1
|
Nascimento CP, da Fonseca-Pereira P, Ferreira-Silva M, Rosado-Souza L, Linka N, Fernie AR, Araújo WL, Nunes-Nesi A. Functional analysis of the extraplastidial TRX system in germination and early stages of development of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112310. [PMID: 39477093 DOI: 10.1016/j.plantsci.2024.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
A series of processes occur during seed formation, including remarkable metabolic changes that extend from early seed development to seedling establishment. The changes associated with processes initiated mainly after seed imbibition are usually characterized by extensive modification in the redox state of seed storage proteins and of pivotal enzymes for reserve mobilization and usage. Such changes in the redox state are often mediated by thioredoxins (TRXs), oxidoreductase capable of catalyzing the reduction of disulfide bonds in target proteins to regulate its structure and function. Here, we analyzed the previously characterized Arabidopsis mutants of NADPH-dependent TRX reductase types A and B (ntra ntrb), two independent mutant lines of mitochondrial thioredoxin o1 (trxo1) and two thioredoxin h2 (trxh2) mutant lines. Our results indicate that plants deficient in the NADPH dependent thioredoxin system are able to mobilize their reserves, but, at least partly, fail to use these reserves during germination. TRX mutants also show decreased activity of regulatory systems required to maintain redox homeostasis. Moreover, we observed reduced respiration in mutant seeds and seedlings, which in parallel with an impaired energy metabolism affects core biological processes responsible for germination and early development of TRX mutants. Together, these findings suggest that the lack of TRX system induces significant change in the respiration of seeds and seedlings, which undergo metabolic reprogramming to adapt to the new redox state.
Collapse
Affiliation(s)
- Carolina Pereira Nascimento
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Marcelle Ferreira-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil.
| |
Collapse
|
2
|
Chen B, Wang J, Huang M, Gui Y, Wei Q, Wang L, Tan BC. C1-FDX is required for the assembly of mitochondrial complex I and subcomplexes of complex V in Arabidopsis. PLoS Genet 2024; 20:e1011419. [PMID: 39356718 PMCID: PMC11446459 DOI: 10.1371/journal.pgen.1011419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
C1-FDX (Complex I-ferredoxin) has been defined as a component of CI in a ferredoxin bridge in Arabidopsis mitochondria. However, its full function remains to be addressed. We created two c1-fdx mutants in Arabidopsis using the CRISPR-Cas9 methodology. The mutants show delayed seed germination. Over-expression of C1-FDX rescues the phenotype. Molecular analyses showed that loss of the C1-FDX function decreases the abundance and activity of both CI and subcomplexes of CV. In contrast, the over-expression of C1-FDX-GFP enhances the CI* (a sub-complex of CI) and CV assembly. Immunodetection reveals that the stoichiometric ratio of the α:β subunits in the F1 module of CV is altered in the c1-fdx mutant. In the complemented mutants, C1-FDX-GFP was found to be associated with the F' and α/β sub-complexes of CV. Protein interaction assays showed that C1-FDX could interact with the β, γ, δ, and ε subunits of the F1 module, indicating that C1-FDX, a structural component of CI, also functions as an assembly factor in the assembly of F' and α/β sub-complexes of CV. These results reveal a new role of C1-FDX in the CI and CV assembly and seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Baoyin Chen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai’an, China
| | - Junjun Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Manna Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yuanye Gui
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Qingqing Wei
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Le Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Yao J, Chu Q, Guo X, Shao W, Shang N, Luo K, Li X, Chen H, Cheng Q, Mo F, Zheng D, Xu F, Guo F, Zhu QH, Deng S, Chu C, Xu X, Liu H, Fan L. Spatiotemporal transcriptomic landscape of rice embryonic cells during seed germination. Dev Cell 2024; 59:2320-2332.e5. [PMID: 38848718 DOI: 10.1016/j.devcel.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Characterizing cellular features during seed germination is crucial for understanding the complex biological functions of different embryonic cells in regulating seed vigor and seedling establishment. We performed spatially enhanced resolution omics sequencing (Stereo-seq) and single-cell RNA sequencing (scRNA-seq) to capture spatially resolved single-cell transcriptomes of germinating rice embryos. An automated cell-segmentation model, employing deep learning, was developed to accommodate the analysis requirements. The spatial transcriptomes of 6, 24, 36, and 48 h after imbibition unveiled both known and previously unreported embryo cell types, including two unreported scutellum cell types, corroborated by in situ hybridization and functional exploration of marker genes. Temporal transcriptomic profiling delineated gene expression dynamics in distinct embryonic cell types during seed germination, highlighting key genes involved in nutrient metabolism, biosynthesis, and signaling of phytohormones, reprogrammed in a cell-type-specific manner. Our study provides a detailed spatiotemporal transcriptome of rice embryo and presents a previously undescribed methodology for exploring the roles of different embryonic cells in seed germination.
Collapse
Affiliation(s)
- Jie Yao
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qinjie Chu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Xing Guo
- BGI Research, Shenzhen 518103, China; BGI Research, Wuhan 430074, China
| | - Wenwen Shao
- BGI Research, Shenzhen 518103, China; BGI Research, Wuhan 430074, China
| | - Nianmin Shang
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Kang Luo
- College of Computer Science and Technology & Polytechnic Institute, Zhejiang University, Hangzhou 310015, Zhejiang, China
| | - Xiaohan Li
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Hongyu Chen
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qing Cheng
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Fangyu Mo
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Dihuai Zheng
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Fu Guo
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qian-Hao Zhu
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Shuiguang Deng
- College of Computer Science and Technology & Polytechnic Institute, Zhejiang University, Hangzhou 310015, Zhejiang, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xun Xu
- BGI Research, Shenzhen 518103, China
| | - Huan Liu
- BGI Research, Shenzhen 518103, China.
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572025, China.
| |
Collapse
|
4
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
5
|
Zsigmond L, Juhász-Erdélyi A, Valkai I, Aleksza D, Rigó G, Kant K, Szepesi Á, Fiorani F, Körber N, Kovács L, Szabados L. Mitochondrial complex I subunit NDUFS8.2 modulates responses to stresses associated with reduced water availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108466. [PMID: 38428158 DOI: 10.1016/j.plaphy.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Mitochondria are important sources of energy in plants and are implicated in coordination of a number of metabolic and physiological processes including stabilization of redox balance, synthesis and turnover of a number of metabolites, and control of programmed cell death. Mitochondrial electron transport chain (mETC) is the backbone of the energy producing process which can influence other processes as well. Accumulating evidence suggests that mETC can affect responses to environmental stimuli and modulate tolerance to extreme conditions such as drought or salinity. Screening for stress responses of 13 Arabidopsis mitochondria-related T-DNA insertion mutants, we identified ndufs8.2-1 which has an increased ability to withstand osmotic and oxidative stresses compared to wild type plants. Insertion in ndufs8.2-1 disrupted the gene that encodes the NADH dehydrogenase [ubiquinone] fragment S subunit 8 (NDUFS8) a component of Complex I of mETC. ndufs8.2-1 tolerated reduced water availability, retained photosynthetic activity and recovered from severe water stress with higher efficiency compared to wild type plants. Several mitochondrial functions were altered in the mutant including oxygen consumption, ROS production, ATP and ADP content as well as activities of genes encoding alternative oxidase 1A (AOX1A) and various alternative NAD(P)H dehydrogenases (ND). Our results suggest that in the absence of NDUFS8.2 stress-induced ROS generation is restrained leading to reduced oxidative damage and improved tolerance to water deficiency. mETC components can be implicated in redox and energy homeostasis and modulate responses to stresses associated with reduced water availability.
Collapse
Affiliation(s)
- Laura Zsigmond
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
| | - Annabella Juhász-Erdélyi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ildikó Valkai
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Dávid Aleksza
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Kamal Kant
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ágnes Szepesi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Fabio Fiorani
- Institute of Bio- and Geo-Sciences, IBG2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Niklas Körber
- Nunhems - BASF Vegetable Seeds, Department of Data Science and Technology, Roermond, Netherlands
| | - László Kovács
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
6
|
Sun Y, Zhang F, Wei J, Song K, Sun L, Yang Y, Qin Q, Yang S, Li Z, Xu G, Sun S, Xue Y. Phosphate Transporter OsPT4, Ubiquitinated by E3 Ligase OsAIRP2, Plays a Crucial Role in Phosphorus and Nitrogen Translocation and Consumption in Germinating Seed. RICE (NEW YORK, N.Y.) 2023; 16:54. [PMID: 38052756 PMCID: PMC10697913 DOI: 10.1186/s12284-023-00666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
Phosphorus (P) and nitrogen (N) are essential macronutrients necessary for plant growth and development. OsPT4 is a high-affinity phosphate (Pi) transporter that has a positive impact on nutrient uptake and seed development. In this study, the expression patterns of different Pi transporter genes in germinating seeds were determined, and the relative expression of OsPT4 was induced in Pi-deficient seeds and gradually increased with the passage of germination time. The analysis of P, N, Pi, and amino acid concentrations in germinating seeds of OsPT4 mutants showed that the OsPT4 mutation caused P and N retention and a continuous reduction in multiple amino acid concentrations in germinating seeds. Transcriptome analysis and qRT-PCR results also indicated that the OsPT4 mutation inhibits the expression of genes related to P and N transportation and amino acid synthesis in germinating seeds. In addition, the paraffin section and TUNEL assay of OsPT4 mutant germinating seeds suggests that OsPT4 mutation causes programmed cell death (PCD) delayed in the aleurone layer and inhibition of leaf outgrowth. Moreover, we also found that OsPT4 was ubiquitinated by OsAIRP2, which is a C3HC4-type RING E3 Ub ligase. Our studies illustrate that OsPT4 plays a crucial role in P and N collaborative translocation and consumption in germinating seeds. It also provides a theoretical basis for the molecules and physiological mechanisms of P and N cross-talk under suppressed Pi uptake conditions.
Collapse
Affiliation(s)
- Yafei Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Fang Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Lijuan Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yang Yang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Qin
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shiyan Yang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhouwen Li
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yong Xue
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
7
|
Identification and co-expression network analysis of plumule-preferentially expressed genes in Oryza sativa. Genes Genomics 2023; 45:319-336. [PMID: 36708499 DOI: 10.1007/s13258-023-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND The seedling establishment is controlled by the programmed expression of sets of genes at the specific tissues of seed, abundance and environment. Plumule is an important part of the seed embryo and expresses the suits of genes to exert distinct functions during seed germination. Although rice genomic resources are available and developed rapidly, thousands of transcripts have not previously been located in the plumule of rice. OBJECTIVE This study was performed to identify plumule-preferentially expressed (OsPluP) genes in rice and determine the expression profiles and functions of OsPluP genes. METHODS We identified the OsPluP genes through Affymetrix microarray data. Meanwhile, qRT-PCR was performed to validate the expression pattern, also found that OsPluP genes were regulated by dark/light treatment. The cis-acting regulatory elements were analyzed in the promoters' regions of OsPluP genes. The T-DNA mutant of the OsPluP seed was used to reveal the function in seed germination. RESULTS In this study, a genomic survey of OsPluP genes was performed, and we identified 88 OsPluP genes based on Affymetrix microarray data. The expression profiles of 88 OsPluP members in 24 representative tissues covering rice whole life cycle can be roughly classified into three major groups, suggesting functional divergence of OsPluP genes in seed germination. The microarray data, qRT-PCR, and promoter analysis results demonstrated that transcripts of more than half OsPluPs (54 genes) could be enhanced in the darkness and respond to phytohormone. Gene Ontology (GO)and Kyoto encyclopedia of genes and genomes (KEGG) analysis demonstrated that OsPluP and their co-expressed genes were highly enriched in fatty acid metabolism. Moreover, OsPluP82 T-DNA mutant seeds displayed short plumule length and storage lipid accumulation. CONCLUSION This study would enable the functions of OsPluP genes during seed germination and contribute to the goal of molecular regulatory networks that lay the foundation for further studies of seedling growth.
Collapse
|
8
|
Kitamura RSA, Brito JCM, Silva de Assis HC, Gomes MP. Physiological responses and phytoremediation capacity of floating and submerged aquatic macrophytes exposed to ciprofloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:622-639. [PMID: 35904744 DOI: 10.1007/s11356-022-22253-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Ciprofloxacin (Cipro) water contamination is a global concern, having reached disturbing concentrations and threatening the aquatic ecosystems. We investigated the physiological responses and Cipro-phytoremediation capacity of one floating (Salvinia molesta D.S. Mitchell) and one submerged (Egeria densa Planch.) species of aquatic macrophytes. The plants were exposed to increased concentrations of Cipro (0, 1, 10, and 100 µg.Cipro.L-1) in artificially contaminated water for 96 and 168 h. Although the antibiotic affected the activities of mitochondrial electron transport chain enzymes, the resulting increases in H2O2 concentrations were not associated with oxidative damage or growth reductions, mainly due to the activation of antioxidant systems for both species. In addition to being tolerant to Cipro, after only 96 h, plants were able to reclaim more than 58% of that from the media. The phytoremediation capacity did not differ between the species, however, while S. molesta bioaccumulate, E. densa appears to metabolize Cipro in their tissues. Both macrophytes are indicated for Cipro-phytoremediation projects.
Collapse
Affiliation(s)
- Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil
- Laboratório de Toxicologia Ambiental, Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, Avenue Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba , Paraná, 81531-980, Brazil
| | - Júlio César Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Helena Cristina Silva de Assis
- Laboratório de Toxicologia Ambiental, Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil.
| |
Collapse
|
9
|
Ivanova A, O′Leary B, Signorelli S, Falconet D, Moyankova D, Whelan J, Djilianov D, Murcha MW. Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis. THE NEW PHYTOLOGIST 2022; 236:943-957. [PMID: 35872573 PMCID: PMC9804507 DOI: 10.1111/nph.18396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Haberlea rhodopensis is a resurrection plant that can tolerate extreme and prolonged periods of desiccation with a rapid restoration of physiological function upon rehydration. Specialized mechanisms are required to minimize cellular damage during desiccation and to maintain integrity for rapid recovery following rehydration. In this study we used respiratory activity measurements, electron microscopy, transcript, protein and blue native-PAGE analysis to investigate mitochondrial activity and biogenesis in fresh, desiccated and rehydrated detached H. rhodopensis leaves. We demonstrate that unlike photosynthesis, mitochondrial respiration was almost immediately activated to levels of fresh tissue upon rehydration. The abundance of transcripts and proteins involved in mitochondrial respiration and biogenesis were at comparable levels in fresh, desiccated and rehydrated tissues. Blue native-PAGE analysis revealed fully assembled and equally abundant OXPHOS complexes in mitochondria isolated from fresh, desiccated and rehydrated detached leaves. We observed a high abundance of alternative respiratory components which correlates with the observed high uncoupled respiration capacity in desiccated tissue. Our study reveals that during desiccation of vascular H. rhodopensis tissue, mitochondrial composition is conserved and maintained at a functional state allowing for an almost immediate activation to full capacity upon rehydration. Mitochondria-specific mechanisms were activated during desiccation which probably play a role in maintaining tolerance.
Collapse
Affiliation(s)
- Aneta Ivanova
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - Brendan O′Leary
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food Canada107 Science PlaceSaskatoonSKK1A 0C5Canada
| | - Santiago Signorelli
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- Department of Plant Biology, School of AgricultureUniversidad de la RepúblicaE. Garzón 780, Sayago12900MontevideoUruguay
| | - Denis Falconet
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIGUniversité Grenoble Alpes38054GrenobleFrance
| | - Daniela Moyankova
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy BiologyLa Trobe UniversityBundoora3086VICAustralia
| | - Dimitar Djilianov
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - Monika W. Murcha
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
| |
Collapse
|
10
|
Racca S, Gras DE, Canal MV, Ferrero LV, Rojas BE, Figueroa CM, Ariel FD, Welchen E, Gonzalez DH. Cytochrome c and the transcription factor ABI4 establish a molecular link between mitochondria and ABA-dependent seed germination. THE NEW PHYTOLOGIST 2022; 235:1780-1795. [PMID: 35637555 DOI: 10.1111/nph.18287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
During germination, seed reserves are mobilised to sustain the metabolic and energetic demands of plant growth. Mitochondrial respiration is presumably required to drive germination in several species, but only recently its role in this process has begun to be elucidated. Using Arabidopsis thaliana lines with changes in the levels of the respiratory chain component cytochrome c (CYTc), we investigated the role of this protein in germination and its relationship with hormonal pathways. Cytochrome c deficiency causes delayed seed germination, which correlates with decreased cyanide-sensitive respiration and ATP production at the onset of germination. In addition, CYTc affects the sensitivity of germination to abscisic acid (ABA), which negatively regulates the expression of CYTC-2, one of two CYTc-encoding genes in Arabidopsis. CYTC-2 acts downstream of the transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4), which binds to a region of the CYTC-2 promoter required for repression by ABA and regulates its expression. The results show that CYTc is a main player during seed germination through its role in respiratory metabolism and energy production. In addition, the direct regulation of CYTC-2 by ABI4 and its effect on ABA-responsive germination establishes a link between mitochondrial and hormonal functions during this process.
Collapse
Affiliation(s)
- Sofía Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - M Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Lucía V Ferrero
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
11
|
Sano N, Lounifi I, Cueff G, Collet B, Clément G, Balzergue S, Huguet S, Valot B, Galland M, Rajjou L. Multi-Omics Approaches Unravel Specific Features of Embryo and Endosperm in Rice Seed Germination. FRONTIERS IN PLANT SCIENCE 2022; 13:867263. [PMID: 35755645 PMCID: PMC9225960 DOI: 10.3389/fpls.2022.867263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Seed germination and subsequent seedling growth affect the final yield and quality of the crop. Seed germination is defined as a series of processes that begins with water uptake by a quiescent dry seed and ends with the elongation of embryonic axis. Rice is an important cereal crop species, and during seed germination, two tissues function in a different manner; the embryo grows into a seedling as the next generation and the endosperm is responsible for nutritional supply. Toward understanding the integrated roles of each tissue at the transcriptional, translational, and metabolic production levels during germination, an exhaustive "multi-omics" analysis was performed by combining transcriptomics, label-free shotgun proteomics, and metabolomics on rice germinating embryo and endosperm, independently. Time-course analyses of the transcriptome and metabolome in germinating seeds revealed a major turning point in the early phase of germination in both embryo and endosperm, suggesting that dramatic changes begin immediately after water imbibition in the rice germination program at least at the mRNA and metabolite levels. In endosperm, protein profiles mostly showed abundant decreases corresponding to 90% of the differentially accumulated proteins. An ontological classification revealed the shift from the maturation to the germination process where over-represented classes belonged to embryonic development and cellular amino acid biosynthetic processes. In the embryo, 19% of the detected proteins are differentially accumulated during germination. Stress response, carbohydrate, fatty acid metabolism, and transport are the main functional classes representing embryo proteome change. Moreover, proteins specific to the germinated state were detected by both transcriptomic and proteomic approaches and a major change in the network operating during rice germination was uncovered. In particular, concomitant changes of hormonal metabolism-related proteins (GID1L2 and CNX1) implicated in GAs and ABA metabolism, signaling proteins, and protein turnover events emphasized the importance of such biological networks in rice seeds. Using metabolomics, we highlighted the importance of an energetic supply in rice seeds during germination. In both embryo and endosperm, starch degradation, glycolysis, and subsequent pathways related to these cascades, such as the aspartate-family pathway, are activated during germination. A relevant number of accumulated proteins and metabolites, especially in embryos, testifies the pivotal role of energetic supply in the preparation of plant growth. This article summarizes the key genetic pathways in embryo and endosperm during rice seed germination at the transcriptional, translational, and metabolite levels and thereby, emphasizes the value of combined multi-omics approaches to uncover the specific feature of tissues during germination.
Collapse
Affiliation(s)
- Naoto Sano
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Imen Lounifi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- MBCC Group, Master Builders Construction Chemical, Singapore, Singapore
| | - Gwendal Cueff
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Boris Collet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sandrine Balzergue
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Benoît Valot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, Plateforme d'Analyse de Proteomique Paris-Sud-Ouest, Gif-sur-Yvette, France
- Chrono-Environnement Research Team UMR/CNRS-6249, Bourgogne-Franche-Comté University, Besançon, France
| | - Marc Galland
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
12
|
Tarasenko TA, Koulintchenko MV. Heterogeneity of the Mitochondrial Population in Cells of Plants and Other Organisms. Mol Biol 2022. [DOI: 10.1134/s0026893322020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
14
|
The Seed and the Metabolism Regulation. BIOLOGY 2022; 11:biology11020168. [PMID: 35205035 PMCID: PMC8869448 DOI: 10.3390/biology11020168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
Abstract
Simple Summary Seeds are the reproductive units of higher plants. They have a significant place in agriculture and plant diversity maintenance. Because they are dehydrated, they can remain viable in the environment for centuries. This review explores the dry seed as a metabolically inactive organism, but well organized to protect its components and enter intensive repair to restore metabolic activities upon imbibition for the completion of germination. Metabolism regulation is also critical for the most important seed traits, dormancy, and ageing recovery capacity. Abstract The seed represents a critical stage in the life cycle of flowering plants. It corresponds to a dry structure carrying the plant embryo in dormant or quiescent state. Orthodox seeds possess a very low water content, preventing biochemical reactions, especially respiration. If the desiccation of living organisms leads to a loss of homeostasis, structure, and metabolism, the seeds go through it successfully thanks to their structure, cellular organization, and growth regulation. Seeds set up a certain number of sophisticated molecules to protect valuable macromolecules or organelles from dehydration/rehydration cycles. Moreover, dormancy takes place in a coordinated process with environmental cues in order to ensure embryo development at the most appropriate conditions for the establishment of the new plant. Moreover, repair processes are programmed to be ready to operate to maximize germination success and seed longevity. This review focuses on the physiology of the seed as related to hydration forces, respiration, and biochemical reactions in the transition from thermodynamically undefined dry state to self-sustained living system. Such processes are of importance for basic knowledge of the regulation of metabolism of living organisms, but also for the control of germination in the context of climate change due to global warming.
Collapse
|
15
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
16
|
Huang Z, Ying J, Peng L, Sun S, Huang C, Li C, Wang Z, He Y. A genome-wide association study reveals that the cytochrome b5 involved in seed reserve mobilization during seed germination in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:4067-4076. [PMID: 34546380 DOI: 10.1007/s00122-021-03948-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
A candidate gene cytochrome b5 for the major QTL qSRMP9 for rice seed reserve mobilization was validated during seed germination using a genome-wide association study approach. Seed reserve mobilization plays important roles in the early seedling growth in rice. However, the genetic basis underlying this process is poorly understood. In this study, the genetic architecture of variation in seed reserve mobilization during seed germination was studied using a genome-wide association study approach in rice. Three quantitative trait loci (QTL) including qSRMP6, qSRMP9, and qSRMP12 for seed reserve mobilization percentage were identified. In which, the candidate gene cytochrome b5 (OsCyb5) for the major QTL qSRMP9 was validated. Disruption of this gene in Oscyb5 mutants reduced the seed reserve mobilization and seedling growth compared with wild-type (WT) in rice. There were no significant differences of grain size, starch, protein and total soluble sugar content in the mature grains between Oscyb5 mutants and WT. However, the α-amylase activity in the germinating seeds of Oscyb5 mutants was significantly decreased compared to that of WT, and then, the starch and sugar mobilization and the glucose accumulation during seed germination were significantly decreased in Oscyb5 mutants. Two elite haplotypes of OsCyb5 associated with the higher seed reserve mobilization percentage and its elite single nucleotide polymorphism variations were mainly existed in the INDICA and AUS accessions. The natural variation of OsCyb5 contributing to seed reserve mobilization might be useful for the future rice breeding.
Collapse
Affiliation(s)
- Zhibo Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jifeng Ying
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liling Peng
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shan Sun
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengwei Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Can Li
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Yongqi He
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Małecka A, Ciszewska L, Staszak A, Ratajczak E. Relationship between mitochondrial changes and seed aging as a limitation of viability for the storage of beech seed ( Fagus sylvatica L.). PeerJ 2021; 9:e10569. [PMID: 33552713 PMCID: PMC7821764 DOI: 10.7717/peerj.10569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023] Open
Abstract
Aging is one of the most fundamental biological processes occurring in all forms of eukaryotic life. Beech trees (Fagus sylvatica L.) produce seeds in intervals of 5–10 years. Its yearly seed yield is usually very low, so there is a need for long-term seed storage to enable propagation of this species upon demand. Seeds for sowing must be of high quality but they are not easy to store without viability loss. Understanding the mechanism responsible for seed aging is therefore very important. We observed the generation of reactive oxygen species (ROS) in mitochondria of embryonic axes and cotyledons of beech seeds during natural aging. The presence of ROS led to changes in compromised mitochondrial membrane integrity and in mitochondrial metabolism and morphology. In this study, we pointed to the involvement of mitochondria in the natural aging process of beech seeds, but the molecular mechanisms underlying this involvement are still unknown.
Collapse
Affiliation(s)
- Arleta Małecka
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Liliana Ciszewska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Aleksandra Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
18
|
Gomes MP, Moreira Brito JC, Cristina Rocha D, Navarro-Silva MA, Juneau P. Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111025. [PMID: 32888593 DOI: 10.1016/j.ecoenv.2020.111025] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We investigated individual and combined effects of environmentally representative concentrations of amoxicillin (AMX; 2 μg l-1), enrofloxacin (ENR; 2 μg l-1), and oxytetracycline (OXY; 1 μg l-1) on the aquatic macrophyte Lemna minor. While the concentrations of AMX and ENR tested were not toxic, OXY decreased plant growth and cell division. OXY induced hydrogen peroxide (H2O2) accumulation and related oxidative stress through its interference with the activities of mitochondria electron transport chain enzymes, although those deleterious effects could be ameliorated by the presence of AMX and/or ENR, which prevented the overaccumulation of ROS by increasing catalase enzyme activity. L. minor plants accumulated significant quantities of AMX, ENR and OXY from the media, although competitive uptakes were observed when plants were submitted to binary or tertiary mixtures of those antibiotics. Our results therefore indicate L. minor as a candidate for phytoremediation of service waters contaminated by AMX, ENR, and/or OXY.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil.
| | - Júlio César Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, 30510-010, Belo Horizonte, Minas Gerais, Brazil
| | - Daiane Cristina Rocha
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Mário Antônio Navarro-Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chronomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal, Succ. Centre-Ville, H3C 3P8, Montréal, QC, Canada.
| |
Collapse
|
19
|
Conserved and Opposite Transcriptome Patterns during Germination in Hordeum vulgare and Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21197404. [PMID: 33036486 PMCID: PMC7584043 DOI: 10.3390/ijms21197404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Seed germination is a critical process for completion of the plant life cycle and for global food production. Comparing the germination transcriptomes of barley (Hordeum vulgare) to Arabidopsis thaliana revealed the overall pattern was conserved in terms of functional gene ontology; however, many oppositely responsive orthologous genes were identified. Conserved processes included a set of approximately 6000 genes that peaked early in germination and were enriched in processes associated with RNA metabolism, e.g., pentatricopeptide repeat (PPR)-containing proteins. Comparison of orthologous genes revealed more than 3000 orthogroups containing almost 4000 genes that displayed similar expression patterns including functions associated with mitochondrial tricarboxylic acid (TCA) cycle, carbohydrate and RNA/DNA metabolism, autophagy, protein modifications, and organellar function. Biochemical and proteomic analyses indicated mitochondrial biogenesis occurred early in germination, but detailed analyses revealed the timing involved in mitochondrial biogenesis may vary between species. More than 1800 orthogroups representing 2000 genes displayed opposite patterns in transcript abundance, representing functions of energy (carbohydrate) metabolism, photosynthesis, protein synthesis and degradation, and gene regulation. Differences in expression of basic-leucine zippers (bZIPs) and Apetala 2 (AP2)/ethylene-responsive element binding proteins (EREBPs) point to differences in regulatory processes at a high level, which provide opportunities to modify processes in order to enhance grain quality, germination, and storage as needed for different uses.
Collapse
|
20
|
Best C, Mizrahi R, Ostersetzer-Biran O. Why so Complex? The Intricacy of Genome Structure and Gene Expression, Associated with Angiosperm Mitochondria, May Relate to the Regulation of Embryo Quiescence or Dormancy-Intrinsic Blocks to Early Plant Life. PLANTS (BASEL, SWITZERLAND) 2020; 9:E598. [PMID: 32397140 PMCID: PMC7284508 DOI: 10.3390/plants9050598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria play key roles in cellular-energy metabolism and are vital for plant-life, such as for successful germination and early-seedling establishment. Most mitochondria contain their own genetic system (mtDNA, mitogenome), with an intrinsic protein-synthesis machinery. Although the challenges of maintaining prokaryotic-type structures and functions are common to Eukarya, land plants possess some of the most complex organelle composition of all known organisms. Angiosperms mtDNAs are characteristically the largest and least gene-dense among the eukaryotes. They often contain highly-variable intergenic regions of endogenous or foreign origins and undergo frequent recombination events, which result in different mtDNA configurations, even between closely-related species. The expression of the mitogenome in angiosperms involves extensive mtRNA processing steps, including numerous editing and splicing events. Why do land-plant's mitochondria have to be so complex? The answer to this remains a matter of speculation. We propose that this complexity may have arisen throughout the terrestrialization of plants, as a means to control embryonic mitochondrial functions -a critical adaptive trait to optimize seed germination. The unique characteristics of plant mtDNA may play pivotal roles in the nuclear-regulation of organellar biogenesis and metabolism, possibly to control embryos quiescence or dormancy, essential determinants for the establishment of viable plantlets that can survive post-germination.
Collapse
Affiliation(s)
| | | | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus—Givat Ram, Jerusalem 9190401, Israel; (C.B.); (R.M.)
| |
Collapse
|
21
|
Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. PLANTS 2020; 9:plants9030347. [PMID: 32164149 PMCID: PMC7154877 DOI: 10.3390/plants9030347] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that allows them to accumulate more than 10,000 mRNAs during seed maturation and use them as templates to synthesize proteins during germination. Some of these stored mRNAs are also referred to as long-lived mRNAs because they remain translatable even after seeds have been exposed to long-term stressful conditions. Mature seeds can germinate even in the presence of transcriptional inhibitors, and this ability is acquired in mid-seed development. The type of mRNA that accumulates in seeds is affected by the plant hormone abscisic acid and environmental factors, and most of them accumulate in seeds in the form of monosomes. Release of seed dormancy during after-ripening involves the selective oxidation of stored mRNAs and this prevents translation of proteins that function in the suppression of germination after imbibition. Non-selective oxidation and degradation of stored mRNAs occurs during long-term storage of seeds so that the quality of stored RNAs is linked to the degree of seed deterioration. After seed imbibition, a population of stored mRNAs are selectively loaded into polysomes and the mRNAs, involved in processes such as redox, glycolysis, and protein synthesis, are actively translated for germination.
Collapse
|
22
|
Stavrinides AK, Dussert S, Combes MC, Fock-Bastide I, Severac D, Minier J, Bastos-Siqueira A, Demolombe V, Hem S, Lashermes P, Joët T. Seed comparative genomics in three coffee species identify desiccation tolerance mechanisms in intermediate seeds. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1418-1433. [PMID: 31790120 PMCID: PMC7031068 DOI: 10.1093/jxb/erz508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/10/2019] [Indexed: 05/13/2023]
Abstract
In contrast to desiccation-tolerant 'orthodox' seeds, so-called 'intermediate' seeds cannot survive complete drying and are short-lived. All species of the genus Coffea produce intermediate seeds, but they show a considerable variability in seed desiccation tolerance (DT), which may help to decipher the molecular basis of seed DT in plants. We performed a comparative transcriptome analysis of developing seeds in three coffee species with contrasting desiccation tolerance. Seeds of all species shared a major transcriptional switch during late maturation that governs a general slow-down of metabolism. However, numerous key stress-related genes, including those coding for the late embryogenesis abundant protein EM6 and the osmosensitive calcium channel ERD4, were up-regulated during DT acquisition in the two species with high seed DT, C. arabica and C. eugenioides. By contrast, we detected up-regulation of numerous genes involved in the metabolism, transport, and perception of auxin in C. canephora seeds with low DT. Moreover, species with high DT showed a stronger down-regulation of the mitochondrial machinery dedicated to the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, respiration measurements during seed dehydration demonstrated that intermediate seeds with the highest DT are better prepared to cease respiration and avoid oxidative stresses.
Collapse
Affiliation(s)
| | | | | | | | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier Cedex 5, France
| | | | | | - Vincent Demolombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Sonia Hem
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Thierry Joët
- IRD, Université Montpellier, UMR DIADE, Montpellier, France
| |
Collapse
|
23
|
Sano N, Takebayashi Y, To A, Mhiri C, Rajjou LC, Nakagami H, Kanekatsu M. Shotgun Proteomic Analysis Highlights the Roles of Long-Lived mRNAs and De Novo Transcribed mRNAs in Rice Seeds upon Imbibition. PLANT & CELL PHYSIOLOGY 2019; 60:2584-2596. [PMID: 31373371 DOI: 10.1093/pcp/pcz152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/27/2019] [Indexed: 05/22/2023]
Abstract
During seed germination, proteins are translated not only from mRNAs newly transcribed upon imbibition but also from long-lived mRNAs that are synthesized during seed maturation and stored in the mature dry seeds. To clarify the distinct roles of proteins translated from long-lived mRNAs and de novo transcribed mRNAs in germinating rice embryos, proteome analysis based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) combining the use of a transcriptional inhibitor was performed. We observed that α-amanitin significantly represses transcription in germinating embryos; nevertheless, the embryos could germinate, albeit slowly. The proteomic analysis revealed that a total of 109 proteins were translated from long-lived mRNAs associated with germination as well as 222 proteins whose expression were dependent on de novo transcription upon imbibition. Transcriptomic datasets available in public databases demonstrated that mRNAs of the 222 proteins notably increased during germination while those of the 109 proteins highly accumulated in dry embryos and constitutively expressed upon imbibition. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that many of the 109 proteins from long-lived mRNAs are implicated in energy production such as glycolysis or annotated as nucleotide binding proteins, while the 222 proteins are involved in pathways such as pyruvate metabolism and TCA cycle following glycolysis, and momilactones biosynthesis. We propose that long-lived mRNAs support initial energy production and activation of translational machinery upon imbibition whereas de novo transcription accelerates the energy production after glycolysis, which enables rice seeds to germinate vigorously.
Collapse
Affiliation(s)
- Naoto Sano
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Alexandra To
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Corinne Mhiri
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Loï C Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne, Germany
| | - Motoki Kanekatsu
- Department of Plant Production, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
24
|
Niazi AK, Delannoy E, Iqbal RK, Mileshina D, Val R, Gabryelska M, Wyszko E, Soubigou-Taconnat L, Szymanski M, Barciszewski J, Weber-Lotfi F, Gualberto JM, Dietrich A. Mitochondrial Transcriptome Control and Intercompartment Cross-Talk During Plant Development. Cells 2019; 8:E583. [PMID: 31200566 PMCID: PMC6627697 DOI: 10.3390/cells8060583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/17/2023] Open
Abstract
We address here organellar genetic regulation and intercompartment genome coordination. We developed earlier a strategy relying on a tRNA-like shuttle to mediate import of nuclear transgene-encoded custom RNAs into mitochondria in plants. In the present work, we used this strategy to drive trans-cleaving hammerhead ribozymes into the organelles, to knock down specific mitochondrial RNAs and analyze the regulatory impact. In a similar approach, the tRNA mimic was used to import into mitochondria in Arabidopsis thaliana the orf77, an RNA associated with cytoplasmic male sterility in maize and possessing sequence identities with the atp9 mitochondrial RNA. In both cases, inducible expression of the transgenes allowed to characterise early regulation and signaling responses triggered by these respective manipulations of the organellar transcriptome. The results imply that the mitochondrial transcriptome is tightly controlled by a "buffering" mechanism at the early and intermediate stages of plant development, a control that is released at later stages. On the other hand, high throughput analyses showed that knocking down a specific mitochondrial mRNA triggered a retrograde signaling and an anterograde nuclear transcriptome response involving a series of transcription factor genes and small RNAs. Our results strongly support transcriptome coordination mechanisms within the organelles and between the organelles and the nucleus.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan.
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France.
| | - Rana Khalid Iqbal
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Daria Mileshina
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Romain Val
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Marta Gabryelska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France.
| | - Maciej Szymanski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, A. Mickiewicz University Poznan, Ul. Umultowska 89, 61-614 Poznan, Poland.
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
- NanoBioMedical Centre of the Adam Mickiewicz University, Umultowska 85, 61614 Poznan, Poland.
| | - Frédérique Weber-Lotfi
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - José Manuel Gualberto
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - André Dietrich
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
25
|
Chen B, Yin G, Whelan J, Zhang Z, Xin X, He J, Chen X, Zhang J, Zhou Y, Lu X. Composition of Mitochondrial Complex I during the Critical Node of Seed Aging in Oryza sativa. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:7-14. [PMID: 30840921 DOI: 10.1016/j.jplph.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/20/2019] [Accepted: 02/19/2019] [Indexed: 05/10/2023]
Abstract
Previous studies have documented mitochondrial dysfunction during the critical node (CN) of rice (Oryza sativa) seed aging, including a decrease in the capacity of NADH dependent O2 consumption. This raises the hypothesis that changes in the activity of NADH:ubiquinone oxidoreductase (complex I) may play a role in seed aging. The composition and activity of complex I was investigated at the CN of aged rice seeds. Using BN-PAGE and SWATH-MS 52 complex I subunits were identified, nineteen for the first time to be experimentally detected in rice. The subunits of the matrix arm (N and Q modules) were reduced in abundance at the CN, in accordance with a reduction in the capacity to oxidise NADH, reducing substrate oxidation and increase ROS accumulation. In contrast, subunits in the P module increased in abundance that contains many mitochondrial encoded subunits. It is proposed that the changes in complex I abundance subunits may indicate a premature re-activation of mitochondrial biogenesis, as evidenced by the increase in mitochondrial encoded subunits. This premature activation of mitochondrial biogenesis may under-pin the decreased viability of aged seeds, as mitochondrial biogenesis is a crucial event in germination to drive growth before autotrophic growth of the seedling is established.
Collapse
Affiliation(s)
- Baoyin Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Zesen Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoling Chen
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinmei Zhang
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanchang Zhou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
26
|
Meyer EH, Welchen E, Carrie C. Assembly of the Complexes of the Oxidative Phosphorylation System in Land Plant Mitochondria. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:23-50. [PMID: 30822116 DOI: 10.1146/annurev-arplant-050718-100412] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant mitochondria play a major role during respiration by producing the ATP required for metabolism and growth. ATP is produced during oxidative phosphorylation (OXPHOS), a metabolic pathway coupling electron transfer with ADP phosphorylation via the formation and release of a proton gradient across the inner mitochondrial membrane. The OXPHOS system is composed of large, multiprotein complexes coordinating metal-containing cofactors for the transfer of electrons. In this review, we summarize the current state of knowledge about assembly of the OXPHOS complexes in land plants. We present the different steps involved in the formation of functional complexes and the regulatory mechanisms controlling the assembly pathways. Because several assembly steps have been found to be ancestral in plants-compared with those described in fungal and animal models-we discuss the evolutionary dynamics that lead to the conservation of ancestral pathways in land plant mitochondria.
Collapse
Affiliation(s)
- Etienne H Meyer
- Organelle Biology and Biotechnology Research Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Current affiliation: Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany;
| | - Elina Welchen
- Cátedra de Biología Celular y Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Chris Carrie
- Plant Sciences Research Group, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
27
|
Ratajczak E, Małecka A, Ciereszko I, Staszak AM. Mitochondria Are Important Determinants of the Aging of Seeds. Int J Mol Sci 2019; 20:E1568. [PMID: 30925807 PMCID: PMC6479606 DOI: 10.3390/ijms20071568] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Seeds enable plant survival in harsh environmental conditions, and via seeds, genetic information is transferred from parents to the new generation; this stage provides an opportunity for sessile plants to settle in new territories. However, seed viability decreases over long-term storage due to seed aging. For the effective conservation of gene resources, e.g., in gene banks, it is necessary to understand the causes of decreases in seed viability, not only where the aging process is initiated in seeds but also the sequence of events of this process. Mitochondria are the main source of reactive oxygen species (ROS) production, so they are more quickly and strongly exposed to oxidative damage than other organelles. The mitochondrial antioxidant system is also less active than the antioxidant systems of other organelles, thus such mitochondrial 'defects' can strongly affect various cell processes, including seed aging, which we discuss in this paper.
Collapse
Affiliation(s)
- Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | - Arleta Małecka
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznań, Poland.
| | - Iwona Ciereszko
- Plant Physiology Department, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland.
| | - Aleksandra M Staszak
- Plant Physiology Department, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland.
| |
Collapse
|
28
|
Gomes MP, Richardi VS, Bicalho EM, da Rocha DC, Navarro-Silva MA, Soffiatti P, Garcia QS, Sant'Anna-Santos BF. Effects of Ciprofloxacin and Roundup on seed germination and root development of maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2671-2678. [PMID: 30463122 DOI: 10.1016/j.scitotenv.2018.09.365] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 06/09/2023]
Abstract
Their continuous release into the environment, associated with their inherent biological activity, has motivated investigations into the detrimental effects of antibiotics and herbicides in natural and agricultural ecosystems. In this study, the interactive effects of the antibiotic ciprofloxacin (Cipro) and the herbicide Roundup on seed germination and root development were investigated. Although both compounds act as inhibitors of the mitochondrial electron transport chain in seeds, neither Cipro nor Roundup disrupted germinability of maize seeds. However, Cipro accelerated germination by promoting ROS accumulation in seeds, while the stimulatory effect of Roundup on ROS-scavenging enzymes (catalase and ascorbate peroxidase) seems to prevent ROS-signaling, delaying the germination process. Roundup reduced root elongation, possibly due to its interference with auxin production, thereby preventing cell division, while Cipro stimulated root elongation by increasing root oxidative status. Cipro and Roundup showed antagonistic effects on maize seeds and root physiology. The presence of the antibiotic is likely not to disturb plant development; however, its stimulatory effects were not sufficient to overcome the deleterious effects of Roundup. According to our results, glyphosate-based herbicides must be carefully used during maize cropping and although antibiotics such as Cipro may not negatively impact agricultural production, their accumulation by crops must be investigated since this can be a pathway of antibiotic-insertion into the food chain.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Pós-Graduação em Ciências do Solo, Departamento de Solos e Engenharia Agrícola, Setor de Ciências Agrárias, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Juvevê, 80035-050, Curitiba, Paraná, Brazil.
| | - Vinícius Sobrinho Richardi
- Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Elisa Monteze Bicalho
- Laboratório de Crescimento e Desenvolvimento de Plantas, Setor de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Lavras, Campus UFLA, C.P. 3037, 37200-000, Lavras, Minas Gerais, Brazil
| | - Daiane Cristina da Rocha
- Pós-Graduação em Ciências do Solo, Departamento de Solos e Engenharia Agrícola, Setor de Ciências Agrárias, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Juvevê, 80035-050, Curitiba, Paraná, Brazil
| | - Mário Antônio Navarro-Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Patrícia Soffiatti
- Laboratório de Anatomia e Biomecânica Vegetal, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Queila Souza Garcia
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, C.P. 486, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Francisco Sant'Anna-Santos
- Laboratório de Anatomia e Biomecânica Vegetal, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
29
|
Damaris RN, Lin Z, Yang P, He D. The Rice Alpha-Amylase, Conserved Regulator of Seed Maturation and Germination. Int J Mol Sci 2019; 20:E450. [PMID: 30669630 PMCID: PMC6359163 DOI: 10.3390/ijms20020450] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 11/29/2022] Open
Abstract
Alpha-amylase, the major form of amylase with secondary carbohydrate binding sites, is a crucial enzyme throughout the growth period and life cycle of angiosperm. In rice, alpha-amylase isozymes are critical for the formation of the storage starch granule during seed maturation and motivate the stored starch to nourish the developing seedling during seed germination which will directly affect the plant growth and field yield. Alpha-amylase has not yet been studied intensely to understand its classification, structure, expression trait, and expression regulation in rice and other crops. Among the 10-rice alpha-amylases, most were exclusively expressed in the developing seed embryo and induced in the seed germination process. During rice seed germination, the expression of alpha-amylase genes is known to be regulated negatively by sugar in embryos, however positively by gibberellin (GA) in endosperm through competitively binding to the specific promoter domain; besides, it is also controlled by a series of other abiotic or biotic factors, such as salinity. In this review, we overviewed the research progress of alpha-amylase with focus on seed germination and reflected on how in-depth work might elucidate its regulation and facilitate crop breeding as an efficient biomarker.
Collapse
Affiliation(s)
- Rebecca Njeri Damaris
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhongyuan Lin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pingfang Yang
- School of Life Sciences, Hubei University, Wuhan 430070, China.
| | - Dongli He
- School of Life Sciences, Hubei University, Wuhan 430070, China.
| |
Collapse
|
30
|
Takenaka S, Yamamoto R, Nakamura C. Differential and interactive effects of cytoplasmic substitution and seed ageing on submergence stress response in wheat ( Triticum aestivum L.). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1549960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Shotaro Takenaka
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Ryohei Yamamoto
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Chiharu Nakamura
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
31
|
Hu Y, Zou W, Wang Z, Zhang Y, Hu Y, Qian J, Wu X, Ren Y, Zhao J. Translocase of the Outer Mitochondrial Membrane 40 Is Required for Mitochondrial Biogenesis and Embryo Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:389. [PMID: 31001303 PMCID: PMC6455079 DOI: 10.3389/fpls.2019.00389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/13/2019] [Indexed: 05/08/2023]
Abstract
In eukaryotes, mitochondrion is an essential organelle which is surrounded by a double membrane system, including the outer membrane, intermembrane space and the inner membrane. The translocase of the outer mitochondrial membrane (TOM) complex has attracted enormous interest for its role in importing the preprotein from the cytoplasm into the mitochondrion. However, little is understood about the potential biological function of the TOM complex in Arabidopsis. The aim of the present study was to investigate how AtTOM40, a gene encoding the core subunit of the TOM complex, works in Arabidopsis. As a result, we found that lack of AtTOM40 disturbed embryo development and its pattern formation after the globular embryo stage, and finally caused albino ovules and seed abortion at the ratio of a quarter in the homozygous tom40 plants. Further investigation demonstrated that AtTOM40 is wildly expressed in different tissues, especially in cotyledons primordium during Arabidopsis embryogenesis. Moreover, we confirmed that the encoded protein AtTOM40 is localized in mitochondrion, and the observation of the ultrastructure revealed that mitochondrion biogenesis was impaired in tom40-1 embryo cells. Quantitative real-time PCR was utilized to determine the expression of genes encoding outer mitochondrial membrane proteins in the homozygous tom40-1 mutant embryos, including the genes known to be involved in import, assembly and transport of mitochondrial proteins, and the results demonstrated that most of the gene expressions were abnormal. Similarly, the expression of genes relevant to embryo development and pattern formation, such as SAM (shoot apical meristem), cotyledon, vascular primordium and hypophysis, was also affected in homozygous tom40-1 mutant embryos. Taken together, we draw the conclusion that the AtTOM40 gene is essential for the normal structure of the mitochondrion, and participates in early embryo development and pattern formation through maintaining the biogenesis of mitochondria. The findings of this study may provide new insight into the biological function of the TOM40 subunit in higher plants.
Collapse
|
32
|
Mahalingam R. Temporal Analyses of Barley Malting Stages Using Shotgun Proteomics. Proteomics 2018; 18:e1800025. [DOI: 10.1002/pmic.201800025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/08/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Ramamurthy Mahalingam
- United States Department of Agriculture; Agricultural Research Service; Cereal Crops Research Unit; 502 Walnut Street 53726 Madison WI USA
| |
Collapse
|
33
|
Wang WQ, Wang Y, Zhang Q, Møller IM, Song SQ. Changes in the mitochondrial proteome of developing maize seed embryos. PHYSIOLOGIA PLANTARUM 2018; 163:552-572. [PMID: 29575040 DOI: 10.1111/ppl.12725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 05/19/2023]
Abstract
Mitochondria are required for seed development, but little information is available about their function and role during this process. We isolated the mitochondria from developing maize (Zea mays L. cv. Nongda 108) embryos and investigated the mitochondrial membrane integrity and respiration as well as the mitochondrial proteome using two proteomic methods, the two-dimensional gel electrophoresis (2-DE) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH). Mitochondrial membrane integrity and respiration were maintained at a high level up to 21 days after pollination (DAP) and decreased thereafter, while total mitochondrial number, cytochrome c oxidase activity and respiration per embryo exhibited a bell-shaped change with peaks at 35-45 DAP. A total of 286 mitochondrial proteins changed in abundance during embryo development. During early stages of seed development (up to 21 DAP), proteins involved in energy production, basic metabolism, protein import and folding as well as removal of reactive oxygen species dominated, while during mid or late stages (35-70 DAP), some stress- and detoxification-related proteins increased in abundance. Our study, for the first time, depicted a relatively comprehensive map of energy production by mitochondria during embryo development. The results revealed that mitochondria were very active during the early stages of maize embryo development, while at the late stages of development, the mitochondria became more quiescent, but well-protected, presumably to ensure that the embryo passes through maturation, drying and long-term storage. These results advance our understanding of seed development at the organelle level.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yue Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Qi Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Ian M Møller
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
34
|
Gomes MP, de Brito JCM, Bicalho EM, Silva JG, de Fátima Gomides M, Garcia QS, Figueredo CC. Ciprofloxacin vs. temperature: Antibiotic toxicity in the free-floating liverwort Ricciocarpus natans from a climate change perspective. CHEMOSPHERE 2018; 202:410-419. [PMID: 29579676 DOI: 10.1016/j.chemosphere.2018.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/08/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
The physiological responses of the aquatic liverwort Ricciocarpus natans to ciprofloxacin (Cipro) exposure under different growth temperatures were investigated. Cipro appears to act as an inhibitor of mitochondrial Complex III by blocking the oxidation of quinol, resulting in the formation of hydrogen peroxide (H2O2). H2O2 accumulation upon Cipro exposure is responsible for decreased photosynthesis in plants. The amount of H2O2 in plants is kept under control by antioxidant enzymes, whose activities are central to the responses of plants to Cipro yet are influenced by temperature. Increased temperature favored Cipro uptake by plants as well as its deleterious effects on mitochondrial activity; however, it also favored the activity of antioxidant enzymes, thereby preventing the exacerbation of the deleterious effects of Cipro. The uptake of Cipro by plants appears to be largely a passive process, although some uptake must be driven by an energy-consuming process. Ricciocarpus natans should be considered for programs aimed at the reclamation of Cipro since this plant exhibits high Cipro-tolerance, the capacity for accumulation and increased uptake rates of the antibiotic with increasing temperatures (from 20 to 30 °C).
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Botânica, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81631-980 Curitiba, Brazil; Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970 Belo Horizonte, Minas Gerais, Brazil.
| | - Júlio César Moreira de Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte, 30510-010 Minas Gerais, Brazil; Programa de Pós-Graduação em Inovação Tecnológica e Biofarmacêutica, UFMG, Minas Gerais, Brazil
| | - Elisa Monteze Bicalho
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970 Belo Horizonte, Minas Gerais, Brazil
| | - Janaína Guernica Silva
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970 Belo Horizonte, Minas Gerais, Brazil
| | - Maria de Fátima Gomides
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte, 30510-010 Minas Gerais, Brazil
| | - Queila Souza Garcia
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970 Belo Horizonte, Minas Gerais, Brazil
| | - Cleber Cunha Figueredo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
35
|
Heidorn-Czarna M, Domanski D, Kwasniak-Owczarek M, Janska H. Targeted Proteomics Approach Toward Understanding the Role of the Mitochondrial Protease FTSH4 in the Biogenesis of OXPHOS During Arabidopsis Seed Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:821. [PMID: 29963070 PMCID: PMC6014109 DOI: 10.3389/fpls.2018.00821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/28/2018] [Indexed: 05/23/2023]
Abstract
Seed germination provides an excellent model to study the process of mitochondrial biogenesis. It is a complex and strictly regulated process which requires a proper biogenesis of fully active organelles from existing promitochondrial structures. We have previously reported that the lack of the inner mitochondrial membrane protease FTSH4 delayed Arabidopsis seed germination. Here, we implemented a targeted mass spectrometry-based approach, Multiple Reaction Monitoring (MRM), with stable-isotope-labeled standard peptides for increased sensitivity, to quantify mitochondrial proteins in dry and germinating wild-type and ftsh4 mutant seeds, lacking the FTSH4 protease. Using total seed protein extracts we measured the abundance of the peptide targets belonging to the OXPHOS complexes, AOX1A, transport, and inner membrane scaffold as well as mitochondrial proteins that are highly specific to dry and germinating seeds. The MRM assay showed that the abundance of these proteins in ftsh4 did not differ substantially from that observed in wild-type at the level of dry seed and after stratification, but we observed a reduction in protein abundance in most of the examined OXPHOS subunits in the later stages of germination. These changes in OXPHOS protein levels in ftsh4 mutants were accompanied by a lower cytochrome pathway activity as well as an increased AOX1A amount at the transcript and protein level and alternative pathway activity. The analyses of the steady-state transcript levels of mitochondrial and nuclear genes encoding OXPHOS subunits did not show significant difference in their amount, indicating that the observed changes in the OXPHOS occurred at the post-transcriptional level. At the time when ftsh4 seeds were fully germinated, the abundance of the OXPHOS proteins in the mutant was either slightly lowered or comparable to these amounts in wild-type seeds at the similar developmental stage. By the implementation of an integrative approach combining targeted proteomics, quantitative transcriptomics, and physiological studies we have shown that the FTSH4 protease has an important role in the biogenesis of OXPHOS and thus biogenesis of mitochondria during germination of Arabidopsis seeds.
Collapse
Affiliation(s)
- Malgorzata Heidorn-Czarna
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dominik Domanski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
36
|
Gianinetti A, Finocchiaro F, Bagnaresi P, Zechini A, Faccioli P, Cattivelli L, Valè G, Biselli C. Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. PLANTS 2018; 7:plants7020035. [PMID: 29671830 PMCID: PMC6026906 DOI: 10.3390/plants7020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/18/2023]
Abstract
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice genotype with strong dormancy was used for mRNA expression profiling, by RNA-Seq, of dormant and non-dormant dehulled caryopses (here addressed as seeds) at two temperatures (30 °C and 10 °C) and two durations of incubation in water (8 h and 8 days). Aim of the study was to highlight the differences in the transcriptome of dormant and non-dormant imbibed seeds. Transcript data suggested important differences between these seeds (at least, as inferred by expression-based metabolism reconstruction): dry-afterripening seems to impose a respiratory impairment onto non-dormant seeds, thus glycolysis is deduced to be preferentially directed to alcoholic fermentation in non-dormant seeds but to alanine production in dormant ones; phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase and alanine aminotransferase pathways appear to have an important gluconeogenetic role associated with the restoration of plastid functions in the dormant seed following imbibition; correspondingly, co-expression analysis pointed out a commitment to guarantee plastid functionality in dormant seeds. At 8 h of imbibition, as inferred by gene expression, dormant seeds appear to preferentially use carbon and nitrogen resources for biosynthetic processes in the plastid, including starch and proanthocyanidins accumulation. Chromatin modification appears to be a possible mechanism involved in the transition from dormancy to germination. Non-dormant seeds show higher expression of genes related to cell wall modification, suggesting they prepare for acrospire/radicle elongation.
Collapse
Affiliation(s)
- Alberto Gianinetti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franca Finocchiaro
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Antonella Zechini
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Primetta Faccioli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Chiara Biselli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
37
|
Krekhova KE, Vekshin NL. A Number of Properties of Proto-Mitochondria from Rat Liver. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s000635091802015x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Mansilla N, Racca S, Gras DE, Gonzalez DH, Welchen E. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants. Int J Mol Sci 2018; 19:ijms19030662. [PMID: 29495437 PMCID: PMC5877523 DOI: 10.3390/ijms19030662] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Sofia Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
39
|
Thu Ha PT, Xuan TD. Effect of Lactic Acid on α-Amylase Activity and Phytic Acid Content in Germination of Rice (<i>Oryza sativa</i> L.). INTERNATIONAL LETTERS OF NATURAL SCIENCES 2018. [DOI: 10.18052/www.scipress.com/ilns.67.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lactic acid has known as a one of compounds to cause cellular harm in waterlogged tissue through the process of cytoplasmic acidosis. The effects of lactic acid on α-amylase activity and phytic acid content using an assay for high phosphate in germination stage of rice were evaluated. It is showed that lactic acid inhibited rice germination at every treated dose. The reduction of α-amylase content attributed to lactic acid at 24 h after germination of rice seeds was observed. The analysis of phosphate concentration at 48 h after treatment noted that although the content of phytic acid was reduced in Japonica varieties, but in contrast its amount was enhanced in Indica cultivars. The findings highlighted the positive effects of lactic acid on α-amylase activity and phytic acid content and suggested that this compound may play a potent role as a germinated regulator in rice.
Collapse
|
40
|
Mitochondrial Respiration and Oxygen Tension. Methods Mol Biol 2017. [PMID: 28871539 DOI: 10.1007/978-1-4939-7292-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO2 production and O2 consumption that enables calculation of the respiratory quotient [CO2]/[O2].
Collapse
|
41
|
Betts NS, Berkowitz O, Liu R, Collins HM, Skadhauge B, Dockter C, Burton RA, Whelan J, Fincher GB. Isolation of tissues and preservation of RNA from intact, germinated barley grain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:754-765. [PMID: 28509349 DOI: 10.1111/tpj.13600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 05/11/2023]
Abstract
Isolated barley (Hordeum vulgare L.) aleurone layers have been widely used as a model system for studying gene expression and hormonal regulation in germinating cereal grains. A serious technological limitation of this approach has been the inability to confidently extrapolate conclusions obtained from isolated tissues back to the whole grain, where the co-location of several living and non-living tissues results in complex tissue-tissue interactions and regulatory pathways coordinated across the multiple tissues. Here we have developed methods for isolating fragments of aleurone, starchy endosperm, embryo, scutellum, pericarp-testa, husk and crushed cell layers from germinated grain. An important step in the procedure involves the rapid fixation of the intact grain to freeze the transcriptional activity of individual tissues while dissection is effected for subsequent transcriptomic analyses. The developmental profiles of 19 611 gene transcripts were precisely defined in the purified tissues and in whole grain during the first 24 h of germination by RNA sequencing. Spatial and temporal patterns of transcription were validated against well-defined data on enzyme activities in both whole grain and isolated tissues. Transcript profiles of genes involved in mitochondrial assembly and function were used to validate the very early stages of germination, while the profiles of genes involved in starch and cell wall mobilisation matched existing data on activities of corresponding enzymes. The data will be broadly applicable for the interrogation of co-expression and differential expression patterns and for the identification of transcription factors that are important in the early stages of grain and seed germination.
Collapse
Affiliation(s)
- Natalie S Betts
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Oliver Berkowitz
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Ruijie Liu
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J. C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J. C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - James Whelan
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
42
|
Considine MJ, Diaz-Vivancos P, Kerchev P, Signorelli S, Agudelo-Romero P, Gibbs DJ, Foyer CH. Learning To Breathe: Developmental Phase Transitions in Oxygen Status. TRENDS IN PLANT SCIENCE 2017; 22:140-153. [PMID: 27986423 DOI: 10.1016/j.tplants.2016.11.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/01/2016] [Accepted: 11/20/2016] [Indexed: 05/04/2023]
Abstract
Plants are developmentally disposed to significant changes in oxygen availability, but our understanding of the importance of hypoxia is almost entirely limited to stress biology. Differential patterns of the abundance of oxygen, nitric oxide (•NO), and reactive oxygen species (ROS), as well as of redox potential, occur in organs and meristems, and examples are emerging in the literature of mechanistic relationships of these to development. We describe here the convergence of these cues in meristematic and reproductive tissues, and discuss the evidence for regulated hypoxic niches within which oxygen-, ROS-, •NO-, and redox-dependent signalling curate developmental transitions in plants.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia; Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Pedro Diaz-Vivancos
- Group of Fruit Biotechnology, Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Pavel Kerchev
- Vlaams Instituut voor Biotechnologie (VIB) Department of Plant Systems Biology, University of Gent Technologiepark 927, Gent, 9052 Belgium
| | - Santiago Signorelli
- School of Plant Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Christine H Foyer
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
43
|
Galland M, He D, Lounifi I, Arc E, Clément G, Balzergue S, Huguet S, Cueff G, Godin B, Collet B, Granier F, Morin H, Tran J, Valot B, Rajjou L. An Integrated "Multi-Omics" Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality. FRONTIERS IN PLANT SCIENCE 2017; 8:1984. [PMID: 29213276 PMCID: PMC5702907 DOI: 10.3389/fpls.2017.01984] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/03/2017] [Indexed: 05/20/2023]
Abstract
Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive "multi-omics" dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins) in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered "multi-omics" study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.
Collapse
Affiliation(s)
- Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Dongli He
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Imen Lounifi
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Erwann Arc
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Gilles Clément
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Sandrine Balzergue
- IPS2, Institute of Plant Sciences Paris-Saclay (INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Stéphanie Huguet
- IPS2, Institute of Plant Sciences Paris-Saclay (INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Boris Collet
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Fabienne Granier
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Halima Morin
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Joseph Tran
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Benoit Valot
- GQE-Le Moulon, Génétique Quantitative et Evolution (INRA Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay), PAPPSO-Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Saclay Plant Sciences (SPS), Gif-sur-Yvette, France
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
- *Correspondence: Loïc Rajjou
| |
Collapse
|
44
|
Restovic F, Espinoza-Corral R, Gómez I, Vicente-Carbajosa J, Jordana X. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment. FRONTIERS IN PLANT SCIENCE 2017; 8:277. [PMID: 28293251 PMCID: PMC5329045 DOI: 10.3389/fpls.2017.00277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/14/2017] [Indexed: 05/20/2023]
Abstract
Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana, its iron-sulfur subunit (SDH2) is encoded by three genes, one of them (SDH2.3) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis-elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.
Collapse
Affiliation(s)
- Franko Restovic
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Roberto Espinoza-Corral
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Isabel Gómez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas – UPM-INIA, Campus de Montegancedo, Universidad Politécnica de MadridMadrid, Spain
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
- *Correspondence: Xavier Jordana,
| |
Collapse
|
45
|
Li L, Kubiszewski-Jakubiak S, Radomiljac J, Wang Y, Law SR, Keech O, Narsai R, Berkowitz O, Duncan O, Murcha MW, Whelan J. Characterization of a novel β-barrel protein (AtOM47) from the mitochondrial outer membrane of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6061-6075. [PMID: 27811077 PMCID: PMC5100019 DOI: 10.1093/jxb/erw366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In plant cells, mitochondria are major providers of energy and building blocks for growth and development as well as abiotic and biotic stress responses. They are encircled by two lipid membranes containing proteins that control mitochondrial function through the import of macromolecules and metabolites. Characterization of a novel β-barrel protein, OUTER MEMBRANE PROTEIN 47 (OM47), unique to the green lineage and related to the voltage-dependent anion channel (VDAC) protein family, showed that OM47 can complement a VDAC mutant in yeast. Mutation of OM47 in Arabidopsis thaliana by T-DNA insertion had no effect on the import of proteins, such as the β-barrel proteins translocase of the outer membrane 40 (TOM40) or sorting and assembly machinery 50 (SAM50), into mitochondria. Molecular and physiological analyses revealed a delay in chlorophyll breakdown, higher levels of starch, and a delay in the induction of senescence marker genes in the mutant lines. While there was a reduction of >90% in OM47 protein in mitochondria isolated from 3-week-old om47 mutants, in mitochondria isolated from 8-week-old plants OM47 levels were similar to that of the wild type. This recovery was achieved by an up-regulation of OM47 transcript abundance in the mutants. Combined, these results highlight a role in leaf senescence for this plant-specific β-barrel protein, probably mediating the recovery and recycling of chloroplast breakdown products by transporting metabolic intermediates into and out of mitochondria.
Collapse
Affiliation(s)
- Lu Li
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - Jordan Radomiljac
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Yan Wang
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
46
|
Mitochondrial Proteome Studies in Seeds during Germination. Proteomes 2016; 4:proteomes4020019. [PMID: 28248229 PMCID: PMC5217346 DOI: 10.3390/proteomes4020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 01/25/2023] Open
Abstract
Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of structurally simple and metabolically quiescent promitochondria into fully active and cristae-containing mitochondria, known as mitochondrial biogenesis. This is a complex and tightly regulated process, which is accompanied by sequential and dynamic gene expression, protein synthesis, and post-translational modifications. The aim of this review is to give a comprehensive summary of seed mitochondrial proteome studies during germination of various plant model organisms. We describe different gel-based and gel-free proteomic approaches used to characterize mitochondrial proteomes of germinating seeds as well as challenges and limitations of these proteomic studies. Furthermore, the dynamic changes in the abundance of the mitochondrial proteomes of germinating seeds are illustrated, highlighting numerous mitochondrial proteins involved in respiration, tricarboxycylic acid (TCA) cycle, metabolism, import, and stress response as potentially important for seed germination. We then review seed mitochondrial protein carbonylation, phosphorylation, and S-nitrosylation as well as discuss the possible link between these post-translational modifications (PTMs) and the regulation of seed germination.
Collapse
|
47
|
Yin G, Whelan J, Wu S, Zhou J, Chen B, Chen X, Zhang J, He J, Xin X, Lu X. Comprehensive Mitochondrial Metabolic Shift during the Critical Node of Seed Ageing in Rice. PLoS One 2016; 11:e0148013. [PMID: 27124767 PMCID: PMC4849721 DOI: 10.1371/journal.pone.0148013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
The critical node (CN) in seed aging in rice (Oryza sativa) is the transformation from Phase I (P-I) to Phase II (P-II) of the reverse S-shaped curve (RS-SC). Although mitochondrial dysfunction plays a key role in seed ageing, the metabolic shift in the CN remains poorly understood. Here, we investigated the mitochondrial regulatory mechanisms during the CN of rice seed ageing. We showed that during the CN of seed ageing, the mitochondrial ultrastructure was impaired, causing oxygen consumption to decrease, along with cytochrome c (cyt c) oxidase and malate dehydrogenase (MDH) activity. In addition, the transcript levels for the alternative pathway of the electron transport chain (ETC) were significantly induced, whereas the transcripts of the cytochrome oxidase (COX) pathway were inhibited. These changes were concomitant with the down-regulation of mitochondrial protein levels related to carbon and nitrogen metabolism, ATP synthase (ATPase) complex, tricarboxylic acid cycle (TCA) cycle, mitochondrial oxidative enzymes, and a variety of other proteins. Therefore, while these responses inhibit the production of ATP and its intermediates, signals from mitochondria (such as the decrease of cyt c and accumulation of reactive oxygen species (ROS)) may also induce oxidative damage. These events provide considerable information about the mitochondrial metabolic shifts involved in the progression of seed ageing in the CN.
Collapse
Affiliation(s)
- Guangkun Yin
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Shuhua Wu
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Zhou
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoyin Chen
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoling Chen
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinmei Zhang
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Xin
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail: (XL); (XX)
| | - Xinxiong Lu
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail: (XL); (XX)
| |
Collapse
|
48
|
Karniely S, Weekes MP, Antrobus R, Rorbach J, van Haute L, Umrania Y, Smith DL, Stanton RJ, Minczuk M, Lehner PJ, Sinclair JH. Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries. mBio 2016; 7:e00029. [PMID: 27025248 PMCID: PMC4807356 DOI: 10.1128/mbio.00029-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.
Collapse
Affiliation(s)
- S Karniely
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J Rorbach
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - L van Haute
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Y Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - D L Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - R J Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - M Minczuk
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - P J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J H Sinclair
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
49
|
Begunova EA, Vekshin NL. Protomitohondria from liver cells: Similarities with and differences from mitochondria. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350915060032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
He D, Wang Q, Li M, Damaris RN, Yi X, Cheng Z, Yang P. Global Proteome Analyses of Lysine Acetylation and Succinylation Reveal the Widespread Involvement of both Modification in Metabolism in the Embryo of Germinating Rice Seed. J Proteome Res 2016; 15:879-90. [PMID: 26767346 DOI: 10.1021/acs.jproteome.5b00805] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regulation of rice seed germination has been shown to mainly occur at post-transcriptional levels, of which the changes on proteome status is a major one. Lysine acetylation and succinylation are two prevalent protein post-translational modifications (PTMs) involved in multiple biological processes, especially for metabolism regulation. To investigate the potential mechanism controlling metabolism regulation in rice seed germination, we performed the lysine acetylation and succinylation analyses simultaneously. Using high-accuracy nano-LC-MS/MS in combination with the enrichment of lysine acetylated or succinylated peptides from digested embryonic proteins of 24 h after imbibition (HAI) rice seed, a total of 699 acetylated sites from 389 proteins and 665 succinylated sites from 261 proteins were identified. Among these modified lysine sites, 133 sites on 78 proteins were commonly modified by two PTMs. The overlapped PTM sites were more likely to be in polar acidic/basic amino acid regions and exposed on the protein surface. Both of the acetylated and succinylated proteins cover nearly all aspects of cellular functions. Ribosome complex and glycolysis/gluconeogenesis-related proteins were significantly enriched in both acetylated and succinylated protein profiles through KEGG enrichment and protein-protein interaction network analyses. The acetyl-CoA and succinyl-CoA metabolism-related enzymes were found to be extensively modified by both modifications, implying the functional interaction between the two PTMs. This study provides a rich resource to examine the modulation of the two PTMs on the metabolism pathway and other biological processes in germinating rice seed.
Collapse
Affiliation(s)
- Dongli He
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Sino-African Joint Research Center, Chinese Academy of Sciences , Wuhan 430074, China
| | - Qiong Wang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Sino-African Joint Research Center, Chinese Academy of Sciences , Wuhan 430074, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Sino-African Joint Research Center, Chinese Academy of Sciences , Wuhan 430074, China
| | - Rebecca Njeri Damaris
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Sino-African Joint Research Center, Chinese Academy of Sciences , Wuhan 430074, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xingling Yi
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd. , Hangzhou 310018, China
| | - Zhongyi Cheng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd. , Hangzhou 310018, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Sino-African Joint Research Center, Chinese Academy of Sciences , Wuhan 430074, China
| |
Collapse
|