1
|
Sultana MS, Niyikiza D, Hawk TE, Coffey N, Lopes-Caitar V, Pfotenhauer AC, El-Messidi H, Wyman C, Pantalone V, Hewezi T. Differential Transcriptome Reprogramming Induced by the Soybean Cyst Nematode Type 0 and Type 1.2.5.7 During Resistant and Susceptible Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:828-840. [PMID: 39392447 DOI: 10.1094/mpmi-08-24-0092-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines [Hg]) is a serious root parasite of soybean (Glycine max) that induces extensive gene expression changes associated with pleiotropic biological activities in infected cells. However, the impacts of various SCN Hg types on host transcriptome reprogramming remain largely unknown. Here, we developed and used two recombinant inbred lines (RIL; RIL-72 and RIL-137) to profile transcriptome reprogramming in the infection sites during the resistant and susceptible interactions with SCN Hg Type 1.2.5.7 and Type 0. SCN bioassays indicated that RIL-72 was susceptible to Type 1.2.5.7 but resistant to Type 0, whereas RIL-137 was resistant to both types. Comparative analysis of gene expression changes induced by Type 1.2.5.7 in the resistant and susceptible lines revealed distinct transcriptome regulation with a number of similarly and oppositely regulated genes. The expression levels of similarly regulated genes in the susceptible line appeared to be insufficient to mount an effective defense against SCN. The functional importance of oppositely regulated genes was confirmed using virus-induced gene silencing (VIGS) and overexpression approaches. Further transcriptome comparisons revealed shared as well as Hg type- and genotype-specific transcriptome reprogramming. Shared transcriptome responses were mediated through common SCN-responsive genes and conserved immune signaling, whereas genotype-specific responses were derived from genetic variability, metabolic and hormonal differences, and varied regulation of protein phosphorylation and ubiquitination. The conserved defense mechanisms together with genotype-specific responses would enable plants to trigger effective and tailored immune responses to various Hg types and adapt the defense response to their genetic backgrounds. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Daniel Niyikiza
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tracy E Hawk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Nicole Coffey
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Alexander C Pfotenhauer
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Hana El-Messidi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Chris Wyman
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
2
|
Acharya S, Troell HA, Billingsley RL, Lawrence KS, McKirgan DS, Alkharouf NW, Klink VP. Glycine max polygalacturonase inhibiting protein 11 (GmPGIP11) functions in the root to suppress Heterodera glycines parasitism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108755. [PMID: 38875777 DOI: 10.1016/j.plaphy.2024.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024]
Abstract
Pathogen-secreted polygalacturonases (PGs) alter plant cell wall structure by cleaving the α-(1 → 4) linkages between D-galacturonic acid residues in homogalacturonan (HG), macerating the cell wall, facilitating infection. Plant PG inhibiting proteins (PGIPs) disengage pathogen PGs, impairing infection. The soybean cyst nematode, Heterodera glycines, obligate root parasite produces secretions, generating a multinucleate nurse cell called a syncytium, a byproduct of the merged cytoplasm of 200-250 root cells, occurring through cell wall maceration. The common cytoplasmic pool, surrounded by an intact plasma membrane, provides a source from which H. glycines derives nourishment but without killing the parasitized cell during a susceptible reaction. The syncytium is also the site of a naturally-occurring defense response that happens in specific G. max genotypes. Transcriptomic analyses of RNA isolated from the syncytium undergoing the process of defense have identified that one of the 11 G. max PGIPs, GmPGIP11, is expressed during defense. Functional transgenic analyses show roots undergoing GmPGIP11 overexpression (OE) experience an increase in its relative transcript abundance (RTA) as compared to the ribosomal protein 21 (GmRPS21) control, leading to a decrease in H. glycines parasitism as compared to the overexpression control. The GmPGIP11 undergoing RNAi experiences a decrease in its RTA as compared to the GmRPS21 control with transgenic roots experiencing an increase in H. glycines parasitism as compared to the RNAi control. Pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) components are shown to influence GmPGIP11 expression while numerous agricultural crops are shown to have homologs.
Collapse
Affiliation(s)
- Sudha Acharya
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA; USDA-ARS-NEA-BARC Molecular Plant Pathology Laboratory, Building 004, Room 122, BARC-West, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Hallie A Troell
- Department of Biological Sciences, Mississippi State University, MS, 39762, USA
| | - Rebecca L Billingsley
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS, 39762, USA
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA
| | - Daniel S McKirgan
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Nadim W Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Vincent P Klink
- USDA-ARS-NEA-BARC Molecular Plant Pathology Laboratory, Building 004, Room 122, BARC-West, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
3
|
Zhang M, Cao J, Zhang T, Xu T, Yang L, Li X, Ji F, Gao Y, Ali S, Zhang Q, Zhu J, Xie L. A Putative Plasma Membrane Na +/H + Antiporter GmSOS1 Is Critical for Salt Stress Tolerance in Glycine max. FRONTIERS IN PLANT SCIENCE 2022; 13:870695. [PMID: 35651772 PMCID: PMC9149370 DOI: 10.3389/fpls.2022.870695] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 05/24/2023]
Abstract
Soybean (Glycine max) is a staple crop and a major source of vegetable protein and vegetable oil. The growth of soybean is dramatically inhibited by salt stress, especially by the excessive toxic Na+. Salt Overly Sensitive 1 (SOS1) is the only extensively characterized Na+ efflux transporter in multiple plant species so far. However, the role of GmSOS1 in soybean salt stress responses remains unclear. Herein, we created three gmsos1 mutants using the CRISPR-Cas9 system in soybean. We found a significant accumulation of Na+ in the roots of the gmsos1 mutants, resulting in the imbalance of Na+ and K+, which links to impaired Na+ efflux and increased K+ efflux in the roots of the gmsos1 mutants under salt stress. Compared to the wild type, our RNA-seq analysis revealed that the roots of the gmsos1-1 showed preferential up and downregulation of ion transporters under salt stress, supporting impaired stress detection or an inability to develop a comprehensive response to salinity in the gmsos1 mutants. Our findings indicate that the plasma membrane Na+/H+ exchanger GmSOS1 plays a critical role in soybean salt tolerance by maintaining Na+ homeostasis and provides evidence for molecular breeding to improve salt tolerance in soybean and other crops.
Collapse
Affiliation(s)
- Minghui Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Junfeng Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tao Xu
- The Editorial Board of Journal of Forestry Research, Northeast Forestry University, Harbin, China
| | - Liyuan Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- Laboratory Department, Qitaihe Center for Disease Control and Prevention, Qitaihe, China
| | - Xiaoyuan Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Fengdan Ji
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yingxue Gao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shahid Ali
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, College Park, MD, United States
| | - Linan Xie
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Khatri R, Pant SR, Sharma K, Niraula PM, Lawaju BR, Lawrence KS, Alkharouf NW, Klink VP. Glycine max Homologs of DOESN'T MAKE INFECTIONS 1, 2, and 3 Function to Impair Heterodera glycines Parasitism While Also Regulating Mitogen Activated Protein Kinase Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:842597. [PMID: 35599880 PMCID: PMC9114929 DOI: 10.3389/fpls.2022.842597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Glycine max root cells developing into syncytia through the parasitic activities of the pathogenic nematode Heterodera glycines underwent isolation by laser microdissection (LM). Microarray analyses have identified the expression of a G. max DOESN'T MAKE INFECTIONS3 (DMI3) homolog in syncytia undergoing parasitism but during a defense response. DMI3 encodes part of the common symbiosis pathway (CSP) involving DMI1, DMI2, and other CSP genes. The identified DMI gene expression, and symbiosis role, suggests the possible existence of commonalities between symbiosis and defense. G. max has 3 DMI1, 12 DMI2, and 2 DMI3 paralogs. LM-assisted gene expression experiments of isolated syncytia under further examination here show G. max DMI1-3, DMI2-7, and DMI3-2 expression occurring during the defense response in the H. glycines-resistant genotypes G.max [Peking/PI548402] and G.max [PI88788] indicating a broad and consistent level of expression of the genes. Transgenic overexpression (OE) of G. max DMI1-3, DMI2-7, and DMI3-2 impairs H. glycines parasitism. RNA interference (RNAi) of G. max DMI1-3, DMI2-7, and DMI3-2 increases H. glycines parasitism. The combined opposite outcomes reveal a defense function for these genes. Prior functional transgenic analyses of the 32-member G. max mitogen activated protein kinase (MAPK) gene family has determined that 9 of them act in the defense response to H. glycines parasitism, referred to as defense MAPKs. RNA-seq analyses of root RNA isolated from the 9 G. max defense MAPKs undergoing OE or RNAi reveal they alter the relative transcript abundances (RTAs) of specific DMI1, DMI2, and DMI3 paralogs. In contrast, transgenically-manipulated DMI1-3, DMI2-7, and DMI3-2 expression influences MAPK3-1 and MAPK3-2 RTAs under certain circumstances. The results show G. max homologs of the CSP, and defense pathway are linked, apparently involving co-regulated gene expression.
Collapse
Affiliation(s)
- Rishi Khatri
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Bisho R. Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
5
|
Anjam MS, Siddique S, Marhavy P. RNA Isolation from Nematode-Induced Feeding Sites in Arabidopsis Roots Using Laser Capture Microdissection. Methods Mol Biol 2022; 2494:313-324. [PMID: 35467217 DOI: 10.1007/978-1-0716-2297-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nematodes are diverse multicellular organisms that are most abundantly found in the soil. Most nematodes are free-living and feed on a range of organisms. Based on their feeding habits, soil nematodes can be classified into four groups: bacterial, omnivorous, fungal, and plant-feeding. Plant-parasitic nematodes (PPNs) are a serious threat to global food security, causing substantial losses to the agricultural sector. Root-knot and cyst nematodes are the most important of PPNs, significantly limiting the yield of commercial crops such as sugar beet, mustard, and cauliflower. The life cycle of these nematodes consists of four molting stages (J1-J4) that precede adulthood. Nonetheless, only second-stage juveniles (J2), which hatch from eggs, are infective worms that can parasitize the host's roots. The freshly hatched juveniles (J2) of beet cyst nematode, Heterodera schachtii, establish a permanent feeding site inside the roots of the host plant. A cocktail of proteinaceous secretions is injected into a selected cell which later develops into a syncytium via local cell wall dissolution of several hundred neighboring cells. The formation of syncytium is accompanied by massive transcriptional, metabolic, and proteomic changes inside the host tissues. It creates a metabolic sink in which solutes are translocated to feed the nematodes throughout their life cycle. Deciphering the molecular signaling cascades during syncytium establishment is thus essential in studying the plant-nematode interactions and ensuring sustainability in agricultural practices. However, isolating RNA, protein, and metabolites from syncytial cells remains challenging. Extensive use of laser capture microdissection (LCM) in animal and human tissues has shown this approach to be a powerful technique for isolating a single cell from complex tissues. Here, we describe a simplified protocol for Arabidopsis-Heterodera schachtii infection assays, which is routinely applied in several plant-nematode laboratories. Next, we provide a detailed protocol for isolating high-quality RNA from syncytial cells induced by Heterodera schachtii in the roots of Arabidopsis thaliana plants.
Collapse
Affiliation(s)
- Muhammad Shahzad Anjam
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
- Institute of Molecular Biology and Biotechnology (IMBB), Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Peter Marhavy
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden.
| |
Collapse
|
6
|
Filipecki M, Żurczak M, Matuszkiewicz M, Święcicka M, Kurek W, Olszewski J, Koter MD, Lamont D, Sobczak M. Profiling the Proteome of Cyst Nematode-Induced Syncytia on Tomato Roots. Int J Mol Sci 2021; 22:ijms222212147. [PMID: 34830029 PMCID: PMC8625192 DOI: 10.3390/ijms222212147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cyst nematodes are important herbivorous pests in agriculture that obtain nutrients through specialized root structures termed syncytia. Syncytium initiation, development, and functioning are a research focus because syncytia are the primary interface for molecular interactions between the host plant and parasite. The small size and complex development (over approximately two weeks) of syncytia hinder precise analyses, therefore most studies have analyzed the transcriptome of infested whole-root systems or syncytia-containing root segments. Here, we describe an effective procedure to microdissect syncytia induced by Globodera rostochiensis from tomato roots and to analyze the syncytial proteome using mass spectrometry. As little as 15 mm2 of 10-µm-thick sections dissected from 30 syncytia enabled the identification of 100–200 proteins in each sample, indicating that mass-spectrometric methods currently in use achieved acceptable sensitivity for proteome profiling of microscopic samples of plant tissues (approximately 100 µg). Among the identified proteins, 48 were specifically detected in syncytia and 7 in uninfected roots. The occurrence of approximately 50% of these proteins in syncytia was not correlated with transcript abundance estimated by quantitative reverse-transcription PCR analysis. The functional categories of these proteins confirmed that protein turnover, stress responses, and intracellular trafficking are important components of the proteome dynamics of developing syncytia.
Collapse
Affiliation(s)
- Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
- Correspondence: ; Tel.: +48-22-5932171
| | - Marek Żurczak
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Magdalena Święcicka
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| | - Wojciech Kurek
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| | - Jarosław Olszewski
- Veterinary Research Centre, Centre for Biomedicine Research, Centre for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute for Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Marek Daniel Koter
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Douglas Lamont
- ‘FingerPrints’ Proteomics Facility, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK;
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| |
Collapse
|
7
|
Kahn TW, Duck NB, McCarville MT, Schouten LC, Schweri K, Zaitseva J, Daum J. A Bacillus thuringiensis Cry protein controls soybean cyst nematode in transgenic soybean plants. Nat Commun 2021; 12:3380. [PMID: 34099714 PMCID: PMC8184815 DOI: 10.1038/s41467-021-23743-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) are economically important pests of agricultural crops, and soybean cyst nematode (SCN) in particular is responsible for a large amount of damage to soybean. The need for new solutions for controlling SCN is becoming increasingly urgent, due to the slow decline in effectiveness of the widely used native soybean resistance derived from genetic line PI 88788. Thus, developing transgenic traits for controlling SCN is of great interest. Here, we report a Bacillus thuringiensis delta-endotoxin, Cry14Ab, that controls SCN in transgenic soybean. Experiments in C. elegans suggest the mechanism by which the protein controls nematodes involves damaging the intestine, similar to the mechanism of Cry proteins used to control insects. Plants expressing Cry14Ab show a significant reduction in cyst numbers compared to control plants 30 days after infestation. Field trials also show a reduction in SCN egg counts compared with control plants, demonstrating that this protein has excellent potential to control PPNs in soybean.
Collapse
Affiliation(s)
| | - Nicholas B Duck
- BASF, Morrisville, NC, USA
- Avertica, Research Triangle Park, NC, USA
| | | | | | | | | | | |
Collapse
|
8
|
Niraula PM, Zhang X, Jeremic D, Lawrence KS, Klink VP. Xyloglucan endotransglycosylase/hydrolase increases tightly-bound xyloglucan and chain number but decreases chain length contributing to the defense response that Glycine max has to Heterodera glycines. PLoS One 2021; 16:e0244305. [PMID: 33444331 PMCID: PMC7808671 DOI: 10.1371/journal.pone.0244305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The Glycine max xyloglucan endotransglycosylase/hydrolase (EC 2.4.1.207), GmXTH43, has been identified through RNA sequencing of RNA isolated through laser microdissection of Heterodera glycines-parasitized root cells (syncytia) undergoing the process of defense. Experiments reveal that genetically increasing XTH43 transcript abundance in the H. glycines-susceptible genotype G. max[Williams 82/PI 518671] decreases parasitism. Experiments presented here show decreasing XTH43 transcript abundance through RNA interference (RNAi) in the H. glycines-resistant G. max[Peking/PI 548402] increases susceptibility, but it is unclear what role XTH43 performs. The experiments presented here show XTH43 overexpression decreases the relative length of xyloglucan (XyG) chains, however, there is an increase in the amount of those shorter chains. In contrast, XTH43 RNAi increases XyG chain length. The experiments show that XTH43 has the capability to function, when increased in its expression, to limit XyG chain extension. This outcome would likely impair the ability of the cell wall to expand. Consequently, XTH43 could provide an enzymatically-driven capability to the cell that would allow it to limit the ability of parasitic nematodes like H. glycines to develop a feeding structure that, otherwise, would facilitate parasitism. The experiments presented here provide experimentally-based proof that XTHs can function in ways that could be viewed as being able to limit the expansion of the cell wall.
Collapse
Affiliation(s)
- Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Xuefeng Zhang
- Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Dragica Jeremic
- Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Katherine S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, United States of America
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi State, United States of America
- Center for Computational Sciences High Performance Computing Collaboratory, Starkville, Mississippi State, United States of America
| |
Collapse
|
9
|
Sharma K, Niraula PM, Troell HA, Adhikari M, Alshehri HA, Alkharouf NW, Lawrence KS, Klink VP. Exocyst components promote an incompatible interaction between Glycine max (soybean) and Heterodera glycines (the soybean cyst nematode). Sci Rep 2020; 10:15003. [PMID: 32929168 PMCID: PMC7490361 DOI: 10.1038/s41598-020-72126-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/17/2020] [Indexed: 11/24/2022] Open
Abstract
Vesicle and target membrane fusion involves tethering, docking and fusion. The GTPase SECRETORY4 (SEC4) positions the exocyst complex during vesicle membrane tethering, facilitating docking and fusion. Glycine max (soybean) Sec4 functions in the root during its defense against the parasitic nematode Heterodera glycines as it attempts to develop a multinucleate nurse cell (syncytium) serving to nourish the nematode over its 30-day life cycle. Results indicate that other tethering proteins are also important for defense. The G. max exocyst is encoded by 61 genes: 5 EXOC1 (Sec3), 2 EXOC2 (Sec5), 5 EXOC3 (Sec6), 2 EXOC4 (Sec8), 2 EXOC5 (Sec10) 6 EXOC6 (Sec15), 31 EXOC7 (Exo70) and 8 EXOC8 (Exo84) genes. At least one member of each gene family is expressed within the syncytium during the defense response. Syncytium-expressed exocyst genes function in defense while some are under transcriptional regulation by mitogen-activated protein kinases (MAPKs). The exocyst component EXOC7-H4-1 is not expressed within the syncytium but functions in defense and is under MAPK regulation. The tethering stage of vesicle transport has been demonstrated to play an important role in defense in the G. max-H. glycines pathosystem, with some of the spatially and temporally regulated exocyst components under transcriptional control by MAPKs.
Collapse
Affiliation(s)
- Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, MN, 55108, USA
| | - Prakash M Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Texas A&M University, 2415 E. Hwy. 83, Weslaco, TX, 78596, USA
| | - Hallie A Troell
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Mandeep Adhikari
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Hamdan Ali Alshehri
- Department of Mathematics and Computer Science, Texas Women's University, Denton, TX, 76204, USA
| | - Nadim W Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
10
|
Becker MG, Haddadi P, Wan J, Adam L, Walker P, Larkan NJ, Daayf F, Borhan MH, Belmonte MF. Transcriptome Analysis of Rlm2-Mediated Host Immunity in the Brassica napus- Leptosphaeria maculans Pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1001-1012. [PMID: 30938576 DOI: 10.1094/mpmi-01-19-0028-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Our study investigated disease resistance in the Brassica napus-Leptosphaeria maculans pathosystem using a combination of laser microdissection, dual RNA sequencing, and physiological validations of large-scale gene sets. The use of laser microdissection improved pathogen detection and identified putative L. maculans effectors and lytic enzymes operative during host colonization. Within 24 h of inoculation, we detected large shifts in gene activity in resistant cotyledons associated with jasmonic acid and calcium signaling pathways that accelerated the plant defense response. Sequencing data were validated through the direct quantification of endogenous jasmonic acid levels. Additionally, resistance against L. maculans was abolished when the calcium chelator EGTA was applied to the inoculation site, providing physiological evidence of the role of calcium in B. napus immunity against L. maculans. We integrated gene expression data with all available information on cis-regulatory elements and transcription factor binding affinities to better understand the gene regulatory networks underpinning plant resistance to hemibiotrophic pathogens. These in silico analyses point to early cellular reprogramming during host immunity that are coordinated by CAMTA, BZIP, and bHLH transcription factors. Together, we provide compelling genetic and physiological evidence into the programming of plant resistance against fungal pathogens.
Collapse
Affiliation(s)
- Michael G Becker
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Parham Haddadi
- 2Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Joey Wan
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lorne Adam
- 3Department of Plant Science, University of Manitoba
| | - Philip Walker
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Fouad Daayf
- 3Department of Plant Science, University of Manitoba
| | - M Hossein Borhan
- 2Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Mark F Belmonte
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
11
|
Hua L, Hibberd JM. An optimized protocol for isolation of high-quality RNA through laser capture microdissection of leaf material. PLANT DIRECT 2019; 3:e00156. [PMID: 31468025 PMCID: PMC6710646 DOI: 10.1002/pld3.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 05/07/2023]
Abstract
Laser Capture Microdissection is a powerful tool that allows thin slices of specific cell types to be separated from one another. However, the most commonly used protocol, which involves embedding tissue in paraffin wax, results in severely degraded RNA. Yields from low abundance cell types of leaves are particularly compromised. We reasoned that the relatively high temperature used for sample embedding, and aqueous conditions associated with sample preparation prior to microdissection contribute to RNA degradation. Here, we describe an optimized procedure to limit RNA degradation that is based on the use of low-melting-point wax as well as modifications to sample preparation prior to dissection, and isolation of paradermal, rather than transverse sections. Using this approach, high-quality RNA suitable for down-stream applications such as quantitative reverse transcriptase-polymerase chain reactions or RNA-sequencing is recovered from microdissected bundle sheath strands and mesophyll cells of leaf tissue.
Collapse
Affiliation(s)
- Lei Hua
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
12
|
McNeece BT, Sharma K, Lawrence GW, Lawrence KS, Klink VP. The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heterodera glycines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:25-41. [PMID: 30711881 DOI: 10.1016/j.plaphy.2019.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 05/23/2023]
Abstract
Mitogen activated protein kinases (MAPKs) play important signal transduction roles. However, little is known regarding how they influence the gene expression of other family members and the relationship to a biological process, including the Glycine max defense response to Heterodera glycines. Transcriptomics have identified MAPK gene expression occurring within root cells undergoing a defense response to a pathogenic event initiated by H. glycines in the allotetraploid Glycine max. Functional analyses are presented for its 32 MAPKs revealing 9 have a defense role, including homologs of Arabidopsis thaliana MAPK (MPK) MPK2, MPK3, MPK4, MPK5, MPK6, MPK13, MPK16 and MPK20. Defense signaling occurring through pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) have been determined in relation to these MAPKs. Five different types of gene expression relate to MAPK expression, influencing PTI and ETI gene expression and proven defense genes including an ABC-G transporter, 20S membrane fusion particle components, glycoside biosynthesis, carbon metabolism, hemicellulose modification, transcription and secretion. The experiments show MAPKs broadly influence defense MAPK gene expression, including the co-regulation of parologous MAPKs and reveal its relationship to proven defense genes. The experiments reveal each defense MAPK induces the expression of a G. max homolog of a PATHOGENESIS RELATED1 (PR1), itself shown to function in defense in the studied pathosystem.
Collapse
Affiliation(s)
- Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
13
|
Chandran D, Scanlon MJ, Ohtsu K, Timmermans MC, Schnable PS, Wildermuth MC. Laser Microdissection–Mediated Isolation and In Vitro Transcriptional Amplification of Plant RNA. ACTA ACUST UNITED AC 2018; 112:25A.3.1-25A.3.23. [DOI: 10.1002/0471142727.mb25a03s112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Divya Chandran
- University of California Berkeley California
- Regional Center for Biotechnology Faridabad India
| | | | | | | | | | | |
Collapse
|
14
|
Smant G, Helder J, Goverse A. Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:686-702. [PMID: 29277939 DOI: 10.1111/tpj.13811] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 05/08/2023]
Abstract
Parallel adaptations enabling the use of plant cells as the primary food source have occurred multiple times in distinct nematode clades. The hallmark of all extant obligate and facultative plant-feeding nematodes is the presence of an oral stylet, which is required for penetration of plant cell walls, delivery of pharyngeal gland secretions into host cells and selective uptake of plant assimilates. Plant parasites from different clades, and even within a single clade, display a large diversity in feeding behaviours ranging from short feeding cycles on single cells to prolonged feeding on highly sophisticated host cell complexes. Despite these differences, feeding of nematodes frequently (but certainly not always) induces common responses in host cells (e.g. endopolyploidization and cellular hypertrophy). It is thought that these host cell responses are brought about by the interplay of effectors and other biological active compounds in stylet secretions of feeding nematodes, but this has only been studied for the most advanced sedentary plant parasites. In fact, these responses are thought to be fundamental for prolonged feeding of sedentary plant parasites on host cells. However, as we discuss in this review, some of these common plant responses to independent lineages of plant parasitic nematodes might also be generic reactions to cell stress and as such their onset may not require specific inputs from plant parasitic nematodes. Sedentary plant parasitic nematodes may utilize effectors and their ability to synthesize other biologically active compounds to tailor these common responses for prolonged feeding on host cells.
Collapse
Affiliation(s)
- Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
15
|
Ling J, Mao Z, Zhai M, Zeng F, Yang Y, Xie B. Transcriptome profiling of Cucumis metuliferus infected by Meloidogyne incognita provides new insights into putative defense regulatory network in Cucurbitaceae. Sci Rep 2017; 7:3544. [PMID: 28615634 PMCID: PMC5471208 DOI: 10.1038/s41598-017-03563-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/02/2017] [Indexed: 12/27/2022] Open
Abstract
Root-knot nematodes (RKN) represent extensive challenges to Cucurbitaceae crops. However, Cucumis metuliferus (Cm) is known to be resistant to Meloidogyne incognita (Mi) infections. Thus, analysis of differentially expressed genes may lead to a comprehensive gene expression profiling of the incompatible Cm-Mi interaction. In this study, the time-course transcriptome of Cm against Mi infection was monitored using RNA-Seq. More than 170000 transcripts were examined in Cm roots, and 2430 genes were subsequently identified as differentially expressed in response to Mi infection. Based on function annotation and orthologs finding, the potential mechanism of transcriptional factor, cytoskeleton, pathogen-related genes and plant hormone were assessed at the transcription level. A comparison of gene expression levels between Mi-infected Cm and cucumber plants revealed that cytoskeleton-related genes are key regulators of Cm resistance to Mi. We herein discuss the dual nature of cytoskeleton-related genes in the susceptibility and resistance of plant hosts to Mi. Our observations provide novel insights into the responses of Cm to Mi at the transcriptome level. The data generated in this study may be useful for elucidating the mechanism underlying resistance to RKNs in cucurbitaceous crops.
Collapse
Affiliation(s)
- Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Mingjuan Zhai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Feng Zeng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
16
|
McNeece BT, Pant SR, Sharma K, Niruala P, Lawrence GW, Klink VP. A Glycine max homolog of NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) alters defense gene expression while functioning during a resistance response to different root pathogens in different genetic backgrounds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:60-71. [PMID: 28273511 DOI: 10.1016/j.plaphy.2017.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 05/23/2023]
Abstract
A Glycine max homolog of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene (Gm-NDR1-1) is expressed in root cells undergoing a defense response to the root pathogenic nematode, Heterodera glycines. Gm-NDR1-1 overexpression in the H. glycines-susceptible genotype G. max[Williams 82/PI 518671] impairs parasitism. In contrast, Gm-NDR1-1 RNA interference (RNAi) in the H. glycines-resistant genotype G. max[Peking/PI 548402] facilitates parasitism. The broad effectiveness of Gm-NDR1-1 in impairing parasitism has then been examined by engineering its heterologous expression in Gossypium hirsutum which is susceptible to the root pathogenic nematode Meloidogyne incognita. The heterologous expression of Gm-NDR1-1 in G. hirsutum effectively impairs M. incognita parasitism, reducing gall, egg mass, egg and juvenile numbers. In contrast to our prior experiments examining the effectiveness of the heterologous expression of a G. max homolog of the A. thaliana salicyclic acid signaling (SA) gene NONEXPRESSOR OF PR1 (Gm-NPR1-2), no cumulative negative effect on M. incognita parasitism has been observed in G. hirsutum expressing Gm-NDR1-1. The results indicate a common genetic basis exists for plant resistance to parasitic nematodes that involves Gm-NDR1. However, the Gm-NDR1-1 functions in ways that are measurably dissimilar to Gm-NPR1-2. Notably, Gm-NDR1-1 overexpression leads to increased relative transcript levels of its homologs of A. thaliana genes functioning in SA signaling, including NPR1-2, TGA2-1 and LESION SIMULATING DISEASE1 (LSD1-2) that is lost in Gm-NDR1-1 RNAi lines. Similar observations have been made regarding the expression of other defense genes.
Collapse
Affiliation(s)
- Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States; Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research & Extension, Texas A&M University, Weslaco, TX 78596, United States
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Prakash Niruala
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
17
|
Isayenkov S, Maathuis FJM. Construction and applications of a mycorrhizal arbuscular specific cDNA library. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4182071. [PMID: 27088086 PMCID: PMC4818802 DOI: 10.1155/2016/4182071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 11/17/2022]
Abstract
The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hair cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. In this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.
Collapse
|
19
|
Gautam V, Singh A, Singh S, Sarkar AK. An Efficient LCM-Based Method for Tissue Specific Expression Analysis of Genes and miRNAs. Sci Rep 2016; 6:21577. [PMID: 26861910 PMCID: PMC4748277 DOI: 10.1038/srep21577] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/26/2016] [Indexed: 12/26/2022] Open
Abstract
Laser Capture Microdissection (LCM) is a powerful tool to isolate and study gene expression pattern of desired and less accessible cells or tissues from a heterogeneous population. Existing LCM-based methods fail to obtain high quality RNA including small RNAs from small microdissected plant tissue and therefore, are not suitable for miRNA expression studies. Here, we describe an efficient and cost-effective method to obtain both high quality RNA and miRNAs from LCM-derived embryonic root apical meristematic tissue, which is difficult to access. We have significantly modified and improved the tissue fixation, processing, sectioning and RNA isolation steps and minimized the use of kits. Isolated RNA was checked for quality with bioanalyzer and used for gene expression studies. We have confirmed the presence of 19-24 nucleotide long mature miRNAs using modified stem-loop RT-PCR. This modified LCM-based method is suitable for tissue specific expression analysis of both genes and small RNAs (miRNAs).
Collapse
Affiliation(s)
- Vibhav Gautam
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sharmila Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
20
|
Anjam MS, Ludwig Y, Hochholdinger F, Miyaura C, Inada M, Siddique S, Grundler FMW. An improved procedure for isolation of high-quality RNA from nematode-infected Arabidopsis roots through laser capture microdissection. PLANT METHODS 2016; 12:25. [PMID: 27123040 PMCID: PMC4847226 DOI: 10.1186/s13007-016-0123-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/19/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cyst nematodes are biotrophs that form specialized feeding structures in the roots of host plants, which consist of a syncytial fusion of hypertrophied cells. The formation of syncytium is accompanied by profound transcriptional changes and active metabolism in infected tissues. The challenge in gene expression studies for syncytium has always been the isolation of pure syncytial material and subsequent extraction of intact RNA. Root fragments containing syncytium had been used for microarray analyses. However, the inclusion of neighbouring cells dilutes the syncytium-specific mRNA population. Micro-sectioning coupled with laser capture microdissection (LCM) offers an opportunity for the isolation of feeding sites from heterogeneous cell populations. But recovery of intact RNA from syncytium dissected by LCM is complicated due to extended steps of fixation, tissue preparation, embedding and sectioning. RESULTS In the present study, we have optimized the procedure of sample preparation for LCM to isolate high quality of RNA from cyst nematode induced syncytia in Arabidopsis roots which can be used for transcriptomic studies. We investigated the effect of various sucrose concentrations as cryoprotectant on RNA quality and morphology of syncytial sections. We also compared various types of microscopic slides for strong adherence of sections while removing embedding material. CONCLUSION The use of optimal sucrose concentrations as cryoprotection plays a key role in RNA stability and morphology of sections. Treatment with higher sucrose concentrations minimizes the risk of RNA degradation, whereas longer incubation times help maintaining the morphology of tissue sections. Our method allows isolating high-quality RNA from nematode feeding sites that is suitable for downstream applications such as microarray experiments.
Collapse
Affiliation(s)
- Muhammad Shahzad Anjam
- />INRES - Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
- />Institute of Molecular Biology and Bio-technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Yvonne Ludwig
- />INRES - Crop Functional Genomics, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Frank Hochholdinger
- />INRES - Crop Functional Genomics, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Chisato Miyaura
- />Department of Biotechnology and Life Science, and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 Japan
| | - Masaki Inada
- />Department of Biotechnology and Life Science, and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 Japan
| | - Shahid Siddique
- />INRES - Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Florian M. W. Grundler
- />INRES - Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| |
Collapse
|
21
|
Abstract
During pneumonic plague, the bacterium Yersinia pestis elicits the development of inflammatory lung lesions that continue to expand throughout infection. This lesion development and persistence are poorly understood. Here, we examine spatially distinct regions of lung lesions using laser capture microdissection and transcriptome sequencing (RNA-seq) analysis to identify transcriptional differences between lesion microenvironments. We show that cellular pathways involved in leukocyte migration and apoptosis are downregulated in the center of lung lesions compared to the periphery. Probing for the bacterial factor(s) important for the alteration in neutrophil survival, we show both in vitro and in vivo that Y. pestis increases neutrophil survival in a manner that is dependent on the type III secretion system effector YopM. This research explores the complexity of spatially distinct host-microbe interactions and emphasizes the importance of cell relevance in assays in order to fully understand Y. pestis virulence. Yersinia pestis is a high-priority pathogen and continues to cause outbreaks worldwide. The ability of Y. pestis to be transmitted via respiratory droplets and its history of weaponization has led to its classification as a select agent most likely to be used as a biological weapon. Unrestricted bacterial growth during the initial preinflammatory phase primes patients to be infectious once disease symptoms begin in the proinflammatory phase, and the rapid disease progression can lead to death before Y. pestis infection can be diagnosed and treated. Using in vivo analyses and focusing on relevant cell types during pneumonic plague infection, we can identify host pathways that may be manipulated to extend the treatment window for pneumonic plague patients.
Collapse
|
22
|
Laser Assisted Microdissection, an Efficient Technique to Understand Tissue Specific Gene Expression Patterns and Functional Genomics in Plants. Mol Biotechnol 2014; 57:299-308. [DOI: 10.1007/s12033-014-9824-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Pant SR, Matsye PD, McNeece BT, Sharma K, Krishnavajhala A, Lawrence GW, Klink VP. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines. PLANT MOLECULAR BIOLOGY 2014; 85:107-21. [PMID: 24452833 DOI: 10.1007/s11103-014-0172-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/08/2014] [Indexed: 05/23/2023]
Abstract
A Glycine max syntaxin 31 homolog (Gm-SYP38) was identified as being expressed in nematode-induced feeding structures known as syncytia undergoing an incompatible interaction with the plant parasitic nematode Heterodera glycines. The observed Gm-SYP38 expression was consistent with prior gene expression analyses that identified the alpha soluble NSF attachment protein (Gm-α-SNAP) resistance gene because homologs of these genes physically interact and function together in other genetic systems. Syntaxin 31 is a protein that resides on the cis face of the Golgi apparatus and binds α-SNAP-like proteins, but has no known role in resistance. Experiments presented here show Gm-α-SNAP overexpression induces Gm-SYP38 transcription. Overexpression of Gm-SYP38 rescues G. max [Williams 82/PI 518671], genetically rhg1 (-/-), by suppressing H. glycines parasitism. In contrast, Gm-SYP38 RNAi in the rhg1 (+/+) genotype G. max [Peking/PI 548402] increases susceptibility. Gm-α-SNAP and Gm-SYP38 overexpression induce the transcriptional activity of the cytoplasmic receptor-like kinase BOTRYTIS INDUCED KINASE 1 (Gm-BIK1-6) which is a family of defense proteins known to anchor to membranes through a 5' MGXXXS/T(R) N-myristoylation sequence. Gm-BIK1-6 had been identified previously by RNA-seq experiments as expressed in syncytia undergoing an incompatible reaction. Gm-BIK1-6 overexpression rescues the resistant phenotype. In contrast, Gm-BIK1-6 RNAi increases parasitism. The analysis demonstrates a role for syntaxin 31-like genes in resistance that until now was not known.
Collapse
Affiliation(s)
- Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA,
| | | | | | | | | | | | | |
Collapse
|
24
|
Matthews BF, Beard H, Brewer E, Kabir S, MacDonald MH, Youssef RM. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC PLANT BIOLOGY 2014; 14:96. [PMID: 24739302 PMCID: PMC4021311 DOI: 10.1186/1471-2229-14-96] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. RESULTS Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). CONCLUSIONS Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.
Collapse
Affiliation(s)
- Benjamin F Matthews
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Hunter Beard
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Eric Brewer
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Sara Kabir
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Margaret H MacDonald
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Reham M Youssef
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
- Fayoum University, Fayoum, Egypt
| |
Collapse
|
25
|
Kliebenstein DJ. Orchestration of plant defense systems: genes to populations. TRENDS IN PLANT SCIENCE 2014; 19:250-255. [PMID: 24486317 DOI: 10.1016/j.tplants.2014.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/21/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Research over the past decades has made immense progress in identifying some genes and mechanisms underlying plant defense against biotic organisms. The recent movement towards systems biology approaches has increased mechanistic knowledge, revealing a need for understanding how all the genes and mechanisms integrate to create a response to any given biotic interaction. This begins with evidence that diverse molecular patterns converge, suggesting that the plant perceives signals not the interacting species. These signals then coordinate across regulatory networks via molecular interactions and cause non-cell autonomous responses in neighboring and systemic cells. Finally, the identification of transporters is showing that plant defenses are harmonized across tissues and even show the potential for coordination across individuals within a population.
Collapse
Affiliation(s)
- Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
26
|
Schuller A, Kehr J, Ludwig-Müller J. Laser Microdissection Coupled to Transcriptional Profiling of Arabidopsis Roots Inoculated by Plasmodiophora brassicae Indicates a Role for Brassinosteroids in Clubroot Formation. ACTA ACUST UNITED AC 2013; 55:392-411. [DOI: 10.1093/pcp/pct174] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
27
|
Hardham AR. Microtubules and biotic interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:278-89. [PMID: 23480445 DOI: 10.1111/tpj.12171] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/20/2013] [Accepted: 03/04/2013] [Indexed: 05/06/2023]
Abstract
Plant microtubules undergo extensive reorganization in response to symbiotic and pathogenic organisms. During the development of successful symbioses with rhizobia and mycorrhizal fungi, novel microtubule arrays facilitate the progression of infection threads and hyphae, respectively, from the plant surface through epidermal and cortical cells. During viral and nematode infections, plant microtubules appear to be commandeered by the pathogen. Viruses use plant microtubules for intra and intercellular movement, as well as for interhost transmission. Nematodes manipulate spindle and phragmoplast microtubules to enhance mitosis and partial cytokinesis during the development of syncytia and giant cells. Pathogenic bacteria, fungi and oomycetes induce a range of alterations to microtubule arrays and dynamics. In many situations, the pathogen, or the elicitor or effector proteins derived from them, induce depolymerization of plant cortical microtubule arrays. In some cases, microtubule disruption is associated with the plant defence response and resistance. In other cases, microtubule depolymerization increases plant susceptibility to the invading pathogen. The reasons for this apparent inconsistency may depend on a number of factors, in particular on the identity of the organism orchestrating the microtubule changes. Overall, the weight of evidence indicates that microtubules play an important role in both the establishment of functional symbioses and in defence against invading pathogens. Research is beginning to unravel details about the nature of both the chemical and the mechanical signals to which the plant microtubule arrays respond during biotic interactions.
Collapse
Affiliation(s)
- Adrienne R Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
28
|
Klink VP, Thibaudeau G, Altig R. A novel sample preparation method that enables nucleic acid analysis from ultrathin sections. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:635-641. [PMID: 23518143 DOI: 10.1017/s1431927613000044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The ability to isolate and perform nucleic acid analyses of individual cells is critical to studying the development of various cell types and structures. We present a novel biological sample preparation method developed for laser capture microdissection-assisted nucleic acid analysis of ultrathin cell/tissue sections. We used cells of the mitotic bed of the tadpole teeth of Lithobates sphenocephalus (Southern Leopard Frog). Cells from the mitotic beds at the base of the developing teeth series were isolated and embedded in the methacrylate resin, Technovit® 9100®. Intact cells of the mitotic beds were thin sectioned and examined by bright-field and transmission electron microscopy. The cytological and ultrastructural anatomy of the immature and progressively more mature tooth primordia appeared well preserved and intact. A developmental series of tooth primordia were isolated by laser capture microdissection (LCM). Processing of these cells for RNA showed that intact RNA could be isolated. The study demonstrates that Technovit® 9100® can be used as an embedding medium for extremely small tissues and from individual cells, a prerequisite step to LCM and nucleic acid analyses. A relatively small amount of sample material was needed for the analysis, which makes this technique ideal for cell-specific analyses when the desired cells are limited in quantity.
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | |
Collapse
|
29
|
Matthews BF, Beard H, MacDonald MH, Kabir S, Youssef RM, Hosseini P, Brewer E. Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode. PLANTA 2013; 237:1337-57. [PMID: 23389673 PMCID: PMC3634990 DOI: 10.1007/s00425-013-1840-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/06/2013] [Indexed: 05/11/2023]
Abstract
During pathogen attack, the host plant induces genes to ward off the pathogen while the pathogen often produces effector proteins to increase susceptibility of the host. Gene expression studies of syncytia formed in soybean root by soybean cyst nematode (Heterodera glycines) identified many genes altered in expression in resistant and susceptible roots. However, it is difficult to assess the role and impact of these genes on resistance using gene expression patterns alone. We selected 100 soybean genes from published microarray studies and individually overexpressed them in soybean roots to determine their impact on cyst nematode development. Nine genes reduced the number of mature females by more than 50 % when overexpressed, including genes encoding ascorbate peroxidase, β-1,4-endoglucanase, short chain dehydrogenase, lipase, DREPP membrane protein, calmodulin, and three proteins of unknown function. One gene encoding a serine hydroxymethyltransferase decreased the number of mature cyst nematode females by 45 % and is located at the Rhg4 locus. Four genes increased the number of mature cyst nematode females by more than 200 %, while thirteen others increased the number of mature cyst nematode females by more than 150 %. Our data support a role for auxin and ethylene in susceptibility of soybean to cyst nematodes. These studies highlight the contrasting gene sets induced by host and nematode during infection and provide new insights into the interactions between host and pathogen at the molecular level. Overexpression of some of these genes result in a greater decrease in the number of cysts formed than recognized soybean cyst nematode resistance loci.
Collapse
Affiliation(s)
- Benjamin F Matthews
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Ave, Bldg 006, Beltsville, MD 20705, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Portillo M, Cabrera J, Lindsey K, Topping J, Andrés MF, Emiliozzi M, Oliveros JC, García-Casado G, Solano R, Koltai H, Resnick N, Fenoll C, Escobar C. Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. THE NEW PHYTOLOGIST 2013; 197:1276-1290. [PMID: 23373862 DOI: 10.1111/nph.12121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 11/15/2012] [Indexed: 05/04/2023]
Abstract
Root-knot nematodes (RKNs) induce giant cells (GCs) from root vascular cells inside the galls. Accompanying molecular changes as a function of infection time and across different species, and their functional impact, are still poorly understood. Thus, the transcriptomes of tomato galls and laser capture microdissected (LCM) GCs over the course of parasitism were compared with those of Arabidopsis, and functional analysis of a repressed gene was performed. Microarray hybridization with RNA from galls and LCM GCs, infection-reproduction tests and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) transcriptional profiles in susceptible and resistant (Mi-1) lines were performed in tomato. Tomato GC-induced genes include some possibly contributing to the epigenetic control of GC identity. GC-repressed genes are conserved between tomato and Arabidopsis, notably those involved in lignin deposition. However, genes related to the regulation of gene expression diverge, suggesting that diverse transcriptional regulators mediate common responses leading to GC formation in different plant species. TPX1, a cell wall peroxidase specifically involved in lignification, was strongly repressed in GCs/galls, but induced in a nearly isogenic Mi-1 resistant line on nematode infection. TPX1 overexpression in susceptible plants hindered nematode reproduction and GC expansion. Time-course and cross-species comparisons of gall and GC transcriptomes provide novel insights pointing to the relevance of gene repression during RKN establishment.
Collapse
Affiliation(s)
- Mary Portillo
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida de Carlos III s/n, 45071, Toledo, Spain
| | - Javier Cabrera
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida de Carlos III s/n, 45071, Toledo, Spain
| | - Keith Lindsey
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK
| | - Jen Topping
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK
| | - Maria Fe Andrés
- ICA CSIC, Protección Vegetal, Serrano 115 dpdo, 28006, Madrid, Spain
| | - Mariana Emiliozzi
- ICA CSIC, Protección Vegetal, Serrano 115 dpdo, 28006, Madrid, Spain
| | - Juan C Oliveros
- Centro Nacional de Biotecnología CSIC, Darwin3, Campus Universidad Autónoma de Madrid, 28049, Spain
| | - Gloria García-Casado
- Centro Nacional de Biotecnología CSIC, Darwin3, Campus Universidad Autónoma de Madrid, 28049, Spain
| | - Roberto Solano
- Centro Nacional de Biotecnología CSIC, Darwin3, Campus Universidad Autónoma de Madrid, 28049, Spain
| | - Hinanit Koltai
- Institute of Plant Sciences ARO, Volcani Center, 50250, Bet-Dagan, Israel
| | - Nathalie Resnick
- Institute of Plant Sciences ARO, Volcani Center, 50250, Bet-Dagan, Israel
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida de Carlos III s/n, 45071, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida de Carlos III s/n, 45071, Toledo, Spain
| |
Collapse
|
31
|
Qiao Z, Libault M. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology. FRONTIERS IN PLANT SCIENCE 2013; 4:484. [PMID: 24324480 PMCID: PMC3840615 DOI: 10.3389/fpls.2013.00484] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/07/2013] [Indexed: 05/17/2023]
Abstract
Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because -omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i.e., uptake of water and various nutrients; primary site of infection by nitrogen-fixing bacteria in legumes), the root hair cell is an attractive single cell model to study root cell response to various stresses and treatments. To fully study their biology, we have recently optimized procedures in obtaining root hair cell samples. We culture the plants using an ultrasound aeroponic system maximizing root hair cell density on the entire root systems and allowing the homogeneous treatment of the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair yields could be up to 800 to 1000~mg of plant cells from 60 root systems. Using soybean as a model, the purity of the root hair was assessed by comparing the expression level of genes previously identified as soybean root hair specific between preparations of isolated root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include other plant species, our results support the isolation of large quantities of highly purified root hair cells which is compatible with a systems biology approach.
Collapse
Affiliation(s)
| | - Marc Libault
- *Correspondence: Marc Libault, Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA e-mail:
| |
Collapse
|
32
|
Matsye PD, Lawrence GW, Youssef RM, Kim KH, Lawrence KS, Matthews BF, Klink VP. The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection. PLANT MOLECULAR BIOLOGY 2012; 80:131-55. [PMID: 22689004 DOI: 10.1007/s11103-012-9932-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/17/2012] [Indexed: 05/23/2023]
Abstract
Transcriptional mapping experiments of the major soybean cyst nematode resistance locus, rhg1, identified expression of the vesicular transport machinery component, α soluble NSF attachment protein (α-SNAP), occurring during defense. Sequencing the α-SNAP coding regions from the resistant genotypes G. max ([Peking/PI 548402]) and G. max ([PI 437654]) revealed they are identical, but differ from the susceptible G. max ([Williams 82/PI 518671]) by the presence of several single nucleotide polymorphisms. Using G. max ([Williams 82/PI 518671]) as a reference, a G → T(2,822) transversion in the genomic DNA sequence at a functional splice site of the α-SNAP([Peking/PI 548402]) allele produced an additional 17 nucleotides of mRNA sequence that contains an in-frame stop codon caused by a downstream G → A(2,832) transition. The G. max ([Peking/PI 548402]) genotype has cell wall appositions (CWAs), structures identified as forming as part of a defense response by the activity of the vesicular transport machinery. In contrast, the 17 nt α-SNAP([Peking/PI 548402]) mRNA motif is not found in G. max ([PI 88788]) that exhibits defense to H. glycines, but lack CWAs. The α-SNAP([PI 88788]) promoter contains sequence elements that are nearly identical to the α-SNAP([Peking/PI 548402]) allele, but differs from the G. max ([Williams 82/PI 518671]) ortholog. Overexpressing the α-SNAP([Peking/PI 548402]) allele in the susceptible G. max ([Williams 82/PI 518671]) genotype suppressed H. glycines infection. The experiments indicate a role for the vesicular transport machinery during infection of soybean by the soybean cyst nematode. However, increased GmEREBP1, PR1, PR2, PR5 gene activity but suppressed PR3 expression accompanied the overexpression of the α-SNAP([Peking/PI 548402]) allele prior to infection.
Collapse
Affiliation(s)
- Prachi D Matsye
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
de Sá MEL, Conceição Lopes MJ, de Araújo Campos M, Paiva LV, dos Santos RMA, Beneventi MA, Firmino AAP, de Sá MFG. Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica. Genet Mol Biol 2012; 35:272-82. [PMID: 22802712 PMCID: PMC3392879 DOI: 10.1590/s1415-47572012000200008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Soybean is an important crop for Brazilian agribusiness. However, many factors can limit its production, especially root-knot nematode infection. Studies on the mechanisms employed by the resistant soybean genotypes to prevent infection by these nematodes are of great interest for breeders. For these reasons, the aim of this work is to characterize the transcriptome of soybean line PI 595099-Meloidogyne javanica interaction through expression analysis. Two cDNA libraries were obtained using a pool of RNA from PI 595099 uninfected and M. javanica (J(2)) infected roots, collected at 6, 12, 24, 48, 96, 144 and 192 h after inoculation. Around 800 ESTs (Expressed Sequence Tags) were sequenced and clustered into 195 clusters. In silico subtraction analysis identified eleven differentially expressed genes encoding putative proteins sharing amino acid sequence similarities by using BlastX: metallothionein, SLAH4 (SLAC1 Homologue 4), SLAH1 (SLAC1 Homologue 1), zinc-finger proteins, AN1-type proteins, auxin-repressed proteins, thioredoxin and nuclear transport factor 2 (NTF-2). Other genes were also found exclusively in nematode stressed soybean roots, such as NAC domain-containing proteins, MADS-box proteins, SOC1 (suppressor of overexpression of constans 1) proteins, thioredoxin-like protein 4-Coumarate-CoA ligase and the transcription factor (TF) MYBZ2. Among the genes identified in non-stressed roots only were Ser/Thr protein kinases, wound-induced basic protein, ethylene-responsive family protein, metallothionein-like protein cysteine proteinase inhibitor (cystatin) and Putative Kunitz trypsin protease inhibitor. An understanding of the roles of these differentially expressed genes will provide insights into the resistance mechanisms and candidate genes involved in soybean-M. javanica interaction and contribute to more effective control of this pathogen.
Collapse
Affiliation(s)
- Maria Eugênia Lisei de Sá
- Empresa de Pesquisa Agropecuária de Minas Gerais, Uberaba, MG, Brazil
- Laboratório Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Marcus José Conceição Lopes
- Universidade Federal de Campina Grande, Centro de Educação e Saúde, Cuité, PB, Brazil
- Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Magnólia de Araújo Campos
- Universidade Federal de Campina Grande, Centro de Educação e Saúde, Cuité, PB, Brazil
- Universidade Federal de Lavras, Lavras, MG, Brazil
| | | | | | - Magda Aparecida Beneventi
- Laboratório Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Alexandre Augusto Pereira Firmino
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Maria Fátima Grossi de Sá
- Laboratório Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| |
Collapse
|
34
|
Li J, Todd TC, Lee J, Trick HN. Biotechnological application of functional genomics towards plant-parasitic nematode control. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:936-944. [PMID: 21362123 DOI: 10.1111/j.1467-7652.2011.00601.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant-parasitic nematodes are primary biotic factors limiting the crop production. Current nematode control strategies include nematicides, crop rotation and resistant cultivars, but each has serious limitations. RNA interference (RNAi) represents a major breakthrough in the application of functional genomics for plant-parasitic nematode control. RNAi-induced suppression of numerous genes essential for nematode development, reproduction or parasitism has been demonstrated, highlighting the considerable potential for using this strategy to control damaging pest populations. In an effort to find more suitable and effective gene targets for silencing, researchers are employing functional genomics methodologies, including genome sequencing and transcriptome profiling. Microarrays have been used for studying the interactions between nematodes and plant roots and to measure both plants and nematodes transcripts. Furthermore, laser capture microdissection has been applied for the precise dissection of nematode feeding sites (syncytia) to allow the study of gene expression specifically in syncytia. In the near future, small RNA sequencing techniques will provide more direct information for elucidating small RNA regulatory mechanisms in plants and specific gene silencing using artificial microRNAs should further improve the potential of targeted gene silencing as a strategy for nematode management.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | | | | |
Collapse
|
35
|
Matsye PD, Kumar R, Hosseini P, Jones CM, Tremblay A, Alkharouf NW, Matthews BF, Klink VP. Mapping cell fate decisions that occur during soybean defense responses. PLANT MOLECULAR BIOLOGY 2011; 77:513-28. [PMID: 21986905 DOI: 10.1007/s11103-011-9828-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/10/2011] [Indexed: 05/21/2023]
Abstract
The soybean defense response to the soybean cyst nematode was used as a model to map at cellular resolution its genotype-defined cell fate decisions occurring during its resistant reactions. The defense responses occur at the site of infection, a nurse cell known as the syncytium. Two major genotype-defined defense responses exist, the G. max ([Peking])- and G. max ([PI 88788])-types. Resistance in G. max ([Peking]) is potent and rapid, accompanied by the formation of cell wall appositions (CWAs), structures known to perform important defense roles. In contrast, defense occurs by a potent but more prolonged reaction in G. max ([PI 88788]), lacking CWAs. Comparative transcriptomic analyses with confirmation by Illumina® deep sequencing were organized through a custom-developed application, Pathway Analysis and Integrated Coloring of Experiments (PAICE) that presents gene expression of these cytologically and developmentally distinct defense responses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) framework. The analyses resulted in the generation of 1,643 PAICE pathways, allowing better understanding of gene activity across all chromosomes. Analyses of the rhg1 resistance locus, defined within a 67 kb region of DNA demonstrate expression of an amino acid transporter and an α soluble NSF attachment protein gene specifically in syncytia undergoing their defense responses.
Collapse
Affiliation(s)
- Prachi D Matsye
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jin J, Hewezi T, Baum TJ. Arabidopsis peroxidase AtPRX53 influences cell elongation and susceptibility to Heterodera schachtii. PLANT SIGNALING & BEHAVIOR 2011; 6:1778-86. [PMID: 22212122 PMCID: PMC3329352 DOI: 10.4161/psb.6.11.17684] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cyst nematodes establish and maintain feeding sites (syncytia) in the roots of host plants by altering expression of host genes. Among these genes are members of the large gene family of class III peroxidases, which have reported functions in a variety of biological processes. In this study, we used Arabidopsis-Heterodera schachtii as a model system to functionally characterize peroxidase 53 (AtPRX53). Promoter assays showed that under non-infected conditions AtPRX53 is expressed mainly in the root, the hypocotyl and the base of the pistil. Under infected conditions, the AtPRX53 promoter showed upregulation at the nematode penetration sites and in their migration paths. Interestingly, strong GUS activity was observed in H. schachtii-induced syncytia during the early stage of infection and remained strong in the syncytia of third-stage juveniles. Also, AtPRX53 showed upregulation in response to wounding and jasmonic acid treatments. Manipulation of AtPRX53 expression through overexpression and knockout mutation affected both plant morphology and nematode susceptibility. While AtPRX53 overexpression lines exhibited short hypocotyls, aberrant flower development and reduced nematode susceptibility to H. schachtii, the atprx53 mutant showed long hypocotyls and a 3-carpel silique phenotype as well as a non significant increase of nematode susceptibility. Taken together these data, therefore, indicate diverse roles of AtPRX53 in the wound response, flower development and syncytium formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Plant Pathology and Microbiology, Iowa State University; Ames, IA USA
- Molecular, Cellular and Developmental Biology Graduate Program; Iowa State University; Ames, IA USA
| | - Tarek Hewezi
- Department of Plant Pathology and Microbiology, Iowa State University; Ames, IA USA
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University; Ames, IA USA
- Molecular, Cellular and Developmental Biology Graduate Program; Iowa State University; Ames, IA USA
| |
Collapse
|
37
|
Kandoth PK, Ithal N, Recknor J, Maier T, Nettleton D, Baum TJ, Mitchum MG. The Soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells. PLANT PHYSIOLOGY 2011; 155:1960-75. [PMID: 21335526 PMCID: PMC3091121 DOI: 10.1104/pp.110.167536] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/14/2011] [Indexed: 05/19/2023]
Abstract
To gain new insights into the mechanism of soybean (Glycine max) resistance to the soybean cyst nematode (Heterodera glycines), we compared gene expression profiles of developing syncytia in soybean near-isogenic lines differing at Rhg1 (for resistance to Heterodera glycines), a major quantitative trait locus for resistance, by coupling laser capture microdissection with microarray analysis. Gene expression profiling revealed that 1,447 genes were differentially expressed between the two lines. Of these, 241 (16.8%) were stress- and defense-related genes. Several stress-related genes were up-regulated in the resistant line, including those encoding homologs of enzymes that lead to increased levels of reactive oxygen species and proteins associated with the unfolded protein response. These results indicate that syncytia induced in the resistant line are undergoing severe oxidative stress and imbalanced endoplasmic reticulum homeostasis, both of which likely contribute to the resistance reaction. Defense-related genes up-regulated within syncytia of the resistant line included those predominantly involved in apoptotic cell death, the plant hypersensitive response, and salicylic acid-mediated defense signaling; many of these genes were either partially suppressed or not induced to the same level by a virulent soybean cyst nematode population for successful nematode reproduction and development on the resistant line. Our study demonstrates that a network of molecular events take place during Rhg1-mediated resistance, leading to a highly complex defense response against a root pathogen.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Melissa G. Mitchum
- Division of Plant Sciences, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (P.K.K., N.I., M.G.M.); Department of Statistics (J.R., D.N.) and Department of Plant Pathology (T.M., T.J.B.), Iowa State University, Ames, Iowa 50011
| |
Collapse
|
38
|
Jin J, Hewezi T, Baum TJ. The Arabidopsis bHLH25 and bHLH27 transcription factors contribute to susceptibility to the cyst nematode Heterodera schachtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:319-28. [PMID: 21223395 DOI: 10.1111/j.1365-313x.2010.04424.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Successful cyst nematode parasitism depends on the formation and maintenance of feeding sites (syncytia) in host roots, and these processes are highly regulated by the interaction between the cyst nematode and the host. Using an integrated research approach and the Arabidopsis-Beta vulgaris (sugar beet) cyst nematode (Heterodera schachtii) pathosystem, we have determined that the two Arabidopsis basic helix-loop-helix transcription factors bHLH25 and bHLH27 positively influence cyst nematode parasitism. Promoter studies indicated that as early as 1 day post-inoculation, both transcription factor genes were upregulated in developing syncytia, whereas in non-infected plants, these two promoters were not found to be active in the same cells. By using yeast two-hybrid analyses and bimolecular fluorescence complementation assays, we documented that the two bHLH transcription factors can dimerize in planta. Transgenic Arabidopsis plants overexpressing either one or both of the bHLH genes exhibited altered morphology of roots and shoots, as well as an increased susceptibility to H. schachtii. bhlh25 or bhlh27 single mutants were without strong phenotypes, presumably because of functional redundancies in this gene family. However, the bhlh25 bhlh27 double mutant was less susceptible to H. schachtii, confirming an important conducive role of the co-expression of both transcription factor genes for cyst nematode parasitism. Our results document an example of pathogen-induced ectopic co-expression of two regulatory genes to enhance pathogen success, although these transcription factors apparently do not function in concert in non-infected plants. This is an intriguing biological phenomenon that highlights the complexity of obligate biotrophic plant-pathogen interactions, like those of cyst nematodes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
39
|
Abstract
Obligate plant-parasitic nematodes, such as cyst nematodes (Heterodera and Globodera spp.) and root-knot nematodes (Meloidogyne spp.), form specialized feeding cells in host plant roots. These feeding cells provide the sole source of nutrition for the growth and reproduction of the nematode to complete its life cycle. Feeding cell formation involves complex physiological and morphological changes to normal root cells and is accompanied by dramatic changes in plant gene expression. The distinct features of feeding cells suggest that their formation entails a unique gene expression profile, a better understanding of which will assist in building models to explain signaling pathways that modulate transcriptional changes in response to nematodes. Ultimately, this knowledge can be used to design strategies to develop resistance against nematodes in crop plants. Feeding cells comprise a small fraction of the total root cell population, and identification of plant gene expression changes specific to these cells is difficult. Until recently, the specific isolation of nematode feeding cells could be accomplished only by manual dissection or microaspiration. These approaches are limited in that only mature feeding cells can be isolated. These limitations in tissue accessibility for macromolecule isolation at different stages of feeding cell development can be overcome through the use of laser microdissection (LM), a technique that enables the specific isolation of feeding cells from early to late stages for RNA isolation, amplification, and downstream analysis.
Collapse
Affiliation(s)
- Nagabhushana Ithal
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
40
|
Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF. Differences in gene expression amplitude overlie a conserved transcriptomic program occurring between the rapid and potent localized resistant reaction at the syncytium of the Glycine max genotype Peking (PI 548402) as compared to the prolonged and potent resistant reaction of PI 88788. PLANT MOLECULAR BIOLOGY 2011; 75:141-65. [PMID: 21153862 DOI: 10.1007/s11103-010-9715-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/13/2010] [Indexed: 05/09/2023]
Abstract
Glycine max L. Merr. (soybean) resistance to Heterodera glycines Ichinohe occurs at the site of infection, a nurse cell known as the syncytium. Resistance is classified into two cytologically-defined responses, the G. max ([Peking])- and G. max ([PI 88788])-types. Each type represents a cohort of G. max genotypes. Resistance in G. max ([Peking]) occurs by a potent and rapid localized response, affecting parasitic second stage juveniles (p-J2). In contrast, resistance occurs by a potent but more prolonged reaction in the genotype G. max ([PI 88788]) that affects nematode development at the J3 and J4 stages. Microarray analyses comparing these cytologically and developmentally distinct resistant reactions reveal differences in gene expression in pericycle and surrounding cells even before infection. The differences include higher relative levels of the differentially expressed in response to arachidonic acid 1 gene (DEA1 [Gm-DEA1]) (+224.19-fold) and a protease inhibitor (+68.28-fold) in G. max ([Peking/PI 548402]) as compared to G. max ([PI 88788]). Gene pathway analyses compare the two genotypes (1) before, (2) at various times during, (3) constitutively throughout the resistant reaction and (4) at all time points prior to and during the resistant reaction. The amplified levels of transcriptional activity of defense genes may explain the rapid and potent reaction in G. max ([Peking/PI 548402]) as compared to G. max ([PI 88788]). In contrast, the shared differential expression levels of genes in G. max ([Peking/PI 548402]) and G. max ([PI 88788]) may indicate a conserved genomic program underlying the G. max resistance on which the genotype-specific gene expression programs are built off.
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | | | |
Collapse
|
41
|
Microarray Detection Call Methodology as a Means to Identify and Compare Transcripts Expressed within Syncytial Cells from Soybean (Glycine max) Roots Undergoing Resistant and Susceptible Reactions to the Soybean Cyst Nematode (Heterodera glycines). J Biomed Biotechnol 2010; 2010:491217. [PMID: 20508855 PMCID: PMC2875038 DOI: 10.1155/2010/491217] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 09/23/2009] [Accepted: 02/14/2010] [Indexed: 11/27/2022] Open
Abstract
Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process.
Collapse
|
42
|
Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF. Syncytium gene expression in Glycine max([PI 88788]) roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:176-93. [PMID: 20138530 DOI: 10.1016/j.plaphy.2009.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/31/2009] [Accepted: 12/15/2009] [Indexed: 05/07/2023]
Abstract
The plant parasitic nematode, Heterodera glycines is the major pathogen of Glycine max (soybean). H. glycines accomplish parasitism by creating a nurse cell known as the syncytium from which it feeds. The syncytium undergoes two developmental phases. The first is a parasitism phase where feeding sites are selected, initiating the development of the syncytium. During this earlier phase (1-4 days post infection), syncytia undergoing resistant and susceptible reactions appear the same. The second phase is when the resistance response becomes evident (between 4 and 6dpi) and is completed by 9dpi. Analysis of the resistant reaction of G. max genotype PI 88788 (G. max([PI 88788])) to H. glycines population NL1-RHg/HG-type 7 (H. glycines([NL1-RHg/HG-type 7])) is accomplished by laser microdissection of syncytia at 3, 6 and 9dpi. Comparative analyses are made to pericycle and their neighboring cells isolated from mock-inoculated roots. These analyses reveal induced levels of the jasmonic acid biosynthesis and 13-lipoxygenase pathways. Direct comparative analyses were also made of syncytia at 6 days post infection to those at 3dpi (base line). The comparative analyses were done to identify localized gene expression that characterizes the resistance phase of the resistant reaction. The most highly induced pathways include components of jasmonic acid biosynthesis, 13-lipoxygenase pathway, S-adenosyl methionine pathway, phenylpropanoid biosynthesis, suberin biosynthesis, adenosylmethionine biosynthesis, ethylene biosynthesis from methionine, flavonoid biosynthesis and the methionine salvage pathway. In comparative analyses of 9dpi to 6dpi (base line), these pathways, along with coumarin biosynthesis, cellulose biosynthesis and homogalacturonan degradation are induced. The experiments presented here strongly implicate the jasmonic acid defense pathway as a factor involved in the localized resistant reaction of G. max([PI 88788]) to H. glycines([NL1-RHg/HG-type 7]).
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS, 39762, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
High-resolution cellular analysis will help answer many important questions in plant biology including how genetic information is differentially used to enable the formation and development of the plant body. By comparing transcriptome data from distinct cell types during various stages of development, insight can be obtained into the transcriptional networks that underpin the attributes and contributions of particular cells and tissues. Laser microdissection (LM) is a technique that enables researchers to obtain specific cells or tissues from histological samples in a manner conducive to downstream molecular analysis. LM has become an established strategy in many areas of biology and it has recently been adapted for use with many types of plant tissue.
Collapse
Affiliation(s)
- Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
44
|
Klink VP, Hosseini P, Matsye P, Alkharouf NW, Matthews BF. A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). PLANT MOLECULAR BIOLOGY 2009; 71:525-67. [PMID: 19787434 DOI: 10.1007/s11103-009-9539-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 08/09/2009] [Indexed: 05/07/2023]
Abstract
The syncytium is a nurse cell formed within the roots of Glycine max by the plant parasitic nematode Heterodera glycines. Its development and maintenance are essential for nematode survival. The syncytium appears to undergo two developmental phases during its maturation into a functional nurse cell. The first phase is a parasitism phase where the nematode establishes the molecular circuitry that during the second phase ensures a compatible interaction with the plant cell. The cytological features of syncytia undergoing susceptible or resistant reactions appear the same during the parasitism phase. Depending on the outcome of any defense response, the second phase is a period of syncytium maintenance (susceptible reaction) or failure (resistant reaction). In the analyses presented here, the localized gene expression occurring at the syncytium during the resistant reaction was studied. This was accomplished by isolating syncytial cells from Glycine max genotype Peking (PI 548402) by laser capture microdissection. Microarray analyses using the Affymetrix soybean GeneChip directly compared Peking syncytia undergoing a resistant reaction to those undergoing a susceptible reaction during the parasitism phase of the resistant reaction. Those analyses revealed lipoxygenase-9 and lipoxygenase-4 as the most highly induced genes in the resistant reaction. The analysis also identified induced levels of components of the phenylpropanoid pathway. These genes included phenylalanine ammonia lyase, chalcone isomerase, isoflavone reductase, cinnamoyl-CoA reductase and caffeic acid O-methyltransferase. The presence of induced levels of these genes implies the importance of jasmonic acid and phenylpropanoid signaling pathways locally at the site of the syncytium during the resistance phase of the resistant reaction. The analysis also identified highly induced levels of four S-adenosylmethionine synthetase genes, the EARLY-RESPONSIVE TO DEHYDRATION 2 gene and the 14-3-3 gene known as GENERAL REGULATORY FACTOR 2. Subsequent analyses studied microdissected syncytial cells at 3, 6 and 9 days post infection (dpi) during the course of the resistant reaction, resulting in the identification of signature gene expression profiles at each time point in a single G. max genotype, Peking.
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Harned Hall, Mississippi State, MS 39762, USA.
| | | | | | | | | |
Collapse
|
45
|
Afzal AJ, Natarajan A, Saini N, Iqbal MJ, Geisler M, El Shemy HA, Mungur R, Willmitzer L, Lightfoot DA. The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots. PLANT PHYSIOLOGY 2009; 151:1264-80. [PMID: 19429603 PMCID: PMC2773059 DOI: 10.1104/pp.109.138149] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/03/2009] [Indexed: 05/19/2023]
Abstract
Heterodera glycines, the soybean cyst nematode (SCN), causes the most damaging chronic disease of soybean (Glycine max). Host resistance requires the resistance allele at rhg1. Resistance destroys the giant cells created in the plant's roots by the nematodes about 24 to 48 h after commencement of feeding. In addition, 4 to 8 d later, a systemic acquired resistance develops that discourages later infestations. The molecular mechanisms that control the rhg1-mediated resistance response appear to be multigenic and complex, as judged by transcript abundance changes, even in near isogenic lines (NILs). This study aimed to focus on key posttranscriptional changes by identifying proteins and metabolites that were increased in abundance in both resistant and susceptible NILs. Comparisons were made among NILs 10 d after SCN infestation and without SCN infestation. Two-dimensional gel electrophoresis resolved more than 1,000 protein spots on each gel. Only 30 protein spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were found among the four treatments. The proteins in these spots were picked, trypsin digested, and analyzed using quadrupole time-of-flight tandem mass spectrometry. Protein identifications could be made for 24 of the 30 spots. Four spots contained two proteins, so that 28 distinct proteins were identified. The proteins were grouped into six functional categories. Metabolite analysis by gas chromatography-mass spectrometry identified 131 metabolites, among which 58 were altered by one or more treatment; 28 were involved in primary metabolism. Taken together, the data showed that 17 pathways were altered by the rhg1 alleles. Pathways altered were associated with systemic acquired resistance-like responses, including xenobiotic, phytoalexin, ascorbate, and inositol metabolism, as well as primary metabolisms like amino acid synthesis and glycolysis. The pathways impacted by the rhg1 allelic state and SCN infestation agreed with transcript abundance analyses but identified a smaller set of key proteins. Six of the proteins lay within the same small region of the interactome identifying a key set of 159 interacting proteins involved in transcriptional control, nuclear localization, and protein degradation. Finally, two proteins (glucose-6-phosphate isomerase [EC 5.3.1.9] and isoflavone reductase [EC 1.3.1.45]) and two metabolites (maltose and an unknown) differed in resistant and susceptible NILs without SCN infestation and may form the basis of a new assay for the selection of resistance to SCN in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David A. Lightfoot
- Department of Molecular Biology, Microbiology, and Biochemistry (A.J.A., A.N., H.A.E.S., R.M., D.A.L.), Genomics Core Facility and Center for Excellence in Soybean Research, Teaching, and Outreach, Department of Plant Soil and Agricultural Systems (A.J.A., N.S., H.A.E.S., D.A.L.), and Department of Plant Biology (M.G., D.A.L.), Southern Illinois University, Carbondale, Illinois 62901; Institute for Advanced Learning and Research, Institute for Sustainable and Renewable Resources, Danville, Virginia 24540 (M.J.I.); and Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany (R.M., L.W.)
| |
Collapse
|
46
|
Scanlon MJ, Ohtsu K, Timmermans MCP, Schnable PS. Laser microdissection-mediated isolation and in vitro transcriptional amplification of plant RNA. ACTA ACUST UNITED AC 2009; Chapter 25:Unit 25A.3. [PMID: 19575479 DOI: 10.1002/0471142727.mb25a03s87] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protocols for laser microdissection and linear amplification of RNA from fixed, sectioned plant tissues are described. When combined with quantitative RT-PCR, microarray analysis, or RNA-sequencing, these procedures enable quantitative analyses of transcript accumulation from microscopic quantities of specific plant organs, tissues, or single cells.
Collapse
|
47
|
Takahara H, Dolf A, Endl E, O'Connell R. Flow cytometric purification of Colletotrichum higginsianum biotrophic hyphae from Arabidopsis leaves for stage-specific transcriptome analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:672-683. [PMID: 19392696 DOI: 10.1111/j.1365-313x.2009.03896.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Generation of stage-specific cDNA libraries is a powerful approach to identify pathogen genes that are differentially expressed during plant infection. Biotrophic pathogens develop specialized infection structures inside living plant cells, but sampling the transcriptome of these structures is problematic due to the low ratio of fungal to plant RNA, and the lack of efficient methods to isolate them from infected plants. Here we established a method, based on fluorescence-activated cell sorting (FACS), to purify the intracellular biotrophic hyphae of Colletotrichum higginsianum from homogenates of infected Arabidopsis leaves. Specific selection of viable hyphae using a fluorescent vital marker provided intact RNA for cDNA library construction. Pilot-scale sequencing showed that the library was enriched with plant-induced and pathogenicity-related fungal genes, including some encoding small, soluble secreted proteins that represent candidate fungal effectors. The high purity of the hyphae (94%) prevented contamination of the library by sequences derived from host cells or other fungal cell types. RT-PCR confirmed that genes identified in the FACS-purified hyphae were also expressed in planta. The method has wide applicability for isolating the infection structures of other plant pathogens, and will facilitate cell-specific transcriptome analysis via deep sequencing and microarray hybridization, as well as proteomic analyses.
Collapse
Affiliation(s)
- Hiroyuki Takahara
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, 50829 Köln, Germany
| | | | | | | |
Collapse
|
48
|
Portillo M, Lindsey K, Casson S, García-Casado G, Solano R, Fenoll C, Escobar C. Isolation of RNA from laser-capture-microdissected giant cells at early differentiation stages suitable for differential transcriptome analysis. MOLECULAR PLANT PATHOLOGY 2009; 10:523-35. [PMID: 19523105 PMCID: PMC6640446 DOI: 10.1111/j.1364-3703.2009.00552.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant organ gene expression profile analyses are complicated by the various cell types, and therefore transcription patterns, present in each organ. For example, each gall formed in roots following root knot nematode infection contains between four and eight specialized feeding cells (giant cells, GCs) embedded within hypertrophied root tissues. A recent goal in plant science has been the isolation of nematode feeding cell mRNAs for subsequent gene expression analysis. By adapting current protocols for different plant species and cells, we have developed a simple and rapid method for obtaining GCs from frozen tissue sections of tomato with good morphology and preserved RNA. The tissue sections obtained were suitable for the laser capture microdissection of GCs 6-7 days post-infection, and even of very early developing GCs (48-72 h post-infection), by fixation of tissue with ethanol-acetic acid, infiltration with sucrose and freezing in isopentane with optimal cutting temperature medium. This process was also successful for obtaining control vascular cells from uninfected roots for direct comparison with GCs. A minimum of about 300 GCs and 600 control vascular cells was required for efficient linear RNA amplification through in vitro transcription. Laser capture microdissection-derived RNA, after two rounds of amplification, was successfully used for microarray hybridization and validated with several differentially expressed genes by quantitative polymerase chain reaction. Consistent with our results, 117 homologous genes were found to be co-regulated in a previous microarray analysis of Arabidopsis galls at the same developmental stage. Therefore, we conclude that our method allows the isolation of a sufficient quantity of RNA with a high quality/integrity, appropriate for differential transcriptome analysis.
Collapse
|
49
|
Gomez SK, Harrison MJ. Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis. PEST MANAGEMENT SCIENCE 2009; 65:504-511. [PMID: 19206091 DOI: 10.1002/ps.1715] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phosphorus is essential for plant growth, and in many soils phosphorus availability limits crop production. Most plants in natural ecosystems obtain phosphorus via a symbiotic partnership with arbuscular mycorrhizal (AM) fungi. While the significance of these associations is apparent, their molecular basis is poorly understood. Consequently, the potential to harness the mycorrhizal symbiosis to improve phosphorus nutrition in agriculture is not realized. Transcript profiling has recently been used to investigate gene expression changes that accompany development of the AM symbiosis. While these approaches have enabled the identification of AM-symbiosis-associated genes, they have generally involved the use of RNA from whole mycorrhizal roots. Laser microdissection techniques allow the dissection and capture of individual cells from a tissue. RNA can then be isolated from these samples and cell-type specific gene expression information can be obtained. This technology has been applied to obtain cells from plants and more recently to study plant-microbe interactions. The latter techniques, particularly those developed for root-microbe interactions, are of relevance to plant-parasitic weed research. Here, laser microdissection, its use in plant biology and in particular plant-microbe interactions are discussed. An overview of the AM symbiosis is then provided, with a focus on recent advances in understanding development of the arbuscule-cortical cell interface. Finally, the recent applications of laser microdissection for analyses of AM symbiosis are discussed.
Collapse
Affiliation(s)
- S Karen Gomez
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14850, USA
| | | |
Collapse
|
50
|
Klink VP, Hosseini P, MacDonald MH, Alkharouf NW, Matthews BF. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking. BMC Genomics 2009; 10:111. [PMID: 19291306 PMCID: PMC2662880 DOI: 10.1186/1471-2164-10-111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 03/16/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND A single Glycine max (soybean) genotype (Peking) reacts differently to two different populations of Heterodera glycines (soybean cyst nematode) within the first twelve hours of infection during resistant (R) and susceptible (S) reactions. This suggested that H. glycines has population-specific gene expression signatures. A microarray analysis of 7539 probe sets representing 7431 transcripts on the Affymetrix soybean GeneChip were used to identify population-specific gene expression signatures in pre-infective second stage larva (pi-L2) prior to their infection of Peking. Other analyses focused on the infective L2 at 12 hours post infection (i-L2(12h)), and the infective sedentary stages at 3 days post infection (i-L2(3d)) and 8 days post infection (i-L2/L3(8d)). RESULTS Differential expression and false discovery rate (FDR) analyses comparing populations of pi-L2 (i.e., incompatible population, NL1-RHg to compatible population, TN8) identified 71 genes that were induced in NL1-RHg as compared to TN8. These genes included putative gland protein G23G12, putative esophageal gland protein Hgg-20 and arginine kinase. The comparative analysis of pi-L2 identified 44 genes that were suppressed in NL1-RHg as compared to TN8. These genes included a different Hgg-20 gene, an EXPB1 protein and a cuticular collagen. By 12 h, there were 7 induced genes and 0 suppressed genes in NL1-RHg. By 3d, there were 9 induced and 10 suppressed genes in NL1-RHg. Substantial changes in gene expression became evident subsequently. At 8d there were 13 induced genes in NL1-RHg. This included putative gland protein G20E03, ubiquitin extension protein, putative gland protein G30C02 and beta-1,4 endoglucanase. However, 1668 genes were found to be suppressed in NL1-RHg. These genes included steroid alpha reductase, serine proteinase and a collagen protein. CONCLUSION These analyses identify a genetic expression signature for these two populations both prior to and subsequently as they undergo an R or S reaction. The identification of genes like steroid alpha reductase and serine proteinase that are involved in feeding and nutritional uptake as being highly suppressed during the R response at 8d may indicate genes that the plant is targeting. The analyses also identified numerous putative parasitism genes that are differentially expressed. The 1668 genes that are suppressed in NL1-RHg, and hence induced in TN8 may represent genes that are important during the parasitic stages of H. glycines development. The potential for different arrays of putative parasitism genes to be expressed in different nematode populations may indicate how H. glycines evolve mechanisms to overcome resistance.
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS 39762, USA
- United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA
| | - Parsa Hosseini
- Jess and Mildred Fisher College of Science and Mathematics, Department of Computer and Information Sciences, Towson University, 7800 York Road, Towson, Maryland 21252, USA
| | - Margaret H MacDonald
- United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA
| | - Nadim W Alkharouf
- Jess and Mildred Fisher College of Science and Mathematics, Department of Computer and Information Sciences, Towson University, 7800 York Road, Towson, Maryland 21252, USA
| | - Benjamin F Matthews
- United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA
| |
Collapse
|