1
|
Wang C, Han B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. MOLECULAR PLANT 2022; 15:593-619. [PMID: 35331914 DOI: 10.1016/j.molp.2022.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Since the completion of the rice genome sequencing project in 2005, we have entered the era of rice genomics, which is still in its ascendancy. Rice genomics studies can be classified into three stages: structural genomics, functional genomics, and quantitative genomics. Structural genomics refers primarily to genome sequencing for the construction of a complete map of rice genome sequence. This is fundamental for rice genetics and molecular biology research. Functional genomics aims to decode the functions of rice genes. Quantitative genomics is large-scale sequence- and statistics-based research to define the quantitative traits and genetic features of rice populations. Rice genomics has been a transformative influence on rice biological research and contributes significantly to rice breeding, making rice a good model plant for studying crop sciences.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| |
Collapse
|
2
|
Zhang YC, Zhou YF, Cheng Y, Huang JH, Lian JP, Yang L, He RR, Lei MQ, Liu YW, Yuan C, Zhao WL, Xiao S, Chen YQ. Genome-wide analysis and functional annotation of chromatin-enriched noncoding RNAs in rice during somatic cell regeneration. Genome Biol 2022; 23:28. [PMID: 35045887 PMCID: PMC8772118 DOI: 10.1186/s13059-022-02608-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified. RESULTS To uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits. CONCLUSIONS cheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future.
Collapse
Affiliation(s)
- Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jia-Hui Huang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Wei Liu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Long Zhao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shi Xiao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
3
|
Lyu M, Liu H, Waititu JK, Sun Y, Wang H, Fu J, Chen Y, Liu J, Ku L, Cheng X. TEAseq-based identification of 35,696 Dissociation insertional mutations facilitates functional genomic studies in maize. J Genet Genomics 2021; 48:961-971. [PMID: 34654681 DOI: 10.1016/j.jgg.2021.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 11/26/2022]
Abstract
In plants, transposable element (TE)-triggered mutants are important resources for functional genomic studies. However, conventional approaches for genome-wide identification of TE insertion sites are costly and laborious. This study developed a novel, rapid, and high-throughput TE insertion site identification workflow based on next-generation sequencing and named it Transposable Element Amplicon Sequencing (TEAseq). Using TEAseq, we systemically profiled the Dissociation (Ds) insertion sites in 1606 independent Ds insertional mutants in advanced backcross generation using K17 as background. The Ac-containing individuals were excluded for getting rid of the potential somatic insertions. We characterized 35,696 germinal Ds insertions tagging 10,323 genes, representing approximately 23.3% of the total genes in the maize genome. The insertion sites were presented in chromosomal hotspots around the ancestral Ds loci, and insertions occurred preferentially in gene body regions. Furthermore, we mapped a loss-of-function AGL2 gene using bulked segregant RNA-sequencing assay and proved that AGL2 is essential for seed development. We additionally established an open-access database named MEILAM for easy access to Ds insertional mutations. Overall, our results have provided an efficient workflow for TE insertion identification and rich sequence-indexed mutant resources for maize functional genomic studies.
Collapse
Affiliation(s)
- Mingjie Lyu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huafeng Liu
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Joram Kiriga Waititu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhui Chen
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lixia Ku
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Xiliu Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Zhang S, Hao H, Liu X, Li Y, Ma X, Liu W, Zheng R, Liang S, Luan W. SDG712, a Putative H3K9-Specific Methyltransferase Encoding Gene, Delays Flowering through Repressing the Expression of Florigen Genes in Rice. RICE (NEW YORK, N.Y.) 2021; 14:73. [PMID: 34357443 PMCID: PMC8346621 DOI: 10.1186/s12284-021-00513-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/16/2021] [Indexed: 05/30/2023]
Abstract
SET domain group (SDG) proteins have been identified to be involved in histone modification and participate in diverse biological processes. Rice contains 41 SDG genes, however, most of which have not been functionally characterized. Here, we report the identification and functional investigation of rice SDG712 gene. Phylogenic analysis revealed that SDG712 belongs to the H3K9-specific SDG subclade. SDG712 is highly expressed in leaves during reproductive growth stage with obvious circadian rhythmic pattern. Mutation of SDG712 promotes rice flowering, while overexpression of SDG712 delays rice flowering. Gene expression analysis suggested that SDG712 acts downstream of Hd1, while acts upstream of Ehd1, Hd3a and RFT1. Subcellular localization assay demonstrated that SDG712 is localized in the nucleus. Chromatin immunoprecipitation (ChIP) assay showed that the H3K9me2 levels at Hd3a and RFT1 loci were increased in SDG712 overexpression transgenic plants, indicating that SDG712 may mediate the H3K9 di-methylation on these loci to repress rice flowering. Taken together, our findings demonstrated that SDG712 is a negative flowering regulatory gene in rice, and it delays flowering through repressing key flowering regulator gene Ehd1 and the florigen genes Hd3a and RFT1.
Collapse
Affiliation(s)
- Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Hongjiao Hao
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Xiaonan Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Yingying Li
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Weiyin Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Rui Zheng
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| |
Collapse
|
5
|
Zhou X, Shafique K, Sajid M, Ali Q, Khalili E, Javed MA, Haider MS, Zhou G, Zhu G. Era-like GTP protein gene expression in rice. BRAZ J BIOL 2021; 82:e250700. [PMID: 34259718 DOI: 10.1590/1519-6984.250700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.
Collapse
Affiliation(s)
- X Zhou
- Linyi University, College of Life Science, Linyi, Shandong, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - M Sajid
- University of Okara, Faculty of Life Sciences, Department of Biotechnology, Okara, Pakistan
| | - Q Ali
- University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - E Khalili
- Tarbiat Modarres University, Faculty of Science, Department of Plant Science, Tehran, Iran
| | - M A Javed
- University of the Punjab Lahore, Department of Plant Breeding and Genetics, Lahore, Pakistan
| | - M S Haider
- University of the Punjab Lahore, Department of Plant Pathology, Lahore, Pakistan
| | - G Zhou
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| | - G Zhu
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
|
7
|
Suzuki K, Inoue H, Matsuoka S, Tero R, Hirano-Iwata A, Tozawa Y. Establishment of a cell-free translation system from rice callus extracts. Biosci Biotechnol Biochem 2020; 84:2028-2036. [PMID: 32543982 DOI: 10.1080/09168451.2020.1779024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eukaryotic in vitro translation systems require large numbers of protein and RNA components and thereby rely on the use of cell extracts. Here we established a new in vitro translation system based on rice callus extract (RCE). We confirmed that RCE maintains its initial activity even after five freeze-thaw cycles and that the optimum temperature for translation is around 20°C. We demonstrated that the RCE system allows the synthesis of hERG, a large membrane protein, in the presence of liposomes. We also showed that the introduction of a bicistronic mRNA based on 2A peptide to RCE allowed the production of two distinct proteins from a single mRNA. Our new method thus facilitates laboratory-scale production of cell extracts, making it a useful tool for the in vitro synthesis of proteins for biochemical studies.
Collapse
Affiliation(s)
- Kakeru Suzuki
- Graduate School of Science and Engineering, Saitama University , Saitama, Japan
| | - Haruka Inoue
- Graduate School of Science and Engineering, Saitama University , Saitama, Japan
| | - Satoshi Matsuoka
- Graduate School of Science and Engineering, Saitama University , Saitama, Japan
| | - Ryugo Tero
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology , Toyohashi, Japan
| | - Ayumi Hirano-Iwata
- Advanced Institute for Materials Research, Tohoku University , Sendai, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University , Saitama, Japan
| |
Collapse
|
8
|
Maeda H, Murata K, Sakuma N, Takei S, Yamazaki A, Karim MR, Kawata M, Hirose S, Kawagishi-Kobayashi M, Taniguchi Y, Suzuki S, Sekino K, Ohshima M, Kato H, Yoshida H, Tozawa Y. A rice gene that confers broad-spectrum resistance to β-triketone herbicides. Science 2020; 365:393-396. [PMID: 31346065 DOI: 10.1126/science.aax0379] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
Abstract
The genetic variation of rice cultivars provides a resource for further varietal improvement through breeding. Some rice varieties are sensitive to benzobicyclon (BBC), a β-triketone herbicide that inhibits 4-hydroxyphenylpyruvate dioxygenase (HPPD). Here we identify a rice gene, HIS1 (HPPD INHIBITOR SENSITIVE 1), that confers resistance to BBC and other β-triketone herbicides. We show that HIS1 encodes an Fe(II)/2-oxoglutarate-dependent oxygenase that detoxifies β-triketone herbicides by catalyzing their hydroxylation. Genealogy analysis revealed that BBC-sensitive rice variants inherited a dysfunctional his1 allele from an indica rice variety. Forced expression of HIS1 in Arabidopsis conferred resistance not only to BBC but also to four additional β-triketone herbicides. HIS1 may prove useful for breeding herbicide-resistant crops.
Collapse
Affiliation(s)
- Hideo Maeda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Kazumasa Murata
- Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama 939-8153, Japan
| | - Nozomi Sakuma
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Satomi Takei
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Akihiko Yamazaki
- Tsukuba Research and Technology Center, SDS Biotech K.K., Tsukuba 300-2646, Japan
| | - Md Rezaul Karim
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Motoshige Kawata
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Sakiko Hirose
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | | | - Yojiro Taniguchi
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Satoru Suzuki
- Tsukuba Research and Technology Center, SDS Biotech K.K., Tsukuba 300-2646, Japan
| | - Keisuke Sekino
- Tsukuba Research and Technology Center, SDS Biotech K.K., Tsukuba 300-2646, Japan
| | - Masahiro Ohshima
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Hiroshi Kato
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Hitoshi Yoshida
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| |
Collapse
|
9
|
Sugiyama SH, Yasui Y, Ohmori S, Tanaka W, Hirano HY. Rice Flower Development Revisited: Regulation of Carpel Specification and Flower Meristem Determinacy. PLANT & CELL PHYSIOLOGY 2019; 60:1284-1295. [PMID: 30715478 DOI: 10.1093/pcp/pcz020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The ABC model in flower development represents a milestone of plant developmental studies and is essentially conserved across a wide range of angiosperm species. Despite this overall conservation, individual genes in the ABC model are not necessarily conserved and sometimes play a species-specific role, depending on the plant. We previously reported that carpels are specified by the YABBY gene DROOPING LEAF (DL) in rice (Oryza sativa), which bears flowers that are distinct from those of eudicots. In contrast, another group reported that carpels are specified by two class C genes, OsMADS3 and OsMADS58. Here, we have addressed this controversial issue by phenotypic characterization of floral homeotic gene mutants. Analysis of a complete loss-of-function mutant of OsMADS3 and OsMADS58 revealed that carpel-like organs expressing DL were formed in the absence of the two class C genes. Furthermore, no known flower organs including carpels were specified in a double mutant of DL and SUPERWOMAN1 (a class B gene), which expresses only class C genes in whorls 3 and 4. These results suggest that, in contrast to Arabidopsis, class C genes are not a key regulator for carpel specification in rice. Instead, they seem to be involved in the elaboration of carpel morphology rather than its specification. Our phenotypic analysis also revealed that, similar to its Arabidopsis ortholog CRABS CLAW, DL plays an important function in regulating flower meristem determinacy in addition to carpel specification.
Collapse
Affiliation(s)
- Shige-Hiro Sugiyama
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukiko Yasui
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Present address: Graduate School of Science, Kobe University, Rokkodai, Kobe, Japan
| | - Suzuha Ohmori
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Wakana Tanaka
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Nakashima K, Tsuchiya M, Fukushima S, Abe J, Kanazawa A. Transcription of soybean retrotransposon SORE-1 is temporally upregulated in developing ovules. PLANTA 2018; 248:1331-1337. [PMID: 30209619 DOI: 10.1007/s00425-018-3005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
MAIN CONCLUSION Transcription of soybean retrotransposon SORE-1 was temporally upregulated during ovule development. This transcriptional pattern was under intrinsic control conferred by the long terminal repeat of SORE-1. Transcriptionally active retrotransposons are capable of inducing random disruption of genes, providing a powerful tool for mutagenesis. Activation of retrotransposons in reproductive cells, in particular, can lead to heritable changes. Here, we examined developmental control of transcription of soybean retrotransposon SORE-1. Transgenic Arabidopsis plants that contain β-glucuronidase (GUS) reporter gene fused with the SORE-1 long terminal repeat (LTR) had GUS staining in the ovule. Quantitative analysis of transcripts in plants with this DNA construct and those with the full-length SORE-1 element indicated a temporal upregulation of SORE-1 transcription during ovule development. A comparable phenomenon was also observed in soybean plants that had a recent insertion of this element in the GmphyA2 gene. These results provide evidence that the temporal upregulation of SORE-1 in the reproductive organ is sufficiently controlled by its LTR and indicate that the intrinsic expression pattern of SORE-1 is consistent with its mutagenic property.
Collapse
Affiliation(s)
- Kenta Nakashima
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Mayumi Tsuchiya
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Sae Fukushima
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
11
|
Golicz AA, Bhalla PL, Singh MB. MCRiceRepGP: a framework for the identification of genes associated with sexual reproduction in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:188-202. [PMID: 29979827 DOI: 10.1111/tpj.14019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/20/2018] [Indexed: 05/22/2023]
Abstract
Rice is an important cereal crop, being a staple food for over half of the world's population, and sexual reproduction resulting in grain formation underpins global food security. However, despite considerable research efforts, many of the genes, especially long intergenic non-coding RNA (lincRNA) genes, involved in sexual reproduction in rice remain uncharacterized. With an increasing number of public resources becoming available, information from different sources can be combined to perform gene functional annotation. We report the development of MCRiceRepGP, a machine learning framework which integrates heterogeneous evidence and employs multicriteria decision analysis and machine learning to predict coding and lincRNA genes involved in sexual reproduction in rice. The rice genome was reannotated using deep-sequencing transcriptomic data from reproduction-associated tissue/cell types identifying previously unannotated putative protein-coding genes and lincRNAs. MCRiceRepGP was used for genome-wide discovery of sexual reproduction associated coding and lincRNA genes. The protein-coding and lincRNA genes identified have distinct expression profiles, with a large proportion of lincRNAs reaching maximum expression levels in the sperm cells. Some of the genes are potentially linked to male- and female-specific fertility and heat stress tolerance during the reproductive stage. MCRiceRepGP can be used in combination with other genome-wide studies, such as genome-wide association studies, giving greater confidence that the genes identified are associated with the biological process of interest. As more data, especially about mutant plant phenotypes, become available, the power of MCRiceRepGP will grow, providing researchers with a tool to identify candidate genes for future experiments. MCRiceRepGP is available as a web application (http://mcgplannotator.com/MCRiceRepGP/).
Collapse
Affiliation(s)
- Agnieszka A Golicz
- Faculty of Veterinary and Agricultural Sciences, Plant Molecular Biology and Biotechnology Laboratory, University of Melbourne, Parkville, Melbourne, Vic., Australia
| | - Prem L Bhalla
- Faculty of Veterinary and Agricultural Sciences, Plant Molecular Biology and Biotechnology Laboratory, University of Melbourne, Parkville, Melbourne, Vic., Australia
| | - Mohan B Singh
- Faculty of Veterinary and Agricultural Sciences, Plant Molecular Biology and Biotechnology Laboratory, University of Melbourne, Parkville, Melbourne, Vic., Australia
| |
Collapse
|
12
|
Wu HP, Wei FJ, Wu CC, Lo SF, Chen LJ, Fan MJ, Chen S, Wen IC, Yu SM, Ho THD, Lai MH, Hsing YIC. Large-scale phenomics analysis of a T-DNA tagged mutant population. Gigascience 2018; 6:1-7. [PMID: 28854617 PMCID: PMC5570018 DOI: 10.1093/gigascience/gix055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/04/2017] [Indexed: 01/26/2023] Open
Abstract
Rice, Oryza sativa L., is one of the most important crops in the world. With the rising world population, feeding people in a more sustainable and environmentally friendly way becomes increasingly important. Therefore, the rice research community needs to share resources to better understand the functions of rice genes that are the foundation for future agricultural biotechnology development, and one way to achieve this goal is via the extensive study of insertional mutants. We have constructed a large rice insertional mutant population in a japonica rice variety, Tainung 67. The collection contains about 93 000 mutant lines, among them 85% with phenomics data and 65% with flanking sequence data. We screened the phenotypes of 12 individual plants for each line grown under field conditions according to 68 subcategories and 3 quantitative traits. Both phenotypes and integration sites are searchable in the Taiwan Rice Insertional Mutants Database. Detailed analyses of phenomics data, T-DNA flanking sequences, and whole-genome sequencing data for rice insertional mutants can lead to the discovery of novel genes. In addition, studies of mutant phenotypes can reveal relationships among varieties, cultivation locations, and cropping seasons.
Collapse
Affiliation(s)
- Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan
| | - Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan
| | - Cheng-Chieh Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan.,Institute of Plant Biology, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, 500, Lioufeng Road, Taichung 413, Taiwan
| | - Shu Chen
- Plant Germplasm Division, Taiwan Agricultural Research Institute, 189, Zhongzheng Road, Taichung 413, Taiwan
| | - Ien-Chie Wen
- Plant Germplasm Division, Taiwan Agricultural Research Institute, 189, Zhongzheng Road, Taichung 413, Taiwan
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan.,Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan.,Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, 189, Zhongzheng Road, Taichung 413, Taiwan
| | - Yue-Ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan.,Department of Agronomy, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
13
|
Desaki Y, Kouzai Y, Ninomiya Y, Iwase R, Shimizu Y, Seko K, Molinaro A, Minami E, Shibuya N, Kaku H, Nishizawa Y. OsCERK1 plays a crucial role in the lipopolysaccharide-induced immune response of rice. THE NEW PHYTOLOGIST 2018; 217:1042-1049. [PMID: 29194635 DOI: 10.1111/nph.14941] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/09/2017] [Indexed: 05/20/2023]
Abstract
Plant cell surface receptor-like kinases (RLKs) mediate the signals from microbe-associated molecular patterns (MAMPs) that induce immune responses. Lipopolysaccharide (LPS), the major constituent of the outer membrane of gram-negative bacteria, is a common MAMP perceived by animals and plants; however, the plant receptors/co-receptors are unknown except for LORE, a bulb-type lectin S-domain RLK (B-lectin SD1-RLK) in Arabidopsis. OsCERK1 is a multifunctional RLK in rice that contains lysin motifs (LysMs) and is essential for the perception of chitin, a fungal MAMP, and peptidoglycan, a bacterial MAMP. Here, we analyzed the relevance of OsCERK1 to LPS perception in rice. Using OsCERK1-knockout mutants (oscerk1), we evaluated hydrogen peroxide (H2 O2 ) production and gene expression after LPS treatment. We also examined the LPS response in knockout mutants for the B-lectin SD1-RLK genes in rice and for all LysM-protein genes in Arabidopsis. Compared with wild-type rice cells, LPS responses in oscerk1 cells were mostly diminished. By contrast, rice lines mutated in either of three B-lectin SD1-RLK genes and Arabidopsis lines mutated in the LysM-protein genes responded normally to LPS. From these results, we conclude that OsCERK1 is an LPS receptor/co-receptor and that the LPS perception systems of rice and Arabidopsis are significantly different.
Collapse
Affiliation(s)
- Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yusuke Kouzai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yusuke Ninomiya
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Ryosuke Iwase
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yumi Shimizu
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Keito Seko
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Eiichi Minami
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
14
|
Pérez‐Martín F, Yuste‐Lisbona FJ, Pineda B, Angarita‐Díaz MP, García‐Sogo B, Antón T, Sánchez S, Giménez E, Atarés A, Fernández‐Lozano A, Ortíz‐Atienza A, García‐Alcázar M, Castañeda L, Fonseca R, Capel C, Goergen G, Sánchez J, Quispe JL, Capel J, Angosto T, Moreno V, Lozano R. A collection of enhancer trap insertional mutants for functional genomics in tomato. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1439-1452. [PMID: 28317264 PMCID: PMC5633825 DOI: 10.1111/pbi.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.
Collapse
Affiliation(s)
- Fernando Pérez‐Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | | | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - María Pilar Angarita‐Díaz
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Sibilla Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Antonia Fernández‐Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Ana Ortíz‐Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Manuel García‐Alcázar
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Laura Castañeda
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Rocío Fonseca
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Geraldine Goergen
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge L. Quispe
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| |
Collapse
|
15
|
Developmental Restriction of Retrotransposition Activated in Arabidopsis by Environmental Stress. Genetics 2017; 207:813-821. [PMID: 28774882 PMCID: PMC5629341 DOI: 10.1534/genetics.117.300103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Retrotransposons (RTs) can rapidly increase in copy number due to periodic bursts of transposition. Such bursts are mutagenic and thus potentially deleterious. However, certain transposition-induced gain-of-function or regulatory mutations may be of selective advantage. How an optimal balance between these opposing effects arises is not well characterized. Here, we studied transposition bursts of a heat-activated retrotransposon family in Arabidopsis. We recorded a high inter and intraplant variation in the number and chromosomal position of new insertions, which usually did not affect plant fertility and were equally well transmitted through male and female gametes, even though 90% of them were within active genes. We found that a highly heterogeneous distribution of these new retroelement copies result from a combination of two mechanisms, of which the first prevents multiple transposition bursts in a given somatic cell lineage that later contributes to differentiation of gametes, and the second restricts the regulatory influence of new insertions toward neighboring chromosomal DNA. As a whole, such regulatory characteristics of this family of RTs ensure its rapid but stepwise accumulation in plant populations experiencing transposition bursts accompanied by high diversity of chromosomal sites harboring new RT insertions.
Collapse
|
16
|
Sugiyama SH, Tanaka W, Hirano HY. Polar patterning of the spikelet is disrupted in the two opposite lemma mutant in rice. Genes Genet Syst 2017; 91:193-200. [PMID: 27522958 DOI: 10.1266/ggs.16-00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Angiosperms produce diverse flowers and the pattern of floral symmetry is a major factor for flower diversification. Bilaterally symmetric flowers have evolved multiple times in different angiosperm lineages from radially symmetric ancestors. Whereas most monocots produce radially symmetric flowers, grasses such as rice (Oryza sativa) and maize (Zea mays) generate bilaterally symmetric flowers and spikelets. In this paper, we focused on the two opposite lemma (tol) mutant, which displays a pleiotropic phenotype in the spikelet. Close morphological examination revealed that a typical spikelet phenotype of the tol mutant was principally based on the mirror image duplication of the lemma-side half of the spikelet. Other spikelet phenotypes can be explained as the derivation from the spikelet with this duplication. A polar pattern of organ formation along the lemma-palea axis was disrupted by this duplication. Accordingly, tol mutation seems to change the spikelet from bilateral symmetry (monosymmetry) to disymmetry. Thus, the tol mutant provides good genetic material to investigate the regulation of spikelet symmetry in rice.
Collapse
Affiliation(s)
- Shige-Hiro Sugiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | | | | |
Collapse
|
17
|
Abe K, Ichikawa H. Gene Overexpression Resources in Cereals for Functional Genomics and Discovery of Useful Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:1359. [PMID: 27708649 PMCID: PMC5030214 DOI: 10.3389/fpls.2016.01359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/26/2016] [Indexed: 05/12/2023]
Abstract
Identification and elucidation of functions of plant genes is valuable for both basic and applied research. In addition to natural variation in model plants, numerous loss-of-function resources have been produced by mutagenesis with chemicals, irradiation, or insertions of transposable elements or T-DNA. However, we may be unable to observe loss-of-function phenotypes for genes with functionally redundant homologs and for those essential for growth and development. To offset such disadvantages, gain-of-function transgenic resources have been exploited. Activation-tagged lines have been generated using obligatory overexpression of endogenous genes by random insertion of an enhancer. Recent progress in DNA sequencing technology and bioinformatics has enabled the preparation of genomewide collections of full-length cDNAs (fl-cDNAs) in some model species. Using the fl-cDNA clones, a novel gain-of-function strategy, Fl-cDNA OvereXpressor gene (FOX)-hunting system, has been developed. A mutant phenotype in a FOX line can be directly attributed to the overexpressed fl-cDNA. Investigating a large population of FOX lines could reveal important genes conferring favorable phenotypes for crop breeding. Alternatively, a unique loss-of-function approach Chimeric REpressor gene Silencing Technology (CRES-T) has been developed. In CRES-T, overexpression of a chimeric repressor, composed of the coding sequence of a transcription factor (TF) and short peptide designated as the repression domain, could interfere with the action of endogenous TF in plants. Although plant TFs usually consist of gene families, CRES-T is effective, in principle, even for the TFs with functional redundancy. In this review, we focus on the current status of the gene-overexpression strategies and resources for identifying and elucidating novel functions of cereal genes. We discuss the potential of these research tools for identifying useful genes and phenotypes for application in crop breeding.
Collapse
Affiliation(s)
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Japan
| |
Collapse
|
18
|
Mustafiz A, Kumari S, Karan R. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics. Curr Genomics 2016; 17:155-76. [PMID: 27252584 PMCID: PMC4869004 DOI: 10.2174/1389202917666160202215135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.
Collapse
Affiliation(s)
- Ananda Mustafiz
- South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi
| | - Sumita Kumari
- Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu 180009, India
| | - Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - 32611, Florida, USA
| |
Collapse
|
19
|
Ohyanagi H, Ebata T, Huang X, Gong H, Fujita M, Mochizuki T, Toyoda A, Fujiyama A, Kaminuma E, Nakamura Y, Feng Q, Wang ZX, Han B, Kurata N. OryzaGenome: Genome Diversity Database of Wild Oryza Species. PLANT & CELL PHYSIOLOGY 2016; 57:e1. [PMID: 26578696 PMCID: PMC4722174 DOI: 10.1093/pcp/pcv171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/26/2015] [Indexed: 05/18/2023]
Abstract
The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.
Collapse
Affiliation(s)
- Hajime Ohyanagi
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Japan Bioinformatics Laboratory, Meiji University, Kawasaki, Japan Tsukuba Division, Mitsubishi Space Software Co., Ltd., Tsukuba, Japan Present address: Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Xuehui Huang
- National Center for Gene Research, Chinese Academy of Sciences, Shanghai, PR China
| | - Hao Gong
- National Center for Gene Research, Chinese Academy of Sciences, Shanghai, PR China
| | - Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Takako Mochizuki
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Japan
| | - Eli Kaminuma
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Japan Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Japan
| | - Yasukazu Nakamura
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Japan Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Japan
| | - Qi Feng
- National Center for Gene Research, Chinese Academy of Sciences, Shanghai, PR China
| | - Zi-Xuan Wang
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Japan National Center for Gene Research, Chinese Academy of Sciences, Shanghai, PR China
| | - Bin Han
- National Center for Gene Research, Chinese Academy of Sciences, Shanghai, PR China
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Japan Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Japan
| |
Collapse
|
20
|
Aulakh SS, Veilleux RE, Tang G, Flinn BS. Characterization of a potato activation-tagged mutant, nikku, and its partial revertant. PLANTA 2015; 241:1481-1495. [PMID: 25772042 DOI: 10.1007/s00425-015-2272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
A potato mutant with a strong stress-response phenotype, and a partial mutant revertant, were characterized. Gene expression patterns and DNA cytosine methylation varied between these and wild-type, indicating a role for DNA cytosine methylation changes in the gene expression and visible phenotypes. Morphological and molecular studies were conducted to compare potato cv. Bintje, a Bintje activation-tagged mutant (nikku), and nikku revertant phenotype plants. Morphological studies revealed that nikku plants exhibited an extremely dwarf phenotype, had small hyponastic leaves, were rootless, and infrequently produced small tubers compared to wild-type Bintje. The overall phenotype was suggestive of a constitutive stress response, which was further supported by the greater expression level of several stress-responsive genes in nikku. Unlike the nikku mutant, the revertant exhibited near normal shoot elongation, larger leaves and consistent rooting. The reversion appeared partial, and was not the result of a loss of 35S enhancer copies from the original nikku mutant. Southern blot analyses indicated the presence of a single T-DNA insertion on chromosome 12 in the mutant. Gene expression studies comparing Bintje, nikku and revertant phenotype plants indicated transcriptional activation/repression of several genes flanking both sides of the insertion in the mutant, suggesting that activation tagging had pleiotropic effects in nikku. In contrast, gene expression levels for many, but not all, of the same genes in the revertant were similar to Bintje, indicating some reversion at the gene expression level as well. DNA methylation studies indicated differences in cytosine methylation status of the 35S enhancers between the nikku mutant and its revertant. In addition, global DNA cytosine methylation varied between Bintje, the nikku mutant and the revertant, suggesting involvement in gene expression changes, as well as mutant phenotype.
Collapse
|
21
|
Sato DS, Ohmori Y, Nagashima H, Toriba T, Hirano HY. A role for TRIANGULAR HULL1 in fine-tuning spikelet morphogenesis in rice. Genes Genet Syst 2015; 89:61-9. [PMID: 25224972 DOI: 10.1266/ggs.89.61] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The lemma and palea, which enclose the pistil, stamens, and lodicules, are the most conspicuous organs in the rice spikelet. We isolated a mutant line (ng6569) in which the lemma and palea were narrower than those of the wild type, and found that the mutant had a defect in TRIANGULAR HULL1 (TH1), which encodes a nuclear protein with an ALOG domain. Detailed morphological analysis indicated that the th1 mutation caused a reduction in the size of tubercles, which are convex structures on the surface of the lemma and palea. This reduction was more pronounced in the apical region of the lemma than in the basal region, resulting in the formation of a beak-like spikelet. By contrast, the number of tubercle rows and their spatial distribution on the lemma were not affected in the th1 mutant. Thus, the TH1 gene seems to be involved in fine-tuning the morphogenesis of the lemma and palea. In situ hybridization analysis revealed that TH1 was highly expressed in the primordia of the lemma and palea, but only weakly expressed in the primordia of the sterile lemma and rudimentary glume. We then examined the effect of th1 mutation on the lemma-like structure formed in the long sterile lemma/glume1 (g1) and extra glume1 (eg1) mutants. The result showed that the th1 mutation strongly affected the morphology of the extra lemma of eg1, but had no significant effect on the transformed lemma of g1.
Collapse
Affiliation(s)
- Dai-Suke Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | | | | | | | | |
Collapse
|
22
|
Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, Qu LH, Shu WS, Chen YQ. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 2014; 15:512. [PMID: 25517485 PMCID: PMC4253996 DOI: 10.1186/s13059-014-0512-1] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/28/2014] [Indexed: 01/09/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes in mammals and plants. However, the systematic examination of lncRNAs in plants lags behind that in mammals. Recently, lncRNAs have been identified in Arabidopsis and wheat; however, no systematic screening of potential lncRNAs has been reported for the rice genome. Results In this study, we perform whole transcriptome strand-specific RNA sequencing (ssRNA-seq) of samples from rice anthers, pistils, and seeds 5 days after pollination and from shoots 14 days after germination. Using these data, together with 40 available rice RNA-seq datasets, we systematically analyze rice lncRNAs and definitively identify lncRNAs that are involved in the reproductive process. The results show that rice lncRNAs have some different characteristics compared to those of Arabidopsis and mammals and are expressed in a highly tissue-specific or stage-specific manner. We further verify the functions of a set of lncRNAs that are preferentially expressed in reproductive stages and identify several lncRNAs as competing endogenous RNAs (ceRNAs), which sequester miR160 or miR164 in a type of target mimicry. More importantly, one lncRNA, XLOC_057324, is demonstrated to play a role in panicle development and fertility. We also develop a source of rice lncRNA-associated insertional mutants. Conclusions Genome-wide screening and functional analysis enabled the identification of a set of lncRNAs that are involved in the sexual reproduction of rice. The results also provide a source of lncRNAs and associated insertional mutants in rice. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0512-1) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:659-78. [PMID: 24450747 DOI: 10.1111/tpj.12436] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/22/2013] [Accepted: 01/10/2014] [Indexed: 05/07/2023]
Abstract
A long-standing goal in plant research is to optimize the protective function of biochemical agents that impede pest and pathogen attack. Nearly 40 years ago, pathogen-inducible diterpenoid production was described in rice, and these compounds were shown to function as antimicrobial phytoalexins. Using rice and maize as examples, we discuss recent advances in the discovery, biosynthesis, elicitation and functional characterization of monocot terpenoid phytoalexins. The recent expansion of known terpenoid phytoalexins now includes not only the labdane-related diterpenoid superfamily but also casbane-type diterpenoids and β-macrocarpene-derived sequiterpenoids. Biochemical approaches have been used to pair pathway precursors and end products with cognate biosynthetic genes. The number of predicted terpenoid phytoalexins is expanding through advances in cereal genome annotation and terpene synthase characterization that likewise enable discoveries outside the Poaceae. At the cellular level, conclusive evidence now exists for multiple plant receptors of fungal-derived chitin elicitors, phosphorylation of membrane-associated signaling complexes, activation of mitogen-activated protein kinase, involvement of phytohormone signals, and the existence of transcription factors that mediate the expression of phytoalexin biosynthetic genes and subsequent accumulation of pathway end products. Elicited production of terpenoid phytoalexins exhibit additional biological functions, including root exudate-mediated allelopathy and insect antifeedant activity. Such findings have encouraged consideration of additional interactions that blur traditionally discrete phytoalexin classifications. The establishment of mutant collections and increasing ease of genetic transformation assists critical examination of further biological roles. Future research directions include examination of terpenoid phytoalexin precursors and end products as potential signals mediating plant physiological processes.
Collapse
Affiliation(s)
- Eric A Schmelz
- Center for Medical, Agricultural, and Veterinary Entomology, US Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, 32608, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Feltus FA. Systems genetics: a paradigm to improve discovery of candidate genes and mechanisms underlying complex traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:45-8. [PMID: 24767114 DOI: 10.1016/j.plantsci.2014.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/18/2014] [Accepted: 03/02/2014] [Indexed: 05/02/2023]
Abstract
Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits.
Collapse
Affiliation(s)
- F Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
25
|
Abstract
Background Tos17 was the first LTR retrotransposon (Copia) described as active in cultivated rice, and is present in two copies in the genome of the sequenced Nipponbare variety. Only the chromosome 7 copy is active and able to retrotranspose, at least during in vitro culture, and this ability was widely used in insertional mutagenesis assays. Results Here the structure of the active Tos17 was thoroughly annotated using a set of bioinformatic analyses. Conclusions Unexpectedly, Tos17 appears to be a non-autonomous LTR retrotransposon, lacking the gag sequence and thus unable to transpose by itself.
Collapse
Affiliation(s)
- Francois Sabot
- UMR DIADE IRD/UM2, 911 Avenue Agropolis BP64503, F-34394 Montpellier Cedex 5, France.
| |
Collapse
|
26
|
Nakagome M, Solovieva E, Takahashi A, Yasue H, Hirochika H, Miyao A. Transposon Insertion Finder (TIF): a novel program for detection of de novo transpositions of transposable elements. BMC Bioinformatics 2014; 15:71. [PMID: 24629057 PMCID: PMC4004357 DOI: 10.1186/1471-2105-15-71] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposition event detection of transposable element (TE) in the genome using short reads from the next-generation sequence (NGS) was difficult, because the nucleotide sequence of TE itself is repetitive, making it difficult to identify locations of its insertions by alignment programs for NGS. We have developed a program with a new algorithm to detect the transpositions from NGS data. RESULTS In the process of tool development, we used next-generation sequence (NGS) data of derivative lines (ttm2 and ttm5) of japonica rice cv. Nipponbare, regenerated through cell culture. The new program, called a transposon insertion finder (TIF), was applied to detect the de novo transpositions of Tos17 in the regenerated lines. TIF searched 300 million reads of a line within 20 min, identifying 4 and 12 de novo transposition in ttm2 and ttm5 lines, respectively. All of the transpositions were confirmed by PCR/electrophoresis and sequencing. Using the program, we also detected new transposon insertions of P-element from NGS data of Drosophila melanogaster. CONCLUSION TIF operates to find the transposition of any elements provided that target site duplications (TSDs) are generated by their transpositions.
Collapse
Affiliation(s)
| | | | | | | | | | - Akio Miyao
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
27
|
Cheng X, Wang M, Lee HK, Tadege M, Ratet P, Udvardi M, Mysore KS, Wen J. An efficient reverse genetics platform in the model legume Medicago truncatula. THE NEW PHYTOLOGIST 2014; 201:1065-1076. [PMID: 24206427 DOI: 10.1111/nph.12575] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/01/2013] [Indexed: 05/07/2023]
Abstract
Medicago truncatula is one of the model species for legume studies. In an effort to develop legume genetics resources, > 21 700 Tnt1 retrotransposon insertion lines have been generated. To facilitate fast-growing needs in functional genomics, two reverse genetics approaches have been established: web-based database searching and PCR-based reverse screening. More than 840 genes have been reverse screened using the PCR-based approach over the past 6 yr to identify mutants in these genes. Overall, c. 84% (705 genes) success rate was achieved in identifying mutants with at least one Tnt1 insertion, of which c. 50% (358 genes) had three or more alleles. To demonstrate the utility of the two reverse genetics platforms, two mutant alleles were isolated for each of the two floral homeotic MADS-box genes, MtPISTILATA and MtAGAMOUS. Molecular and genetic analyses indicate that Tnt1 insertions in exons of both genes are responsible for the defects in floral organ development. In summary, we have developed two efficient reverse genetics platforms to facilitate functional characterization of M. truncatula genes.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Division of Plant Biology, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Mingyi Wang
- Division of Plant Biology, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Hee-Kyung Lee
- Division of Plant Biology, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Million Tadege
- Division of Plant Biology, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
| | - Michael Udvardi
- Division of Plant Biology, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Division of Plant Biology, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Division of Plant Biology, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
28
|
Toriba T, Hirano HY. The DROOPING LEAF and OsETTIN2 genes promote awn development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:616-26. [PMID: 24330191 DOI: 10.1111/tpj.12411] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 05/18/2023]
Abstract
The awn is a long needle-like appendage that, in some grass species, is formed on the lemma that encloses floral organs together with the palea. In rice, most wild species and most strains of Oryza sativa ssp. indica generate an awn, whereas most strains of O. sativa ssp. japonica do not. In japonica, the long-awn characteristic appears to have been lost during domestication and breeding programs. Here, we found that the genes DROOPING LEAF (DL) and OsETTIN2 (OsETT2) are involved in awn development in the awned indica strain Kasalath. Genetic analyses and RNA-silencing experiments indicate that DL and OsETT2 act independently in awn formation, and that either gene alone is not sufficient for awn development. Scanning electron microscopy revealed that the top region of the lemma (a putative awn primordium) is larger in an awned floret than in an awnless floret. OsETT2 is expressed in the awn primordium in the awned indica floret, but not in the awnless japonica floret except in the provascular bundle. DL is expressed underneath the primordium at similar levels in both indica and japonica florets, suggesting non-cell-autonomous action. We hypothesize that loss of expression of OsETT2 in the awn primordium is probably associated with the failure of awn formation in japonica strains.
Collapse
Affiliation(s)
- Taiyo Toriba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | |
Collapse
|
29
|
Hunter CT, Suzuki M, Saunders J, Wu S, Tasi A, McCarty DR, Koch KE. Phenotype to genotype using forward-genetic Mu-seq for identification and functional classification of maize mutants. FRONTIERS IN PLANT SCIENCE 2014; 4:545. [PMID: 24432026 PMCID: PMC3882665 DOI: 10.3389/fpls.2013.00545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/12/2013] [Indexed: 05/08/2023]
Abstract
In pursuing our long-term goals of identifying causal genes for mutant phenotypes in maize, we have developed a new, phenotype-to-genotype approach for transposon-based resources, and used this to identify candidate genes that co-segregate with visible kernel mutants. The strategy incorporates a redesigned Mu-seq protocol (sequence-based, transposon mapping) for high-throughput identification of individual plants carrying Mu insertions. Forward-genetic Mu-seq also involves a genetic pipeline for generating families that segregate for mutants of interest, and grid designs for concurrent analysis of genotypes in multiple families. Critically, this approach not only eliminates gene-specific PCR genotyping, but also profiles all Mu-insertions in hundreds of individuals simultaneously. Here, we employ this scalable approach to study 12 families that showed Mendelian segregation of visible seed mutants. These families were analyzed in parallel, and 7 showed clear co-segregation between the selected phenotype and a Mu insertion in a specific gene. Results were confirmed by PCR. Mutant genes that associated with kernel phenotypes include those encoding: a new allele of Whirly1 (a transcription factor with high affinity for organellar and single-stranded DNA), a predicted splicing factor with a KH domain, a small protein with unknown function, a putative mitochondrial transcription-termination factor, and three proteins with pentatricopeptide repeat domains (predicted mitochondrial). Identification of such associations allows mutants to be prioritized for subsequent research based on their functional annotations. Forward-genetic Mu-seq also allows a systematic dissection of mutant classes with similar phenotypes. In the present work, a high proportion of kernel phenotypes were associated with mutations affecting organellar gene transcription and processing, highlighting the importance and non-redundance of genes controlling these aspects of seed development.
Collapse
Affiliation(s)
- Charles T. Hunter
- *Correspondence: Charles T. Hunter, Horticultural Sciences, University of Florida, 2550 Hull Rd., Gainesville, FL 32611, USA e-mail:
| | | | | | | | | | | | | |
Collapse
|
30
|
Hayashi-Tsugane M, Takahara H, Ahmed N, Himi E, Takagi K, Iida S, Tsugane K, Maekawa M. A mutable albino allele in rice reveals that formation of thylakoid membranes requires the SNOW-WHITE LEAF1 gene. PLANT & CELL PHYSIOLOGY 2014; 55:3-15. [PMID: 24151203 DOI: 10.1093/pcp/pct149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Active DNA transposons are important tools for gene functional analysis. The endogenous non-autonomous transposon, nDart1-0, in rice (Oryza sativa L.) is expected to generate various transposon-insertion mutants because nDart1-0 elements tend to insert into genic regions under natural growth conditions. We have developed a specific method (nDart1-0-iPCR) for efficient detection of nDart1-0 insertions and successfully identified the SNOW-WHITE LEAF1 (SWL1) gene in a variegated albino (swl1-v) mutant obtained from the nDart1-promoted rice tagging line. The variegated albino phenotype was caused by insertion and excision of nDart1-0 in the 5'-untranslated region of the SWL1 gene predicted to encode an unknown protein with the N-terminal chloroplast transit peptide. SWL1 expression was detected in various rice tissues at different developmental stages. However, immunoblot analysis indicated that SWL1 protein accumulation was strictly regulated in a tissue-specific manner. In the swl1 mutant, formations of grana and stroma thylakoids and prolamellar bodies were inhibited. This study revealed that SWL1 is essential for the beginning of thylakoid membrane organization during chloroplast development. Furthermore, we provide a developmental perspective on the nDart1-promoted tagging line to characterize unidentified gene functions in rice.
Collapse
|
31
|
Wang JC, Xu H, Zhu Y, Liu QQ, Cai XL. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3453-66. [PMID: 23846875 PMCID: PMC3733163 DOI: 10.1093/jxb/ert187] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Starch composition and the amount in endosperm, both of which contribute dramatically to seed yield, cooking quality, and taste in cereals, are determined by a series of complex biochemical reactions. However, the mechanism regulating starch biosynthesis in cereal seeds is not well understood. This study showed that OsbZIP58, a bZIP transcription factor, is a key transcriptional regulator controlling starch synthesis in rice endosperm. OsbZIP58 was expressed mainly in endosperm during active starch synthesis. osbzip58 null mutants displayed abnormal seed morphology with altered starch accumulation in the white belly region and decreased amounts of total starch and amylose. Moreover, osbzip58 had a higher proportion of short chains and a lower proportion of intermediate chains of amylopectin. Furthermore, OsbZIP58 was shown to bind directly to the promoters of six starch-synthesizing genes, OsAGPL3, Wx, OsSSIIa, SBE1, OsBEIIb, and ISA2, and to regulate their expression. These findings indicate that OsbZIP58 functions as a key regulator of starch synthesis in rice seeds and provide new insights into seed quality control.
Collapse
Affiliation(s)
- Jie-Chen Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Heng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Zhejiang 310021, PR China
| | - Ying Zhu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Zhejiang 310021, PR China
| | - Qiao-Quan Liu
- Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Xiu-Ling Cai
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
- * To whom correspondence should be addressed.
| |
Collapse
|
32
|
Ficklin SP, Feltus FA. A systems-genetics approach and data mining tool to assist in the discovery of genes underlying complex traits in Oryza sativa. PLoS One 2013; 8:e68551. [PMID: 23874666 PMCID: PMC3713027 DOI: 10.1371/journal.pone.0068551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/30/2013] [Indexed: 12/13/2022] Open
Abstract
Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance.
Collapse
Affiliation(s)
- Stephen P Ficklin
- Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
| | | |
Collapse
|
33
|
Kazachkova Y, Batushansky A, Cisneros A, Tel-Zur N, Fait A, Barak S. Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress. PLANT PHYSIOLOGY 2013; 162:1583-98. [PMID: 23735509 PMCID: PMC3707563 DOI: 10.1104/pp.113.217844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/03/2013] [Indexed: 05/03/2023]
Abstract
Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.
Collapse
Affiliation(s)
- Yana Kazachkova
- French Associates Institute for Biotechnology and Agriculture of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Albert Batushansky
- French Associates Institute for Biotechnology and Agriculture of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Aroldo Cisneros
- French Associates Institute for Biotechnology and Agriculture of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Noemi Tel-Zur
- French Associates Institute for Biotechnology and Agriculture of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Aaron Fait
- French Associates Institute for Biotechnology and Agriculture of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Simon Barak
- French Associates Institute for Biotechnology and Agriculture of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| |
Collapse
|
34
|
Nishihara M, Shimoda T, Nakatsuka T, Arimura GI. Frontiers of torenia research: innovative ornamental traits and study of ecological interaction networks through genetic engineering. PLANT METHODS 2013; 9:23. [PMID: 23803155 PMCID: PMC3701481 DOI: 10.1186/1746-4811-9-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/21/2013] [Indexed: 05/04/2023]
Abstract
Advances in research in the past few years on the ornamental plant torenia (Torenia spps.) have made it notable as a model plant on the frontier of genetic engineering aimed at studying ornamental characteristics and pest control in horticultural ecosystems. The remarkable advantage of torenia over other ornamental plant species is the availability of an easy and high-efficiency transformation system for it. Unfortunately, most of the current torenia research is still not very widespread, because this species has not become prominent as an alternative to other successful model plants such as Arabidopsis, snapdragon and petunia. However, nowadays, a more global view using not only a few selected models but also several additional species are required for creating innovative ornamental traits and studying horticultural ecosystems. We therefore introduce and discuss recent research on torenia, the family Scrophulariaceae, for secondary metabolite bioengineering, in which global insights into horticulture, agriculture and ecology have been advanced. Floral traits, in torenia particularly floral color, have been extensively studied by manipulating the flavonoid biosynthetic pathways in flower organs. Plant aroma, including volatile terpenoids, has also been genetically modulated in order to understand the complicated nature of multi-trophic interactions that affect the behavior of predators and pollinators in the ecosystem. Torenia would accordingly be of great use for investigating both the variation in ornamental plants and the infochemical-mediated interactions with arthropods.
Collapse
Affiliation(s)
| | - Takeshi Shimoda
- National Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan
| | - Takashi Nakatsuka
- Department of Biological and Environmental Science, Graduate School of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Gen-ichiro Arimura
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
35
|
Priya P, Jain M. RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cis-regulatory element and mutant information to facilitate gene function analysis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat027. [PMID: 23660286 PMCID: PMC3649641 DOI: 10.1093/database/bat027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rice is one of the most important crop plants, representing the staple food for more than half the world’s population. However, its productivity is challenged by various stresses, including drought and salinity. Transcription factors (TFs) represent a regulatory component of the genome and are the most important targets for engineering stress tolerance. Here, we constructed a database, RiceSRTFDB, which provides comprehensive expression information for rice TFs during drought and salinity stress conditions and various stages of development. This information will be useful to identify the target TF(s) involved in stress response at a particular stage of development. The curated information for cis-regulatory elements present in their promoters has also been provided, which will be important to study the binding proteins. In addition, we have provided the available mutants and their phenotype information for rice TFs. All these information have been integrated in the database to facilitate the selection of target TFs of interest for functional analysis. This database aims to accelerate functional genomics research of rice TFs and understand the regulatory mechanisms underlying abiotic stress responses. Database URL:http://www.nipgr.res.in/RiceSRTFDB.html
Collapse
Affiliation(s)
- Pushp Priya
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
36
|
Yang Y, Li Y, Wu C. Genomic resources for functional analyses of the rice genome. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:157-63. [PMID: 23571012 DOI: 10.1016/j.pbi.2013.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 05/07/2023]
Abstract
With the availability of the rice genome sequence, rice research communities are entering a new era of plant functional genomics. The last decade has seen rapid worldwide progress on establishing platforms for rice functional genomic research. These platforms offer practical toolkits and genomic resources for high-throughput identification of genes and pathways. In this review, we summarize available genomic resources for functional analyses of the rice genome. These genomic resources include high-quality bacterial artificial chromosome libraries, large-scale expression sequence tags, full-length cDNA collections, large amounts of data on global expression profiles, various mutant libraries and integrated bioinformatics databases. We not only present the current status of genomic resources but also discuss their usage in elucidating gene functions of the rice genome.
Collapse
Affiliation(s)
- Ying Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
37
|
Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C. Mutant resources for the functional analysis of the rice genome. MOLECULAR PLANT 2013; 6:596-604. [PMID: 23204502 DOI: 10.1093/mp/sss142] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice is one of the most important crops worldwide, both as a staple food and as a model system for genomic research. In order to systematically assign functions to all predicted genes in the rice genome, a large number of rice mutant lines, including those created by T-DNA insertion, Ds/dSpm tagging, Tos17 tagging, and chemical/irradiation mutagenesis, have been generated by groups around the world. In this study, we have reviewed the current status of mutant resources for functional analysis of the rice genome. A total of 246 566 flanking sequence tags from rice mutant libraries with T-DNA, Ds/dSpm, or Tos17 insertion have been collected and analyzed. The results show that, among 211 470 unique hits, inserts located in the genic region account for 68.16%, and 60.49% of nuclear genes contain at least one insertion. Currently, 57% of non-transposable-element-related genes in rice have insertional tags. In addition, chemical/irradiation-induced rice mutant libraries have contributed a lot to both gene identification and new technology for the identification of mutant sites. In this review, we summarize how these tools have been used to generate a large collection of mutants. In addition, we discuss the merits of classic mutation strategies. In order to achieve saturation of mutagenesis in rice, DNA targeting, and new resources like RiceFox for gene functional identification are reviewed from a perspective of the future generation of rice mutant resources.
Collapse
Affiliation(s)
- Nili Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
38
|
Shi M, Xie Y, Zheng Y, Wang J, Su Y, Yang Q, Huang S. Oryza sativa actin-interacting protein 1 is required for rice growth by promoting actin turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:747-60. [PMID: 23134061 DOI: 10.1111/tpj.12065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/18/2012] [Accepted: 11/01/2012] [Indexed: 05/03/2023]
Abstract
Rapid actin turnover is essential for numerous actin-based processes. However, how it is precisely regulated remains poorly understood. Actin-interacting protein 1 (AIP1) has been shown to be an important factor by acting coordinately with actin-depolymerizing factor (ADF)/cofilin in promoting actin depolymerization, the rate-limiting factor in actin turnover. However, the molecular mechanism by which AIP1 promotes actin turnover remains largely unknown in plants. Here, we provide a demonstration that AIP1 promotes actin turnover, which is required for optimal growth of rice plants. Specific down-regulation of OsAIP1 increased the level of filamentous actin and reduced actin turnover, whereas over-expression of OsAIP1 induced fragmentation and depolymerization of actin filaments and enhanced actin turnover. In vitro biochemical characterization showed that, although OsAIP1 alone does not affect actin dynamics, it enhances ADF-mediated actin depolymerization. It also caps the filament barbed end in the presence of ADF, but the capping activity is not required for their coordinated action. Real-time visualization of single filament dynamics showed that OsAIP1 enhanced ADF-mediated severing and dissociation of pointed end subunits. Consistent with this, the filament severing frequency and subunit off-rate were enhanced in OsAIP1 over-expressors but decreased in RNAi protoplasts. Importantly, OsAIP1 acts coordinately with ADF and profilin to induce massive net actin depolymerization, indicating that AIP1 plays a major role in the turnover of actin, which is required to optimize F-actin levels in plants.
Collapse
Affiliation(s)
- Meng Shi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2012; 196:1208-1216. [PMID: 23025475 DOI: 10.1111/j.1469-8137.2012.04339.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/10/2012] [Indexed: 05/23/2023]
Abstract
Arbuscular mycorrhiza (AM) represents an ancient endosymbiosis between plant roots and Glomeromycota fungi. Strigolactones (SLs), plant-derived terpenoid lactones, activate hyphal branching of AM fungi before physical contact. Lack of SL biosynthesis results in lower colonization of AM fungi. The F-box protein, DWARF3 (D3), and the hydrolase family protein DWARF14 (D14) are crucial for SL responses in rice. Here we conducted AM fungal colonization assays with the SL-insensitive d3 and d14 mutants. The d3 mutant exhibited strong defects in AM fungal colonization, whereas the d14 mutant showed higher AM fungal colonization. As D14 has a homologous protein, D14-LIKE, we generated D14-LIKE knockdown lines by RNA interference in the wildtype and d14 background. D14 and D14-LIKE double knockdown lines exhibited similar colonization rates as those of the d14-1 mutant. D3 is crucial for establishing AM symbiosis in rice, whereas D14 and D14-LIKE are not. Our results suggest distinct roles for these SL-related components in AM symbiosis.
Collapse
Affiliation(s)
- Satoko Yoshida
- Plant Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiromu Kameoka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misaki Tempo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Mikihisa Umehara
- Plant Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Shinjiro Yamaguchi
- Plant Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hideo Hayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Junko Kyozuka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ken Shirasu
- Plant Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
40
|
Lin C, Lin X, Hu L, Yang J, Zhou T, Long L, Xu C, Xing S, Qi B, Dong Y, Liu B. Dramatic genotypic difference in, and effect of genetic crossing on, tissue culture-induced mobility of retrotransposon Tos17 in rice. PLANT CELL REPORTS 2012; 31:2057-63. [PMID: 22945626 DOI: 10.1007/s00299-012-1316-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE : We show for the first time that intraspecific crossing may impact mobility of the prominent endogenous retrotransposon Tos17 under tissue culture conditions in rice. Tos17, an endogenous copia retrotransposon of rice, is transpositionally active in tissue culture. To study whether there exists fundamental genotypic difference in the tissue culture-induced mobility of Tos17, and if so, whether the difference is under genetic and/or epigenetic control, we conducted this investigation. We show that dramatic difference in tissue culture-induced Tos17 mobility exists among different rice pure-line cultivars sharing the same maternal parent: of the three lines studied that harbor Tos17, two showed mobilization of Tos17, which accrued in proportion to subculture duration, while the third line showed total quiescence (immobility) of the element and the fourth line did not contain the element. In reciprocal F1 hybrids between Tos17-mobile and -immobile (or absence) parental lines, immobility was dominant over mobility. In reciprocal F1 hybrids between both Tos17-mobile parental lines, an additive or synergistic effect on mobility of the element was noticed. In both types of reciprocal F1 hybrids, clear difference in the extent of Tos17 mobility was noted between crossing directions. Given that all lines share the same maternal parent, this observation indicates the existence of epigenetic parent-of-origin effect. We conclude that the tissue culture-induced mobility of Tos17 in rice is under complex genetic and epigenetic control, which can be either enhanced or repressed by intraspecific genetic crossing.
Collapse
Affiliation(s)
- Chunjing Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. PLANT, CELL & ENVIRONMENT 2012; 35:1948-57. [PMID: 22548273 DOI: 10.1111/j.1365-3040.2012.02527.x] [Citation(s) in RCA: 363] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plants and humans. Cadmium (Cd) is a Zn analog and one of the most toxic heavy metals to humans. Here we investigated the role of the Zn/Cd transporter OsHMA2. OsHMA2:GFP fusion protein localized to the plasma membrane in onion epidermal cells. The yeast expressing OsHMA2 was able to reverse the growth defect in the presence of excess Zn. The expression of OsHMA2 in rice was observed mainly in the roots where OsHMA2 transcripts were abundant in vascular bundles. Furthermore, Zn and Cd concentrations of OsHMA2-suppressed rice decreased in the leaves, while the Zn concentration increased in the roots compared with the wild type (WT). These results suggest that OsHMA2 plays a role in Zn and Cd loading to the xylem and participates in root-to-shoot translocation of these metals in rice. Furthermore, the Cd concentration in the grains of OsHMA2-overexpressing rice as well as in OsSUT1-promoter OsHMA2 rice decreased to about half that of the WT, although the other metal concentrations were the same as in the WT. A phenotype that reduces only the Cd concentration in rice grains will be very useful for transgenic approaches to food safety.
Collapse
Affiliation(s)
- Ryuichi Takahashi
- Graduate School of Agricultural & Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
The screening and preliminary construction of quality mutant population for cultivar “Nipponbare” in japonica rice (Oryza sativa). Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, Fumasoni I, Michel C, Paccanaro A, Guiderdoni E, Schaffrath U, Morel JB, Piffanelli P, Faivre-Rampant O. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. MOLECULAR PLANT PATHOLOGY 2012; 13:828-41. [PMID: 22443363 PMCID: PMC6638809 DOI: 10.1111/j.1364-3703.2012.00795.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
With the aim of identifying novel regulators of host and nonhost resistance to fungi in rice, we carried out a systematic mutant screen of mutagenized lines. Two mutant wrky22 knockout lines revealed clear-cut enhanced susceptibility to both virulent and avirulent Magnaporthe oryzae strains and altered cellular responses to nonhost Magnaporthe grisea and Blumeria graminis fungi. In addition, the analysis of the pathogen responses of 24 overexpressor OsWRKY22 lines revealed enhanced resistance phenotypes on infection with virulent M. oryzae strain, confirming that OsWRKY22 is involved in rice resistance to blast. Bioinformatic analyses determined that the OsWRKY22 gene belongs to a well-defined cluster of monocot-specific WRKYs. The co-regulatory analysis revealed no significant co-regulation of OsWRKY22 with a representative panel of OsWRKYs, supporting its unique role in a series of transcriptional responses. In contrast, inquiring a subset of biotic stress-related Affymetrix data, a large number of resistance and defence-related genes were found to be putatively co-expressed with OsWRKY22. Taken together, all gathered experimental evidence places the monocot-specific OsWRKY22 gene at the convergence point of signal transduction circuits in response to both host and nonhost fungi encountering rice plants.
Collapse
Affiliation(s)
- Pamela Abbruscato
- Rice Genomics Unit, Parco Tecnologico Padano, via Einstein, 26900 Lodi, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yamamoto E, Yonemaru JI, Yamamoto T, Yano M. OGRO: The Overview of functionally characterized Genes in Rice online database. ACTA ACUST UNITED AC 2012; 5:26. [PMID: 27234245 PMCID: PMC5520837 DOI: 10.1186/1939-8433-5-26] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/13/2012] [Indexed: 12/14/2022]
Abstract
Background The high-quality sequence information and rich bioinformatics tools available for rice have contributed to remarkable advances in functional genomics. To facilitate the application of gene function information to the study of natural variation in rice, we comprehensively searched for articles related to rice functional genomics and extracted information on functionally characterized genes. Results As of 31 March 2012, 702 functionally characterized genes were annotated. This number represents about 1.6% of the predicted loci in the Rice Annotation Project Database. The compiled gene information is organized to facilitate direct comparisons with quantitative trait locus (QTL) information in the Q-TARO database. Comparison of genomic locations between functionally characterized genes and the QTLs revealed that QTL clusters were often co-localized with high-density gene regions, and that the genes associated with the QTLs in these clusters were different genes, suggesting that these QTL clusters are likely to be explained by tightly linked but distinct genes. Information on the functionally characterized genes compiled during this study is now available in the O verview of Functionally Characterized G enes in R ice O nline database (OGRO) on the Q-TARO website (http://qtaro.abr.affrc.go.jp/ogro). The database has two interfaces: a table containing gene information, and a genome viewer that allows users to compare the locations of QTLs and functionally characterized genes. Conclusions OGRO on Q-TARO will facilitate a candidate-gene approach to identifying the genes responsible for QTLs. Because the QTL descriptions in Q-TARO contain information on agronomic traits, such comparisons will also facilitate the annotation of functionally characterized genes in terms of their effects on traits important for rice breeding. The increasing amount of information on rice gene function being generated from mutant panels and other types of studies will make the OGRO database even more valuable in the future. Electronic supplementary material The online version of this article (doi:10.1186/1939-8433-5-26) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eiji Yamamoto
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Jun-Ichi Yonemaru
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Toshio Yamamoto
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masahiro Yano
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
45
|
Kim JS, Kim J, Lee TH, Jun KM, Kim TH, Kim YH, Park HM, Jeon JS, An G, Yoon UH, Nahm BH, Kim YK. FSTVAL: a new web tool to validate bulk flanking sequence tags. PLANT METHODS 2012; 8:19. [PMID: 22709793 PMCID: PMC3439307 DOI: 10.1186/1746-4811-8-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/18/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Information about a transgene locus is one of the major concerns in transgenic research because expression of the transgene or a gene interrupted by the integration event could be affected. Thus, the flanking sequences obtained from transgenic plants need to be analyzed in terms of genomic context, such as genic and intergenic regions. This process may consist of several steps: 1) elimination of a vector sequence from the flanking sequence, 2) finding the locations in the target genome, and 3) statistics of the integration sites. These steps could be automated for flanking sequences from several dozens of transgenic plants generated in an ordinary targeted gene expression strategy. It would be indispensable in a genome-wide mutagenesis screen using T-DNA or transposons because these projects often generate several thousands of transgenic lines and just as many loci of the transgene among the transgenic plants. RESULTS We present an open access web tool, flanking sequence tags validator (FSTVAL), to manage bulk flanking sequence tags (FSTs). FSTVAL automatically evaluates the FSTs and finds the best mapping positions of the FST against a known genome sequence. The statistics, in terms of genic and intergenic regions, are presented as a table, a distribution map, and a frequency graph along the chromosomes. Currently, 17 plant genome sequences, including Arabidopsis thaliana, Oryza sativa, and Glycine max, are available as reference genomes. We evaluated the utility and accuracy of the tool with 5,144 rice FSTs. The whole process, from uploading the sequences to generating tables of insertions, required a few minutes, with less than 4 clicks in the web environment. CONCLUSIONS Run for 1 year and tested over 1,000 times, we have confirmed FSTVAL efficiently handles bulk FSTs. FSTVAL is freely available without login at http://bioinfo.mju.ac.kr/fstval/.
Collapse
Affiliation(s)
- Joung Sug Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido, 449-728, South Korea
| | - Jiye Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido, 449-728, South Korea
| | - Tae-Ho Lee
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido, 449-728, South Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido, 449-728, South Korea
| | - Tea Hoon Kim
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido, 449-728, South Korea
| | - Yul-Ho Kim
- Upland Crop Research division, National Institute of Crop Science, Suwon, 441-857, South Korea
| | - Hyang-Mi Park
- Upland Crop Research division, National Institute of Crop Science, Suwon, 441-857, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Gynheung An
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Ung-Han Yoon
- National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, South Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido, 449-728, South Korea
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido, 449-728, South Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido, 449-728, South Korea
| |
Collapse
|
46
|
Lorieux M, Blein M, Lozano J, Bouniol M, Droc G, Diévart A, Périn C, Mieulet D, Lanau N, Bès M, Rouvière C, Gay C, Piffanelli P, Larmande P, Michel C, Barnola I, Biderre-Petit C, Sallaud C, Perez P, Bourgis F, Ghesquière A, Gantet P, Tohme J, Morel JB, Guiderdoni E. In-depth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:555-68. [PMID: 22369597 DOI: 10.1111/j.1467-7652.2012.00689.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report here the molecular and phenotypic features of a library of 31,562 insertion lines generated in the model japonica cultivar Nipponbare of rice (Oryza sativa L.), called Oryza Tag Line (OTL). Sixteen thousand eight hundred and fourteen T-DNA and 12,410 Tos17 discrete insertion sites have been characterized in these lines. We estimate that 8686 predicted gene intervals--i.e. one-fourth to one-fifth of the estimated rice nontransposable element gene complement--are interrupted by sequence-indexed T-DNA (6563 genes) and/or Tos17 (2755 genes) inserts. Six hundred and forty-three genes are interrupted by both T-DNA and Tos17 inserts. High quality of the sequence indexation of the T2 seed samples was ascertained by several approaches. Field evaluation under agronomic conditions of 27,832 OTL has revealed that 18.2% exhibit at least one morphophysiological alteration in the T1 progeny plants. Screening 10,000 lines for altered response to inoculation by the fungal pathogen Magnaporthe oryzae allowed to observe 71 lines (0.7%) developing spontaneous lesions simulating disease mutants and 43 lines (0.4%) exhibiting an enhanced disease resistance or susceptibility. We show here that at least 3.5% (four of 114) of these alterations are tagged by the mutagens. The presence of allelic series of sequence-indexed mutations in a gene among OTL that exhibit a convergent phenotype clearly increases the chance of establishing a linkage between alterations and inserts. This convergence approach is illustrated by the identification of the rice ortholog of AtPHO2, the disruption of which causes a lesion-mimic phenotype owing to an over-accumulation of phosphate, in nine lines bearing allelic insertions.
Collapse
Affiliation(s)
- Mathias Lorieux
- IRD, UMR DIADE, CIAT, Agrobiodiversity and Biotechnology Project, Cali, Colombia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano HY. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:327-39. [PMID: 22136599 DOI: 10.1111/j.1365-313x.2011.04872.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Post-embryonic development depends on the activity of meristems in plants, and thus control of cell fate in the meristem is crucial to plant development and its architecture. In grasses such as rice and maize, the fate of reproductive meristems changes from indeterminate meristems, such as inflorescence and branch meristems, to determinate meristems, such as the spikelet meristem. Here we analyzed a recessive mutant of rice, aberrant spikelet and panicle1 (asp1), that showed pleiotropic phenotypes such as a disorganized branching pattern, aberrant spikelet morphology, and disarrangement of phyllotaxy. Close examination revealed that regulation of meristem fate was compromised in asp1: degeneration of the inflorescence meristem was delayed, transition from the branch meristem to the spikelet meristem was accelerated, and stem cell maintenance in both the branch meristem and the spikelet meristem was compromised. The genetic program was also disturbed in terms of spikelet development. Gene isolation revealed that ASP1 encodes a transcriptional co-repressor that is related to TOPLESS (TPL) in Arabidopsis and RAMOSA ENHANCER LOCUS2 (REL2) in maize. It is likely that the pleiotropic defects are associated with de-repression of multiple genes related to meristem function in the asp1 mutant. The asp1 mutant also showed de-repression of axillary bud growth and disturbed phyllotaxy in the vegetative phase, suggesting that the function of this gene is closely associated with auxin action. Consistent with these observations and the molecular function of Arabidopsis TPL, auxin signaling was also compromised in the rice asp1 mutant. Taken together, these results indicate that ASP1 regulates various aspects of developmental processes and physiological responses as a transcriptional co-repressor in rice.
Collapse
Affiliation(s)
- Akiko Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
48
|
Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa H, Tabata S, Sato S, Hayashi M. Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:720-30. [PMID: 22014259 DOI: 10.1111/j.1365-313x.2011.04826.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We established a gene tagging population of the model legume Lotus japonicus using an endogenous long terminal repeat (LTR) retrotransposon Lotus Retrotransposon 1 (LORE1). The population was composed of 2450 plant lines, from which a total of 4532 flanking sequence tags of LORE1 were recovered by pyrosequencing. The two-dimensional arrangement of the plant population, together with the use of multiple identifier sequences in the primers used to amplify the flanking regions, made it possible to trace insertions back to the original plant lines. The large-scale detection of new LORE1 insertion sites revealed a preference for genic regions, especially in exons of protein-coding genes, which is an interesting feature to consider in the interaction between host genomes and chromoviruses, to which LORE1 belongs, a class of retrotransposon widely distributed among plants. Forward screening of the symbiotic mutants from the population succeeded to identify five symbiotic mutants of known genes. These data suggest that LORE1 is robust as a genetic tool.
Collapse
Affiliation(s)
- Eigo Fukai
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Anai T. Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean. BREEDING SCIENCE 2012; 61:462-7. [PMID: 23136486 PMCID: PMC3406801 DOI: 10.1270/jsbbs.61.462] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/14/2011] [Indexed: 05/04/2023]
Abstract
Mutant-based reverse genetics offers a powerful way to create novel mutant alleles at a selected locus. This approach makes it possible to directly identify plants that carry a specific modified gene from the nucleotide sequence data. Soybean [Glycine max (L.) Merr.] has a highly redundant paleopolyploid genome (approx. 1.1 Gb), which was completely sequenced in 2010. Using reverse genetics to support functional genomics studies designed to predict gene function would accelerate post-genomics research in soybean. Furthermore, the novel mutant alleles created by this approach would be useful genetic resources for improving various traits in soybean. A reverse genetic screening platform in soybean has been developed that combines more than 40,000 mutant lines with a high-throughput method, Targeting Local Lesions IN Genome (TILLING). In this review, the mutant-based reverse genetic approach based on this platform is described, and the likely evolution of this approach in the near future.
Collapse
Affiliation(s)
- Toyoaki Anai
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Saga University, Honjyo-machi 1, Saga 840-8502, Japan
| |
Collapse
|
50
|
Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H. Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. PLANT & CELL PHYSIOLOGY 2012; 53:256-64. [PMID: 22156226 DOI: 10.1093/pcp/pcr172] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Somaclonal variation is a phenomenon that results in the phenotypic variation of plants regenerated from cell culture. One of the causes of somaclonal variation in rice is the transposition of retrotransposons. However, many aspects of the mechanisms that result in somaclonal variation remain undefined. To detect genome-wide changes in regenerated rice, we analyzed the whole-genome sequences of three plants independently regenerated from cultured cells originating from a single seed stock. Many single-nucleotide polymorphisms (SNPs) and insertions and deletions (indels) were detected in the genomes of the regenerated plants. The transposition of only Tos17 among 43 transposons examined was detected in the regenerated plants. Therefore, the SNPs and indels contribute to the somaclonal variation in regenerated rice in addition to the transposition of Tos17. The observed molecular spectrum was similar to that of the spontaneous mutations in Arabidopsis thaliana. However, the base change ratio was estimated to be 1.74 × 10(-6) base substitutions per site per regeneration, which is 248-fold greater than the spontaneous mutation rate of A. thaliana.
Collapse
Affiliation(s)
- Akio Miyao
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|