1
|
Bisirri EA, Kaar JL, Schwartz DK. High-Throughput Screening Identifies Anionic Polymer Supports that Improve Enzyme Activity at Low pH and High Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5335-5346. [PMID: 39979065 DOI: 10.1021/acs.langmuir.4c04851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Elevated temperatures and nonoptimal pH can destabilize enzyme structure or change the protonation state of catalytic residues resulting in attenuated catalytic performance. Enzyme immobilization on polymer supports enables the fine-tuning of highly varied vicinal chemistries to improve enzyme performance by promoting correctly folded enzyme structure and adjusting the local microenvironment to more favorable conditions. Herein, we sought to investigate how multicomponent random copolymer brushes composed of monomers with anionic, cationic, neutral (zwitterionic, and mixed-charge), and aromatic properties stabilize covalently tethered lipase A fromBacillus subtilis at low pH and high temperature. Polymer brush compositions were screened using a high-throughput approach involving the combinatorial synthesis of random copolymer brushes and in situ characterization of immobilized lipase function. Although cationic supports provided a modest improvement over soluble lipase in maximum activity and thermal stability at low pH, more substantial enhancements in lipase stability were observed for anionic and neutral zwitterionic polymer supports, resulting in increases in temperature optima as great as 40 °C (from 40 to 80 °C) and an increase in maximum activity by more than 300%. These observations were counter to expectations regarding the role of surface charge on local pH and were attributed instead to the preservation of enzyme structure due to stabilizing electrostatic interactions between negatively charged polymer moieties and the net positively charged surface of lipase A. Our findings suggest that the stabilization of enzyme structure by charged polymers may offset unfavorable local changes in pH in certain situations, while in other situations these effects may be synergistic.
Collapse
Affiliation(s)
- Evan A Bisirri
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Mu X, Lei R, Yan S, Deng Z, Liu R, Liu T. The LysR family transcriptional regulator ORF-L16 regulates spinosad biosynthesis in Saccharopolyspora spinosa. Synth Syst Biotechnol 2024; 9:609-617. [PMID: 38784197 PMCID: PMC11108826 DOI: 10.1016/j.synbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Spinosad, a potent broad-spectrum bioinsecticide produced by Saccharopolyspora spinosa, has significant market potential. Despite its effectiveness, the regulatory mechanisms of spinosad biosynthesis remain unclear. Our investigation identified the crucial role of the LysR family transcriptional regulator ORF-L16, located upstream of spinosad biosynthetic genes, in spinosad biosynthesis. Through reverse transcription PCR (RT-PCR) and 5'-rapid amplification of cDNA ends (5'-Race), we unveiled that the spinosad biosynthetic gene cluster (BGC) contains six transcription units and seven promoters. Electrophoretic mobility shift assays (EMSAs) demonstrated that ORF-L16 bound to seven promoters within the spinosad BGC, indicating its involvement in regulating spinosad biosynthesis. Notably, deletion of ORF-L16 led to a drastic reduction in spinosad production from 1818.73 mg/L to 1.69 mg/L, accompanied by decreased transcription levels of spinosad biosynthetic genes, confirming its positive regulatory function. Additionally, isothermal titration calorimetry (ITC) and EMSA confirmed that spinosyn A, the main product of the spinosad BGC, served as an effector of ORF-L16. Specifically, it decreased the binding affinity between ORF-L16 and spinosad BGC promoters, thus exerting negative feedback regulation on spinosad biosynthesis. This research enhances our comprehension of spinosad biosynthesis regulation and lays the groundwork for future investigations on transcriptional regulators in S. spinosa.
Collapse
Affiliation(s)
- Xin Mu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Ru Lei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Shuqing Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ran Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
3
|
Yang R, Zhang Y, Geng B, Tian Y, Tian W, Zou Y, Chen H, Chen J. Fluorescence labeling-based differential scanning fluorimetry, an effective method for protein thermal stability and protein-compound binding analysis. Int J Biol Macromol 2024; 281:136043. [PMID: 39362428 DOI: 10.1016/j.ijbiomac.2024.136043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Differential scanning fluorimetry (DSF) is widely used to assess protein thermal stability and protein-ligand interaction. However, its utility is often limited by the presence of detergents, which can affect hydrophobic binding. To tackle this issue, we developed an effective fluorescence-labeled DSF (FL-DSF) technique that tracks protein denaturation by monitoring the labeling fluorescence decrease, thus overcoming challenges typically encountered with traditional DSF methods. In this research, FL-DSF was first validated using Peroxisome Proliferators-Activated Receptor γ (PPARγ), Retinoid X Receptor α (RXRα), and Lysozyme, confirming its accuracy in determining melting curves. Expectedly, FL-DSF also exhibited strong compatibility with detergents in our investigations. Besides this, a new calculation method was proposed to characterize the protein denaturation process and evaluate protein-ligand binding. This mathematical model goes beyond traditional approaches, which simply treated the melting temperature (TM) shift as a concentration-dependent variable. Instead, it comprehensively incorporates the influence of irreversible denaturation-induced native protein loss on the equilibrium of protein-ligand binding. This methodology was successfully applied into the evaluation of binding affinity for 2 classical binding systems of PPARγ-Rosiglitazone and RXRα-CD3254. It was also utilized for the following binding screening studies, leading to the discovery of promising ligands for PPARγ, RXRα, and Lysozyme.
Collapse
Affiliation(s)
- Renjing Yang
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Yaya Zhang
- Department of Oncology, the First Affiliated Hospital of Xiamen University, PR China
| | - Bingjie Geng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Yingpu Tian
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Yanhong Zou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Haifeng Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China.
| |
Collapse
|
4
|
You S, Nguyen T, Li-Ma C, Bollong MJ. Identification of Tunable, Environmentally Responsive Fluorogenic Dyes by High-Throughput Screening. ACS Chem Biol 2024; 19:2041-2049. [PMID: 39250827 PMCID: PMC11949241 DOI: 10.1021/acschembio.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Small molecule dyes remain essential biological tools, yet only a handful of environmentally responsive fluorogenic small molecules are available for routine characterization of protein state. Here, we report the development and execution of a high throughput screen to identify compounds that increase in fluorescence in response to binding of lipophilic sites of proteins. This effort yielded two small molecules that potently indicate the presence of a range of common proteins and outperform common dyes in differential scanning fluorimetry experiments. Structure activity relationship studies revealed that these two scaffolds can be tuned both for their quantum yields and emission wavelengths. This work affords a straightforward framework for the discovery of new fluorophores and adds two fluorogenic probes to the toolbox for studying protein state.
Collapse
Affiliation(s)
- Shaochen You
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
| | - Thu Nguyen
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
| | - Chloris Li-Ma
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
| | | |
Collapse
|
5
|
Watanabe H, Hayashida N, Sato M, Honda S. Biosensing-based quality control monitoring of the higher-order structures of therapeutic antibody domains. Anal Chim Acta 2024; 1303:342439. [PMID: 38609254 DOI: 10.1016/j.aca.2024.342439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 04/14/2024]
Abstract
Advanced biopharmaceutical manufacturing requires novel process analytical technologies for the rapid and sensitive assessment of the higher-order structures of therapeutic proteins. However, conventional physicochemical analyses of denatured proteins have limitations in terms of sensitivity, throughput, analytical resolution, and real-time monitoring capacity. Although probe-based sensing can overcome these limitations, typical non-specific probes lack analytical resolution and provide little to no information regarding which parts of the protein structure have been collapsed. To meet these analytical demands, we generated biosensing probes derived from artificial proteins that could specifically recognize the higher-order structural changes in antibodies at the protein domain level. Biopanning of phage-displayed protein libraries generated artificial proteins that bound to a denatured antibody domain, but not its natively folded structure, with nanomolar affinity. The protein probes not only recognized the higher-order structural changes in intact IgGs but also distinguished between the denatured antibody domains. These domain-specific probes were used to generate response contour plots to visualize the antibody denaturation caused by various process parameters, such as pH, temperature, and holding time for acid elution and virus inactivation. These protein probes can be combined with established analytical techniques, such as surface plasmon resonance for real-time monitoring or plate-based assays for high-throughput analysis, to aid in the development of new analytical technologies for the process optimization and monitoring of antibody manufacturing.
Collapse
Affiliation(s)
- Hideki Watanabe
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Naoko Hayashida
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Megumi Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
6
|
Sun NN, Xu QF, Yang MD, Li YN, Liu H, Tantai W, Shu GW, Li GL. A high-throughput differential scanning fluorimetry method for rapid detection of thermal stability and iron saturation in lactoferrin. Int J Biol Macromol 2024; 267:131285. [PMID: 38583841 DOI: 10.1016/j.ijbiomac.2024.131285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
Thermal stability and iron saturation of lactoferrin (LF) are of great significance not only for the evaluation of the biological activities of LF but also for the optimization of the isolation and drying process parameters. Differential scanning calorimetry (DSC) is a well-established and efficient method for thermal stability and iron saturation detection in LF. However, multiple DSC measurements are typically performed sequentially, thus time-consuming and low throughput. Herein, we introduced the differential scanning fluorimetry (DSF) approach to overcome such limitations. The DSF can monitor LF thermal unfolding with a commonly available real-time PCR instrument and a fluorescent dye (SYPRO orange or Glomelt), and the measured melting temperature of LF is consistent with that determined by DSC. On the basis of that, a new quantification method was established for determination of iron saturation levels using the linear correlation of the degree of ion saturation of LF with DSF measurements. Such DSF method is simple, inexpensive, rapid (<15 min), and high throughput (>96 samples per experiment), and provides a valuable alternative tool for thermal stability detection of LF and other whey proteins.
Collapse
Affiliation(s)
- Na-Na Sun
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Qin-Feng Xu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Meng-di Yang
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yan-Ni Li
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Hao Liu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Tantai
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guo-Wei Shu
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guo-Liang Li
- School of Food Science and Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
7
|
Li L, Liu X, Bai Y, Yao B, Luo H, Tu T. High-Throughput Screening Techniques for the Selection of Thermostable Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3833-3845. [PMID: 38285533 DOI: 10.1021/acs.jafc.3c07554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The acquisition of a thermostable enzyme is an indispensable prerequisite for its successful implementation in industrial applications and the development of novel functionalities. Various protein engineering approaches, including rational design, semirational design, and directed evolution, have been employed to enhance thermostability. However, all of these approaches require sensitive and reliable high-throughput screening (HTS) technologies to efficiently and rapidly identify variants with improved properties. While numerous reviews focus on modification strategies for enhancing enzyme thermostability, there is a dearth of literature reviewing HTS methods specifically aimed at this objective. Herein, we present a comprehensive overview of various HTS methods utilized for modifying enzyme thermostability across different screening platforms. Additionally, we highlight significant recent examples that demonstrate the successful application of these methods. Furthermore, we address the technical challenges associated with HTS technologies used for screening thermostable enzyme variants and discuss valuable perspectives to promote further advancements in this field. This review serves as an authoritative reference source offering theoretical support for selecting appropriate screening strategies tailored to specific enzymes with the aim of improving their thermostability.
Collapse
Affiliation(s)
- Lanxue Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Mahran R, Vello N, Komulainen A, Malakoutikhah M, Härmä H, Kopra K. Isothermal chemical denaturation assay for monitoring protein stability and inhibitor interactions. Sci Rep 2023; 13:20066. [PMID: 37973851 PMCID: PMC10654576 DOI: 10.1038/s41598-023-46720-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Thermal shift assay (TSA) with altered temperature has been the most widely used method for monitoring protein stability for drug research. However, there is a pressing need for isothermal techniques as alternatives. This urgent demand arises from the limitations of TSA, which can sometimes provide misleading ranking of protein stability and fail to accurately reflect protein stability under physiological conditions. Although differential scanning fluorimetry has significantly improved throughput in comparison to differential scanning calorimetry and differential static light scattering throughput, all these methods exhibit moderate sensitivity. In contrast, current isothermal chemical denaturation (ICD) techniques may not offer the same throughput capabilities as TSA, but it provides more precise information about protein stability and interactions. Unfortunately, ICD also suffers from limited sensitivity, typically in micromolar range. We have developed a novel method to overcome these challenges, namely throughput and sensitivity. The novel Förster Resonance Energy Transfer (FRET)-Probe as an external probe is highly applicable to isothermal protein stability monitoring but also to conventional TSA. We have investigated ICD for multiple proteins with focus on KRASG12C with covalent inhibitors and three chemical denaturants performed at nanomolar protein concentration. Data showed corresponding inhibitor-induced stabilization of KRASG12C to those reported by nucleotide exchange assay.
Collapse
Affiliation(s)
- Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland.
| | - Niklas Vello
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Anita Komulainen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | | | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| |
Collapse
|
9
|
Llowarch P, Usselmann L, Ivanov D, Holdgate GA. Thermal unfolding methods in drug discovery. BIOPHYSICS REVIEWS 2023; 4:021305. [PMID: 38510342 PMCID: PMC10903397 DOI: 10.1063/5.0144141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/13/2023] [Indexed: 03/22/2024]
Abstract
Thermal unfolding methods, applied in both isolated protein and cell-based settings, are increasingly used to identify and characterize hits during early drug discovery. Technical developments over recent years have facilitated their application in high-throughput approaches, and they now are used more frequently for primary screening. Widespread access to instrumentation and automation, the ability to miniaturize, as well as the capability and capacity to generate the appropriate scale and quality of protein and cell reagents have all played a part in these advances. As the nature of drug targets and approaches to their modulation have evolved, these methods have broadened our ability to provide useful chemical start points. Target proteins without catalytic function, or those that may be difficult to express and purify, are amenable to these methods. Here, we provide a review of the applications of thermal unfolding methods applied in hit finding during early drug discovery.
Collapse
Affiliation(s)
- Poppy Llowarch
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Laura Usselmann
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Delyan Ivanov
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Geoffrey A. Holdgate
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| |
Collapse
|
10
|
Kirley TL, Norman AB. Reformulation and Thermal Stability of a Therapeutic Anti-Cocaine mAb. J Pharm Sci 2023; 112:1595-1602. [PMID: 37011728 PMCID: PMC10192021 DOI: 10.1016/j.xphs.2023.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
We concentrated and reformulated the anti-cocaine mAb, h2E2, to reduce the amount of sucrose and histidine buffer infused with the mAb, to satisfy FDA maximum exposure levels for those components for use in clinical trials. After concentration of the original 20 mg/ml mAb, 4 reformulation buffers were evaluated for suitability. The concentration of histidine was reduced from 10 mM to 3 or 0 mM, and the concentration of sucrose reduced from 10% to 2, 4, or 6%. The approximately 100 mg/ml reformulated mAb samples were analyzed for oligomer formation, aggregation, concentration of the emulsifier polysorbate 80, and thermal stability. These reformulated mAb samples were also assessed for their stability at 40°C from 1 day to 12 weeks. As expected, long term thermal resistance to oligomer formation increased as a function of increasing sucrose concentration. Interestingly, unbuffered reformulated mAb displayed a less than or equal to tendency to form oligomers and aggregates, compared to the histidine buffered samples. Importantly, even after 12 weeks at 40°C, all the reformulated samples displayed little aggregation, and bound their antigen (cocaine) with identical affinities and thermodynamics, as measured by isothermal titration calorimetry (ITC). These ITC thermodynamic binding parameters are consistent with recently published values for the original formulation of this mAb. In all reformulated samples there was a slight decrease in the number of cocaine binding sites after 12 weeks at 40°C, likely due to the parallel small increase in soluble oligomeric antibody, suggesting that soluble oligomeric mAb may no longer bind cocaine with high affinity.
Collapse
Affiliation(s)
- Terence L Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575.
| | - Andrew B Norman
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575
| |
Collapse
|
11
|
Ronzetti MH, Baljinnyam B, Itkin Z, Jain S, Rai G, Zakharov AV, Pal U, Simeonov A. Application of temperature-responsive HIS-tag fluorophores to differential scanning fluorimetry screening of small molecule libraries. Front Pharmacol 2022; 13:1040039. [PMID: 36506591 PMCID: PMC9729254 DOI: 10.3389/fphar.2022.1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Differential scanning fluorimetry is a rapid and economical biophysical technique used to monitor perturbations to protein structure during a thermal gradient, most often by detecting protein unfolding events through an environment-sensitive fluorophore. By employing an NTA-complexed fluorophore that is sensitive to nearby structural changes in histidine-tagged protein, a robust and sensitive differential scanning fluorimetry (DSF) assay is established with the specificity of an affinity tag-based system. We developed, optimized, and miniaturized this HIS-tag DSF assay (HIS-DSF) into a 1536-well high-throughput biophysical platform using the Borrelial high temperature requirement A protease (BbHtrA) as a proof of concept for the workflow. A production run of the BbHtrA HIS-DSF assay showed a tight negative control group distribution of Tm values with an average coefficient of variation of 0.51% and median coefficient of variation of compound Tm of 0.26%. The HIS-DSF platform will provide an additional assay platform for future drug discovery campaigns with applications in buffer screening and optimization, target engagement screening, and other biophysical assay efforts.
Collapse
Affiliation(s)
- Michael H. Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,*Correspondence: Bolormaa Baljinnyam, ; Anton Simeonov,
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Sankalp Jain
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,*Correspondence: Bolormaa Baljinnyam, ; Anton Simeonov,
| |
Collapse
|
12
|
Romano A, Engelberg Y, Landau M, Lesmes U. Alpha-lactalbumin amyloid-like fibrils for intestinal delivery: Formation, physiochemical characterization, and digestion fate of capsaicin-loaded fibrils. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Stolzke T, Krieg F, Peng T, Zhang H, Häusler O, Brandenbusch C. Hydroxylpropyl-β-cyclodextrin as Potential Excipient to Prevent Stress-Induced Aggregation in Liquid Protein Formulations. Molecules 2022; 27:molecules27165094. [PMID: 36014329 PMCID: PMC9414600 DOI: 10.3390/molecules27165094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Due to the growing demand for patient-friendly subcutaneous dosage forms, the ability to increasing protein solubility and stability in formulations to deliver on the required high protein concentrations is crucial. A common approach to ensure protein solubility and stability in high concentration protein formulations is the addition of excipients such as sugars, amino acids, surfactants, approved by the Food and Drug Administration. In a best-case scenario, these excipients fulfil multiple demands simultaneously, such as increasing long-term stability of the formulation, reducing protein adsorption on surfaces/interfaces, and stabilizing the protein against thermal or mechanical stress. 2-Hydroxylpropyl-β-cyclodextrin (derivative of β-cyclodextrin) holds this potential, but has not yet been sufficiently investigated for use in protein formulations. Within this work, we have systematically investigated the relevant molecular interactions to identify the potential of Kleptose®HPB (2-hydroxylpropyl-β-cyclodextrin from Roquette Freres, Lestrem, France) as “multirole” excipient within liquid protein formulations. Based on our results three factors determine the influence of Kleptose®HPB on protein formulation stability: (1) concentration of Kleptose®HPB, (2) protein type and protein concentration, and (3) quality of the protein formulation. Our results not only contribute to the understanding of the relevant interactions but also enable the target-oriented use of Kleptose®HPB within formulation design.
Collapse
Affiliation(s)
- Tanja Stolzke
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Franziska Krieg
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Tao Peng
- Roquette Asia Pacific Pte. Ltd., Singapore 138588, Singapore
| | - Hailong Zhang
- Roquette Asia Pacific Pte. Ltd., Singapore 138588, Singapore
| | | | - Christoph Brandenbusch
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
- Correspondence:
| |
Collapse
|
14
|
Analytical technology development to monitor the stability of Polysaccharide-Protein conjugate vaccines. Vaccine 2022; 40:4182-4189. [PMID: 35688729 DOI: 10.1016/j.vaccine.2022.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022]
Abstract
The covalent attachment of a bacterial-derived capsular polysaccharide to protein is of critical importance in transforming the polysaccharide from an antigen with limited immunogenicity in infants and older adults to an antigen that can prevent potentially fatal disease. For a polysaccharide-protein conjugate vaccine (PCV) candidate to be successful, it must be sufficiently stable. Chemical breakage of carbohydrate bonds in the polysaccharide may result in the reduction of "conjugate dose" and could negatively impact immunogenicity and the ability of the vaccine to prime for memory responses. Therefore, development of analytical tools to monitor the integrity of a polysaccharide-protein conjugate (glycoconjugate) vaccine is of practical significance. In this work, reducing SDS-PAGE, Intrinsic Protein Fluorescence Spectroscopy (IPFS), Differential Scanning Fluorimetry (DSF) were evaluated methods to study the impact of time, temperature, and formulation composition on the stability of a glycoconjugate vaccine prepared by multisite coupling of polysaccharide to a carrier protein. In addition, an automated capillary Western system was also evaluated to study the impact of storage on glycoconjugate vaccine stability. Two streptococcus pneumoniae polysaccharide-protein conjugates (serotype 3 and serotype 19A) were chosen to examine their physicochemical stability when formulated as a single antigen vaccine. While all methods require only a small amount of test article and can test multiple samples per assay run, automated capillary Western has the additional advantage of being highly sensitive even at low concentrations in complex vaccine formulations that contain aluminum adjuvant and multiple antigens. Results suggest that automated capillary Western is stability-indicating and may be an effective analytical technology tool for the formulation development of a multivalent glycoconjugate vaccine.
Collapse
|
15
|
Kopra K, Valtonen S, Mahran R, Kapp JN, Hassan N, Gillette W, Dennis B, Li L, Westover KD, Plückthun A, Härmä H. Thermal Shift Assay for Small GTPase Stability Screening: Evaluation and Suitability. Int J Mol Sci 2022; 23:7095. [PMID: 35806100 PMCID: PMC9266822 DOI: 10.3390/ijms23137095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Thermal unfolding methods are commonly used as a predictive technique by tracking the protein's physical properties. Inherent protein thermal stability and unfolding profiles of biotherapeutics can help to screen or study potential drugs and to find stabilizing or destabilizing conditions. Differential scanning calorimetry (DSC) is a 'Gold Standard' for thermal stability assays (TSA), but there are also a multitude of other methodologies, such as differential scanning fluorimetry (DSF). The use of an external probe increases the assay throughput, making it more suitable for screening studies, but the current methodologies suffer from relatively low sensitivity. While DSF is an effective tool for screening, interpretation and comparison of the results is often complicated. To overcome these challenges, we compared three thermal stability probes in small GTPase stability studies: SYPRO Orange, 8-anilino-1-naphthalenesulfonic acid (ANS), and the Protein-Probe. We studied mainly KRAS, as a proof of principle to obtain biochemical knowledge through TSA profiles. We showed that the Protein-Probe can work at lower concentration than the other dyes, and its sensitivity enables effective studies with non-covalent and covalent drugs at the nanomolar level. Using examples, we describe the parameters, which must be taken into account when characterizing the effect of drug candidates, of both small molecules and Designed Ankyrin Repeat Proteins.
Collapse
Affiliation(s)
- Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Salla Valtonen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Jonas N. Kapp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (J.N.K.); (A.P.)
| | - Nazia Hassan
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - William Gillette
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, 8560 Progress Dr., Frederick, MD 21702, USA;
| | - Bryce Dennis
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (J.N.K.); (A.P.)
| | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| |
Collapse
|
16
|
Yang XQ, Bai LW, Chen Y, Lin YX, Xiang H, Xiang TT, Zhu SX, Zhou L, Li K, Lei X. Peptide probes with high affinity to target protein selection by phage display and characterization using biophysical approaches. NEW J CHEM 2022. [DOI: 10.1039/d2nj00621a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, phage display was utilized to screen the affinity of peptides against dihydrofolate reductase and a positive peptide was obtained, and the verification of the affinity was tested by multiple in vitro biophysical methods.
Collapse
Affiliation(s)
- Xiao-Qin Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Li-Wen Bai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Yu Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Yue-Xiao Lin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Hua Xiang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Ting-Ting Xiang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Shuang-Xing Zhu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Li Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Kai Li
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
17
|
Nano Differential Scanning Fluorimetry-Based Thermal Stability Screening and Optimal Buffer Selection for Immunoglobulin G. Pharmaceuticals (Basel) 2021; 15:ph15010029. [PMID: 35056086 PMCID: PMC8778976 DOI: 10.3390/ph15010029] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Nano differential scanning fluorimetry (nanoDSF) is a high-throughput protein stability screening technique that simultaneously monitors protein unfolding and aggregation properties. The thermal stability of immunoglobulin G (IgG) was investigated in three different buffers (sodium acetate, sodium citrate, and sodium phosphate) ranging from pH 4 to 8. In all three buffers, the midpoint temperature of thermal unfolding (Tm) showed a tendency to increase as the pH increased, but the aggregation propensity was different depending on the buffer species. The best stability against aggregation was obtained in the sodium acetate buffers below pH 4.6. On the other hand, IgG in the sodium citrate buffer had higher aggregation and viscosity than in the sodium acetate buffer at the same pH. Difference of aggregation between acetate and citrate buffers at the same pH could be explained by a protein-protein interaction study, performed with dynamic light scattering, which suggested that intermolecular interaction is attractive in citrate buffer but repulsive in acetate buffer. In conclusion, this study indicates that the sodium acetate buffer at pH 4.6 is suitable for IgG formulation, and the nanoDSF method is a powerful tool for thermal stability screening and optimal buffer selection in antibody formulations.
Collapse
|
18
|
Twum K, Bhattacharjee A, Laryea ET, Esposto J, Omolloh G, Mortensen S, Jaradi M, Stock NL, Schileru N, Elias B, Pszenica E, McCormick TM, Martic S, Beyeh NK. Functionalized resorcinarenes effectively disrupt the aggregation of αA66-80 crystallin peptide related to cataracts. RSC Med Chem 2021; 12:2022-2030. [PMID: 35028562 PMCID: PMC8672818 DOI: 10.1039/d1md00294e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Cataracts, an eye lens clouding disease, are debilitating and while operable, remain without a cure. αA66-80 crystallin peptide abundant in cataracted eye lenses contributes to aggregation of αA-crystallin protein leading to cataracts. Inspired by the versatility of macrocycles and programmable guest selectivity through discrete functionalizations, we report on three water-soluble ionic resorcinarene receptors (A, B, and C) that disrupt the aggregation of αA66-80 crystallin peptide. A and B each possess four anionic sulfonate groups, while C includes four cationic ammonium groups with four flexible extended benzyl groups. Through multiple non-covalent attractions, these receptors successfully disrupt and reverse the aggregation of αA66-80 crystallin peptide, which was studied through spectroscopic, spectrometric, calorimetric, and imaging techniques. The αA66-80·receptor complexes were also explored using molecular dynamics simulation, and binding energies were calculated. Even though each of the three receptors can bind with the peptide, receptor C was characterized by the highest binding energy and affinity for three different domains of the peptide. In effect, the most efficient inhibitor was a cationic receptor C via extended aromatic interactions. These results highlight the potential of versatile and tunable functionalized resorcinarenes as potential therapeutics to reverse the aggregation of α-crystallin dominant in eye cataracts.
Collapse
Affiliation(s)
- Kwaku Twum
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Avik Bhattacharjee
- Department of Chemistry, Portland State University 1710 SW 10th Ave Portland OR 97201 USA
| | - Erving T Laryea
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Josephine Esposto
- Department of Forensic Science and Environmental and Life Sciences Program, Trent University ON K9 L0G2 Canada
| | - George Omolloh
- Department of Chemistry, Portland State University 1710 SW 10th Ave Portland OR 97201 USA
| | - Shaelyn Mortensen
- Department of Forensic Science and Environmental and Life Sciences Program, Trent University ON K9 L0G2 Canada
| | - Maya Jaradi
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Naomi L Stock
- Water Quality Centre, Trent University ON K9L 0G2 Canada
| | - Nicholas Schileru
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
- Department of Osteopathic Medicine, Midwestern University 555 31st St. Downers Grove IL 60515 USA
| | - Bianca Elias
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Elan Pszenica
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Theresa M McCormick
- Department of Chemistry, Portland State University 1710 SW 10th Ave Portland OR 97201 USA
| | - Sanela Martic
- Department of Forensic Science and Environmental and Life Sciences Program, Trent University ON K9 L0G2 Canada
- Water Quality Centre, Trent University ON K9L 0G2 Canada
| | - Ngong Kodiah Beyeh
- Department of Chemistry, Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| |
Collapse
|
19
|
Valtonen S, Vuorinen E, Eskonen V, Malakoutikhah M, Kopra K, Härmä H. Sensitive, homogeneous, and label-free protein-probe assay for antibody aggregation and thermal stability studies. MAbs 2021; 13:1955810. [PMID: 34455913 PMCID: PMC8409793 DOI: 10.1080/19420862.2021.1955810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Protein aggregation is a spontaneous process affected by multiple external and internal properties, such as buffer composition and storage temperature. Aggregation of protein-based drugs can endanger patient safety due, for example, to increased immunogenicity. Aggregation can also inactivate protein drugs and prevent target engagement, and thus regulatory requirements are strict regarding drug stability monitoring during manufacturing and storage. Many of the current technologies for aggregation monitoring are time- and material-consuming and require specific instruments and expertise. These types of assays are not only expensive, but also unsuitable for larger sample panels. Here we report a label-free time-resolved luminescence-based method using an external Eu3+-conjugated probe for the simple and fast detection of protein stability and aggregation. We focused on monitoring the properties of IgG, which is a common format for biological drugs. The Protein-Probe assay enables IgG aggregation detection with a simple single-well mix-and-measure assay performed at room temperature. Further information can be obtained in a thermal ramping, where IgG thermal stability is monitored. We showed that with the Protein-Probe, trastuzumab aggregation was detected already after 18 hours of storage at 60°C, 4 to 8 days earlier compared to SYPRO Orange- and UV250-based assays, respectively. The ultra-high sensitivity of less than 0.1% IgG aggregates enables the Protein-Probe to reduce assay time and material consumption compared to existing techniques.
Collapse
Affiliation(s)
- Salla Valtonen
- Department of Chemistry, University of Turku, Turku, Finland
| | | | - Ville Eskonen
- Department of Chemistry, University of Turku, Turku, Finland
| | | | - Kari Kopra
- Department of Chemistry, University of Turku, Turku, Finland
| | - Harri Härmä
- Department of Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Baird G, Farrell C, Cheung J, Semple A, Blue J, Ahl PL. FTIR Spectroscopy Detects Intermolecular β-Sheet Formation Above the High Temperature T m for Two Monoclonal Antibodies. Protein J 2021; 39:318-327. [PMID: 32656609 PMCID: PMC7387379 DOI: 10.1007/s10930-020-09907-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The temperature-dependent secondary structure of two monoclonal IgG antibodies, anti-IGF1R and anti-TSLP, were examined by transmission mode Fourier Transform Infrared (FTIR) spectroscopy. Anti-IGF1R and anti-TSLP are IgG monoclonal antibodies (mAbs) directed against human Insulin-like Growth Factor 1 Receptor for anti-tumor activity and Thymic Stromal Lymphopoietin cytokine for anti-asthma activity, respectively. Differential scanning calorimetry (DSC) clearly indicates both antibodies in their base formulations have a lower temperature protein conformational change near 70 °C (Tm1) and a higher temperature protein conformational change near 85 °C (Tm2). Thermal scanning dynamic light scatting (TS-DLS) indicates a significant particle size increase for both antibodies near Tm2 suggesting a high level of protein aggregation. The nature of these protein conformational changes associated with increasing the formulation temperature and decreasing sucrose concentration were identified by transmission mode FTIR and second derivative FTIR spectroscopy of temperature controlled aqueous solutions of both monoclonal antibodies. The transition from intra-molecular β sheets to inter-molecular β sheets was clearly captured for both monoclonal antibodies using FTIR spectroscopy. Finally, FTIR Spectroscopy was able to show the impact of a common excipient such as sucrose on the stability of each monoclonal antibody, further demonstrating the usefulness of FTIR spectroscopy for studying protein aggregation and formulation effects.
Collapse
|
21
|
Deiringer N, Haase C, Wieland K, Zahler S, Haisch C, Friess W. Finding the Needle in the Haystack: High-Resolution Techniques for Characterization of Mixed Protein Particles Containing Shed Silicone Rubber Particles Generated During Pumping. J Pharm Sci 2020; 110:2093-2104. [PMID: 33307040 DOI: 10.1016/j.xphs.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022]
Abstract
During the manufacturing process of biopharmaceuticals, peristaltic pumps are employed at different stages for transferring and dosing of the final product. Commonly used silicone tubings are known for particle shedding from the inner tubing surface due to friction in the pump head. These nanometer sized silicone rubber particles could interfere with proteins. Until now, only mixed protein particles containing micrometer-sized contaminations such as silicone oil have been characterized, detected, and quantified. To overcome the detection limits in particle sizes of contaminants, this study aimed for the definite identification of protein particles containing nanometer sized silicone particles in qualitative and quantitative manner. The mixed particles consisted of silicone rubber particles either coated with a protein monolayer or embedded into protein aggregates. Confocal Raman microscopy allows label free chemical identification of components and 3D particle imaging. Labeling the tubing enables high-resolution imaging via confocal laser scanning microscopy and counting of mixed particles via Imaging Flow Cytometry. Overall, these methods allow the detection and identification of particles of unknown origin and composition and could be a forensic tool for solving problems with contaminations during processing of biopharmaceuticals.
Collapse
Affiliation(s)
- Natalie Deiringer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haase
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karin Wieland
- Chair for Analytical Chemistry, Technische Universität München, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Haisch
- Chair for Analytical Chemistry, Technische Universität München, Munich, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
22
|
Svilenov HL, Menzen T, Richter K, Winter G. Modulated Scanning Fluorimetry Can Quickly Assess Thermal Protein Unfolding Reversibility in Microvolume Samples. Mol Pharm 2020; 17:2638-2647. [DOI: 10.1021/acs.molpharmaceut.0c00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hristo L. Svilenov
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377 Munich, Germany
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Klaus Richter
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Gerhard Winter
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377 Munich, Germany
| |
Collapse
|
23
|
Sharma V, Yañez O, Zúñiga C, Kumar A, Singh G, Cantero-López P. Protein-surfactant interactions: A multitechnique approach on the effect of Co-solvents over bovine serum albumin (BSA)-cetyl pyridinium chloride (CPC) system. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Cafe SL, Nixon B, Dun MD, Roman SD, Bernstein IR, Bromfield EG. Oxidative Stress Dysregulates Protein Homeostasis Within the Male Germ Line. Antioxid Redox Signal 2020; 32:487-503. [PMID: 31830800 DOI: 10.1089/ars.2019.7832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: Oxidative stress is causally linked to male reproductive pathologies, driven primarily by lipid peroxidation and an attendant production of highly reactive lipid aldehydes, such as 4-hydroxynonenal (4HNE) within the male germ line. In somatic cells, 4HNE dysregulates proteostasis via targeting of vulnerable proteins for adduction, causing protein misfolding and eventually aggregation. The aims of this study were to explore whether oxidative stress precipitates an equivalent response in the male germ line and determine the protective mechanisms used by germ cells to prevent this cascade of protein damage. Results: We reveal a causative role for oxidative stress in the accumulation of protein deposits in male germ cells. Specifically, 4HNE treatment resulted in a significant increase in cytosolic protein aggregation within pre- and post-meiotic germ cells as measured by the aggregate-detecting fluorophores ProteoStat and Thioflavin T, and the amyloid-specific anti-A11 and anti-OC antibodies. Our data implicate nucleocytoplasmic transport machinery and molecular chaperones as potential mechanisms for the subcellular compartmentalization and/or suppression of aggregating proteins. Thus, the inhibition of karyopherin transport proteins and molecular chaperones resulted in a significant increase in the accumulation of aggregated cellular protein. Innovation: These data establish the novel paradigm that lipid peroxidation is a key contributor to a decline in proteostasis in developing germ cells. These findings will inform the development of novel strategies to protect germ cells from oxidative stress. Conclusion: Together, these results shed light on proteostasis mechanisms that may assist in the management of misfolded proteins in the male germ line under conditions of acute oxidative stress.
Collapse
Affiliation(s)
- Shenae Louise Cafe
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Matthew D Dun
- Cancer Signaling Research Group, School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia.,Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, Australia
| | - Shaun Daryl Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia.,Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Ilana Ruth Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Elizabeth Grace Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
25
|
Gao K, Oerlemans R, Groves MR. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys Rev 2020; 12:85-104. [PMID: 32006251 PMCID: PMC7040159 DOI: 10.1007/s12551-020-00619-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Differential scanning fluorimetry (DSF) is an accessible, rapid, and economical biophysical technique that has seen many applications over the years, ranging from protein folding state detection to the identification of ligands that bind to the target protein. In this review, we discuss the theory, applications, and limitations of DSF, including the latest applications of DSF by ourselves and other researchers. We show that DSF is a powerful high-throughput tool in early drug discovery efforts. We place DSF in the context of other biophysical methods frequently used in drug discovery and highlight their benefits and downsides. We illustrate the uses of DSF in protein buffer optimization for stability, refolding, and crystallization purposes and provide several examples of each. We also show the use of DSF in a more downstream application, where it is used as an in vivo validation tool of ligand-target interaction in cell assays. Although DSF is a potent tool in buffer optimization and large chemical library screens when it comes to ligand-binding validation and optimization, orthogonal techniques are recommended as DSF is prone to false positives and negatives.
Collapse
Affiliation(s)
- Kai Gao
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rick Oerlemans
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Matthew R Groves
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
26
|
Kirley TL, Norman AB, Wetzel HN. A novel differential scanning fluorimetry analysis of a humanized anti-cocaine mAb and its ligand binding characteristics. J Immunol Methods 2020; 476:112676. [PMID: 31634480 PMCID: PMC6939126 DOI: 10.1016/j.jim.2019.112676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 02/02/2023]
Abstract
An anti-cocaine monoclonal antibody (mAb) designated h2E2 will soon enter clinical trials for the treatment of cocaine abuse disorders. Importantly, this antibody selectively binds cocaine and its active metabolite, cocaethylene, with high affinity, while binding inactive metabolites with substantially lower affinities. Here, we used differential scanning fluorimetry (DSF) to characterize the stability and ligand binding properties of this antibody and its cocaine-binding Fab fragment. The Sypro orange dye commonly used for DSF revealed multiple overlapping thermal protein denaturation transitions for both the mAb and the Fab fragment, making quantitative analysis of ligand binding by thermal stabilization problematic. However, by using the "rotor" dye, DASPMI (4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide), which measures the rotational restriction of the fluorescent dye (as opposed to the Sypro orange dye which measures the hydrophobicity of the dye microenvironment), a simple two state thermal denaturation transition that is stabilized by ligand binding was observed for the h2E2 mAb, enabling Boltzmann fitting and quantitative thermodynamic analysis of the DASPMI DSF mAb cocaine and metabolite binding data. The computed affinities were consistent with ligand binding affinities determined using other techniques. Thus, this novel DASPMI DSF method can simply, inexpensively, and very rapidly generate ligand binding constants for the h2E2 mAb, despite the presence of multiple, overlapping, thermally unfolding protein domains characteristic of all mAbs. This approach is likely applicable to other mAbs currently in use for many research and therapeutic applications.
Collapse
Affiliation(s)
- Terence L Kirley
- From the Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, United States of America.
| | - Andrew B Norman
- From the Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, United States of America
| | - Hanna N Wetzel
- From the Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, United States of America
| |
Collapse
|
27
|
Probst C. Characterization of Protein Aggregates, Silicone Oil Droplets, and Protein-Silicone Interactions Using Imaging Flow Cytometry. J Pharm Sci 2020; 109:364-374. [DOI: 10.1016/j.xphs.2019.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|
28
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
29
|
Svilenov H, Winter G. The ReFOLD assay for protein formulation studies and prediction of protein aggregation during long-term storage. Eur J Pharm Biopharm 2019; 137:131-139. [DOI: 10.1016/j.ejpb.2019.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/28/2022]
|