI: 10.1016/j.cis.2021.102432] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/21/2022]
Abstract
Nanoencapsulation of hydrophobic nutraceuticals with food ingredients has become one of topical research subjects in food science and pharmaceutical fields. To fabricate food protein-based nano-architectures as nanovehicles is one of effective strategies or approaches to improve water solubility, stability, bioavailability and bioactivities of poorly soluble or hydrophobic nutraceuticals. Milk proteins or their components exhibit a great potential to assemble or co-assemble with other components into a variety of nano-architectures (e.g., nano-micelles, nanocomplexes, nanogels, or nanoparticles) as potential nanovehicles for encapsulation and delivery of nutraceuticals. This article provides a comprehensive review about the state-of-art knowledge in utilizing milk proteins to assemble or co-assemble into a variety of nano-architectures as promising encapsulation and delivery nano-systems for hydrophobic nutraceuticals. First, a brief summary about composition, structure and physicochemical properties of milk proteins, especially caseins (or casein micelles) and whey proteins, is presented. Then, the disassembly and reassembly behavior of caseins or whey proteins into nano-architectures is critically reviewed. For caseins, casein micelles can be dissociated and further re-associated into novel micelles, through pH- or high hydrostatic pressure-mediated disassembly and reassembly strategy, or can be directly formed from caseinates through a reassembly process. In contrast, the assembly of whey protein into nano-architectures usually needs a structural unfolding and subsequent aggregation process, which can be induced by heating, enzymatic hydrolysis, high hydrostatic pressure and ethanol treatments. Third, the co-assembly of milk proteins with other components into nano-architectures is also summarized. Last, the potential and effectiveness of assembled milk protein nano-architectures, including reassembled casein micelles, thermally induced whey protein nano-aggregates, α-lactalbumin nanotubes or nanospheres, co-assembled milk protein-polysaccharide nanocomplexes or nanoparticles, as nanovehicles for nutraceuticals (especially those hydrophobic) are comprehensively reviewed. Due to the fact that milk proteins are an important part of diets for human nutrition and health, the review is of crucial importance not only for the development of novel milk protein-based functional foods enriched with hydrophobic nutraceuticals, but also for providing the newest knowledge in the utilization of food protein assembly behavior in the nanoencapsulation of nutraceuticals.
Collapse
|
14
|
Mehryar L, Esmaiili M, Zeynali F, Imani M, Sadeghi R. Fabrication and characterization of sunflower protein isolate nanoparticles, and their potential for encapsulation and sustainable release of curcumin. Food Chem 2021; 355:129572. [PMID: 33799269 DOI: 10.1016/j.foodchem.2021.129572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/20/2021] [Accepted: 03/07/2021] [Indexed: 11/19/2022]
Abstract
In this research, first, the effects of two desolvating agents (ethanol and methanol) at three temperature values (4, 25, and 50 °C) on the fabrication of sunflower protein isolate (SnPI) nanoparticles were studied using a desolvation method. Second, the ability of the nanoparticles to encapsulate curcumin was investigated. Results showed that ethanol led to smaller nanoparticles compared to methanol as the desolvating agent at 4 and 50 °C. However, at 25 °C, ethanol formed the most uniform nanoparticles with the lowest polydispersity index (0.188 ± 0.091) and particle size of 174.64 ± 30.61 nm. The encapsulation efficiency was in the range of 39.1 to 95.4% according to the fabrication condition and curcumin-to-protein mass ratio. A biphasic trend of curcumin release from nanoparticles was observed; in which, over 50% of curcumin was released from the curcumin-loaded nanoparticles in the first 2 h, which is attributed to the burst effect of the protein matrix.
Collapse
Affiliation(s)
- Laleh Mehryar
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohsen Esmaiili
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Fariba Zeynali
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mehdi Imani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rohollah Sadeghi
- Bi-School of Food Science [currently Department of Animal, Veterinary and Food Science], College of Agricultural and Life Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
15
|
Crosslinked casein micelles bound paclitaxel as enzyme activated intracellular drug delivery systems for cancer therapy. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Effects of genipin concentration on cross-linked β-casein micelles as nanocarrier of naringenin: Colloidal properties, structural characterization and controlled release. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Rehan F, Ahemad N, Islam RA, Gupta M, Gan SH, Chowdhury EH. Optimization and Formulation of Nanostructured and Self-Assembled Caseinate Micelles for Enhanced Cytotoxic Effects of Paclitaxel on Breast Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12100984. [PMID: 33080962 PMCID: PMC7589039 DOI: 10.3390/pharmaceutics12100984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Paclitaxel (PTX) is a widely used anti-cancer drug for treating various types of solid malignant tumors including breast, ovarian and lung cancers. However, PTX has a low therapeutic response and is linked with acquired resistance, as well as a high incidence of adverse events, such as allergic reactions, neurotoxicity and myelosuppression. The situation is compounded when its complex chemical structure contributes towards hydrophobicity, shortening its circulation time in blood, causing off-target effects and limiting its therapeutic activity against cancer cells. Formulating a smart nano-carrier may overcome the solubility and toxicity issues of the drug and enable its more selective delivery to the cancerous cells. Among the nano-carriers, natural polymers are of great importance due to their excellent biodegradability, non-toxicity and good accessibility. The aim of the present research is to develop self-assembled sodium caseinate nanomicelles (NaCNs) with PTX loaded into the hydrophobic core of NaCNs for effective uptake of the drug in cancer cells and its subsequent intracellular release. METHODS The PTX-loaded micelle was characterized with high-performance liquid chromatography (HPLC), Fourier Transform Infrared Spectra (FTIR), High Resolution-Transmission Electron Microscope (HR-TEM), Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray (EDX). Following treatment with PTX-loaded NaCNs, cell viability, cellular uptake and morphological changes were analyzed using MCF-7 and MDA-MB 231 human breast cancer cell lines. RESULTS We found that PTX-loaded NaCNs efficiently released PTX in an acidic tumor environment, while showing an enhanced cytotoxicity, cellular uptake and in-vivo anti-tumor efficacy in a mouse model of breast cancer when compared to free drug and blank micelles. Additionally, the nanomicelles also presented improved colloidal stability for three months at 4 °C and -20 °C and when placed at a temperature of 37 °C. CONCLUSIONS We conclude that the newly developed NaCNs is a promising carrier of PTX to enhance tumor accumulation of the drug while addressing its toxicity issues as well.
Collapse
Affiliation(s)
- Farah Rehan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Global Asia in the 21st century Research Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia;
| | - Manish Gupta
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
- School of Pharmaceutical and Population Health Informatics, DIT University, Mussoorie-Diversion Road, Dehradun, Uttarakhand-248009, India
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
| | - Ezharul Hoque Chowdhury
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
18
|
Yan G, Feng Y, Wang H, Sun Y, Tang X, Zeng X, Lin L. Cellulose Fibrils Extracted from Bamboo Chips as a Reinforcing Material for Prolonged Drug Release. ChemistrySelect 2020. [DOI: 10.1002/slct.202001970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guihua Yan
- College of Energy Xiamen University Xiamen 361102 P. R. China
| | - Yunchao Feng
- College of Energy Xiamen University Xiamen 361102 P. R. China
| | - Huiqiang Wang
- College of Energy Xiamen University Xiamen 361102 P. R. China
| | - Yong Sun
- College of Energy Xiamen University Xiamen 361102 P. R. China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass Xiamen Key Laboratory of Clean and High-valued Applications of Biomass Xiamen University Xiamen 361102 P. R. China
| | - Xing Tang
- College of Energy Xiamen University Xiamen 361102 P. R. China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass Xiamen Key Laboratory of Clean and High-valued Applications of Biomass Xiamen University Xiamen 361102 P. R. China
| | - Xianhai Zeng
- College of Energy Xiamen University Xiamen 361102 P. R. China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass Xiamen Key Laboratory of Clean and High-valued Applications of Biomass Xiamen University Xiamen 361102 P. R. China
| | - Lu Lin
- College of Energy Xiamen University Xiamen 361102 P. R. China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass Xiamen Key Laboratory of Clean and High-valued Applications of Biomass Xiamen University Xiamen 361102 P. R. China
| |
Collapse
|
19
|
Casein nanoparticles as oral delivery carriers of mequindox for the improved bioavailability. Colloids Surf B Biointerfaces 2020; 195:111221. [PMID: 32652401 DOI: 10.1016/j.colsurfb.2020.111221] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
Mequindox (Meq) is a promising broad-spectrum antibacterial agent, but the clinical application of Meq has been hampered by its low oral bioavailability. Casein (Cas) can bind to a variety of poorly water-soluble drugs to improve their water solubility through a micellar solubilization mechanism. Here, a low-cost and convenient method was introduced to prepare mequindox-loaded casein nanoparticles (Meq-Cas). Meq-Cas was characterized by several methods including differential scanning calorimetry (DSC), X-ray diffraction (XRD), and fourier transform infrared (FTIR) to illuminate the mutual effect between the drug and carriers. Meq-Cas presented nearly spherical nanoparticles with smooth surfaces and its mean particle size was lower than untreated Cas. Meq-Cas showed a nearly complete release of Meq, which displayed a biphasic drug release pattern in both phosphate-buffered solution (PBS) and simulated gastric fluid (SGF). The relative oral bioavailability of Meq-Cas was found to be about 1.20 times higher than that of the animals treated with Meq suspension (control). These results suggest that Cas is a good candidate to load in Meq for pharmaceutical purposes.
Collapse
|
20
|
Song Y, Zhou B, Du X, Wang Y, Zhang J, Ai Y, Xia Z, Zhao G. Folic acid (FA)-conjugated mesoporous silica nanoparticles combined with MRP-1 siRNA improves the suppressive effects of myricetin on non-small cell lung cancer (NSCLC). Biomed Pharmacother 2020; 125:109561. [PMID: 32106385 DOI: 10.1016/j.biopha.2019.109561] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 01/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common diagnosed cancer disease worldwide and its management remains a challenge. Synergistic cancer therapeutic strategy is interesting for multiple advantages, such as excellent targeting accuracy, low side effects, and promoted therapeutic efficiency. In the present study, myricetin (Myr)-loaded mesoporous silica nanoparticles (MSN) combined with multidrug resistance protein (MRP-1) siRNA was prepared. The surface of the synthesized nanoparticles was modified with folic acid (FA) to promote the therapeutic efficiency of Myr for the treatment of NSCLC. The collected particles were nano-sized and showed a sustained release of Myr in the physiological conditions. FA-conjugated nanoformulations displayed a significant uptake in lung cancer cells compared with that of the non-targeted nanoparticles. The in vitro drug release results suggested a sustained release in FA-conjugated MSN with Myr and MRP-1 nanoparticles compared to the free Myr and MSN combined with MRP-1/Myr. Treatments with FA-conjugated MSN combined with Myr and MRP-1 markedly reduced the cell viability of lung cancer cell lines, including A549 and NCI-H1299, which was accompanied with the decreased number of colony formation. In addition, FA-conjugated MSN loaded with Myr and MRP-1 significantly induced apoptosis in lung cancer cells, along with up-regulated expression levels of cleaved Caspase-3 and PARP. In vivo fluorescence results demonstrated that FA-conjugated MSN with Myr and MRP-1 nanoparticles could specifically accumulate at tumor sites. Compared with free Myr and MSN combined with MRP-1/Myr nanoparticles, FA-conjugated MSN loaded with Myr and MRP-1 nanoparticles could more effectively suppress tumor growth with little side effects. Overall, FA-conjugated nanoparticulate system could provide a novel and effective platform for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yinxue Song
- Department of Emergency, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bin Zhou
- Department of Thoracic Surgery, Shanxian Central Hospital, Shanxian, Shandong, 274300, China
| | - Xiangyang Du
- Department of Respiration, Shandong Provincial Third Hospital, Jinan, Shandong, 250031, China.
| | - Yong Wang
- R&D Center of Zhengzhou Bio-Medicinal Institute, Zhengzhou, 450052, China.
| | - Jie Zhang
- R&D Center of Zhengzhou Bio-Medicinal Institute, Zhengzhou, 450052, China
| | - Yanqiu Ai
- R&D Center of Zhengzhou Bio-Medicinal Institute, Zhengzhou, 450052, China
| | - Zongjiang Xia
- Department of New Drugs Development, Shanghai Genecure Pharmaceutical Institute, Shanghai, 200040, China
| | - Gaofeng Zhao
- Department of New Drugs Development, Shanghai Genecure Pharmaceutical Institute, Shanghai, 200040, China
| |
Collapse
|
21
|
Dextran-Curcumin Nanoparticles as a Methotrexate Delivery Vehicle: A Step Forward in Breast Cancer Combination Therapy. Pharmaceuticals (Basel) 2019; 13:ph13010002. [PMID: 31881645 PMCID: PMC7169412 DOI: 10.3390/ph13010002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
With the aim to effectively deliver methotrexate (MTX) to breast cancer cells, we designed a nanocarrier system (DC) derived from the self-assembly of a dextran-curcumin conjugate prepared via enzyme chemistry with immobilized laccase acting as a solid biocatalyst. Nanoparticles consisted of homogeneously dispersed nanospheres with a mean diameter of 290 nm, as characterized by combined transmission electron microscopy and dynamic light scattering investigations. DC was able to control the MTX release overtime (t1/2 value of 310 min), with cell internalization studies proving its presence inside MCF-7 cytoplasm. Finally, improved MTX efficacy was obtained in viability assays, and attributed to the synergy of curcumin moieties and loaded MTX as underlined by a combination index (CI) < 1.
Collapse
|
22
|
Spectroscopic and calorimetric studies of interactions between mitoxantrone and cucurbituril Q7 in aqueous solutions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Cao X, He Y, Kong Y, Mei X, Huo Y, He Y, Liu J. Elucidating the interaction mechanism of eriocitrin with β-casein by multi-spectroscopic and molecular simulation methods. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Rehan F, Ahemad N, Gupta M. Casein nanomicelle as an emerging biomaterial—A comprehensive review. Colloids Surf B Biointerfaces 2019; 179:280-292. [DOI: 10.1016/j.colsurfb.2019.03.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 12/15/2022]
|
25
|
Zhang Y, Ma J, Xu Q. Polyelectrolyte complex from cationized casein and sodium alginate for fragrance controlled release. Colloids Surf B Biointerfaces 2019; 178:439-444. [DOI: 10.1016/j.colsurfb.2019.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 11/16/2022]
|
26
|
|
27
|
Chen N, Di P, Ning S, Jiang W, Jing Q, Ren G, Liu Y, Tang Y, Xu Z, Liu G, Ren F. Modified rivaroxaban microparticles for solid state properties improvement based on drug-protein/polymer supramolecular interactions. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.12.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
β-Casein micelles for oral delivery of SN-38 and elacridar to overcome BCRP-mediated multidrug resistance in gastric cancer. Eur J Pharm Biopharm 2018; 133:240-249. [DOI: 10.1016/j.ejpb.2018.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/22/2022]
|
29
|
Dual-targeted casein micelles as green nanomedicine for synergistic phytotherapy of hepatocellular carcinoma. J Control Release 2018; 287:78-93. [PMID: 30138716 DOI: 10.1016/j.jconrel.2018.08.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/22/2018] [Accepted: 08/16/2018] [Indexed: 12/29/2022]
Abstract
In recent years, green nanomedicines have made transformative difference in cancer therapy researches. Herein, we propose dual-functionalized spray-dried casein micelles (CAS-MCs) for combined delivery of two phytochemicals; berberine (BRB) and diosmin (DSN) as targeted therapy of hepatocellular carcinoma (HCC). The nanomicelles enabled parenteral delivery of the poorly soluble DSN via its encapsulation within their hydrophobic core. Moreover, sustained release of the water soluble BRB was attained by hydrophobic ion pairing with sodium deoxycholate followed by genipin crosslinking of CAS-MCs. Dual-active targeting of MCs, via conjugating both lactobionic acid (LA) and folic acid (FA), resulted in superior cytotoxicity and higher cellular uptake against HepG2 cells compared to single-targeted and non-targeted CAS-MCs. The dual-targeted DSN/BRB-loaded CAS-MCs demonstrated superior in vivo anti-tumor efficacy in HCC bearing mice as revealed by down regulation of cell necrosis markers (NF-κB and TNF-α), inflammatory marker COX2, inhibition of angiogenesis and induction of apoptosis. Histopathological analysis and immunohistochemical Ki67 staining confirmed the superiority of the dual-targeted micelles. Ex-vivo imaging showed preferential liver-specific accumulation of dual-targeted CAS-MCs. Overall, this approach combined the benefits of traditional herbal medicine with nanotechnology via LA/FA-CAS-MCs loaded with BRB and DSN as a promising nanoplatform for targeted HCC therapy.
Collapse
|
30
|
Inada A, Sakurai Y, Oshima T, Baba Y, Matsuyama H. Improvements in the water dispersibility of paclitaxel by complexing with synthetic peptides derived from β-casein. Colloids Surf B Biointerfaces 2018; 167:144-149. [DOI: 10.1016/j.colsurfb.2018.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 11/25/2022]
|
31
|
Sohail MF, Rehman M, Sarwar HS, Naveed S, Salman O, Bukhari NI, Hussain I, Webster TJ, Shahnaz G. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends. Int J Nanomedicine 2018; 13:3145-3161. [PMID: 29922053 PMCID: PMC5997133 DOI: 10.2147/ijn.s164518] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research.
Collapse
Affiliation(s)
- Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
- Department of Chemistry, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore
| | - Mubashar Rehman
- Department of Pharmacy, University of Lahore-Gujrat Campus, Gujrat
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Hafiz Shoaib Sarwar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
| | - Sara Naveed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore
| | - Omer Salman
- Department of Pharmacy, University of Lahore, Lahore Campus
| | - Nadeem Irfan Bukhari
- University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
| |
Collapse
|
32
|
Approaches in Polymeric Nanoparticles for Vaginal Drug Delivery: A Review of the State of the Art. Int J Mol Sci 2018; 19:ijms19061549. [PMID: 29882846 PMCID: PMC6032388 DOI: 10.3390/ijms19061549] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
The vagina is a region of administration with a high contact surface to obtain local or systemic effects. This anatomical area represents special interest for government health systems for different sexually transmitted infections. However, the chemical changes of the vagina, as well as its abundant mucus in continuous exchange, act as a barrier and a challenge for the development of new drugs. For these purposes, the development of new pharmaceutical forms based on nanoparticles has been shown to offer various advantages, such as bioadhesion, easy penetration of the mucosa, and controlled release, in addition to decreasing the adverse effects of conventional pharmaceutical forms. In order to obtain nanoparticles for vaginal administration, the use of polymers of natural and synthetic origin including biodegradable and non-biodegradable systems have gained great interest both in nanospheres and in nanocapsules. The main aim of this review is to provide an overview of the development of nanotechnology for vaginal drug release, analyzing the different compositions of polymeric nanoparticles, and emphasizing new trends in each of the sections presented. At the end of this review, a section analyzes the properties of the vehicles employed for the administration of nanoparticles and discusses how to take advantage of the properties that they offer. This review aims to be a reference guide for new formulators interested in the vaginal route.
Collapse
|
33
|
Fathi M, Donsi F, McClements DJ. Protein-Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Compr Rev Food Sci Food Saf 2018; 17:920-936. [PMID: 33350116 DOI: 10.1111/1541-4337.12360] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
Abstract
Many proteins possess functional attributes that make them suitable for the encapsulation of bioactive agents, such as nutraceuticals and pharmaceuticals. This article reviews the state of the art of protein-based nanoencapsulation approaches. The physicochemical principles underlying the major techniques for the fabrication of nanoparticles, nanogels, and nanofibers from animal, botanical, and recombinant proteins are described. Protein modification approaches that can be used to extend their functionality in these nanocarrier systems are also described, including chemical, physical, and enzymatic treatments. The encapsulation, retention, protection, and release of bioactive agents in different protein-based nanocarriers are discussed. Finally, some of the major challenges in the design and fabrication of protein-based delivery systems are highlighted.
Collapse
Affiliation(s)
- Milad Fathi
- Dept. of Food Science and Technology, College of Agriculture, Isfahan Univ. of Technology, Isfahan, 84156-83111, Iran
| | - Francesco Donsi
- Dept. of Industrial Engineering, Univ. of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | | |
Collapse
|
34
|
Thienel KJ, Holder A, Schubert T, Boom RM, Hinrichs J, Atamer Z. Fractionation of milk proteins on pilot scale with particular focus on β-casein. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
β-casein nanovehicles for oral delivery of chemotherapeutic Drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget 2018; 7:23322-34. [PMID: 26989076 PMCID: PMC5029629 DOI: 10.18632/oncotarget.8019] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/21/2016] [Indexed: 02/02/2023] Open
Abstract
Multidrug resistance (MDR) is a primary obstacle to curative cancer therapy. We have previously demonstrated that β-casein (β-CN) micelles (β-CM) can serve as nanovehicles for oral delivery and target-activated release of hydrophobic drugs in the stomach. Herein we introduce a novel nanosystem based on β-CM, to orally deliver a synergistic combination of a chemotherapeutic drug (Paclitaxel) and a P-glycoprotein-specific transport inhibitor (Tariquidar) individually encapsulated within β-CM, for overcoming MDR in gastric cancer. Light microscopy, dynamic light scattering and zeta potential analyses revealed solubilization of these drugs by β-CN, suppressing drug crystallization. Spectrophotometry demonstrated high loading capacity and good encapsulation efficiency, whereas spectrofluorometry revealed high affinity of these drugs to β-CN. In vitro cytotoxicity assays exhibited remarkable synergistic efficacy against human MDR gastric carcinoma cells with P-glycoprotein overexpression. Oral delivery of β-CN - based nanovehicles carrying synergistic drug combinations to the stomach constitutes a novel efficacious therapeutic system that may overcome MDR in gastric cancer.
Collapse
|
36
|
Sponton OE, Perez AA, Ramel JV, Santiago LG. Protein nanovehicles produced from egg white. Part 1: Effect of pH and heat treatment time on particle size and binding capacity. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.06.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Bagherpour Zarchi M, Divsalar A, Abrari K, Rezaei A. Multiple spectroscopic studies of the interaction between a quaternary ammonium-based cationic Gemini surfactant (as a carrier) and human erythropoietin. J Biomol Struct Dyn 2017; 36:3479-3486. [DOI: 10.1080/07391102.2017.1391123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Arezou Rezaei
- School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
38
|
Cheema M, Hristov AN, Harte FM. The binding of orally dosed hydrophobic active pharmaceutical ingredients to casein micelles in milk. J Dairy Sci 2017; 100:8670-8679. [PMID: 28918155 DOI: 10.3168/jds.2017-12631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/22/2017] [Indexed: 02/02/2023]
Abstract
Casein proteins (αS1-, αS2-, β- and κ-casein) account for 80% of the total protein content in bovine milk and form casein micelles (average diameter = 130 nm, approximately 1015 micelles/mL). The affinity of native casein micelles with the 3 hydrophobic active pharmaceutical ingredients (API), meloxicam [351.4 g/mol; log P = 3.43; acid dissociation constant (pKa) = 4.08], flunixin (296.2 g/mol; log P = 4.1; pKa = 5.82), and thiabendazole (201.2 g/mol; log P = 2.92; pKa = 4.64), was evaluated in bovine milk collected from dosed Holstein cows. Native casein micelles were separated from raw bovine milk by mild techniques such as ultracentrifugation, diafiltration, isoelectric point precipitation (pH 4.6), and size exclusion chromatography. Acetonitrile extraction of hydrophobic API was then done, followed by quantification using HPLC-UV. For the API or metabolites meloxicam, 5-hyroxy flunixin and 5-hydroxy thiabendazole, 31 ± 3.90, 31 ± 1.3, and 28 ± 0.5% of the content in milk was associated with casein micelles, respectively. Less than ∼5.0% of the recovered hydrophobic API were found in the milk fat fraction, and the remaining ∼65% were associated with the whey/serum fraction. A separate in vitro study showed that 66 ± 6.4% of meloxicam, 29 ± 0.58% of flunixin, 34 ± 0.21% of the metabolite 5-hyroxy flunixin, 50 ± 4.5% of thiabendazole, and 33 ± 3.8% of metabolite 5-hydroxy thiabendazole was found partitioned into casein micelles. Our study supports the hypothesis that casein micelles are native carriers for hydrophobic compounds in bovine milk.
Collapse
Affiliation(s)
- M Cheema
- Department of Food Science, The Pennsylvania State University, University Park 16802
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - F M Harte
- Department of Food Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
39
|
Gil AG, Irache JM, Peñuelas I, González Navarro CJ, López de Cerain A. Toxicity and biodistribution of orally administered casein nanoparticles. Food Chem Toxicol 2017; 106:477-486. [DOI: 10.1016/j.fct.2017.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
40
|
Ovomucin nanoparticles: promising carriers for mucosal delivery of drugs and bioactive compounds. Drug Deliv Transl Res 2017; 7:598-607. [DOI: 10.1007/s13346-017-0406-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Potential of Casein as a Carrier for Biologically Active Agents. Top Curr Chem (Cham) 2017; 375:71. [PMID: 28712055 PMCID: PMC5511616 DOI: 10.1007/s41061-017-0158-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Casein is the collective name for a family of milk proteins. In bovine milk, casein comprises four peptides: αS1, αS2, β, and κ, differing in their amino acid, phosphorus and carbohydrate content but similar in their amphiphilic character. Hydrophilic and hydrophobic regions of casein show block distribution in the protein chain. Casein peptides carry negative charge on their surface as a result of phosphorylation and tend to bind nanoclusters of amorphous calcium phosphate. Due to these properties, in suitable conditions, casein molecules agglomerate into spherical micelles. The high content of casein in milk (2.75 %) has made it one of the most popular proteins. Novel research techniques have improved understanding of its properties, opening up new applications. However, casein is not just a dietary protein. Its properties promise new and unexpected applications in science and the pharmaceutical and functional food industries. One example is an encapsulation of health-related substances in casein matrices. This review discusses gelation, coacervation, self-assembly and reassembly of casein peptides as means of encapsulation. We highlight information on encapsulation of health-related substances such as drugs and dietary supplements inside casein micro- and nanoparticles.
Collapse
|
42
|
Fahimirad S, Abtahi H, Razavi SH, Alizadeh H, Ghorbanpour M. Production of Recombinant Antimicrobial Polymeric Protein Beta Casein-E 50-52 and Its Antimicrobial Synergistic Effects Assessment with Thymol. Molecules 2017; 22:molecules22060822. [PMID: 28561787 PMCID: PMC6152712 DOI: 10.3390/molecules22060822] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023] Open
Abstract
Accelerating emergence of antimicrobial resistance among food pathogens and consumers’ increasing demands for preservative-free foods are two contemporary challenging aspects within the food industry. Antimicrobial packaging and the use of natural preservatives are promising solutions. In the present study, we used beta-casein—one of the primary self-assembly proteins in milk with a high polymeric film production capability—as a fusion partner for the recombinant expression of E 50-52 antimicrobial peptide in Escherichia coli. The pET21a-BCN-E 50-52 construct was transformed to E. coli BL21 (DE3), and protein expression was induced under optimized conditions. Purified protein obtained from nickel affinity chromatography was refolded under optimized dialysis circumstances and concentrated to 1600 µg/mL fusion protein by ultrafiltration. Antimicrobial activities of recombinant BCN-E 50-52 performed against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Aspergillus flavus, and Candida albicans. Subsequently, the synergistic effects of BCN-E 50-52 and thymol were assayed. Results of checkerboard tests showed strong synergistic activity between two compounds. Time–kill and growth kinetic studies indicated a sharp reduction of cell viability during the first period of exposure, and SEM (scanning electron microscope) results validated the severe destructive effects of BCN E 50-52 and thymol in combination on bacterial cells.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak 38181-76941, Iran
- Correspondence: ; Tel.: +98-913-114-6154
| | - Seyed Hadi Razavi
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Houshang Alizadeh
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 3815688349, Iran;
| |
Collapse
|
43
|
Edelman R, Assaraf YG, Levitzky I, Shahar T, Livney YD. Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy. Oncotarget 2017; 8:24337-24353. [PMID: 28212584 PMCID: PMC5421851 DOI: 10.18632/oncotarget.15363] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/27/2017] [Indexed: 01/17/2023] Open
Abstract
Multiple carcinomas including breast, ovarian, colon, lung and stomach cancer, overexpress the hyaluronic acid (HA) receptor, CD44. Overexpression of CD44 contributes to key cancer processes including tumor invasion, metastasis, recurrence, and chemoresistance. Herein, we devised novel targeted nanoparticles (NPs) for delivery of anticancer chemotherapeutics, comprised of self-assembling Maillard reaction-based conjugates of HA and bovine serum albumin (BSA). HA served as the hydrophilic block, and as the ligand for actively targeting cancer cells overexpressing CD44. We demonstrate that Maillard reaction-based covalent conjugates of BSA-HA self-assemble into NPs, which efficiently entrap hydrophobic cytotoxic drugs including paclitaxel and imidazoacridinones. Furthermore, BSA-HA conjugates stabilized paclitaxel and prevented its aggregation and crystallization. The diameter of the NPs was < 15 nm, thus enabling CD44 receptor-mediated endocytosis. These NPs were selectively internalized by ovarian cancer cells overexpressing CD44, but not by cognate cells lacking this HA receptor. Moreover, free HA abolished the endocytosis of drug-loaded BSA-HA conjugates. Consistently, drug-loaded NPs were markedly more cytotoxic to cancer cells overexpressing CD44 than to cells lacking CD44, due to selective internalization, which could be competitively inhibited by excess free HA. Finally, a CD44-targeted antibody which blocks receptor activity, abolished internalization of drug-loaded NPs. In conclusion, a novel cytotoxic drug-loaded nanomedicine platform has been developed, which is based on natural biocompatible biopolymers, capabale of targeting cancer cells with functional surface expression of CD44.
Collapse
Affiliation(s)
- Ravit Edelman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Yehuda G. Assaraf
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Inna Levitzky
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Tal Shahar
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Yoav D. Livney
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
44
|
|
45
|
Israeli-Lev G, Pitchkhadze M, Nevo S, Fahoum L, Meyron-Holtz E, Livney YD. Harnessing proteins to control crystal size and morphology, for improved delivery performance of hydrophobic bioactives, using genistein as a model. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Ranadheera C, Liyanaarachchi W, Chandrapala J, Dissanayake M, Vasiljevic T. Utilizing unique properties of caseins and the casein micelle for delivery of sensitive food ingredients and bioactives. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Abstract
INTRODUCTION Most anticancer drugs have poor aqueous solubility and low permeability across the gastrointestinal tract. Furthermore, extensive efflux by P-glycoproteins (P-gp) in the small intestine also limits the efficient delivery of anticancer drugs via oral route. Area covered: This review explores the prodrug strategy for oral delivery of anticancer drugs. Different categories of oral anticancer prodrugs along with recent clinical studies have been comprehensively reviewed here. Furthermore, novel anticancer prodrugs such as polymer-prodrugs and lipid-prodrugs have been discussed in detail. Finally, various nanocarrier-based approaches employed for oral delivery of anticancer prodrugs have also been discussed. Expert opinion: Premature degradation of anticancer prodrugs in the gastrointestinal tract could lead to variable pharmacokinetics and undesired toxicity. Despite their increased aqueous solubility, the oral bioavailability of several anticancer prodrugs are limited by their poor permeability across the gastrointestinal tract. These limitations can be overcome by the use of functional excipients (polymers, lipids, amino acids/dipeptides), which are specifically absorbed via transporters and receptor-mediated endocytosis. Oral delivery of anticancer prodrugs using nanocarrier-based drug delivery system is a recent development; however it should be justified based on the comparative advantages of encapsulating prodrug in a nanocarrier versus the use of anticancer prodrug molecule itself.
Collapse
Affiliation(s)
- Amit K Jain
- a Department of Chemical Engineering , Texas Tech University , Lubbock , TX , USA
| | - Sanyog Jain
- b Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Mohali , Punjab , India
| |
Collapse
|
48
|
Semenova M, Zelikina D, Antipova A, Martirosova E, Grigorovich N, Obushaeva R, Shumilina E, Ozerova N, Palmina N, Maltseva E, Kasparov V, Bogdanova N, Krivandin A. Impact of the structure of polyunsaturated soy phospholipids on the structural parameters and functionality of their complexes with covalent conjugates combining sodium caseinate with maltodextrins. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Cytotoxic and antiangiogenic paclitaxel solubilized and permeation-enhanced by natural product nanoparticles. Anticancer Drugs 2015; 26:167-79. [PMID: 25243454 DOI: 10.1097/cad.0000000000000173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Paclitaxel (PTX) is one of the most potent intravenous chemotherapeutic agents to date, yet an oral formulation has been problematic because of its low solubility and permeability. Using the recently discovered solubilizing properties of rubusoside (RUB), we investigated the unique PTX-RUB formulation. PTX was solubilized by RUB in water to levels of 1.6-6.3 mg/ml at 10-40% weight/volume. These nanomicellar PTX-RUB complexes were dried to a powder, which was subsequently reconstituted in physiologic solutions. After 2.5 h, 85-99% of PTX-RUB remained soluble in gastric fluid, whereas 79-96% remained soluble in intestinal fluid. The solubilization of PTX was mechanized by the formation of water-soluble spherical nanomicelles between PTX and RUB, with an average diameter of 6.6 nm. Compared with Taxol, PTX-RUB nanoparticles were nearly four times more permeable in Caco-2 cell monocultures. In a side-by-side comparison with dimethyl sulfoxide-solubilized PTX, PTX-RUB maintained the same level of cytotoxicity against three human cancer cell lines with IC50 values ranging from 4 to 20 nmol/l. In addition, tubule formation and migration of human umbilical vein endothelial cells were inhibited at levels as low as 5 nmol/l. These chemical and biological properties demonstrated by the PTX-RUB nanoparticles may improve oral bioavailability and enable further pharmacokinetic, toxicologic, and efficacy investigations.
Collapse
|
50
|
Abstract
Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.
Collapse
|