1
|
Sirohi P, Chaudhary C, Sharma M, Anjanappa RB, Baliyan S, Vishnoi R, Mishra SK, Chaudhary R, Waghmode B, Poonia AK, Germain H, Sircar D, Chauhan H. Multi-omics analysis reveals the positive impact of differential chloroplast activity during in vitro regeneration of barley. PLANT MOLECULAR BIOLOGY 2024; 114:124. [PMID: 39538083 DOI: 10.1007/s11103-024-01517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
Existence of potent in vitro regeneration system is a prerequisite for efficient genetic transformation and functional genomics of crop plants. In this study, two contrasting cultivars differencing in their in vitro regeneration efficiency were identified. Tissue culture friendly cultivar Golden Promise (GP) and tissue culture resistant DWRB91(D91) were selected as contrasting cultivars to investigate the molecular basis of regeneration efficiency through multiomics analysis. Transcriptomics analysis revealed 1487 differentially expressed genes (DEGs), in which 795 DEGs were upregulated and 692 DEGs were downregulated in the GP-D91 transcriptome. Genes encoding proteins localized in chloroplast and involved in ROS generation were upregulated in the embryogenic calli of GP. Moreover, proteome analysis by LC-MS/MS revealed 3062 protein groups and 16,989 peptide groups, out of these 1586 protein groups were differentially expressed proteins (DEPs). Eventually, GC-MS based metabolomics analysis revealed the higher activity of plastids and alterations in key metabolic processes such as sugar metabolism, fatty acid biosynthesis, and secondary metabolism. TEM analysis also revealed differential plastid development. Higher accumulation of sugars, amino acids and metabolites corresponding to lignin biosynthesis were observed in GP as compared to D91. A comprehensive examination of gene expression, protein profiling and metabolite patterns unveiled a significant increase in the genes encompassing various functions, such as ion homeostasis, chlorophyll metabolic process, ROS regulation, and the secondary metabolic pathway.
Collapse
Affiliation(s)
- Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Chanderkant Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Mayank Sharma
- Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| | | | - Suchi Baliyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ritika Vishnoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sumit Kumar Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Reeku Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Bhairavnath Waghmode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Anuj Kumar Poonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
- University Institute of Biotechnology, Chandigarh University, Punjab, 140413, India
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, University of Quebec Trois Rivieres, Trois Rivieres, QC, Canada
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
2
|
Guo H, Zhang L, Guo H, Cui X, Fan Y, Li T, Qi X, Yan T, Chen A, Shi F, Zeng F. Single-cell transcriptome atlas reveals somatic cell embryogenic differentiation features during regeneration. PLANT PHYSIOLOGY 2024; 195:1414-1431. [PMID: 38401160 DOI: 10.1093/plphys/kiae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
Understanding somatic cell totipotency remains a challenge facing scientific inquiry today. Plants display remarkable cell totipotency expression, illustrated by single-cell differentiation during somatic embryogenesis (SE) for plant regeneration. Determining cell identity and exploring gene regulation in such complex heterogeneous somatic cell differentiation have been major challenges. Here, we performed high-throughput single-cell sequencing assays to define the precise cellular landscape and revealed the modulation mode of marker genes during embryogenic differentiation in cotton (Gossypium hirsutum L.) as the crop for biotechnology application. We demonstrated that nonembryogenic calli (NEC) and primary embryogenic calli (PEC) tissues were composed of heterogeneous cells that could be partitioned into four broad populations with six distinct cell clusters. Enriched cell clusters and cell states were identified in NEC and PEC samples, respectively. Moreover, a broad repertoire of new cluster-specific genes and associated expression modules were identified. The energy metabolism, signal transduction, environmental adaptation, membrane transport pathways, and a series of transcription factors were preferentially enriched in cell embryogenic totipotency expression. Notably, the SE-ASSOCIATED LIPID TRANSFER PROTEIN (SELTP) gene dose-dependently marked cell types with distinct embryogenic states and exhibited a parabolic curve pattern along the somatic cell embryogenic differentiation trajectory, suggesting that SELTP could serve as a favorable quantitative cellular marker for detecting embryogenic expression at the single-cell level. In addition, RNA velocity and Scissor analysis confirmed the pseudo-temporal model and validated the accuracy of the scRNA-seq data, respectively. This work provides valuable marker-genes resources and defines precise cellular taxonomy and trajectory atlases for somatic cell embryogenic differentiation in plant regeneration.
Collapse
Affiliation(s)
- Huihui Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiwang Cui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiushan Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Tongdi Yan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Aiyun Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Fengjuan Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
3
|
Guo H, Guo H, Zhang L, Tian X, Wu J, Fan Y, Li T, Gou Z, Sun Y, Gao F, Wang J, Shan G, Zeng F. Organelle Ca 2+/CAM1-SELTP confers somatic cell embryogenic competence acquisition and transformation in plant regeneration. THE NEW PHYTOLOGIST 2024; 242:1172-1188. [PMID: 38501463 DOI: 10.1111/nph.19679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Somatic cell totipotency in plant regeneration represents the forefront of the compelling scientific puzzles and one of the most challenging problems in biology. How somatic embryogenic competence is achieved in regeneration remains elusive. Here, we discover uncharacterized organelle-based embryogenic differentiation processes of intracellular acquisition and intercellular transformation, and demonstrate the underlying regulatory system of somatic embryogenesis-associated lipid transfer protein (SELTP) and its interactor calmodulin1 (CAM1) in cotton as the pioneer crop for biotechnology application. The synergistic CAM1 and SELTP exhibit consistent dynamical amyloplast-plasmodesmata (PD) localization patterns but show opposite functional effects. CAM1 inhibits the effect of SELTP to regulate embryogenic differentiation for plant regeneration. It is noteworthy that callus grafting assay reflects intercellular trafficking of CAM1 through PD for embryogenic transformation. This work originally provides insight into the mechanisms responsible for embryogenic competence acquisition and transformation mediated by the Ca2+/CAM1-SELTP regulatory pathway, suggesting a principle for plant regeneration and cell/genetic engineering.
Collapse
Affiliation(s)
- Huihui Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xindi Tian
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianfei Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhongyuan Gou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuxiao Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Fan Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianjun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Guangyao Shan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
4
|
Wang Y, Wang H, Bao W, Sui M, Bai YE. Transcriptome Analysis of Embryogenic and Non-Embryogenic Callus of Picea Mongolica. Curr Issues Mol Biol 2023; 45:5232-5247. [PMID: 37504248 PMCID: PMC10378709 DOI: 10.3390/cimb45070332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
Picea mongolica is a rare tree species in China, which is of great significance in combating desertification and improving the harsh ecological environment. Due to the low rate of natural regeneration, high mortality, and susceptibility to pests and cold springs, Picea mongolica has gradually become extinct. At present, somatic embryogenesis (SE) is the most effective method of micro-proliferation in conifers, but the induction rate of embryogenic callus (EC) is low, and EC is difficult to differentiate from non-embryonic callus (NEC). Therefore, the EC and NEC of Picea mongolica were compared from the morphology, histological, physiological, and transcriptional levels, respectively. Morphological observation showed that the EC was white and transparent filamentous, while the NEC was compact and brownish-brown lumpy. Histological analyses showed that the NEC cells were large and loosely arranged; the nuclei attached to the edge of the cells were small; the cytoplasm was low; and the cell gap was large and irregular. In the EC, small cells, closely arranged cells, and a large nucleus and nucleolus were observed. Physiological studies showed significant differences in ROS-scavenging enzymes between the EC and NEC. Transcriptome profiling revealed that 13,267 differentially expressed genes (DEGs) were identified, 3682 were up-regulated, and 9585 were down-regulated. In total, 63 GO terms had significant enrichment, 32 DEGs in plant hormone signal transduction pathway were identified, and 502 different transcription factors (TFs) were characterized into 38 TF families. Meanwhile, we identified significant gene expression trends associated with somatic embryo development in plant hormones (AUX/IAA, YUCCA, LEA, etc.), stress (GST, HSP, GLP, etc.), phenylpropanoid metabolism (4CL, HCT, PAL, etc.), and transcription factors (AP2/ERF, MYB, WOX, etc.). In addition, nine genes were chosen for RT-qPCR, and the results were consistent with RNA-Seq data. This study revealed the changes in morphology, histology, physiology, and gene expression in the differentiation of NEC into EC and laid the foundation for finding the key genes to promote EC formation.
Collapse
Affiliation(s)
- Yaping Wang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Hao Wang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Wenquan Bao
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Mingming Sui
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Yu E Bai
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| |
Collapse
|
5
|
Transcriptome Profiling of Different State Callus Induced from Immature Embryo in Maize. J CHEM-NY 2022. [DOI: 10.1155/2022/6237298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryogenic and regenerable tissue cultures are widely used in plant transformation. To dissect the molecular mechanism of embryogenesis, we used inbred line A188 as the material; the immature embryo of kernels (15 day after pollination, 15DAP) was isolated and cultured in inducing medium and subjected to RNA-Seq. The results revealed that 5,076 differentially expressed genes (DEGs) were involved in morphological and histological changes and endogenous indole-3-acetic acid (IAA) alteration. Functional analysis showed that the DEGs were related to metabolic pathways and biosynthesis of secondary metabolites. In particular, ARF16 and ARF8 genes of auxin response factors (ARF) were upregulated from EC to IDC and EC to IRC. Meanwhile, BBM2, SERK1, and SERK2 genes of the embryogenic pathway were upregulated, and WIP2 and ESR genes of the wound-inducible were upregulated from EC to IDC and EC to IRC. These changes can improve conversion efficiency from EC to IRC, which is important for elucidating the underlying molecular mechanisms of callus formation.
Collapse
|
6
|
de Silva KK, Dunwell JM, Wickramasuriya AM. Weighted Gene Correlation Network Analysis (WGCNA) of Arabidopsis Somatic Embryogenesis (SE) and Identification of Key Gene Modules to Uncover SE-Associated Hub Genes. Int J Genomics 2022; 2022:7471063. [PMID: 35837132 PMCID: PMC9274236 DOI: 10.1155/2022/7471063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023] Open
Abstract
Somatic embryogenesis (SE), which occurs naturally in many plant species, serves as a model to elucidate cellular and molecular mechanisms of embryo patterning in plants. Decoding the regulatory landscape of SE is essential for its further application. Hence, the present study was aimed at employing Weighted Gene Correlation Network Analysis (WGCNA) to construct a gene coexpression network (GCN) for Arabidopsis SE and then identifying highly correlated gene modules to uncover the hub genes associated with SE that may serve as potential molecular targets. A total of 17,059 genes were filtered from a microarray dataset comprising four stages of SE, i.e., stage I (zygotic embryos), stage II (proliferating tissues at 7 days of induction), stage III (proliferating tissues at 14 days of induction), and stage IV (mature somatic embryos). This included 1,711 transcription factors and 445 EMBRYO DEFECTIVE genes. GCN analysis identified a total of 26 gene modules with the module size ranging from 35 to 3,418 genes using a dynamic cut tree algorithm. The module-trait analysis revealed that four, four, seven, and four modules were associated with stages I, II, III, and IV, respectively. Further, we identified a total of 260 hub genes based on the degree of intramodular connectivity. Validation of the hub genes using publicly available expression datasets demonstrated that at least 78 hub genes are potentially associated with embryogenesis; of these, many genes remain functionally uncharacterized thus far. In silico promoter analysis of these genes revealed the presence of cis-acting regulatory elements, "soybean embryo factor 4 (SEF4) binding site," and "E-box" of the napA storage-protein gene of Brassica napus; this suggests that these genes may play important roles in plant embryo development. The present study successfully applied WGCNA to construct a GCN for SE in Arabidopsis and identified hub genes involved in the development of somatic embryos. These hub genes could be used as molecular targets to further elucidate the molecular mechanisms underlying SE in plants.
Collapse
Affiliation(s)
- Kithmee K. de Silva
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | | |
Collapse
|
7
|
Genome-Wide cis-Regulatory Element Based Discovery of Auxin-Responsive Genes in Higher Plant. Genes (Basel) 2021; 13:genes13010024. [PMID: 35052364 PMCID: PMC8775021 DOI: 10.3390/genes13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Auxin has a profound impact on plant physiology and participates in almost all aspects of plant development processes. Auxin exerts profound pleiotropic effects on plant growth and differentiation by regulating the auxin response genes’ expressions. The classical auxin reaction is usually mediated by auxin response factors (ARFs), which bind to the auxin response element (AuxRE) in the promoter region of the target gene. Experiments have generated only a limited number of plant genes with well-characterized functions. It is still unknown how many genes respond to exogenous auxin treatment. An economical and effective method was proposed for the genome-wide discovery of genes responsive to auxin in a model plant, Arabidopsis thaliana (A. thaliana). Our method relies on cis-regulatory-element-based targeted gene finding across different promoters in a genome. We first exploit and analyze auxin-specific cis-regulatory elements for the transcription of the target genes, and then identify putative auxin responsive genes whose promoters contain the elements in the collection of over 25,800 promoters in the A. thaliana genome. Evaluating our result by comparing with a published database and the literature, we found that this method has an accuracy rate of 65.2% (309/474) for predicting candidate genes responsive to auxin. Chromosome distribution and annotation of the putative auxin-responsive genes predicted here were also mined. The results can markedly decrease the number of identified but merely potential auxin target genes and also provide useful clues for improving the annotation of gene that lack functional information.
Collapse
|
8
|
Lin HH, Lin KH, Wu KF, Chen YC. Identification of Ipomoea batatas anti-cancer peptide (IbACP)-responsive genes in sweet potato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110849. [PMID: 33691955 DOI: 10.1016/j.plantsci.2021.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
IbACP, Ipomoea batatas anti-cancer peptide, a sixteen-amino-acid peptide isolated from sweet potato leaves, is capable of mediating a rapid alkalinization of growth media in plant suspension cells. However, the biological roles of IbACP as a defense peptide have not been studied. The objective of this study was to investigate the effect of IbACP on the accumulation of reactive oxygen species (ROS) and the expression of the defense-related genes. IbACP treatment of sweet potato leaves resulted in marked accumulation of both superoxide ion (O2-) and hydrogen peroxide (H2O2). The activity of peroxidase (POD) was significantly enhanced by IbACP treatment, suggesting that high levels of POD antioxidant activity may be used to scavenge the excess H2O2 in sweet potato plants. The IbACP-related genes were identified by suppression subtractive hybridization (SSH), and were then classified and assigned to the following categories: defense, development, metabolism, signaling, gene expression, and abiotic stress. H2O2 acts as a second messenger for gene activation in some of the IbACP-triggered gene expressions. These results demonstrated that IbACP is part of an integrated strategy for genetic regulation in sweet potato. Our work highlights the function of IbACP and its potential use for enhancing stress tolerance in sweet potato, in an effort to improve our understanding of defense-response mechanisms.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Kuan-Fu Wu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 700, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 700, Taiwan.
| |
Collapse
|
9
|
Petti C. Phloroglucinol Mediated Plant Regeneration of Ornithogalum dubium as the Sole "Hormone-Like Supplement" in Plant Tissue Culture Long-Term Experiments. PLANTS (BASEL, SWITZERLAND) 2020; 9:E929. [PMID: 32717803 PMCID: PMC7464755 DOI: 10.3390/plants9080929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Tissue culture is an essential requirement in plant science to preserve genetic resources and to expand naturally occurring germplasm. A variety of naturally occurring and synthetic hormones are available to induce the processes of dedifferentiation and redifferentiation. Not all plant material is susceptible to tissue culture, and often complex media and hormone requirements are needed to achieve successful plant propagations. The availability of new hormones or chemicals acting as hormones are critical to the expansion of tissue culture potentials. Phloroglucinol has been shown to have certain hormone-like properties in a variety of studies. Ornithogalum dubium, an important geophyte species, was used to characterise the potential of phloroglucinol as the sole plant-like hormone in a tissue culture experiment. Tissue culture, plant regeneration, total phenolic and genetic variability were established by applying a variety of methods throughout long-term experiments. Phloroglucinol did induce callus formation and plant regeneration when used as the sole supplement in the media at a rate of 37%, thus demonstrating auxin/cytokines-like properties. Callus formation was of 3 types, friable and cellular, hard and compact, and a mixture of the two. The important finding was that direct somatogenesis did occur albeit more frequently on younger tissue, whereby rates of induction were up to 52%. It is concluded that phloroglucinol acts as a "hormone-like" molecule and can trigger direct embryogenesis without callus formation.
Collapse
Affiliation(s)
- Carloalberto Petti
- Institute of Technology Carlow, EnviroCORE, DSH, Kilkenny Road, R93 V960 Carlow, Ireland
| |
Collapse
|
10
|
Guo H, Guo H, Zhang L, Fan Y, Wu J, Tang Z, Zhang Y, Fan Y, Zeng F. Dynamic Transcriptome Analysis Reveals Uncharacterized Complex Regulatory Pathway Underlying Genotype-Recalcitrant Somatic Embryogenesis Transdifferentiation in Cotton. Genes (Basel) 2020; 11:E519. [PMID: 32392816 PMCID: PMC7290922 DOI: 10.3390/genes11050519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 11/27/2022] Open
Abstract
As a notable illustration of totipotency and plant regeneration, somatic embryogenesis (SE) is the developmental reprogramming of somatic cells toward the embryogenesis pathway, the key step for genetic engineering. Investigations examining the totipotency process are of great fundamental and practical importance in crop biotechnology. However, high-frequency regeneration of cotton via SE has been limited due to genotype-dependent response. The molecular basis deciphering SE genotype recalcitrance remains largely unexplored in cotton. In the current study, to comprehensively investigate the dynamic transcriptional profiling and gene regulatory patterns involved in SE process, a genome-wide RNA sequencing analysis was performed in two cotton genotypes with distinct embryogenic abilities, the highly embryogenic genotype Yuzao 1 (YZ) and the recalcitrant genotype Lumian 1 (LM). Three typical developmental staged cultures of early SE-hypocotyls (HY), nonembryogenic calli (NEC) and primary embryogenic calli (PEC)-were selected to establish the transcriptional profiles. Our data revealed that a total of 62,562 transcripts were present amongst different developmental stages in the two genotypes. Of these, 18,394 and 26,514 differentially expressed genes (DEGs) were identified during callus dedifferentiation (NEC-VS-HY) and embryogenic transdifferentiation (PEC-VS-NEC), respectively in the recalcitrant genotype, 21,842 and 22,343 DEGs in the highly embryogenic genotype. Furthermore, DEGs were clustered into six expression patterns during cotton SE process in the two genotypes. Moreover, functional enrichment analysis revealed that DEGs were significantly enriched in fatty acid, tryptophan and pyruvate metabolism in the highly embryogenic genotype and in DNA conformation change otherwise in the recalcitrant genotype. In addition, critical SE-associated expressed transcription factors, as well as alternative splicing events, were notably and preferentially activated during embryogenic transdifferentiation in the highly embryogenic genotype compared with the recalcitrant genotype. Taken together, by systematically comparing two genotypes with distinct embryogenic abilities, the findings in our study revealed a comprehensive overview of the dynamic gene regulatory patterns and uncharacterized complex regulatory pathways during cotton SE genotype-dependent response. Our work provides insights into the molecular basis and important gene resources for understanding the underlying genotype recalcitrance during SE process and plant regeneration, thereby holding great promise for accelerating the application of biotechnology to cotton for improving its breeding efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (H.G.); (H.G.); (L.Z.); (Y.F.); (J.W.); (Z.T.); (Y.Z.); (Y.F.)
| |
Collapse
|
11
|
Song S, Wang Z, Ren Y, Sun H. Full-Length Transcriptome Analysis of the ABCB, PIN/PIN-LIKES, and AUX/LAX Families Involved in Somatic Embryogenesis of Lilium pumilum DC. Fisch. Int J Mol Sci 2020; 21:E453. [PMID: 31936841 PMCID: PMC7014436 DOI: 10.3390/ijms21020453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Plant cell totipotency is one of the 25 major topics in current scientific research, and somatic embryos are good experimental material for studying cell totipotency. Polar auxin transport plays an important regulatory role in somatic embryogenesis (SE). However, little is known about the auxin transport genes and their regulatory mechanisms in Lilium SE. In this study, we applied single-molecule real-time (SMRT) sequencing to Lilium pumilum DC. Fisch. for the first time and obtained a total of 119,649 transcripts, of which 14 encoded auxin transport genes. Correlation analyses between somatic embryo induction and gene expression under different treatments revealed that auxin transport genes, especially ATP-binding cassette (ABC) transporter B family member 21 (ABCB21) and PIN-FORMED (PIN) LIKES 7 (PILS7), may be key players in SE, and the necessary duration of picloram (PIC) treatment to induce SE is as short as 3 days. Our research provides valuable genetic information on Lilium pumilum, elucidating the candidate auxin transport genes involved in SE and their influencing factors. This study lays a foundation for elucidating the regulatory mechanism of auxin transport in SE.
Collapse
Affiliation(s)
- Shengli Song
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (Z.W.); (Y.R.)
| | - Zhiping Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (Z.W.); (Y.R.)
| | - Yamin Ren
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (Z.W.); (Y.R.)
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (Z.W.); (Y.R.)
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Horticulture Department, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
12
|
Dynamic Transcriptome Analysis Reveals Uncharacterized Complex Regulatory Pathway Underlying Dose IBA-Induced Embryogenic Redifferentiation in Cotton. Int J Mol Sci 2020; 21:ijms21020426. [PMID: 31936561 PMCID: PMC7013799 DOI: 10.3390/ijms21020426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/17/2022] Open
Abstract
The somatic embryogenesis (SE) process of plants is regulated by exogenous hormones. During the SE, different genes sensitively respond to hormone signals through complex regulatory networks to exhibit plant totipotency. When cultured in indole-3-butyric acid (IBA) concentration gradient medium supplemented with 0 mg dm-3, 0.025 mg dm-3, and 0.05 mg dm-3 IBA, the callus differentiation rate first increased then decreased in cotton. To characterize the molecular basis of IBA-induced regulating SE, transcriptome analysis was conducted on embryogenic redifferentiation. Upon the examination of the IBA's embryogenic inductive effect, it was revealed that pathways related to plant hormone signal transduction and alcohol degradation were significantly enriched in the embryogenic responsive stage (5 days). The photosynthesis, alcohol metabolism and cell cycle pathways were specifically regulated in the pre-embryonic initial period (20 days). Upon the effect of the IBA dose, in the embryogenic responsive stage (5 days), the metabolism of xenobiotics by the cytochrome P450 pathway and secondary metabolism pathways of steroid, flavonoid, and anthocyanin biosynthesis were significantly enriched. The phenylpropanoid, brassinosteroid, and anthocyanin biosynthesis pathways were specifically associated in the pre-embryonic initial period (20 days). At different developmental stages of embryogenic induction, photosynthesis, flavonoid biosynthesis, phenylpropanoid biosynthesis, mitogen-activated protein kinase (MAPK) signaling, xenobiotics metabolism by cytochrome P450, and brassinosteroid biosynthesis pathways were enriched at low a IBA concentration. Meanwhile, at high IBA concentration, the carbon metabolism, alcohol degradation, circadian rhythm and biosynthesis of amino acids pathways were significantly enriched. The results reveal that complex regulating pathways participate in the process of IBA-induced redifferentiation in cotton somatic embryogenesis. In addition, collections of potential essential signaling and regulatory genes responsible for dose IBA-induced efficient embryogenic redifferentiation were identified. Quantitative real-time PCR (qRT-PCR) was performed on the candidate genes with different expression patterns, and the results are basically consistent with the RNA-seq data. The results suggest that the complicated and concerted IBA-induced mechanisms involving multiple cellular pathways are responsible for dose-dependent plant growth regulator-induced SE. This report represents a systematic study and provides new insight into molecular signaling and regulatory basis underlying the process of dose IBA-induced embryogenic redifferentiation during SE.
Collapse
|
13
|
Jiménez-Guillen D, Pérez-Pascual D, Souza-Perera R, Zúñiga Aguilar JJ. Cloning and molecular characterization of a putative habanero pepper SERK1 cDNA expressed during somatic and zygotic embryogenesis. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Guo H, Guo H, Zhang L, Fan Y, Fan Y, Zeng F. SELTP-assembled battery drives totipotency of somatic plant cell. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1188-1190. [PMID: 30844118 PMCID: PMC6576022 DOI: 10.1111/pbi.13107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 05/28/2023]
Affiliation(s)
- Huihui Guo
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Haixia Guo
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Li Zhang
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Yijie Fan
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Yupeng Fan
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| | - Fanchang Zeng
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anChina
| |
Collapse
|
15
|
Guo H, Guo H, Zhang L, Fan Y, Fan Y, Tang Z, Zeng F. Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis Transdifferentiation. Int J Mol Sci 2019; 20:E1691. [PMID: 30987365 PMCID: PMC6480670 DOI: 10.3390/ijms20071691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/03/2023] Open
Abstract
The somatic embryogenesis (SE) process of plants, as one of the typical responses to abiotic stresses with hormone, occurs through the dynamic expression of different proteins that constitute a complex regulatory network in biological activities and promotes plant totipotency. Plant SE includes two critical stages: primary embryogenic calli redifferentiation and somatic embryos development initiation, which leads to totipotency. The isobaric labels tandem mass tags (TMT) large-scale and quantitative proteomics technique was used to identify the dynamic protein expression changes in nonembryogenic calli (NEC), primary embryogenic calli (PEC) and globular embryos (GEs) of cotton. A total of 9369 proteins (6730 quantified) were identified; 805, 295 and 1242 differentially accumulated proteins (DAPs) were identified in PEC versus NEC, GEs versus PEC and GEs versus NEC, respectively. Eight hundred and five differentially abundant proteins were identified, 309 of which were upregulated and 496 down regulated in PEC compared with NEC. Of the 295 DAPs identified between GEs and PEC, 174 and 121 proteins were up- and down regulated, respectively. Of 1242 differentially abundant proteins, 584 and 658 proteins were up- and down regulated, respectively, in GEs versus NEC. We have also complemented the authenticity and accuracy of the proteomic analysis. Systematic analysis indicated that peroxidase, photosynthesis, environment stresses response processes, nitrogen metabolism, phytohormone response/signal transduction, transcription/posttranscription and modification were involved in somatic embryogenesis. The results generated in this study demonstrate a proteomic molecular basis and provide a valuable foundation for further investigation of the roles of DAPs in the process of SE transdifferentiation during cotton totipotency.
Collapse
Affiliation(s)
- Haixia Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Huihui Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Li Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Yijie Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Zhengmin Tang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
16
|
Góngora-Castillo E, Nic-Can GI, Galaz-Ávalos RM, Loyola-Vargas VM. Elaboration of Transcriptome During the Induction of Somatic Embryogenesis. Methods Mol Biol 2018; 1815:411-427. [PMID: 29981139 DOI: 10.1007/978-1-4939-8594-4_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Somatic embryogenesis (SE) is one of the most studied developmental processes due to its applications, such as plant micropropagation, transformation, and germplasm conservation. The use of massive techniques of sequencing, as well as the use of subtractive hybridization and macroarrays, has led to the identification of hundreds of genes involved in the SE process. These have been important developments to study the molecular aspects of the progress of SE. With the advent of the new massive techniques for sequencing RNA, it has been possible to see a more complete picture of whole processes. In this chapter we present a technique to handle the elaboration of the transcriptome from the extraction of RNA until the assembly of the complete transcriptome.
Collapse
Affiliation(s)
- Elsa Góngora-Castillo
- CONACYT Research Fellow-Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico.
| | - Geovanny I Nic-Can
- CONACYT Research Fellow-Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Rosa M Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
17
|
Chu Z, Chen J, Sun J, Dong Z, Yang X, Wang Y, Xu H, Zhang X, Chen F, Cui D. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2017; 17:244. [PMID: 29258440 PMCID: PMC5735865 DOI: 10.1186/s12870-017-1204-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/06/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). RESULTS In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which were validated by qRT-PCR, showed a high correlation with the RNA-seq value. CONCLUSIONS This study provides new insights into the role of the transcriptome in embryogenic callus formation in wheat, and will serve as a valuable resource for further studies addressing embryogenic callus formation in plants.
Collapse
Affiliation(s)
- Zongli Chu
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
- Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| | - Junying Chen
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Junyan Sun
- Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| | - Zhongdong Dong
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Xia Yang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Ying Wang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Haixia Xu
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Xiaoke Zhang
- Agronomy College, North West Agriculture and Forestry University, Yangling, 712100 China
| | - Feng Chen
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Dangqun Cui
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| |
Collapse
|
18
|
Singh A, Khurana P. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Sci Rep 2017; 7:12368. [PMID: 28959050 PMCID: PMC5620050 DOI: 10.1038/s41598-017-10038-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023] Open
Abstract
Somatic embryogenesis receptor kinases (SERKs) belong to a small gene family of receptor-like kinases involved in signal transduction. A total of 54 genes were shortlisted from the wheat genome survey sequence of which 5 were classified as SERKs and 49 were identified as SERK-like (SERLs). Tissue- specific expression of TaSERKs at major developmental stages of wheat corroborates their indispensable role during somatic and zygotic embryogenesis. TaSERK transcripts show inherent differences in their hormonal sensitivities, i.e. TaSERK2 and TaSERK3 elicits auxin- specific responses while TaSERK1, 4 and 5 were more specific towards BR-mediated regulation. The ectopic expression of TaSERK1, 2, 3, 4 and 5 in Arabidopsis led to enhanced plant height, larger silique size and increased seed yield. Zygotic embryogenesis specific genes showed a differential pattern in TaSERK Arabidopsis transgenics specifically in the silique tissues. Elongated hypocotyls and enhanced root growth were observed in the overexpression transgenic lines of all five TaSERKs. The inhibitory action of auxin and brassinosteroid in all the TaSERK transgenic lines indicates their role in regulating root development. The results obtained imply redundant functions of TaSERKs in maintaining plant growth and development.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Plant Molecular Biology, University of Delhi, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi, New Delhi, 110021, India.
| |
Collapse
|
19
|
Cao A, Zheng Y, Yu Y, Wang X, Shao D, Sun J, Cui B. Comparative Transcriptome Analysis of SE initial dedifferentiation in cotton of different SE capability. Sci Rep 2017; 7:8583. [PMID: 28819177 PMCID: PMC5561258 DOI: 10.1038/s41598-017-08763-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 01/22/2023] Open
Abstract
Somatic embryogenesis (SE) is a critical transition from vegetative to embryogenic growth in higher plants; however, few studies have investigated the mechanism that regulates SE initial differentiation. Most cotton varieties have not undergone regeneration by SE, so only a few varieties can be used in genetic engineering. Here, two varieties of cotton with different SE capabilities (HD, higher differentiation and LD, lower differentiation) were analyzed by high throughout RNA-Seq at the pre-induction stage (0h) and two induction stages (3h and 3d) under callus-induction medium (CIM). About 1150 million clean reads were obtained from 98.21% raw data. Transcriptomic analysis revealed that "protein kinase activity" and "oxidoreductase activity" were highly represented GO terms during the same and different treatment stages among HD and LD. Moreover, several stress-related transcription factors might play important roles in SE initiation. The SE-related regulation genes (SERKs) showed different expression patterns between HD and LD. Furthermore, the complex auxin and ethylene signaling pathway contributes to initiation of differentiation in SE. Thus, our RNA-sequencing of comparative transcriptome analysis will lay a foundation for future studies to better define early somatic formation in cotton with different SE capabilities.
Collapse
Affiliation(s)
- Aiping Cao
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Yinying Zheng
- Colleges of Life Science, Shihezi University, Shihezi, China
| | - Yu Yu
- Cotton research Institute, XinJiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xuwen Wang
- Cotton research Institute, XinJiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Dongnan Shao
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Baiming Cui
- Colleges of Life Science, Shihezi University, Shihezi, China.
| |
Collapse
|
20
|
Li Q, Deng C, Xia Y, Kong L, Zhang H, Zhang S, Wang J. Identification of novel miRNAs and miRNA expression profiling in embryogenic tissues of Picea balfouriana treated by 6-benzylaminopurine. PLoS One 2017; 12:e0176112. [PMID: 28486552 PMCID: PMC5423612 DOI: 10.1371/journal.pone.0176112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Here, we compared miRNA expression profiles in embryonic cell cultures of the conifer Picea balfouriana following application of the synthetic cytokinin 6-benzylaminopurine (6-BAP). We used next-generation sequencing to analyze three libraries of small RNAs from the treated embryogenic cell cultures and generated 24,000,000 raw reads from each of the libraries. Over 70 differentially regulated micro RNA (miRNA) families (≥2 fold change in expression) were identified between pairs of treatments. A quantitative analysis showed that miR3633 and miR1026 were upregulated in tissues with the highest embryogenic ability. These two miRNAs were predicted to target genes encoding receptor-like protein kinase and GAMYB transcription factors, respectively. In one library, miR1160, miR5638, miR1315, and miR5225 were downregulated. These four miRNAs were predicted to target genes encoding APETALA2, calmodulin-binding protein, and calcium-dependent protein kinase transcription factors. The expression patterns of the miRNAs and their targets were negatively correlated. Approximately 181 potentially novel P. balfouriana miRNAs were predicted from the three libraries, and seven were validated during the quantitative analysis. This study is the first report of differential miRNA regulation in tissues treated with 6-BAP during somatic embryogenesis. The differentially expressed miRNAs will be of value for investigating the mechanisms of embryogenic processes that are responsive to 6-BAP in P. balfouriana.
Collapse
Affiliation(s)
- Qingfen Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Cheng Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yan Xia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Cheng WH, Zhu HG, Tian WG, Zhu SH, Xiong XP, Sun YQ, Zhu QH, Sun J. De novo transcriptome analysis reveals insights into dynamic homeostasis regulation of somatic embryogenesis in upland cotton (G. hirsutum L.). PLANT MOLECULAR BIOLOGY 2016; 92:279-92. [PMID: 27511192 PMCID: PMC5040755 DOI: 10.1007/s11103-016-0511-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/07/2016] [Indexed: 05/22/2023]
Abstract
Plant regeneration via somatic embryogenesis (SE) is the key step for genetic improvement of cotton (Gossypium hirsutum L.) through genetic engineering mediated by Agrobacteria, but the molecular mechanisms underlying SE in cotton is still unclear. Here, RNA-Sequencing was used to analyze the genes expressed during SE and their expression dynamics using RNAs isolated from non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryos (SEs). A total of 101, 670 unigenes were de novo assembled. The genes differentially expressed (DEGs) amongst NEC, EC and SEs were identified, annotated and classified. More DEGs were found between SEs and EC than between EC and NEC. A significant number of DEGs were related to hormone homeostasis, stress and ROS responses, and metabolism of polyamines. To confirm the expression dynamics of selected DEGs involved in various pathways, experiments were set up to investigate the effects of hormones (Indole-3-butytric acid, IBA; Kinetin, KT), polyamines, H2O2 and stresses on SE. Our results showed that exogenous application of IBA and KT positively regulated the development of EC and SEs, and that polyamines and H2O2 promoted the conversion of EC into SEs. Furthermore, we found that low and moderate stress is beneficial for proliferation of EC and SEs formation. Together, our global analysis of transcriptomic dynamics reveals that hormone homeostasis, polyamines, and stress response synergistically regulating SE in cotton.
Collapse
Affiliation(s)
- Wen-Han Cheng
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Hua-Guo Zhu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Wen-Gang Tian
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Shou-Hong Zhu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Xian-Peng Xiong
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Yu-Qiang Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Qian-Hao Zhu
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, 2601 Australia
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| |
Collapse
|
22
|
Shi X, Zhang C, Liu Q, Zhang Z, Zheng B, Bao M. De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.). BMC Genomics 2016; 17:26. [PMID: 26727885 PMCID: PMC4700650 DOI: 10.1186/s12864-015-2357-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 09/11/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Somatic embryogenesis is a notable illustration of cell totipotency, by which somatic cells undergo dedifferentiation and then differentiate into somatic embryos. Our previous work demonstrated that pretreatment of immature zygotic embryos with 0.5 M sucrose solution for 72 h efficiently induced somatic embryo initiation in camphor tree. To better understand the molecular basis of somatic embryogenesis induced by osmotic stress, de novo transcriptome sequencing of three tissues of camphor tree (immature zygotic embryos, sucrose-pretreated immature zygotic embryos, and somatic embryos induced from sucrose-pretreated zygotic embryos) were conducted using Illumina Hiseq 2000 platform. RESULTS A total of 30.70 G high quality clean reads were obtained from cDNA libraries of the three samples. The overall de novo assembly of cDNA sequence data generated 205592 transcripts, with an average length of 998 bp. 114229 unigenes (55.56 % of all transcripts) with an average length of 680 bp were annotated with gene descriptions, gene ontology terms or metabolic pathways based on Blastx search against Nr, Nt, Swissprot, GO, COG/KOG, and KEGG databases. CEGMA software identified 237 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, showing a completeness of 95.6 %. A total of 897 genes previously annotated to be potentially involved in somatic embryogenesis were identified. Comparative transcriptome analysis showed that a total of 3335 genes were differentially expressed in the three samples. The differentially expressed genes were divided into six groups based on K-means clustering. Expression level analysis of 52 somatic embryogenesis-related genes indicated a high correlation between RNA-seq and qRT-PCR data. Gene enrichment analysis showed significantly differential expression of genes responding to stress and stimulus. CONCLUSIONS The present work reported a de novo transcriptome assembly and global analysis focused on gene expression changes during initiation and formation of somatic embryos in camphor tree. Differential expression of somatic embryogenesis-related genes indicates that sucrose induced somatic embryogenesis may share or partly share the mechanisms of somatic embryogenesis induced by plant hormones. This study provides comprehensive transcript information and gene expression data for camphor tree. It could also serve as an important platform resource for further functional studies in plant embryogenesis.
Collapse
Affiliation(s)
- Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Cuijie Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Qinhong Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
23
|
Hu QB, He Y, Zhou X. Construction and analysis of the cDNA subtraction library of yeast and mycelial phases of Sporothrix globosa isolated in China: identification of differentially expressed genes. J Zhejiang Univ Sci B 2015; 16:991-7. [PMID: 26642182 DOI: 10.1631/jzus.b1500151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China.
Collapse
Affiliation(s)
- Qing-bi Hu
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu He
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xun Zhou
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Dermatology and Cosmetology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| |
Collapse
|
24
|
Tao L, Zhao Y, Wu Y, Wang Q, Yuan H, Zhao L, Guo W, You X. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim. Gene 2015; 578:17-24. [PMID: 26657036 DOI: 10.1016/j.gene.2015.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 11/21/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
Somatic embryogenesis (SE) has been studied as a model system to understand molecular events in physiology, biochemistry, and cytology during plant embryo development. In particular, it is exceedingly difficult to access the morphological and early regulatory events in zygotic embryos. To understand the molecular mechanisms regulating early SE in Eleutherococcus senticosus Maxim., we used high-throughput RNA-Seq technology to investigate its transcriptome. We obtained 58,327,688 reads, which were assembled into 75,803 unique unigenes. To better understand their functions, the unigenes were annotated using the Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases. Digital gene expression libraries revealed differences in gene expression profiles at different developmental stages (embryogenic callus, yellow embryogenic callus, global embryo). We obtained a sequencing depth of >5.6 million tags per sample and identified many differentially expressed genes at various stages of SE. The initiation of SE affected gene expression in many KEGG pathways, but predominantly that in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. This information on the changes in the multiple pathways related to SE induction in E. senticosus Maxim. embryogenic tissue will contribute to a more comprehensive understanding of the mechanisms involved in early SE. Additionally, the differentially expressed genes may act as molecular markers and could play very important roles in the early stage of SE. The results are a comprehensive molecular biology resource for investigating SE of E. senticosus Maxim.
Collapse
Affiliation(s)
- Lei Tao
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yue Zhao
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Ying Wu
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Qiuyu Wang
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Hongmei Yuan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lijuan Zhao
- Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Wendong Guo
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Xiangling You
- College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
25
|
Min L, Hu Q, Li Y, Xu J, Ma Y, Zhu L, Yang X, Zhang X. LEAFY COTYLEDON1-CASEIN KINASE I-TCP15-PHYTOCHROME INTERACTING FACTOR4 Network Regulates Somatic Embryogenesis by Regulating Auxin Homeostasis. PLANT PHYSIOLOGY 2015; 169:2805-21. [PMID: 26491146 PMCID: PMC4677921 DOI: 10.1104/pp.15.01480] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/21/2015] [Indexed: 05/19/2023]
Abstract
Somatic embryogenesis (SE) is an efficient tool for the propagation of plant species and also, a useful model for studying the regulatory networks in embryo development. However, the regulatory networks underlying the transition from nonembryogenic callus to somatic embryos during SE remain poorly understood. Here, we describe an upland cotton (Gossypium hirsutum) CASEIN KINASE I gene, GhCKI, which is a unique key regulatory factor that strongly affects SE. Overexpressing GhCKI halted the formation of embryoids and plant regeneration because of a block in the transition from nonembryogenic callus to somatic embryos. In contrast, defective GhCKI in plants facilitated SE. To better understand the mechanism by which GhCKI regulates SE, the regulatory network was analyzed. A direct upstream negative regulator protein, cotton LEAFY COTYLEDON1, was identified to be targeted to a cis-element, CTTTTC, in the promoter of GhCKI. Moreover, GhCKI interacted with and phosphorylated cotton CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF transcription factor15 by coordinately regulating the expression of cotton PHYTOCHROME INTERACTING FACTOR4, finally disrupting auxin homeostasis, which led to increased cell proliferation and aborted somatic embryo formation in GhCKI-overexpressing somatic cells. Our results show a complex process of SE that is negatively regulated by GhCKI through a complex regulatory network.
Collapse
Affiliation(s)
- Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yaoyao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
26
|
Xu Z, Zhang C, Ge X, Wang N, Zhou K, Yang X, Wu Z, Zhang X, Liu C, Yang Z, Li C, Liu K, Yang Z, Qian Y, Li F. Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.). PLANT CELL REPORTS 2015; 34:1177-87. [PMID: 25758337 DOI: 10.1007/s00299-015-1776-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 05/08/2023]
Abstract
The first high-density linkage map was constructed to identify quantitative trait loci (QTLs) for somatic embryogenesis (SE) in cotton ( Gossypium hirsutum L.) using leaf petioles as explants. Cotton transformation is highly limited by only a few regenerable genotypes and the lack of understanding of the genetic and molecular basis of somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.). To construct a more saturated linkage map and further identify quantitative trait loci (QTLs) for SE using leaf petioles as explants, a high embryogenesis frequency line (W10) from the commercial Chinese cotton cultivar CRI24 was crossed with TM-1, a genetic standard upland cotton with no embryogenesis frequency. The genetic map spanned 2300.41 cM in genetic distance and contained 411 polymorphic simple sequence repeat (SSR) loci. Of the 411 mapped loci, 25 were developed from unigenes identified for SE in our previous study. Six QTLs for SE were detected by composite interval mapping method, each explaining 6.88-37.07% of the phenotypic variance. Single marker analysis was also performed to verify the reliability of QTLs detection, and the SSR markers NAU3325 and DPL0209 were detected by the two methods. Further studies on the relatively stable and anchoring QTLs/markers for SE in an advanced population of W10 × TM-1 and other cross combinations with different SE abilities may shed light on the genetic and molecular mechanism of SE in cotton.
Collapse
Affiliation(s)
- Zhenzhen Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC PLANT BIOLOGY 2015; 15:121. [PMID: 25976599 PMCID: PMC4449528 DOI: 10.1186/s12870-015-0479-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/23/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Theobroma cacao, the chocolate tree, is an important economic crop in East Africa, South East Asia, and South and Central America. Propagation of elite varieties has been achieved through somatic embryogenesis (SE) but low efficiencies and genotype dependence still presents a significant limitation for its propagation at commercial scales. Manipulation of transcription factors has been used to enhance the formation of SEs in several other plant species. This work describes the use of the transcription factor Baby Boom (BBM) to promote the transition of somatic cacao cells from the vegetative to embryonic state. RESULTS An ortholog of the Arabidopsis thaliana BBM gene (AtBBM) was characterized in T. cacao (TcBBM). TcBBM expression was observed throughout embryo development and was expressed at higher levels during SE as compared to zygotic embryogenesis (ZE). TcBBM overexpression in A. thaliana and T. cacao led to phenotypes associated with SE that did not require exogenous hormones. While transient ectopic expression of TcBBM provided only moderate enhancements in embryogenic potential, constitutive overexpression dramatically increased SE proliferation but also appeared to inhibit subsequent development. CONCLUSION Our work provides validation that TcBBM is an ortholog to AtBBM and has a specific role in both somatic and zygotic embryogenesis. Furthermore, our studies revealed that TcBBM transcript levels could serve as a biomarker for embryogenesis in cacao tissue. Results from transient expression of TcBBM provide confirmation that transcription factors can be used to enhance SE without compromising plant development and avoiding GMO plant production. This strategy could compliment a hormone-based method of reprogramming somatic cells and lead to more precise manipulation of SE at the regulatory level of transcription factors. The technology would benefit the propagation of elite varieties with low regeneration potential as well as the production of transgenic plants, which similarly requires somatic cell reprogramming.
Collapse
Affiliation(s)
- Sergio L Florez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Rachel L Erwin
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Siela N Maximova
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Mark J Guiltinan
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Wayne R Curtis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
28
|
Li Q, Zhang S, Wang J. Transcriptomic and proteomic analyses of embryogenic tissues in Picea balfouriana treated with 6-benzylaminopurine. PHYSIOLOGIA PLANTARUM 2015; 154:95-113. [PMID: 25200684 DOI: 10.1111/ppl.12276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 05/22/2023]
Abstract
The cytokinin 6-benzylaminopurine (6-BAP) influences the embryogenic capacity of the tissues of Picea balfouriana during long subculture (after 3 months). Tissues that proliferate in 3.6 and 5 µM 6-BAP exhibit the highest and lowest embryogenic capacity, respectively, generating 113 ± 6 and 23 ± 3 mature embryos per 100 mg of tissue. In this study, a comparative transcriptomic and proteomic approach was applied to characterize the genes and proteins that are differentially expressed among tissues under the influence of different levels of 6-BAP. A total of 51 375 unigenes and 2617 proteins were obtained after quality filtering. There were 2770 transcripts for proteins found among these unigenes. Gene ontology (GO) analysis of the differentially expressed unigenes and proteins showed that they were involved in cell and binding activity and were enriched in ribosome and glutathione metabolism pathways. Ribosomal proteins, glutathione S-transferase proteins, germin-like proteins and calmodulin-independent protein kinases were up-regulated in the embryogenic tissues with the highest embryogenic ability (treated with 3.6 µM 6-BAP), which was validated via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and these proteins might serve as molecular markers of embryogenic ability. Data are available via Sequence Read Archive (SRA) and ProteomeXchange with identifier SRP042246 and PXD001022, respectively.
Collapse
Affiliation(s)
- Qingfen Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | | | | |
Collapse
|
29
|
Wickramasuriya AM, Dunwell JM. Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genomics 2015; 16:301. [PMID: 25887996 PMCID: PMC4404573 DOI: 10.1186/s12864-015-1504-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/30/2015] [Indexed: 11/25/2022] Open
Abstract
Background Somatic embryogenesis (SE) in plants is a process by which embryos are generated directly from somatic cells, rather than from the fused products of male and female gametes. Despite the detailed expression analysis of several somatic-to-embryonic marker genes, a comprehensive understanding of SE at a molecular level is still lacking. The present study was designed to generate high resolution transcriptome datasets for early SE providing the way for future research to understand the underlying molecular mechanisms that regulate this process. We sequenced Arabidopsis thaliana somatic embryos collected from three distinct developmental time-points (5, 10 and 15 d after in vitro culture) using the Illumina HiSeq 2000 platform. Results This study yielded a total of 426,001,826 sequence reads mapped to 26,520 genes in the A. thaliana reference genome. Analysis of embryonic cultures after 5 and 10 d showed differential expression of 1,195 genes; these included 778 genes that were more highly expressed after 5 d as compared to 10 d. Moreover, 1,718 genes were differentially expressed in embryonic cultures between 10 and 15 d. Our data also showed at least eight different expression patterns during early SE; the majority of genes are transcriptionally more active in embryos after 5 d. Comparison of transcriptomes derived from somatic embryos and leaf tissues revealed that at least 4,951 genes are transcriptionally more active in embryos than in the leaf; increased expression of genes involved in DNA cytosine methylation and histone deacetylation were noted in embryogenic tissues. In silico expression analysis based on microarray data found that approximately 5% of these genes are transcriptionally more active in somatic embryos than in actively dividing callus and non-dividing leaf tissues. Moreover, this identified 49 genes expressed at a higher level in somatic embryos than in other tissues. This included several genes with unknown function, as well as others related to oxidative and osmotic stress, and auxin signalling. Conclusions The transcriptome information provided here will form the foundation for future research on genetic and epigenetic control of plant embryogenesis at a molecular level. In follow-up studies, these data could be used to construct a regulatory network for SE; the genes more highly expressed in somatic embryos than in vegetative tissues can be considered as potential candidates to validate these networks. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1504-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, UK.
| |
Collapse
|
30
|
Guzmán-García E, Sánchez-Romero C, Panis B, Carpentier SC. The use of 2D-DIGE to understand the regeneration of somatic embryos in avocado. Proteomics 2014; 13:3498-507. [PMID: 24174206 DOI: 10.1002/pmic.201300148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/04/2013] [Accepted: 10/11/2013] [Indexed: 11/09/2022]
Abstract
Avocado embryogenic cell cultures can be classified into two groups based on their morphology when cultured on a medium containing auxin: somatic embryo (SE) and proembryonic masses (PEM) type cultures. The calli of SE-type cell lines are able to go through the maturation process, whereas the calli of PEM cell lines rarely mature. We have investigated four independent avocado cell cultures (two SE and two PEM). The aim of this study was to link the differential regeneration capacity of the four cell cultures to a proteomic pattern and to gain insight into the regeneration capacity. A 2D-DIGE analysis followed by a blind multivariate analysis was able to separate the two SE lines from the PEM lines indicating that the protein profiles of SE and PEM calli are different. Based on the variable importance, that is, the differential protein pattern, we hypothesize that the regeneration capacity in avocado is correlated to the ability to overcome the physicochemical stress stimuli associated with the in vitro culture. Our identical culture conditions do not seem to trigger an appropriate response in PEM lines.
Collapse
|
31
|
Smertenko A, Bozhkov PV. Somatic embryogenesis: life and death processes during apical-basal patterning. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1343-60. [PMID: 24622953 DOI: 10.1093/jxb/eru005] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Somatic embryogenesis (SE) is a process of differentiation of cells into a plant bypassing the fusion of gametes. As such, it represents a very powerful tool in biotechnology for propagation of species with a long reproductive cycle or low seed set and production of genetically modified plants with improved traits. SE is also a versatile model to study cellular and molecular mechanisms of plant embryo patterning. The morphology and molecular regulation of SE resemble those of zygotic embryogenesis and begin with establishment of apical-basal asymmetry. The apical domain, the embryo proper, proliferates and eventually gives rise to the plantlet, while the basal part, the embryo suspensor, is terminally differentiated and gradually removed via vacuolar programmed cell death (PCD). This PCD is essential for normal development of the apical domain. Emerging evidence demonstrates that signalling events in the apical and basal domains share homologous components. Here we provide an overview of the main pathways controlling the life and death events during SE.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
32
|
Jin F, Hu L, Yuan D, Xu J, Gao W, He L, Yang X, Zhang X. Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:161-73. [PMID: 24112122 DOI: 10.1111/pbi.12123] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 05/18/2023]
Abstract
As a product of asexual reproduction in plants, the somatic embryo (SE) differentiates into a new plantlet via a zygotic embryogenesis-like process. Here, we present the phenotypic and cellular differences between SEs and zygotic embryos (ZEs) revealed by histological section scanning using three parallel development stages of the two types of embryos of cotton (Gossypium hirsutum cv. YZ1), including globular, torpedo and cotyledonary-stages. To identify the molecular characteristics of SE development in cotton, the digital gene expression system was used to profile the genes active during SE and ZE development. A total of 4242 differentially expressed genes (DEGs) were identified in at least one developmental stage. Expression pattern and functional classification analysis based on these DEGs reveals that SE development exhibits a transcriptional activation of stress responses. RT-PCR analysis further confirmed enhanced expression levels of stress-related genes in SEs than in ZEs. Experimental stress treatment, induced by NaCl and ABA, accelerated SE development and increased the transcription of genes related to stress response, in parallel with decelerated proliferation of embryogenic calluses under stress treatment. Our data reveal that SE development involves the activation of stress responses, which we suggest may regulate the balance between cell proliferation and differentiation. These results provide new insight into the molecular mechanisms of SE development and suggest strategies that can be used for regulating the developmental processes of somatic embryogenesis.
Collapse
Affiliation(s)
- Fangyan Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
The Life and Death Signalling Underlying Cell Fate Determination During Somatic Embryogenesis. PLANT CELL MONOGRAPHS 2014. [DOI: 10.1007/978-3-642-41787-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Huang S, Hill RD, Stasolla C. Plant hemoglobin participation in cell fate determination. PLANT SIGNALING & BEHAVIOR 2014; 9:e29485. [PMID: 25763627 PMCID: PMC4205130 DOI: 10.4161/psb.29485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/05/2014] [Indexed: 05/27/2023]
Abstract
Plant hemoglobins (Hbs) have been identified as master regulators in determining the developmental fate of specific cells during maize embryogenesis. Whether an embryogenic cell lives or undergoes programmed cell death (PCD) is modulated by Hbs, through their tight interactions with nitric oxide (NO) and auxin. During maize embryogenesis, Hb-suppressing cells accumulate NO, are depleted of auxin, and are committed to die. We propose that Hbs control cell fate by regulating NO and auxin homeostasis, and that this type of mechanism may influence other hormonal responses modulating plant behavior during development and stress conditions.
Collapse
|
35
|
Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD. Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS One 2013; 8:e69261. [PMID: 23874927 PMCID: PMC3714258 DOI: 10.1371/journal.pone.0069261] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms controlling plant totipotency are largely unknown and studies on somatic embryogenesis (SE), the process through which already differentiated cells reverse their developmental program and become embryogenic, provide a unique means for deciphering molecular mechanisms controlling developmental plasticity of somatic cells. Among various factors essential for embryogenic transition of somatic cells transcription factors (TFs), crucial regulators of genetic programs, are believed to play a central role. Herein, we used quantitative real-time polymerase chain reaction (qRT-PCR) to identify TF genes affected during SE induced by in vitro culture in Arabidopsis thaliana. Expression profiles of 1,880 TFs were evaluated in the highly embryogenic Col-0 accession and the non-embryogenic tanmei/emb2757 mutant. Our study revealed 729 TFs whose expression changes during the 10-days incubation period of SE; 141 TFs displayed distinct differences in expression patterns in embryogenic versus non-embryogenic cultures. The embryo-induction stage of SE occurring during the first 5 days of culture was associated with a robust and dramatic change of the TF transcriptome characterized by the drastic up-regulation of the expression of a great majority (over 80%) of the TFs active during embryogenic culture. In contrast to SE induction, the advanced stage of embryo formation showed attenuation and stabilization of transcript levels of many TFs. In total, 519 of the SE-modulated TFs were functionally annotated and transcripts related with plant development, phytohormones and stress responses were found to be most abundant. The involvement of selected TFs in SE was verified using T-DNA insertion lines and a significantly reduced embryogenic response was found for the majority of them. This study provides comprehensive data focused on the expression of TF genes during SE and suggests directions for further research on functional genomics of SE.
Collapse
Affiliation(s)
- Marta Gliwicka
- Department of Genetics, University of Silesia, Katowice, Poland
| | - Katarzyna Nowak
- Department of Genetics, University of Silesia, Katowice, Poland
| | - Salma Balazadeh
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | |
Collapse
|
36
|
Xu Z, Zhang C, Zhang X, Liu C, Wu Z, Yang Z, Zhou K, Yang X, Li F. Transcriptome profiling reveals auxin and cytokinin regulating somatic embryogenesis in different sister lines of cotton cultivar CCRI24. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:631-42. [PMID: 23710882 DOI: 10.1111/jipb.12073] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/15/2013] [Indexed: 05/22/2023]
Abstract
To get a broader view on the molecular mechanisms underlying somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.), global analysis of cotton transcriptome dynamics during SE in different sister lines was performed using RNA-Seq. A total of 204 349 unigenes were detected by de novo assembly of the 214 977 462 Illumina reads. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) measurements were positively correlated with the RNA-Seq results for almost all the tested genes (R(2) = 0.841, correlation was significant at the 0.01 level). Different phytohormone (auxin and cytokinin) concentration ratios in medium and the endogenous content changes of these two phytohormones at two stages in different sister lines suggested the roles of auxin and cytokinin during cotton SE. On the basis of global gene regulation of phytohormone-related genes, numerous genes from all the differentially expressed transcripts were involved in auxin and cytokinin biosynthesis and signal transduction pathways. Analyses of differentially expressed genes that were involved in these pathways revealed the substantial changes in gene type and abundance between two sister lines. Isolation, cloning and silencing/overexpressing the genes that revealed remarkable up- or down-expression during cotton SE were important. Furthermore, auxin and cytokinin play a primary role in SE, but potential cross-talk with each other or other factors remains unclear.
Collapse
Affiliation(s)
- Zhenzhen Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agriculture Sciences, Anyang, 455000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bouchabké-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F, Pannetier C. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. PLANT CELL REPORTS 2013; 32:675-86. [PMID: 23543366 DOI: 10.1007/s00299-013-1402-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 05/23/2023]
Abstract
This work shows that overexpression of the WUS gene from Arabidopsis enhanced the expression of embryogenic competence and triggered organogenesis from some cells of the regenerated embryo-like structures. Agrobacterium-mediated genetic transformation of cotton was described in the late 1980s, but is still time consuming and largely genotype dependant due to poor regeneration. To help solve this bottleneck, we over-expressed the WUSCHEL (WUS) gene, a homeobox transcription factor cloned in Arabidopsis thaliana, known to stimulate organogenesis and/or somatic embryogenesis in Arabidopsis tissues cultured in vitro. The AtWUS gene alone, and AtWUS gene fused to the GFP marker were compared to the GFP gene alone and to an empty construct used as a control. Somatic embryogenesis was improved in WUS expressed calli, as the percentage of explants giving rise to embryogenic tissues was significantly higher (×3) when WUS gene was over-expressed than in the control. An interesting result was that WUS embryogenic lines evolved in green embryo-like structures giving rise to ectopic organogenesis never observed in any of our previous transformation experiments. Using our standard in vitro culture protocol, the overexpression of AtWUS in tissues of a recalcitrant variety did not result in the production of regenerated plants. This achievement will still require the optimization of other non-genetic factors, such as the balance of exogenous phytohormones. However, our results suggest that targeted expression of the WUS gene is a promising strategy to improve gene transfer in recalcitrant cotton cultivars.
Collapse
Affiliation(s)
- O Bouchabké-Coussa
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, 78000, Versailles, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Ge XX, Chai LJ, Liu Z, Wu XM, Deng XX, Guo WW. Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray. PLANTA 2012; 236:1107-1124. [PMID: 22622359 DOI: 10.1007/s00425-012-1661-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/26/2012] [Indexed: 05/28/2023]
Abstract
Somatic embryogenesis (SE) is a most promising technology that is used for in vitro germplasm conservation and genetic improvement via biotechnological approaches in citrus. Herein, three suppression subtractive hybridization (SSH) libraries were constructed using calluses of Citrus sinensis cv. 'Valencia' to explore the molecular mechanisms that underlie the SE in citrus. A total of 880 unisequences were identified by microarray screening based on these three SSH libraries. Gene ontology analysis of the differentially expressed genes indicated that nucleolus associated regulation and biogenesis processes, hormone signal transduction, and stress factors might be involved in SE. Transcription factors might also play an important role. LEC1/B3 domain regulatory network genes (LEC1, L1L, FUS3, ABI3, and ABI5) were isolated in citrus SE. Some new transcription factors associated with citrus SE, like a B3 domain containing gene and HB4, were identified. To understand the influence of these isolated genes on SE competence, their expression profiles were compared among callus lines of seven citrus cultivars with different SE competence. The expression dynamics suggested that these genes could be necessary for the SE initiation and might play a role in embryogenic competence maintenance in different cultivars. On the basis of gene expression profiles, an overview of major physiological and biosynthesis processes at different developmental stages during citrus SE is presented. For the first time, these data provide a global resource for transcriptional events important for SE in citrus, and the specific genes offer new information for further investigation on citrus SE maintenance and development.
Collapse
Affiliation(s)
- Xiao-Xia Ge
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
39
|
Poon S, Heath RL, Clarke AE. A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture. PLANT PHYSIOLOGY 2012; 160:684-95. [PMID: 22858635 PMCID: PMC3461548 DOI: 10.1104/pp.112.203075] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/30/2012] [Indexed: 05/05/2023]
Abstract
Arabinogalactan proteins (AGPs) are a family of extracellular plant proteoglycans implicated in many aspects of plant growth and development, including in vitro somatic embryogenesis (SE). We found that specific AGPs were produced by cotton (Gossypium hirsutum) calli undergoing SE and that when these AGPs were isolated and incorporated into tissue culture medium, cotton SE was promoted. When the AGPs were partly or fully deglycosylated, SE-promoting activity was not diminished. Testing of AGPs separated by reverse-phase high-performance liquid chromatography revealed that the SE-promoting activity resided in a hydrophobic fraction. We cloned a full-length complementary DNA (cotton PHYTOCYANIN-LIKE ARABINOGALACTAN-PROTEIN1 [GhPLA1]) that encoded the protein backbone of an AGP in the active fraction. It has a chimeric structure comprising an amino-terminal signal sequence, a phytocyanin-like domain, an AGP-like domain, and a hydrophobic carboxyl-terminal domain. Recombinant production of GhPLA1 in tobacco (Nicotiana tabacum) cells enabled us to purify and analyze a single glycosylated AGP and to demonstrate that this chimeric AGP promotes cotton SE. Furthermore, the nonglycosylated phytocyanin-like domain from GhPLA1, which was bacterially produced, also promoted SE, indicating that the glycosylated AGP domain was unnecessary for in vitro activity.
Collapse
Affiliation(s)
- Simon Poon
- School of Botany, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
40
|
Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC PLANT BIOLOGY 2012; 12:110. [PMID: 22817809 PMCID: PMC3483692 DOI: 10.1186/1471-2229-12-110] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 07/20/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Somatic embryogenesis (SE), by which somatic cells of higher plants can dedifferentiate and reorganize into new plants, is a notable illustration of cell totipotency. However, the precise molecular mechanisms regulating SE remain unclear. To characterize the molecular events of this unique process, transcriptome analysis, in combination with biochemical and histological approaches, were conducted in cotton, a typical plant species in SE. Genome-wide profiling of gene expression allowed the identification of novel molecular markers characteristic of this developmental process. RESULTS RNA-Seq was used to identify 5,076 differentially expressed genes during cotton SE. Expression profile and functional assignments of these genes indicated significant transcriptional complexity during this process, associated with morphological, histological changes and endogenous indole-3-acetic acid (IAA) alteration. Bioinformatics analysis showed that the genes were enriched for basic processes such as metabolic pathways and biosynthesis of secondary metabolites. Unigenes were abundant for the functions of protein binding and hydrolase activity. Transcription factor-encoding genes were found to be differentially regulated during SE. The complex pathways of auxin abundance, transport and response with differentially regulated genes revealed that the auxin-related transcripts belonged to IAA biosynthesis, indole-3-butyric acid (IBA) metabolism, IAA conjugate metabolism, auxin transport, auxin-responsive protein/indoleacetic acid-induced protein (Aux/IAA), auxin response factor (ARF), small auxin-up RNA (SAUR), Aux/IAA degradation, and other auxin-related proteins, which allow an intricate system of auxin utilization to achieve multiple purposes in SE. Quantitative real-time PCR (qRT-PCR) was performed on selected genes with different expression patterns and functional assignments were made to demonstrate the utility of RNA-Seq for gene expression profiles during cotton SE. CONCLUSION We report here the first comprehensive analysis of transcriptome dynamics that may serve as a gene expression profile blueprint in cotton SE. Our main goal was to adapt the RNA-Seq technology to this notable development process and to analyse the gene expression profile. Complex auxin signalling pathway and transcription regulation were highlighted. Together with biochemical and histological approaches, this study provides comprehensive gene expression data sets for cotton SE that serve as an important platform resource for further functional studies in plant embryogenesis.
Collapse
Affiliation(s)
- Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Fangyan Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Yunchao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| |
Collapse
|
41
|
Neelakandan AK, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. PLANT CELL REPORTS 2012; 31:597-620. [PMID: 22179259 DOI: 10.1007/s00299-011-1202-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 05/23/2023]
Abstract
In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.
Collapse
|
42
|
Sharifi G, Ebrahimzadeh H, Ghareyazie B, Gharechahi J, Vatankhah E. Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.). Proteome Sci 2012; 10:3. [PMID: 22243837 PMCID: PMC3349542 DOI: 10.1186/1477-5956-10-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/13/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) is a complex biological process that occurs under inductive conditions and causes fully differentiated cells to be reprogrammed to an embryo like state. In order to get a better insight about molecular basis of the SE in Crocus sativus L. and to characterize differentially accumulated proteins during the process, a proteomic study based on two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry has been carried out. RESULTS We have compared proteome profiles of non-embryogenic and embryogenic calli with native corm explants. Total soluble proteins were phenol-extracted and loaded on 18 cm IPG strips for the first dimension and 11.5% sodium dodecyl sulfate-polyacrylamide gels for the second dimension. Fifty spots with more than 1.5-fold change in abundance were subjected to mass spectrometry analysis for further characterization. Among them 36 proteins could be identified, which are classified into defense and stress response, protein synthesis and processing, carbohydrate and energy metabolism, secondary metabolism, and nitrogen metabolism. CONCLUSION Our results showed that diverse cellular and molecular processes were affected during somatic to embryogenic transition. Differential proteomic analysis suggests a key role for ascorbate metabolism during early stage of SE, and points to the possible role of ascorbate-glutathione cycle in establishing somatic embryos.
Collapse
Affiliation(s)
- Golandam Sharifi
- Department of Basic Sciences, Iranian Encyclopedia Compiling Foundation, Tehran, Iran
- Department of Botany, Faculty of Science, University of Tehran, Tehran, Iran
| | - Hassan Ebrahimzadeh
- Department of Botany, Faculty of Science, University of Tehran, Tehran, Iran
| | - Behzad Ghareyazie
- Department of Genomics, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | - Javad Gharechahi
- Department of Molecular Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Elaheh Vatankhah
- Department of Botany, Faculty of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
43
|
Xuxia W, Jie C, Bo W, Lijun L, Hui J, Diluo T, Dingxiang P. Characterization by Suppression Subtractive Hybridization of Transcripts That Are Differentially Expressed in Leaves of Anthracnose-Resistant Ramie Cultivar. PLANT MOLECULAR BIOLOGY REPORTER 2012; 30:547-555. [PMID: 24415836 PMCID: PMC3881567 DOI: 10.1007/s11105-011-0361-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
For the purpose of screening putative anthracnose resistance-related genes of ramie (Boehmeria nivea L. Gaud), a cDNA library was constructed by suppression subtractive hybridization using anthracnose-resistant cultivar Huazhu no. 4. The cDNAs from Huazhu no. 4, which were infected with Colletotrichum gloeosporioides, were used as the tester and cDNAs from uninfected Huazhu no. 4 as the driver. Sequencing analysis and homology searching showed that these clones represented 132 single genes, which were assigned to functional categories, including 14 putative cellular functions, according to categories established for Arabidopsis. These 132 genes included 35 disease resistance and stress tolerance-related genes including putative heat-shock protein 90, metallothionein, PR-1.2 protein, catalase gene, WRKY family genes, and proteinase inhibitor-like protein. Partial disease-related genes were further analyzed by reverse transcription PCR and RNA gel blot. These expressed sequence tags are the first anthracnose resistance-related expressed sequence tags reported in ramie.
Collapse
Affiliation(s)
- Wang Xuxia
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People’s Republic of China
| | - Chen Jie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People’s Republic of China
| | - Wang Bo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People’s Republic of China
| | - Liu Lijun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People’s Republic of China
| | - Jiang Hui
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People’s Republic of China
| | - Tang Diluo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People’s Republic of China
| | - Peng Dingxiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People’s Republic of China
| |
Collapse
|
44
|
Wiśniewska A, Grabowska A, Pietraszewska-Bogiel A, Tagashira N, Zuzga S, Wóycicki R, Przybecki Z, Malepszy S, Filipecki M. Identification of genes up-regulated during somatic embryogenesis of cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 50:54-64. [PMID: 22099519 DOI: 10.1016/j.plaphy.2011.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
Somatic embryogenesis is a method of plant regeneration, but it can also be used as a model to study plant development. A normalized library of cDNA fragments representing genes up-regulated after the induction of somatic embryogenesis in cucumber suspension cultures was constructed using the suppression subtractive hybridization technique. Candidate cDNA fragments (119) were classified according to their similarity to genes encoding known proteins and the presence of potential functional domains. Of the translation products with homology to known proteins, about 23% were possibly involved in metabolism, 13% represented proteins with a probable role in cellular communication and signal transduction, about 12% were likely to participate in protein synthesis, while around 10% were potential transcription factors. The genes corresponding to four of the cDNAs were subsequently analyzed in more detail: CsSEF2, CsSEM1 and CsSESTK1 encoding putative transcription factors or co-activators, and CsSECAD1 encoding cinnamyl alcohol dehydrogenase. Full-length cDNAs were isolated and analyzed. RT-PCR confirmed the up-regulation of these genes after the induction of somatic embryogenesis and showed the presence of their transcripts in other tissues. The in situ localization of transcripts of the CsSEF2 and CsSEM1 genes demonstrated that signalling in somatic embryo tissues involving these factors is concentrated in the cotyledon primordia and roots.
Collapse
Affiliation(s)
- Anita Wiśniewska
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hu L, Yang X, Yuan D, Zeng F, Zhang X. GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1038-1048. [PMID: 21554528 DOI: 10.1111/j.1467-7652.2011.00617.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The proteins of high-mobility group box (HmgB) family were involved in the regulation of transcription and other DNA-dependent processes. To investigate the function of HmgB proteins during cotton somatic embryogenesis (SE), four Gossypium hirsutum HmgB genes were characterized. The gene GhHmgB3 preferentially expressed in embryonic tissues and was studied in detail. RNA interference and over-expression was used to regulate the expression of GhHmgB3 during cotton SE by transforming both hypocotyl and embryogenic calli (ECs) via Agrobacterium tumefaciens. The GhHmgB3-deficient somatic cells of hypocotyls dedifferentiated more vigorously than the control cells, but they failed to differentiate to ECs. In another case, the proliferation and differentiation of GhHmgB3-deficient ECs were significantly improved, but failed to form plantlets. Over-expression of GhHmgB3 had no significant differences in callus initiation and differentiation compared with the control cell lines. The different expression genes between the control and GhHmgB3-deficient ECs were identified by Solexa sequencing technology. The bioinformatics analysis and experimental verification revealed series of abnormal mechanism associated with β-catenin signalling. These results in response to the down-regulation of GhHmgB3 revealed series of β-catenin-related mechanisms might be responsible for the deregulation of proliferation and differentiation of cells in cotton SE.
Collapse
Affiliation(s)
- Lisong Hu
- National Key Laboratory of Crop Genetic Improvement, National Plant Gene Center (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
46
|
Chen T, Ye R, Fan X, Li X, Lin Y. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH. PHOTOSYNTHESIS RESEARCH 2011; 108:157-170. [PMID: 21739352 DOI: 10.1007/s11120-011-9668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara.
Collapse
Affiliation(s)
- Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 2010; 398:355-60. [PMID: 20599742 DOI: 10.1016/j.bbrc.2010.06.056] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/14/2010] [Indexed: 11/24/2022]
Abstract
Somatic embryogenesis involves complex molecular signaling pathways. Deregulation of these signaling pathways can transform the embryogenic callus to non-embryogenic callus. To investigate the miRNA regulation underlying this detrimental transformation in Japanese Larch (Larix leptolepis), we compared miRNA expression profiles between embryogenic and non-embryogenic callus at day 3 and day 14 after sub-culture. Four miRNA families dominated the 165 differentially expressed miRNAs between embryogenic and non-embryogenic callus. Of the four, miR171 was up-regulated, and miR159, miR169, and miR172 were down-regulated in the embryogenic callus. These four families are all abiotic stress-induced miRNAs, and all target transcription factors that regulate a group of genes important for cell differentiation and development, including scarecrow-like (SCL) transcription factor (miR171), apetala2 (miR172), MYB transcription factors (miR159), and NF-YA transcription factor (miR169). Three down-regulated miRNA families in the embryogenic callus are also regulated by ABA, which further shed light into the potential mechanisms underlying the transformation of the embryogenic competence in L. leptolepis. This study represents the first report on the miRNA regulation of the embryogenic and non-embryogenic callus in plant, and thus these four miRNA families provide important clues for further functional investigation.
Collapse
Affiliation(s)
- Shougong Zhang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hoenemann C, Richardt S, Krüger K, Zimmer AD, Hohe A, Rensing SA. Large impact of the apoplast on somatic embryogenesis in Cyclamen persicum offers possibilities for improved developmental control in vitro. BMC PLANT BIOLOGY 2010; 10:77. [PMID: 20426818 PMCID: PMC3095351 DOI: 10.1186/1471-2229-10-77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/28/2010] [Indexed: 05/08/2023]
Abstract
BACKGROUND Clonal propagation is highly desired especially for valuable horticultural crops. The method with the potentially highest multiplication rate is regeneration via somatic embryogenesis. However, this mode of propagation is often hampered by the occurrence of developmental aberrations and non-embryogenic callus. Therefore, the developmental process of somatic embryogenesis was analysed in the ornamental crop Cyclamen persicum by expression profiling, comparing different developmental stages of embryogenic cell cultures, zygotic vs. somatic embryos and embryogenic vs. non-embryogenic cell cultures. RESULTS The analysis was based on a cDNA microarray representing 1,216 transcripts and was exemplarily validated by realtime PCR. For this purpose relative transcript abundances of homologues of a putative receptor kinase, two different glutathione S-transferases (GST), a xyloglucan endotransglycosylase (XET) and a peroxidase (POX) were quantitatively measured by realtime PCR for three different comparisons. In total, 417 genes were found to be differentially expressed. Gene Ontology annotation revealed that transcripts coding for enzymes that are active in the extracellular compartment (apoplast) were significantly overrepresented in several comparisons. The expression profiling results are underpinned by thorough histological analyses of somatic and zygotic embryos. CONCLUSIONS The putative underlying physiological processes are discussed and hypotheses on improvement of the protocol for in vitro somatic embryogenesis in Cyclamen persicum are deduced. A set of physiological markers is proposed for efficient molecular control of the process of somatic embryogenesis in C. persicum. The general suitability of expression profiling for the development and improvement of micropropagation methods is discussed.
Collapse
Affiliation(s)
- Claudia Hoenemann
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Propagation, Kuehnhaeuser Strasse 101, 99189 Erfurt, Germany
| | - Sandra Richardt
- University of Freiburg, Faculty of Biology, Hauptstrasse 1, 79104 Freiburg, Germany
- QIAGEN GmbH, Qiagenstrasse 1, D-40724 Hilden, Germany
| | - Katja Krüger
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Propagation, Kuehnhaeuser Strasse 101, 99189 Erfurt, Germany
| | - Andreas D Zimmer
- University of Freiburg, Faculty of Biology, Plant Biotechnology, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Annette Hohe
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Propagation, Kuehnhaeuser Strasse 101, 99189 Erfurt, Germany
| | - Stefan A Rensing
- University of Freiburg, Faculty of Biology, Hauptstrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
49
|
Yang X, Zhang X. Regulation of Somatic Embryogenesis in Higher Plants. CRITICAL REVIEWS IN PLANT SCIENCES 2010; 29:36-57. [PMID: 0 DOI: 10.1080/07352680903436291] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Xiyan Yang
- a National Key Laboratory of Crop Genetic Improvement , Huazhong Agricultural University , Wuhan, Hubei, 430070, P. R. China
| | - Xianlong Zhang
- a National Key Laboratory of Crop Genetic Improvement , Huazhong Agricultural University , Wuhan, Hubei, 430070, P. R. China
| |
Collapse
|
50
|
Ledwoń A, Gaj MD. LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. PLANT CELL REPORTS 2009; 28:1677-88. [PMID: 19763577 DOI: 10.1007/s00299-009-0767-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/04/2009] [Accepted: 08/13/2009] [Indexed: 05/20/2023]
Abstract
The expression pattern of the LEC2 gene during somatic embryogenesis (SE) in Arabidopsis explants (immature zygotic embryos) induced in vitro was followed, using real-time quantitative PCR (qRT-PCR). The analysis revealed differential expression of LEC2 transcripts within a 30 days time course of somatic embryo development. A significant auxin-dependent upregulation of the LEC2 gene was found to be associated with the induction phase of SE. In contrast to embryogenic culture the level of LEC2 expression was noticeably lower in non-embryogenic callus of Col-0 and hormonal mutants (cbp20 and axr4-1) with low SE-efficiency. The study with 35S::LEC2-GR transgenic plants showed that overexpression of LEC2 can compensate for the auxin requirement, and that transgenic explants formed somatic embryos when cultured in vitro under auxin-free conditions. However, unlike in auxin-induced SE, intense callus formation preceded the embryogenic response triggered via LEC2 overexpression, suggesting an indirect pathway of morphogenesis. Moreover, a negative interaction between auxin treatment and LEC2 overexpression in terms of SE efficiency was observed, as transgenic explants cultured on auxin medium displayed a significantly reduced level of embryogenic potential. The study provides further experimental evidence that in the determination of the embryogenic response in Arabidopsis somatic cells, a close link exists between auxin and the LEC2 activity.
Collapse
|