1
|
Zhu J, Chen Q, Guo Z, Wang Y, Li Q, Li Y, Lei L, Liu C, Li Y, Tang R, Tang J, Zhang Z, Peng S, Zhang M, Chen Z, Kong L, Deng M, Xu Q, Zhang Y, Jiang Q, Wang J, Chen G, Jiang Y, Wei Y, Zheng Y, Qi P. Genome-wide analysis of Q binding reveals a regulatory network that coordinates wheat grain yield and grain protein content. J Genet Genomics 2025:S1673-8527(25)00058-X. [PMID: 40032184 DOI: 10.1016/j.jgg.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Wheat is an important cereal crop used to produce diverse and popular food worldwide because of its high grain yield (GY) and grain protein content (GPC). However, GY and GPC are usually negatively correlated. We previously reported that favorable alleles of the wheat domestication gene Q can synchronously increase GY and GPC, but the underlying mechanisms remain largely unknown. In this study, we investigated the regulatory network involving Q associated with GY and GPC in young grains through DNA affinity purification sequencing and transcriptome sequencing analyses, electrophoretic mobility shift and dual-luciferase assays, and transgenic approaches. Three Q-binding motifs, namely TTAAGG, AAACA[A/T]A, and GTAC[T/G]A, were identified. Notably, genes related to photosynthesis or carbon and nitrogen metabolism were enriched and regulated by Q. Moreover, Q was revealed to bind directly to its own gene and the glutamine synthetase gene TaGSr-4D to increase expression, thereby influencing nitrogen assimilation during the grain filling stage and increasing GPC. Considered together, our study findings provide molecular evidence of the positive regulatory effects of Q on wheat GY and GPC.
Collapse
Affiliation(s)
- Jing Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhenru Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qingcheng Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yang Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lu Lei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Caihong Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yue Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rui Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jie Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ziyi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shijing Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhongxu Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yazhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Feng W, Xue W, Zhao Z, Shi Z, Wang W, Bai Y, Wang H, Qiu P, Xue J, Chen B. Nitrogen fertilizer application rate affects the dynamic metabolism of nitrogen and carbohydrates in kernels of waxy maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1416397. [PMID: 39148609 PMCID: PMC11324447 DOI: 10.3389/fpls.2024.1416397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Introduction Nitrogen (N) plays a pivotal role in the growth, development, and yield of maize. An optimal N application rate is crucial for enhancing N and carbohydrate (C) accumulation in waxy maize grains, which in turn synergistically improves grain weight. Methods A 2-year field experiment was conducted to evaluate the impact of different N application rates on two waxy maize varieties, Jinnuo20 (JN20) and Jindannuo41 (JDN41), during various grain filling stages. The applied N rates were 0 (N0), 120 (N1), 240 (N2), and 360 (N3) kg N ha-1. Results The study revealed that N application significantly influenced nitrogen accumulation, protein components (gliadin, albumin, globulin, and glutelin), carbohydrate contents (soluble sugars, amylose, and amylopectin), and activities of enzymes related to N and C metabolism in waxy maize grains. Notable varietal differences in these parameters were observed. In both varieties, the N2 treatment consistently resulted in the highest values for almost all measured traits compared to the other N treatments. Specifically, the N2 treatment yielded an average increase in grain dry matter of 21.78% for JN20 and 17.11% for JDN41 compared to N0. The application of N positively influenced the activities of enzymes involved in C and N metabolism, enhancing the biosynthesis of grain protein, amylose, and amylopectin while decreasing the accumulation of soluble sugars. This modulation of the C/N ratio in the grains directly contributed to an increase in grain dry weight. Conclusion Collectively, our findings underscore the critical role of N in regulating kernel N and C metabolism, thereby influencing dry matter accumulation in waxy maize grains during the grain filling stage.
Collapse
Affiliation(s)
- Wanjun Feng
- Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi, China
| | - Weiwei Xue
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zequn Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhaokang Shi
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weijie Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yu Bai
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haoxue Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Peng Qiu
- Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi, China
| | - Jianfu Xue
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Baoguo Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
3
|
Zhang S, Xu L, Zheng Q, Hu J, Jiang D, Dai T, Tian Z. The tetraploid wheat (Triticum dicoccum (Schrank) Schuebl.) improves nitrogen uptake and assimilation adaptation to nitrogen-deficit stress. PLANTA 2024; 259:151. [PMID: 38733553 DOI: 10.1007/s00425-024-04432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
MAIN CONCLUSION The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Libing Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jinling Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Kaushik M, Mulani E, Kumar A, Chauhan H, Saini MR, Bharati A, Gayatri, Iyyappan Y, Madhavan J, Sevanthi AM, Mandal PK. Starch and storage protein dynamics in the developing and matured grains of durum wheat and diploid progenitor species. Int J Biol Macromol 2024; 267:131177. [PMID: 38583842 DOI: 10.1016/j.ijbiomac.2024.131177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Durum wheat, less immunogenically intolerant than bread wheat, originates from diploid progenitors known for nutritional quality and stress tolerance. Present study involves the analysis of major grain parameters, viz. size, weight, sugar, starch, and protein content of Triticum durum (AABB genome) and its diploid progenitors, Triticum monococcum (AA genome) and Aegilops speltoides (BB genome). Samples were collected during 2-5 weeks after anthesis (WAA), and at maturity. The investigation revealed that T. durum displayed the maximum grain size and weight. Expression analysis of Grain Weight 2 (GW2) and Glutamine Synthase (GS2), negative and positive regulators of grain weight and size, respectively, revealed higher GW2 expression in Ae. speltoides and higher GS2 expression in T. durum. Further we explored total starch, sugar and protein content, observing higher levels of starch and sugar in durum wheat while AA genome species exhibited higher protein content dominated by the fractions of albumin/globulin. HPLC profiling revealed unique sub-fractions in all three genome species. Additionally, a comparative transcriptome analysis also corroborated with the starch and protein content in the grains. This study provides valuable insights into the genetic and biochemical distinctions among durum wheat and its diploid progenitors, offering a foundation for their nutritional composition.
Collapse
Affiliation(s)
- Megha Kaushik
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Ekta Mulani
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Amit Kumar
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Harsh Chauhan
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Manish Ranjan Saini
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Alka Bharati
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Gayatri
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Yuvaraj Iyyappan
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Jayanthi Madhavan
- Division of Genetics, ICAR - Indian Agriculture Research Institute, Pusa Campus, New Delhi 110012, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Pranab Kumar Mandal
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India.
| |
Collapse
|
5
|
Moreira E, Ferreira J, Coimbra S, Melo P. The significance of the two cytosolic glutamine synthetase enzymes, GLN1;3 and GLN1;5, in the context of seed development and germination in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108631. [PMID: 38657550 DOI: 10.1016/j.plaphy.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Glutamine synthetase (GS), an initial enzyme in nitrogen (N) plant metabolism, exists as a group of isoenzymes found in both cytosolic (GS1) and plastids (GS2) and has gathered significant attention for enhancing N use efficiency and crop yield. This work focuses on the A. thaliana GLN1;3 and GLN1;5 genes, the two predicted most expressed genes in seeds, among the five isogenes encoding GS1 in this species. The expression patterns were studied using transgenic marker line plants and qPCR during seed development and germination. The observed patterns highlight distinct functions for the two genes and confirm GLN1;5 as the most highly expressed GS1 gene in seeds. The GLN1;5, expression, oriented towards hypocotyl and cotyledons, suggests a role in protein turnover during germination, while the radicle-oriented expression of GLN1;3 supports a function in early external N uptake. While the single mutants exhibited a normal phenotype, except for a decrease in seed parameters, the double gln1;3/gln1;5 mutant displayed a germination delay, substantial impairment in growth, nitrogen metabolism, and number and quality of the seeds, as well as a diminishing in flowering. Although seed and pollen-specific, GLN1;5 expression is upregulated in the meristems of the gln1;3 mutants, filling the lack of GLN1;3 and ensuring the normal functioning of the gln1;3 mutants. These findings validate earlier in silico data on the expression patterns of GLN1;3 and GL1;5 genes in seeds, explore their different functions, and underscore their essential role in plant growth, seed production, germination, and early stages of plant development.
Collapse
Affiliation(s)
- Emanuel Moreira
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; INOV4Agro - GreenUPorto - Research Centre on Sustainable Agri-Food Production, Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - João Ferreira
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Sílvia Coimbra
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; LAQV/REQUIMTE, Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Paula Melo
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; INOV4Agro - GreenUPorto - Research Centre on Sustainable Agri-Food Production, Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
6
|
Chen F, He Y, Yao X, Zho B, Tian S, Yin J, Lu L. CsMOF1-guided regulation of drought-induced theanine biosynthesis in Camellia sinensis. Int J Biol Macromol 2024; 268:131725. [PMID: 38677697 DOI: 10.1016/j.ijbiomac.2024.131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The distinctive flavor and numerous health benefits of tea are attributed to the presence of theanine, a special amino acid found in tea plants. Nitrogen metabolite is greatly impacted by drought; however, the molecular mechanism underlying the synthesis of theanine in drought-stricken tea plants is still not clear. Through the drought transcriptome data of tea plants, we have identified a gene CsMOF1 that appears to play a role in theanine biosynthesis under drought stress, presenting a significantly negative correlation with both theanine content and the expression of CsGS1. Further found that CsMOF1 is a transcription factor containing a MYB binding domain, localized in the nucleus. Upon silencing CsMOF1, there was a prominent increase in the level of the theanine and glutamine, as well as the expression of CsGS1, while glutamic acid content decreased significantly. Conversely, overexpression of CsMOF1 yielded opposite effects. Dual luciferase reporter assay and electromobility shift assays demonstrated that CsMOF1 binds to the promoter of CsGS1, thereby inhibiting its activity. These results indicate that CsMOF1 plays a crucial role in theanine biosynthesis in tea plants under drought stress, acting as a transcriptional repressor related to theanine biosynthesis. This study provides new insights into the tissue-specific regulation of theanine biosynthesis and aids with the cultivation of new varieties of tea plants.
Collapse
Affiliation(s)
- Feng Chen
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Yuan He
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Bokun Zho
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Shiyu Tian
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Jie Yin
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China.
| | - Litang Lu
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023; 13:1771. [PMID: 38136642 PMCID: PMC10742212 DOI: 10.3390/biom13121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cereals are the most broadly produced crops and represent the primary source of food worldwide. Nitrogen (N) is a critical mineral nutrient for plant growth and high yield, and the quality of cereal crops greatly depends on a suitable N supply. In the last decades, a massive use of N fertilizers has been achieved in the desire to have high yields of cereal crops, leading to damaging effects for the environment, ecosystems, and human health. To ensure agricultural sustainability and the required food source, many attempts have been made towards developing cereal crops with a more effective nitrogen use efficiency (NUE). NUE depends on N uptake, utilization, and lastly, combining the capability to assimilate N into carbon skeletons and remobilize the N assimilated. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a crucial metabolic step of N assimilation, regulating crop yield. In this review, the physiological and genetic studies on GS and GOGAT of the main cereal crops will be examined, giving emphasis on their implications in NUE.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Cecilia Lasorella
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| |
Collapse
|
8
|
Kumari J, Lakhwani D, Jakhar P, Sharma S, Tiwari S, Mittal S, Avashthi H, Shekhawat N, Singh K, Mishra KK, Singh R, Yadav MC, Singh GP, Singh AK. Association mapping reveals novel genes and genomic regions controlling grain size architecture in mini core accessions of Indian National Genebank wheat germplasm collection. FRONTIERS IN PLANT SCIENCE 2023; 14:1148658. [PMID: 37457353 PMCID: PMC10345843 DOI: 10.3389/fpls.2023.1148658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/11/2023] [Indexed: 07/18/2023]
Abstract
Wheat (Triticum aestivum L.) is a staple food crop for the global human population, and thus wheat breeders are consistently working to enhance its yield worldwide. In this study, we utilized a sub-set of Indian wheat mini core germplasm to underpin the genetic architecture for seed shape-associated traits. The wheat mini core subset (125 accessions) was genotyped using 35K SNP array and evaluated for grain shape traits such as grain length (GL), grain width (GW), grain length, width ratio (GLWR), and thousand grain weight (TGW) across the seven different environments (E1, E2, E3, E4, E5, E5, E6, and E7). Marker-trait associations were determined using a multi-locus random-SNP-effect Mixed Linear Model (mrMLM) program. A total of 160 non-redundant quantitative trait nucleotides (QTNs) were identified for four grain shape traits using two or more GWAS models. Among these 160 QTNs, 27, 36, 38, and 35 QTNs were associated for GL, GW, GLWR, and TGW respectively while 24 QTNs were associated with more than one trait. Of these 160 QTNs, 73 were detected in two or more environments and were considered reliable QTLs for the respective traits. A total of 135 associated QTNs were annotated and located within the genes, including ABC transporter, Cytochrome450, Thioredoxin_M-type, and hypothetical proteins. Furthermore, the expression pattern of annotated QTNs demonstrated that only 122 were differentially expressed, suggesting these could potentially be related to seed development. The genomic regions/candidate genes for grain size traits identified in the present study represent valuable genomic resources that can potentially be utilized in the markers-assisted breeding programs to develop high-yielding varieties.
Collapse
Affiliation(s)
- Jyoti Kumari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Deepika Lakhwani
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Preeti Jakhar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shivani Sharma
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shailesh Tiwari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Jaypee University of Information Technology, Solan, India
| | | | - Neelam Shekhawat
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Jodhpur, Jodhpur, India
| | - Kartar Singh
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Jodhpur, Jodhpur, India
| | | | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mahesh C. Yadav
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
9
|
Hong Y, Zhang M, Xu R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. Int J Mol Sci 2023; 24:ijms24054932. [PMID: 36902360 PMCID: PMC10003025 DOI: 10.3390/ijms24054932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Grain size is an important agronomic trait determining barley yield and quality. An increasing number of QTLs (quantitative trait loci) for grain size have been reported due to the improvement in genome sequencing and mapping. Elucidating the molecular mechanisms underpinning barley grain size is vital for producing elite cultivars and accelerating breeding processes. In this review, we summarize the achievements in the molecular mapping of barley grain size over the past two decades, highlighting the results of QTL linkage analysis and genome-wide association studies. We discuss the QTL hotspots and predict candidate genes in detail. Moreover, reported homologs that determine the seed size clustered into several signaling pathways in model plants are also listed, providing the theoretical basis for mining genetic resources and regulatory networks of barley grain size.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
10
|
Pascual L, Solé-Medina A, Faci I, Giraldo P, Ruiz M, Benavente E. Development and marker-trait relationships of functional markers for glutamine synthetase GS1 and GS2 homoeogenes in bread wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:8. [PMID: 37309364 PMCID: PMC10248667 DOI: 10.1007/s11032-022-01354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/28/2022] [Indexed: 06/14/2023]
Abstract
GS1 and GS2 genes encode, respectively, the main cytosolic and the plastidic isoforms of glutamine synthetase (GS). In the present study, the wheat GS1 and GS2 homoeogenes located in the A, B and D genome chromosomes have been sequenced in a group of 15 bread wheat varieties including landraces, old commercial varieties and modern cultivars. Phenotypic characterization by multi-environment field trials detected significant effects of specific GS homoeogenes on three of the seven agronomic and grain quality traits analyzed. Based on the gene sequence polymorphisms found, biallelic molecular markers that could facilitate marker-assisted breeding were developed for genes GS1A, GS2A and GS2D. The remaining genes encoding main wheat GS were excluded because of being monomorphic (GS1D) or too polymorphic (GS1B and GS2B) in the sequencing panel varieties. A collection of 187 Spanish bread wheat landraces was genotyped for these gene-based molecular markers. Data analyses conducted with phenotypic records reported for this germplasm collection in López-Fernández et al. (Plants-Basel 10: 620, 2021) have revealed the beneficial influence of some individual alleles on thousand-kernel weight (TKW), kernels per spike (KS) and grain protein content. Furthermore, genetic interactions between GS1A, a cytosolic GS isoform coding gene, and GS2A or GS2D, plastidic GS enzyme coding genes, were found to affect TKW and KS. The finding that some alleles at one locus may mask the effect of positive alleles at hypostatic GS loci should be kept in mind if gene pyramiding strategies are attempted for the improvement of N-use efficiency-related traits. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01354-0.
Collapse
Affiliation(s)
- Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Aida Solé-Medina
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Isabel Faci
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- John Innes Centre, Norwich Research Park, Colney, NR4 7UH UK
| | - Patricia Giraldo
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Magdalena Ruiz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Autovía A2, Km. 36.2, Finca La Canaleja, Alcalá de Henares, Madrid, 28805 Spain
| | - Elena Benavente
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Unkefer PJ, Knight TJ, Martinez RA. The intermediate in a nitrate-responsive ω-amidase pathway in plants may signal ammonium assimilation status. PLANT PHYSIOLOGY 2023; 191:715-728. [PMID: 36303326 PMCID: PMC9806585 DOI: 10.1093/plphys/kiac501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A metabolite of ammonium assimilation was previously theorized to be involved in the coordination of the overall nitrate response in plants. Here we show that 2-hydroxy-5-oxoproline, made by transamination of glutamine, the first product of ammonium assimilation, may be involved in signaling a plant's ammonium assimilation status. In leaves, 2-hydroxy-5-oxoproline met four foundational requirements to be such a signal. First, when it was applied to foliage, enzyme activities of nitrate reduction and ammonium assimilation increased; the activities of key tricarboxylic acid cycle-associated enzymes that help to supply carbon skeletons for amino acid synthesis also increased. Second, its leaf pools increased as nitrate availability increased. Third, the pool size of its precursor, Gln, reflected ammonium assimilation rather than photorespiration. Fourth, it was widely conserved among monocots, dicots, legumes, and nonlegumes and in plants with C3 or C4 metabolism. Made directly from the first product of ammonium assimilation, 2-hydroxy-5-oxoproline acted as a nitrate uptake stimulant. When 2-hydroxy-5-oxoproline was provided to roots, the plant's nitrate uptake rate approximately doubled. Plants exogenously provided with 2-hydroxy-5-oxoproline to either roots or leaves accumulated greater biomass. A model was constructed that included the proposed roles of 2-hydroxy-5-oxoproline as a signal molecule of ammonium assimilation status in leaves, as a stimulator of nitrate uptake by roots and nitrate downloading from the xylem. In summary, a glutamine metabolite made in the ω-amidase pathway stimulated nitrate uptake by roots and was likely to be a signal of ammonium assimilation status in leaves. A chemical synthesis method for 2-hydroxy-5-oxoproline was also developed.
Collapse
|
12
|
Lian H, Qin C, Zhao Q, Begum N, Zhang S. Exogenous calcium promotes growth of adzuki bean (Vigna angularis Willd.) seedlings under nitrogen limitation through the regulation of nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:90-100. [PMID: 36108356 DOI: 10.1016/j.plaphy.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Plants exhibit lower nitrogen use efficiency (NUE) under N-limitation conditions. Although the function of calcium (Ca) has been widely studied in plants, it remains to be explored whether regulation of nitrate uptake and reduction is needed. A hydroponics experiment on adzuki beans (Vigna angularis Willd.) was used as a test material to determine the interactions between Ca and three levels of nitrogen supply. The height of the plant, the leaf area per plant, the biomass of the plant, the morphology of the roots, the hydraulic conductivity of the roots, the level of gas exchange, and the level of N metabolism of the adzuki beans were evaluated. Furthermore, RT-qPCR was conducted to explore the expression of genes related to nitrate transporter responses to Ca under N-limitation stress conditions. The rate of accumulation of N in plant tissue increased with the application of Ca. However, plant biomass, photosynthetic parameters, and root activity peaked for Ca2+ supply under N-marginal conditions. Further investigation revealed that the activities of nitrate reductase and glutamine synthetase were relatively high. The transcription of the nitrate transporter (VaNRT1.1; VaNRT2.5) was up-regulated in the roots of the Ca-treated plants. Both N-marginal conditions and N deficiency inhibit N absorption and utilization. The favorable effects of Ca on seedling growth and N metabolism under N-marginal conditions were more significant than those under N-deficiency conditions. The supply of Ca2+ is optimal, as it increases NUE by enhancing photosynthesis, N-metabolizing enzyme activities, and NO3 uptake and transport under N-marginal conditions.
Collapse
Affiliation(s)
- Huida Lian
- Department of Life Sciences, University of Changzhi, Changzhi, 046000, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Cheng Qin
- Department of Life Sciences, University of Changzhi, Changzhi, 046000, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Qingsong Zhao
- Department of Life Sciences, University of Changzhi, Changzhi, 046000, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China.
| |
Collapse
|
13
|
Saini P, Sheikh I, Saini DK, Mir RR, Dhaliwal HS, Tyagi V. Consensus genomic regions associated with grain protein content in hexaploid and tetraploid wheat. Front Genet 2022; 13:1021180. [PMID: 36246648 PMCID: PMC9554612 DOI: 10.3389/fgene.2022.1021180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
A meta-analysis of QTLs associated with grain protein content (GPC) was conducted in hexaploid and tetraploid wheat to identify robust and stable meta-QTLs (MQTLs). For this purpose, as many as 459 GPC-related QTLs retrieved from 48 linkage-based QTL mapping studies were projected onto the newly developed wheat consensus map. The analysis resulted in the prediction of 57 MQTLs and 7 QTL hotspots located on all wheat chromosomes (except chromosomes 1D and 4D) and the average confidence interval reduced 2.71-fold in the MQTLs and QTL hotspots compared to the initial QTLs. The physical regions occupied by the MQTLs ranged from 140 bp to 224.02 Mb with an average of 15.2 Mb, whereas the physical regions occupied by QTL hotspots ranged from 1.81 Mb to 36.03 Mb with a mean of 8.82 Mb. Nineteen MQTLs and two QTL hotspots were also found to be co-localized with 45 significant SNPs identified in 16 previously published genome-wide association studies in wheat. Candidate gene (CG) investigation within some selected MQTLs led to the identification of 705 gene models which also included 96 high-confidence CGs showing significant expressions in different grain-related tissues and having probable roles in GPC regulation. These significantly expressed CGs mainly involved the genes/gene families encoding for the following proteins: aminotransferases, early nodulin 93, glutamine synthetases, invertase/pectin methylesterase inhibitors, protein BIG GRAIN 1-like, cytochrome P450, glycosyl transferases, hexokinases, small GTPases, UDP-glucuronosyl/UDP-glucosyltransferases, and EamA, SANT/Myb, GNAT, thioredoxin, phytocyanin, and homeobox domains containing proteins. Further, eight genes including GPC-B1, Glu-B1-1b, Glu-1By9, TaBiP1, GSr, TaNAC019-A, TaNAC019-D, and bZIP-TF SPA already known to be associated with GPC were also detected within some of the MQTL regions confirming the efficacy of MQTLs predicted during the current study.
Collapse
Affiliation(s)
- Pooja Saini
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Imran Sheikh
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punajb Agricultural University, Ludhiana, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture SKUAST-Kashmir, Srinagar, India
| | - Harcharan Singh Dhaliwal
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Vikrant Tyagi
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, India
| |
Collapse
|
14
|
Wang F, Wang Q, Yu Q, Ye J, Gao J, Liu H, Yong JWH, Yu Y, Liu X, Kong H, He X, Ma J. Is the NH 4 +-induced growth inhibition caused by the NH 4 + form of the nitrogen source or by soil acidification? FRONTIERS IN PLANT SCIENCE 2022; 13:968707. [PMID: 36160982 PMCID: PMC9505920 DOI: 10.3389/fpls.2022.968707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Soil acidification often occurs when the concentration of ammonium (NH4 +) in soil rises, such as that observed in farmland. Both soil acidification and excess NH4 + have serious adverse effects on crop growth and food production. However, we still do not know which of these two inhibitors has a greater impact on the growth of crops, and the degree of their inhibitory effect on crop growth have not been accurately evaluated. 31 wheat cultivars originating in various areas of China were planted under 5 mM sole NH4 + (ammonium nitrogen, AN) or nitrate nitrogen in combined with two pH levels resembling acidified conditions (5.0 and 6.5). The results showed that the shoots and roots biomass were severely reduced by AN in both and these reduction effects were strengthened by a low medium pH. The concentration of free NH4 + and amino acids, the glutamine synthetase activity were significantly higher, but the total soluble sugar content was reduced under NH4 + conditions, and the glutamine synthetase activity was reduced by a low medium pH. Cultivar variance was responsible for the largest proportion of the total variance in plant dry weight, leaf area, nodal root number, total root length and root volume; the nitrogen (N) form explains most of the variation in N and C metabolism; the effects of pH were the greatest for plant height and root average diameter. So, soil acidification and excess NH4 + would cause different degrees of inhibition effects on different plant tissues. The findings are expected to be useful for applying effective strategies for reducing NH4 + stress in the field.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Wang
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiaogang Yu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jing Ye
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jingwen Gao
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haitian Liu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yijun Yu
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou, China
| | - Xiaoxia Liu
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou, China
| | - Haimin Kong
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou, China
| | - Xinhua He
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Junwei Ma
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
15
|
Yin H, Sun Q, Lu X, Zhang L, Yuan Y, Gong C, He X, Ma W, Mu P. Identification of the glutamine synthetase (GS) gene family in four wheat species and functional analysis of Ta4D.GSe in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2022; 110:93-106. [PMID: 35716232 PMCID: PMC9468116 DOI: 10.1007/s11103-022-01287-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Drought stress can negatively impact crop yield and quality. Improving wheat yields under drought stress is a major objective of agronomic research. Glutamine synthetase (GS) is a key enzyme of nitrogen metabolism that is critical to plant growth and development in abiotic stress response. However, to date, no systemic characterization of the GS genes has yet been conducted in wheat and its close relatives. We identified a total of 15 GS genes in Triticum aestivum (2n = 6x = 42; AABBDD), as well as 9 GS genes in Triticum dicoccoides (2n = 4x = 28; AABB), 6 in Aegilops tauschii (2n = 2x = 14; DD), and 5 in Triticum urartu (2n = 2x = 14; AA). The 35 GSs were further clustered into five lineages according to the phylogenetic tree. Synteny analysis revealed that the three subgenomes in bread wheat retained extensive synteny between bread wheat and its three relative species. We identified three up-regulated TaGSs (Ta4A.GSe, Ta4B.GSe, and Ta4D.GSe) from transcriptome data after drought and salt stress. Ta4D.GSe was subsequently used for further functional studies, and its subcellular localization were determined in Arabidopsis protoplasts. Its overexpression in Arabidopsis enhanced drought tolerance by increasing the ability of scavenging of reactive oxygen species (ROS) and osmotic adjustment. We identified GS gene family in four wheat species and performed comparative analyses of their relationships, chromosome locations, conserved motif, gene structure, and synteny. The subcellular localization of Ta4D.GSe was detected and its drought tolerance function was demonstrated. Taken together, these findings provide insight into the potential functional roles of the GS genes in abiotic stress tolerance. KEY MESSAGE: This report clearly shows detailed characterization of GS gene family in four wheat species and demonstrates that Ta4D.GSe plays an important role in enhancing drought tolerance by improving the scavenging of ROS and osmotic adjustment ability in Arabidopsis.
Collapse
Affiliation(s)
- Huayan Yin
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qian Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoqing Lu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lufei Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchao Yuan
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Cuiling Gong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan He
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ping Mu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
16
|
Geyer M, Mohler V, Hartl L. Genetics of the Inverse Relationship between Grain Yield and Grain Protein Content in Common Wheat. PLANTS 2022; 11:plants11162146. [PMID: 36015449 PMCID: PMC9413592 DOI: 10.3390/plants11162146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Grain protein content (GPC) is one of the most important criteria to determine the quality of common wheat (Triticum aestivum). One of the major obstacles for bread wheat production is the negative correlation between GPC and grain yield (GY). Previous studies demonstrated that the deviation from this inverse relationship is highly heritable. However, little is known about the genetics controlling these deviations in common wheat. To fill this gap, we performed quantitative trait locus (QTL) analysis for GY, GPC, and four derived GY-GPC indices using an eight-way multiparent advanced generation intercross population comprising 394 lines. Interval mapping was conducted using phenotypic data from up to nine environments and genotypic data from a 20k single-nucleotide polymorphism array. The four indices were highly heritable (0.76–0.88) and showed distinct correlations to GY and GPC. Interval mapping revealed that GY, GPC, and GY-GPC indices were controlled by 6, 12, and 12 unique QTL, of which each explained only a small amount of phenotypic variance (R2 ≤ 10%). Ten of the 12 index QTL were independent of loci affecting GY and GPC. QTL regions harboured several candidate genes, including Rht-1, WAPO-A1, TaTEF-7A, and NRT2.6-7A. The study confirmed the usefulness of indices to mitigate the inverse GY-GPC relationship in breeding, though the selection method should reflect their polygenic inheritance.
Collapse
|
17
|
Yang F, Zhang J, Zhao Y, Liu Q, Islam S, Yang W, Ma W. Wheat glutamine synthetase TaGSr-4B is a candidate gene for a QTL of thousand grain weight on chromosome 4B. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2369-2384. [PMID: 35588016 PMCID: PMC9271121 DOI: 10.1007/s00122-022-04118-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Glutamine synthetase TaGSr-4B is a candidate gene for a QTL of thousand grain weight on 4B, and the gene marker is ready for wheat breeding. A QTL for thousand grain weight (TGW) in wheat was previously mapped on chromosome 4B in a DH population of Westonia × Kauz. For identifying the candidate genes of the QTL, wheat 90 K SNP array was used to saturate the existing linkage map, and four field trials plus one glasshouse experiment over five locations were conducted to refine the QTL. Three nitrogen levels were applied to two of those field trials, resulting in a TGW phenotype data set from nine environments. A robust TGW QTL cluster including 773 genes was detected in six environments with the highest LOD value of 13.4. Based on differentiate gene expression within the QTL cluster in an RNAseq data of Westonia and Kauz during grain filling, a glutamine synthesis gene (GS: TaGSr-4B) was selected as a potential candidate gene for the QTL. A SNP on the promoter region between Westonia and Kauz was used to develop a cleaved amplified polymorphic marker for TaGSr-4B gene mapping and QTL reanalysing. As results, TGW QTL appeared in seven environments, and in four out of seven environments, the TGW QTL were localized on the TaGSr-4B locus and showed significant contributions to the phenotype. Based on the marker, two allele groups of Westonia and Kauz formed showed significant differences on TGW in eight environments. In agreement with the roles of GS genes on nitrogen and carbon remobilizations, TaGSr-4B is likely the candidate gene of the TGW QTL on 4B and the TaGSr-4B gene marker is ready for wheat breeding.
Collapse
Affiliation(s)
- Fan Yang
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 4 Shizishan Road, Chengdu, 610066, China
| | - Jingjuan Zhang
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
| | - Yun Zhao
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao, 266109, China
| | - Qier Liu
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Shahidul Islam
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 4 Shizishan Road, Chengdu, 610066, China
| | - Wujun Ma
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
- College of Agronomy, Qingdao Agriculture University, Qingdao, 266109, China.
| |
Collapse
|
18
|
Zhou T, Wu P, Yue C, Huang J, Zhang Z, Hua Y. Transcriptomic Dissection of Allotetraploid Rapeseed (Brassica napus L.) in Responses to Nitrate and Ammonium Regimes and Functional Analysis of BnaA2.Gln1;4 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:755-769. [PMID: 35325216 DOI: 10.1093/pcp/pcac037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Plant roots acquire nitrogen predominantly as two inorganic forms, nitrate (NO3-) and ammonium (NH4+), to which plants respond differentially. Rapeseed (Brassica napus L.) is an important oil-crop species with very low nitrogen-use efficiency (NUE), the regulatory mechanism of which was elusive due to the vastness and complexity of the rapeseed genome. In this study, a comparative transcriptomic analysis was performed to investigate the differential signatures of nitrogen-starved rapeseed in responses to NO3- and NH4+ treatments and to identify the key genes regulating rapeseed NUE. The two nitrogen sources differentially affected the shoot and root transcriptome profiles, including those of genome-wide nitrogen transporter and transcription factor (TF)-related genes. Differential expression profiling showed that BnaA6.NRT2;1 and BnaA7.AMT1;3 might be the core transporters responsible for efficient NO3- and NH4+ uptake, respectively; the TF genes responsive to inorganic nitrogen, specifically responding to NO3-, and specifically responsive to NH4+ were also identified. The genes which were commonly and most significantly affected by both NO3- and NH4+ treatments were related to glutamine metabolism. Among the glutamine synthetase (GS) family genes, we found BnaA2.Gln1;4, significantly responsive to low-nitrogen conditions and showed higher transcription abundance and GS activity in the leaf veins, flower sepals, root cortex and stele, silique petiole and stem tissues. These characters were significantly different from those of AtGln1;4. The heterologous overexpression of BnaA2.Gln1;4 in Arabidopsis increased plant biomass, NUE, GS activity and total amino acid concentrations under both sufficient- and low-nitrogen conditions. Overall, this study provided novel information about the genes involved in the adaptation to different nitrogen regimes and identified some promising candidate genes for enhancing NUE in rapeseed.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Pengjia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenhua Zhang
- College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 430128, PR China
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
19
|
Oszvald M, Hassall KL, Hughes D, Torres-Ballesteros A, Clark I, Riche AB, Heuer S. Genetic Diversity in Nitrogen Fertiliser Responses and N Gas Emission in Modern Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:816475. [PMID: 35646002 PMCID: PMC9137425 DOI: 10.3389/fpls.2022.816475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 06/08/2023]
Abstract
Crops assimilate nitrogen (N) as ammonium via the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway which is of central importance for N uptake and potentially represents a bottle neck for N fertiliser-use efficiency. The aim of this study was to assess whether genetic diversity for N-assimilation capacity exists in wheat and could be exploited for breeding. Wheat plants rapidly, within 6 h, responded to N application with an increase in GS activity. This was not accompanied by an increase in GS gene transcript abundance and a comparison of GS1 and GS2 protein models revealed a high degree of sequence conservation. N responsiveness amongst ten wheat varieties was assessed by measuring GS enzyme activity, leaf tissue ammonium, and by a leaf-disc assay as a proxy for apoplastic ammonia. Based on these data, a high-GS group showing an overall positive response to N could be distinguished from an inefficient, low-GS group. Subsequent gas emission measurements confirmed plant ammonia emission in response to N application and also revealed emission of N2O when N was provided as nitrate, which is in agreement with our current understanding that N2O is a by-product of nitrate reduction. Taken together, the data suggest that there is scope for improving N assimilation capacity in wheat and that further investigations into the regulation and role of GS-GOGAT in NH3 emission is justified. Likewise, emission of the climate gas N2O needs to be reduced, and future research should focus on assessing the nitrate reductase pathway in wheat and explore fertiliser management options.
Collapse
Affiliation(s)
- Maria Oszvald
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
| | - Kirsty L. Hassall
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - David Hughes
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | | | - Ian Clark
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Andrew B. Riche
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
| | - Sigrid Heuer
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
- Department of Crop Improvement and Resilience, NIAB, Cambridge, United Kingdom
| |
Collapse
|
20
|
Zhou Z, Geng S, Guan H, Liu C, Qin M, Li W, Shi X, Dai Z, Yao W, Lei Z, Wu Z, Hou J. Dissection of the Genetic Architecture for Quantities of Gliadins Fractions in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:826909. [PMID: 35401644 PMCID: PMC8988047 DOI: 10.3389/fpls.2022.826909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Gliadin is a group of grain storage proteins that confers extensibility/viscosity to the dough and are vital to end-use quality in wheat. Moreover, gliadins are one of the important components for nutritional quality because they contain the nutritional unprofitable epitopes that cause chronic immune-mediated intestinal disorder in genetically susceptible individuals designated celiac disease (CD). The main genetic loci encoding the gliadins were revealed by previous studies; however, the genes related to the content of gliadins and their fractions were less elucidated. To illustrate the genetic basis of the content of gliadins and their fractions comprehensively, a recombinant inbred line (RIL) population that consisted of 196 lines was constructed from the two parents, Luozhen No.1 and Zhengyumai 9987. Quantitative trait loci (QTL) controlling the content of total gliadins and their fractions (ω-, α-, and γ-gliadin) were screened genome-widely under four environments across 2 years. Totally, thirty QTL which explained 1.97-12.83% of the phenotypic variation were detected to be distributed on 17 chromosomes and they were gathered into 12 clusters. One hundred and one pairs of epistatic QTL (E-QTL) were revealed, among which five were involved with the total gliadins and its fractions content QTL located on chromosome 1AS, 1DS, 4DS, 1DL, and 6AS. Three Kompetitive Allele-Specific PCR (KASP) markers were developed from three major QTL clusters located on chromosomes 6A, 6D, and 7D, respectively. The present research not only dissects the genetic loci for improving the content of gliadins and their three fractions, but may also contribute to marker-assisted selection of varieties with appropriate gliadin fractions content for end-use quality and health benefit at the early developmental stages and early breeding generations.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shenghui Geng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiyue Guan
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
21
|
Teng W, He X, Tong Y. Genetic Control of Efficient Nitrogen Use for High Yield and Grain Protein Concentration in Wheat: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040492. [PMID: 35214826 PMCID: PMC8878021 DOI: 10.3390/plants11040492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 05/12/2023]
Abstract
The increasing global population and the negative effects of nitrogen (N) fertilizers on the environment challenge wheat breeding to maximize yield potential and grain protein concentration (GPC) in an economically and environmentally friendly manner. Understanding the molecular mechanisms for the response of yield components to N availability and assimilates allocation to grains provides the opportunity to increase wheat yield and GPC simultaneously. This review summarized quantitative trait loci/genes which can increase spikes and grain number by enhancing N uptake and assimilation at relative early growth stage, and 1000-grain weight and GPC by increasing post-anthesis N uptake and N allocation to grains.
Collapse
Affiliation(s)
- Wan Teng
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (W.T.); (X.H.)
| | - Xue He
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (W.T.); (X.H.)
| | - Yiping Tong
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (W.T.); (X.H.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64806556
| |
Collapse
|
22
|
She G, Yu S, Li Z, Peng A, Li P, Li Y, Chang M, Liu L, Chen Q, Shi C, Sun J, Zhao J, Wan X. Characterization of CsTSI in the Biosynthesis of Theanine in Tea Plants ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:826-836. [PMID: 35029385 DOI: 10.1021/acs.jafc.1c04816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Theanine is a unique major amino acid in tea plants responsible for umami taste and mental health benefits of tea. However, theanine biosynthesis and physiological role in tea plants are not fully understood. Here, we demonstrate that tea plant theanine synthetase is encoded by a glutamine synthetase gene CsTSI. The expression pattern of CsTSI is closely correlated with theanine and glutamine levels in various tissues. CsTSI transcripts were accumulated in root tip epidermal cells, pericycle and procambial cells, where CsTSI presents as a cytosolic protein. Ectopic expression of the gene in Arabidopsis led to greater glutamine and theanine production than controls when fed with ethylamine (EA). RNAi knockdown or overexpression of CsTSI in tea plant hairy roots reduced or enhanced theanine and glutamine contents, respectively, compared with controls. The CsTSI recombinant enzymes used glutamate as an acceptor and ammonium or EA as a donor to synthesize glutamine and theanine, respectively. CsTSI expression in tea roots responded to nitrogen supply and deprivation and was correlated with theanine contents. This study provides fresh insights into the molecular basis for the biosynthesis of theanine, which may facilitate the breeding of high-theanine tea plants for improving the nutritional benefit of tea.
Collapse
Affiliation(s)
- Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenguo Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Anqi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingying Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengying Shi
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Fernandes GDC, Turchetto‐Zolet AC, Passaglia LMP. Glutamine synthetase evolutionary history revisited: tracing back beyond the Last Universal Common Ancestor. Evolution 2022; 76:605-622. [DOI: 10.1111/evo.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriela de Carvalho Fernandes
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| | - Andreia Carina Turchetto‐Zolet
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| |
Collapse
|
24
|
Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics 2021; 49:394-404. [PMID: 34973427 DOI: 10.1016/j.jgg.2021.12.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
Nitrogen (N) is the driving force for crop yields, however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency (NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamine-2-oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase) are the major enzymes. NR and NiR mediate the initiation of inorganic N utilization, and GS/GOGAT cycle converts inorganic N to organic N, playing a vital role in N assimilation and the final NUE of crops. Besides, asparagine synthetase (ASN), glutamate dehydrogenase (GDH), and carbamoylphosphate synthetase (CPSase) are also involved. In this review, we summarize the function and regulation of these enzymes reported in three major crops, rice, maize, wheat, also in the model plant Arabidopsis, and we highlight their application in improving NUE of crops via manipulating N assimilation. Anticipated challenges and prospects toward fully understanding the function of N assimilation and further exploring the potential for NUE improvement are discussed.
Collapse
|
25
|
Zhou Y, Kishchenko O, Stepanenko A, Chen G, Wang W, Zhou J, Pan C, Borisjuk N. The Dynamics of NO3- and NH4+ Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes. PLANTS (BASEL, SWITZERLAND) 2021; 11:11. [PMID: 35009015 PMCID: PMC8747334 DOI: 10.3390/plants11010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023]
Abstract
Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (NO3- ) and ammonium (NH4+), in six duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna aequinoctialis, Lemna turionifera, Lemna minor, and Wolffia globosa. All six duckweed species preferred NH4+ over NO3- and started using NO3- only when NH4+ was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in S. polyrhiza. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when NO3- was supplied and decreased when NH4+ was supplied. NO3- and NH4+ induced the glutamine synthetase (GS) genes GS1;2 and the GS2 by 2- to 5-fold, respectively, but repressed GS1;1 and GS1;3. NH4+ and NO3- upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC cis-elements, TATA-based enhancers, GA/CTn repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China; (Y.Z.); (O.K.); (A.S.); (G.C.); (W.W.); (J.Z.); (C.P.)
| |
Collapse
|
26
|
Yield-Related QTL Clusters and the Potential Candidate Genes in Two Wheat DH Populations. Int J Mol Sci 2021; 22:ijms222111934. [PMID: 34769361 PMCID: PMC8585063 DOI: 10.3390/ijms222111934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, four large-scale field trials using two doubled haploid wheat populations were conducted in different environments for two years. Grain protein content (GPC) and 21 other yield-related traits were investigated. A total of 227 QTL were mapped on 18 chromosomes, which formed 35 QTL clusters. The potential candidate genes underlying the QTL clusters were suggested. Furthermore, adding to the significant correlations between yield and its related traits, correlation variations were clearly shown within the QTL clusters. The QTL clusters with consistently positive correlations were suggested to be directly utilized in wheat breeding, including 1B.2, 2A.2, 2B (4.9–16.5 Mb), 2B.3, 3B (68.9–214.5 Mb), 4A.2, 4B.2, 4D, 5A.1, 5A.2, 5B.1, and 5D. The QTL clusters with negative alignments between traits may also have potential value for yield or GPC improvement in specific environments, including 1A.1, 2B.1, 1B.3, 5A.3, 5B.2 (612.1–613.6 Mb), 7A.1, 7A.2, 7B.1, and 7B.2. One GPC QTL (5B.2: 671.3–672.9 Mb) contributed by cultivar Spitfire was positively associated with nitrogen use efficiency or grain protein yield and is highly recommended for breeding use. Another GPC QTL without negatively pleiotropic effects on 2A (50.0–56.3 Mb), 2D, 4D, and 6B is suggested for quality wheat breeding.
Collapse
|
27
|
A New Perspective on the Role of Glutamine Synthetase in Nitrogen Remobilization in Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms222011083. [PMID: 34681741 PMCID: PMC8539157 DOI: 10.3390/ijms222011083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/05/2022] Open
Abstract
Glutamine synthetase (GS), a key enzyme in plant nitrogen metabolism, is closely related to nitrogen remobilization. However, how GS isoforms participate in nitrogen remobilization remains unclear. Here, the spatiotemporal expression of the TaGS gene family after anthesis was investigated, and the results showed that TaGS1;1 was mainly encoded by TaGS1;1-6A, while the other isozymes were mainly encoded by TaGS localized on the A and D subgenomes. TaGS1;2-4A/4D had the highest expression level, especially in rachis and peduncle. Furthermore, immunofluorescence showed TaGS1;2 was located in the phloem of rachis and peduncle. GUS (β-glucuronidase) staining confirmed that ProTaGS1;2-4A/4D::GUS activity was mainly present in the vascular system of leaves, roots, and petal of Arabidopsis. Ureides, an important transport form of nitrogen, were mainly synthesized in flag leaves and transported to grains through the phloem of peduncle and rachis during grain filling. TaAAH, which encodes the enzyme that degrades ureides to release NH4+, had a higher expression in rachis and peduncle and was synchronized with the increase in NH4+ concentration in phloem, indicating that NH4+ in phloem is from ureide degradation. Taking the above into account, TaGS1;2, which is highly expressed in the phloem of peduncle and rachis, may participate in N remobilization by assimilating NH4+ released from ureide degradation.
Collapse
|
28
|
Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu YG. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3083-3109. [PMID: 34142166 DOI: 10.1007/s00122-021-03881-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/02/2021] [Indexed: 05/20/2023]
Abstract
Based on the large-scale integration of meta-QTL and Genome-Wide Association Study, 76 high-confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits were discovered. Improving yield and yield-related traits are key goals in wheat breeding program. The integration of accumulated wheat genetic resources provides an opportunity to uncover important genomic regions and candidate genes that affect wheat yield. Here, a comprehensive meta-QTL analysis was conducted on 2230 QTL of yield-related traits obtained from 119 QTL studies. These QTL were refined into 145 meta-QTL (MQTL), and 89 MQTL were verified by GWAS with different natural populations. The average confidence interval (CI) of these MQTL was 2.92 times less than that of the initial QTL. Furthermore, 76 core MQTL regions with a physical distance less than 25 Mb were detected. Based on the homology analysis and expression patterns, 237 candidate genes in the MQTL involved in photoperiod response, grain development, multiple plant growth regulator pathways, carbon and nitrogen metabolism and spike and flower organ development were determined. A novel candidate gene TaKAO-4A was confirmed to be significantly associated with grain size, and a CAPS marker was developed based on its dominant haplotype. In summary, this study clarified a method based on the integration of meta-QTL, GWAS and homology comparison to reveal the genomic regions and candidate genes that affect important yield-related traits in wheat. This work will help to lay a foundation for the identification, transfer and aggregation of these important QTL or candidate genes in wheat high-yield breeding.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Aduragbemi Amo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Di Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongmao Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfang Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunge Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
29
|
Nunes RDO, Domiciano Abrahão G, de Sousa Alves W, Aparecida de Oliveira J, César Sousa Nogueira F, Pasqualoto Canellas L, Lopes Olivares F, Benedeta Zingali R, Soares MR. Quantitative proteomic analysis reveals altered enzyme expression profile in Zea mays roots during the early stages of colonization by Herbaspirillum seropedicae. Proteomics 2021; 21:e2000129. [PMID: 33570822 DOI: 10.1002/pmic.202000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/09/2022]
Abstract
The use of plant growth-promoting bacteria as agricultural inoculants of plants should be encouraged because of their prominent role in biological nitrogen fixation, the increase of nutrient uptake by roots, abiotic stress mitigation, and disease control. The complex mechanisms underlying the association between plant and beneficial bacteria have been increasingly studied, and proteomic tools can expand our perception regarding the fundamental molecular processes modulated by the interaction. In this study, we investigated the changes in protein expression in maize roots in response to treatment with the endophytic diazotrophic Herbaspirillum seropedicae and the activities of enzymes related to nitrogen metabolism. To identify maize proteins whose expression levels were altered in the presence of bacteria, a label-free quantitative proteomic approach was employed. Using this approach, we identified 123 differentially expressed proteins, of which 34 were upregulated enzymes, in maize roots cultivated with H. seropedicae. The maize root colonization of H. seropedicae modulated the differential expression of enzymes involved in the stress response, such as peroxidases, phenylalanine ammonia-lyase, and glutathione transferase. The differential protein profile obtained in the inoculated roots reflects the effect of colonization on plant growth and development compared with control plants.
Collapse
Affiliation(s)
- Rosane de Oliveira Nunes
- Departamento de Bioquímica/Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselli Domiciano Abrahão
- Departamento de Bioquímica/Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilber de Sousa Alves
- Departamento de Ensino Médio e Técnico, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rio de Janeiro, Brazil
| | - Jaqueline Aparecida de Oliveira
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Fábio César Sousa Nogueira
- Laboratório de Proteômica/LADETEC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Unidade de Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Pasqualoto Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Fábio Lopes Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia Regina Soares
- Departamento de Bioquímica/Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Wei Y, Xiong S, Zhang Z, Meng X, Wang L, Zhang X, Yu M, Yu H, Wang X, Ma X. Localization, Gene Expression, and Functions of Glutamine Synthetase Isozymes in Wheat Grain ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:580405. [PMID: 33633754 PMCID: PMC7901976 DOI: 10.3389/fpls.2021.580405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/07/2021] [Indexed: 06/08/2023]
Abstract
Glutamine synthetase (GS) plays a major role in plant nitrogen metabolism, but the roles of individual GS isoforms in grains are unknown. Here, the localization and expression of individual TaGS isozymes in wheat grain were probed with TaGS isoenzyme-specific antibodies, and the nitrogen metabolism of grain during the grain filling stage were investigated. Immunofluorescence revealed that TaGS1;1, TaGS1;3, and TaGS2 were expressed in different regions of the embryo. In grain transporting tissues, TaGS1;2 was localized in vascular bundle; TaGS1;2 and TaGS1;1 were in chalaza and placentochalaza; TaGS1;1 and TaGS1;3 were in endosperm transfer cells; and TaGS1;3 and TaGS2 were in aleurone layer. GS exhibited maximum activity and expression at 8 days after flowering (DAF) with peak glutamine content in grains; from then, NH 4 + increased largely from NO 3 - reduction, glutamate dehydrogenase (GDH) aminating activity increased continuously, and the activities of GS and glutamate synthase (GOGAT) decreased, while only TaGS1;3 kept a stable expression in different TaGS isozymes. Hence, GS-GOGAT cycle and GDH play different roles in NH 4 + assimilation of grain in different stages of grain development; TaGS1;3, located in aleurone layer and endosperm transfer cells, plays a key role in Gln into endosperm for gluten synthesis. At 30 DAF, grain amino acids are mainly transported from maternal phloem.
Collapse
Affiliation(s)
- Yihao Wei
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuping Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiyong Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaodan Meng
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lulu Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaojiao Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meiqin Yu
- Department of Biochemistry and Molecular Biology, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Haidong Yu
- Department of Biochemistry and Molecular Biology, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biochemistry and Molecular Biology, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
31
|
Islam S, Zhang J, Zhao Y, She M, Ma W. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110759. [PMID: 33487345 DOI: 10.1016/j.plantsci.2020.110759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
High nitrogen application aimed at increasing crop yield is offset by higher production costs and negative environmental consequences. For wheat, only one third of the applied nitrogen is utilized, which indicates there is scope for increasing Nitrogen Use Efficiency (NUE). However, achieving greater NUE is challenged by the complexity of the trait, which comprises processes associated with nitrogen uptake, transport, reduction, assimilation, translocation and remobilization. Thus, knowledge of the genetic regulation of these processes is critical in increasing NUE. Although primary nitrogen uptake and metabolism-related genes have been well studied, the relative influence of each towards NUE is not fully understood. Recent attention has focused on engineering transcription factors and identification of miRNAs acting on expression of specific genes related to NUE. Knowledge obtained from model species needs to be translated into wheat using recently-released whole genome sequences, and by exploring genetic variations of NUE-related traits in wild relatives and ancient germplasm. Recent findings indicate the genetic basis of NUE is complex. Pyramiding various genes will be the most effective approach to achieve a satisfactory level of NUE in the field.
Collapse
Affiliation(s)
- Shahidul Islam
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Yun Zhao
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
32
|
Wang J, Chen W, Wang H, Li Y, Wang B, Zhang L, Wan X, Li M. Transcription factor CsDOF regulates glutamine metabolism in tea plants (Camellia sinensis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110720. [PMID: 33288026 DOI: 10.1016/j.plantsci.2020.110720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/09/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Glutamine plays a critical role in ammonium assimilation, and contributes substantially to the taste and nutritional quality of tea. To date, little research has been done on glutamine synthesis in tea plants. Here, a zinc finger protein CsDOF and a glutamine synthetase (GS)-encoding gene CsGS2 from tea plant (Camellia sinensis cv 'Shuchazao') were characterized, and their role in glutamine biosynthesis was determined using transient suppression assays in tea leaves and overexpression in Arabidopsis thaliana. The expression patterns of CsDOF and CsGS2, the GS activity and the glutamine content of photosynthetic tissues (leaf and bud) were significantly induced by shade. Suppressing the expression of CsDOF resulted in downregulated expression of CsGS2 and reduction of the leaf glutamine content. Moreover, in CsDOF-silenced plants, the expression of CsDOF and the glutamine content under shade treatment were higher than in natural light. The glutamine content and CsGS2 transcript level were also decreased in tea leaves when CsGS2 was suppressed, while they were higher under shade treatment than in natural light in CsGS2-silenced plants. In addition, the glutamine content and GS2 transcript level were increased when CsDOF and CsGS2 was overexpressed in Arabidopsis thaliana, respectively. In binding analyses, CsDOF directly bound to an AAAG motif in the promoter of CsGS2, and promotes its activity. The study shed new light on the molecular mechanism by which CsDOF activates CsGS2 gene expression and contributes to glutamine biosynthesis in tea plants.
Collapse
Affiliation(s)
- Jinhe Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Wenzhen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Hanyue Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuanda Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Biao Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Lixia Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Min Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
33
|
Tang D, Liu MY, Zhang Q, Fan K, Ruan J. Isolation and characterization of chloroplastic glutamine synthetase gene (CsGS2) in tea plant Camellia sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:321-329. [PMID: 32798900 DOI: 10.1016/j.plaphy.2020.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Tea plant (Camellia sinensis) is an ammonium preferring plant species. However, little is known about the mechanism underlying this preference. Herein, a chloroplastic glutamine synthetase gene (CsGS2), which is vital for nitrogen assimilation in mesophyll tissue, was isolated from tea cultivar C. sinensis cv. 'Longjing43'. The full length cDNA of CsGS2 was 1622 bp, having a 1299 bp open reading frame encoding a 432-amino acid protein. Homology search and sequence analysis demonstrated that CsGS2 protein carried the basic characteristics of a canonical GS2 domain and shared high identity with GS2s from other plant species. Subcellular localization and immunolocalization of CsGS2 revealed that it is localized in chloroplast. qRT-PCR and Western blot analyses showed that CsGS2 was expressed in a leaf-specific pattern, such that both CsGS2 and its protein were most abundant in mature leaves. Temporal expression patterns of CsGS2 showed minor differences in response to ammonium and nitrate nutrition. The transcript level of CsGS2 was significantly induced in mature leaves during the development of new shoots, whereas darkness inhibited this induction significantly. These results suggested that CsGS2 does not play a role in the differential utilization mechanisms of differing nitrogen forms in tea, and imply a light dependent transcription regulation in mature leaves during the development of new shoots.
Collapse
Affiliation(s)
- Dandan Tang
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Mei-Ya Liu
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Qunfeng Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Kai Fan
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
34
|
Nitrogen Regulating the Expression and Localization of Four Glutamine Synthetase Isoforms in Wheat ( Triticum aestivum L.). Int J Mol Sci 2020; 21:ijms21176299. [PMID: 32878133 PMCID: PMC7504200 DOI: 10.3390/ijms21176299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022] Open
Abstract
Glutamine synthetase (GS), the key enzyme in plant nitrogen assimilation, is strictly regulated at multiple levels, but the most relevant reports focus on the mRNA level. Using specific antibodies as probes, the effects of nitrogen on the expression and localization of individual wheat GS (TaGS) isoforms were studied. In addition to TaGS2, TaGS1;1 with high affinity to substrate and TaGS1;3 with high catalytic activity were also localized in mesophyll, and may participate in cytoplasmic assimilation of ammonium (NH4+) released from photorespiration or absorbed by roots; TaGS1;2 was localized in xylem of leaves. In roots, although there were hundreds of times more TaGS1;1 than TaGS1;2 transcripts, the amount of TaGS1;1 subunit was not higher than that of TaGS1;2; NH4+ inhibited TaGS1;1 expression but stimulated TaGS1;3 expression. In root tips, nitrate stimulated TaGS1;1, TaGS1;3, and TaGS2 expression in meristem, while NH4+ promoted tissue differentiation and TaGS1;2 expression in endodermis and vascular tissue. Only TaGS1;2 was located in vascular tissue of leaves and roots, and was activated by glutamine, suggesting a role in nitrogen transport. TaGS1;3 was induced by NH4+ in root endodermis and mesophyll, suggesting a function in relieving NH4+ toxicity. Thus, TaGS isoforms play distinct roles in nitrogen assimilation for their different kinetic properties, tissue locations, and response to nitrogen regimes.
Collapse
|
35
|
Abstract
Nitrogen (N) is a macro-nutrient that is essential for growth development and resistance against biotic and abiotic stresses of plants. Nitrogen is a constituent of amino acids, proteins, nucleic acids, chlorophyll, and various primary and secondary metabolites. The atmosphere contains huge amounts of nitrogen but it cannot be taken up directly by plants. Plants can take up nitrogen in the form of nitrate, ammonium, urea, nitrite, or a combination of all these forms. In addition, in various leguminous rhizobia, bacteria can convert atmospheric nitrogen to ammonia and supply it to the plants. The form of nitrogen nutrition is also important in plant growth and resistance against pathogens. Nitrogen content has an important function in crop yield. Nitrogen deficiency can cause reduced root growth, change in root architecture, reduced plant biomass, and reduced photosynthesis. Hence, understanding the function and regulation of N metabolism is important. Several enzymes and intermediates are involved in nitrogen assimilation. Here we provide an overview of the important enzymes such as nitrate reductase, nitrite reductase, glutamine synthase, GOGAT, glutamate dehydrogenase, and alanine aminotransferase that are involved in nitrogen metabolism.
Collapse
|
36
|
Shah JM, Muntaha ST, Ali E, Khan AA, Zaidi SHR, Shahzad AN, Hassan Z, Nawaz A, Rashid M, Bukhari SAH. Comparative study of the genetic basis of nitrogen use efficiency in wild and cultivated barley. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1435-1444. [PMID: 31736546 PMCID: PMC6825228 DOI: 10.1007/s12298-019-00714-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/30/2019] [Accepted: 09/06/2019] [Indexed: 05/31/2023]
Abstract
To curb the increasing demand for nitrogenous fertilizers, it is imperative to develop new cultivars with comparatively greater nitrogen use efficiency (NUE). Nonetheless, so far very meager information is available concerning the variances among barley (Hordeum vulgare L.) varieties for their response to nitrogen deprivation. The current study was carried out to explore the potential of barley genotypes for higher NUE. A hydroponic experiment was conducted at seedling stage to compare the performance of four barley genotypes, ZD9 and XZ149 (with higher NUE) and HXRL and XZ56 (with lower NUE) in response to low (0.1 mM) and normal nitrogen (2 mM) levels. Under low N, all the genotypes expressed less number of tillers, decreased soluble proteins, chlorophyll and N concentrations in both roots and shoots, in comparison with normal N supply. However, significant differences were found among the genotypes. The genotypes with high NUE (ZD9 and XZ149) showed higher N concentration, increased number of tillers, improved chlorophyll and soluble proteins in both roots and shoots as compared to the inefficient ones (HXRL and XZ56). Furthermore, nitrate transporter gene (NRT2.1) showed higher expression under low N, both in roots and leaves of N efficient genotypes, as compared to the N inefficient ones. However, N assimilatory genes (GS1 and GS2) showed higher expression under normal and low N level, in leaves and roots respectively. The outcome of the study revealed that genotypes with higher NUE (ZD9 and XZ149) performed better under reduced N supply, and may require relatively less N fertilizer for normal growth and development, as compared to those with lower NUE. The study also revealed a time-specific expression pattern of studied genes, indicating the duration of low N stress. The current study suggested that future work must involve the time course as a key factor while studying expression patterns of these genes to better understand the genetic basis of low-N tolerance.
Collapse
Affiliation(s)
- Jawad Munawar Shah
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 People’s Republic of China
- College of Agriculture, Bahaudin Zakaria University, Bahadur sub Campus, Layyah, Pakistan
| | - Sidra tul Muntaha
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Essa Ali
- Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Azhar Abbas Khan
- College of Agriculture, Bahaudin Zakaria University, Bahadur sub Campus, Layyah, Pakistan
| | - Syed Hassan Raza Zaidi
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Ahmad Naeem Shahzad
- Department of Agronomy, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Zeshan Hassan
- College of Agriculture, Bahaudin Zakaria University, Bahadur sub Campus, Layyah, Pakistan
| | - Ahmad Nawaz
- College of Agriculture, Bahaudin Zakaria University, Bahadur sub Campus, Layyah, Pakistan
| | - Muhammad Rashid
- Department of Agronomy, Lasbella University of Agriculture, Water and Marine Sciences, Uthal, Lasbella, Pakistan
| | | |
Collapse
|
37
|
Brunharo CACG, Takano HK, Mallory-Smith CA, Dayan FE, Hanson BD. Role of Glutamine Synthetase Isogenes and Herbicide Metabolism in the Mechanism of Resistance to Glufosinate in Lolium perenne L. spp. multiflorum Biotypes from Oregon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8431-8440. [PMID: 31067047 DOI: 10.1021/acs.jafc.9b01392] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Glufosinate-resistant Lolium perenne L. spp. multiflorum biotypes from Oregon exhibited resistance levels up to 2.8-fold the field rate. One resistant biotype (MG) had an amino acid substitution in glutamine synthetase 2 (GS2), whereas the other (OR) exhibited the wild-type genotype. We hypothesized that the amino acid substitution in GS2 is involved in the resistance mechanism in MG and that non-target site resistance mechanisms are present in OR. OR metabolized glufosinate faster than the other two biotypes, with >75% of the herbicide metabolized in comparison to 50% in MG and the susceptible biotype. A mutation in GS2 co-segregating with resistance in MG did not reduce the enzyme activity, with results further supported by our enzyme homology models. This research supports the conclusion that a metabolism mechanism of glufosinate resistance is present in OR and that glufosinate resistance in MG is not due to an altered target site.
Collapse
Affiliation(s)
- Caio A C G Brunharo
- Department of Crop and Soil Science , Oregon State University , 3050 Southwest Campus Way , Crop Sciences Building Corvallis , Oregon 97331 , United States
| | - Hudson K Takano
- Department of Bioagricultural Sciences and Pest Management , Colorado State University , 1777 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Carol A Mallory-Smith
- Department of Crop and Soil Science , Oregon State University , 3050 Southwest Campus Way , Crop Sciences Building Corvallis , Oregon 97331 , United States
| | - Franck E Dayan
- Department of Bioagricultural Sciences and Pest Management , Colorado State University , 1777 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Bradley D Hanson
- Department of Plant Science , University of California, Davis , One Shields Avenue , MS-4, Davis , California 95616 , United States
| |
Collapse
|
38
|
Bancel E, Bonnot T, Davanture M, Alvarez D, Zivy M, Martre P, Déjean S, Ravel C. Proteomic Data Integration Highlights Central Actors Involved in Einkorn ( Triticum monococcum ssp. monococcum) Grain Filling in Relation to Grain Storage Protein Composition. FRONTIERS IN PLANT SCIENCE 2019; 10:832. [PMID: 31333693 PMCID: PMC6620720 DOI: 10.3389/fpls.2019.00832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
Albumins and globulins (AGs) of wheat endosperm represent about 20% of total grain proteins. Some of these physiologically active proteins can influence the synthesis of storage proteins (SPs) (gliadins and glutenins) and consequently, rheological properties of wheat flour and processing. To identify such AGs, data, (published by Bonnot et al., 2017) concerning abundance in 352 AGs and in the different seed SPs during grain filling and in response to different nitrogen (N) and sulfur (S) supply, were integrated with mixOmics R package. Relationships between AGs and SPs were first unraveled using the unsupervised method sparse Partial Least Square, also known as Projection to Latent Structure (sPLS). Then, data were integrated using a supervised approach taking into account the nutrition and the grain developmental stage. We used the block.splda procedure also referred to as DIABLO (Data Integration Analysis for Biomarker discovery using Latent variable approaches for Omics studies). These approaches led to the identification of discriminant and highly correlated features from the two datasets (AGs and SPs) which are not necessarily differentially expressed during seed development or in response to N or S supply. Eighteen AGs were correlated with the quantity of SPs per grain. A statistical validation of these proteins by genetic association analysis confirmed that 5 out of this AG set were robust candidate proteins able to modulate the seed SP synthesis. In conclusion, this latter result confirmed that the integrative strategy is an adequate way to reduce the number of potentially relevant AGs for further functional validation.
Collapse
Affiliation(s)
- Emmanuelle Bancel
- UMR GDEC, Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, Clermont-Ferrand, France
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, Clermont Auvergne University, Clermont-Ferrand, France
| | - Titouan Bonnot
- UMR GDEC, Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, Clermont-Ferrand, France
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, Clermont Auvergne University, Clermont-Ferrand, France
| | - Marlène Davanture
- UMR GQE, Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Agro ParisTech, Université Paris-Sud – Université Paris-Saclay, Gif-sur-Yvette, France
| | - David Alvarez
- UMR GDEC, Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, Clermont-Ferrand, France
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, Clermont Auvergne University, Clermont-Ferrand, France
| | - Michel Zivy
- UMR GQE, Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Agro ParisTech, Université Paris-Sud – Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Martre
- UMR GDEC, Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, Clermont-Ferrand, France
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, Clermont Auvergne University, Clermont-Ferrand, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR5219 Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Catherine Ravel
- UMR GDEC, Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, Clermont-Ferrand, France
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, Clermont Auvergne University, Clermont-Ferrand, France
| |
Collapse
|
39
|
Gao Y, de Bang TC, Schjoerring JK. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO 2. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1209-1221. [PMID: 30525274 PMCID: PMC6576097 DOI: 10.1111/pbi.13046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 05/23/2023]
Abstract
Cytosolic glutamine synthetase (GS1) plays a central role in nitrogen (N) metabolism. The importance of GS1 in N remobilization during reproductive growth has been reported in cereal species but attempts to improve N utilization efficiency (NUE) by overexpressing GS1 have yielded inconsistent results. Here, we demonstrate that transformation of barley (Hordeum vulgare L.) plants using a cisgenic strategy to express an extra copy of native HvGS1-1 lead to increased HvGS1.1 expression and GS1 enzyme activity. GS1 overexpressing lines exhibited higher grain yields and NUE than wild-type plants when grown under three different N supplies and two levels of atmospheric CO2 . In contrast with the wild-type, the grain protein concentration in the GS1 overexpressing lines did not decline when plants were exposed to elevated (800-900 μL/L) atmospheric CO2 . We conclude that an increase in GS1 activity obtained through cisgenic overexpression of HvGS1-1 can improve grain yield and NUE in barley. The extra capacity for N assimilation obtained by GS1 overexpression may also provide a means to prevent declining grain protein levels under elevated atmospheric CO2 .
Collapse
Affiliation(s)
- Yajie Gao
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| | - Thomas C. de Bang
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| | - Jan K. Schjoerring
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| |
Collapse
|
40
|
Dmitrović S, Dragićević M, Savić J, Milutinović M, Živković S, Maksimović V, Matekalo D, Mišić D. Nepetalactone-rich essential oil mitigates phosphinothricin-induced ammonium toxicity in Arabidopsis thaliana (L.) Heynh. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:87-94. [PMID: 31034969 DOI: 10.1016/j.jplph.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Active ingredient of the commercial herbicide BASTA (B), phosphinothricin, acts as an inhibitor of glutamine synthetase (GS), a key enzyme in ammonium assimilation. The treatment with BASTA leads to an elevation of ammonium levels in plants and further to various physiological alterations, ammonium toxicity and lethality. Results of the present study emphasize the complexity underlying control mechanisms that determine BASTA interaction with essential oil (EO) from Nepeta rtanjensis (NrEO), bioherbicide inducing oxidative stress in target plants. Simultaneous application of NrEO and BASTA, two agents showing differential mode of action, suspends BASTA-induced ammonium toxicity in Arabidopsis thaliana plants. This is achieved through maintaining GS activity, which sustains a sub-toxic and/or sub-lethal ammonium concentration in tissues. As revealed by the present study, regulation of GS activity, as influenced by BASTA and NrEO, occurs at transcriptional, posttranscriptional, and/or posttranslational levels. Two genes encoding cytosolic GS, GLN1;1 and GLN1;3, are highlighted as the main isozymes in Arabidopsis shoots contributing to NrEO-induced overcoming of BASTA-generated ammonium toxicity. The effects of NrEO might be ascribed to its major component nepetalactone, but the contribution of minor EO components should not be neglected. Although of fundamental significance, the results of the present study suggest possible low efficiency of BASTA in plantations of medicinal/aromatic plants such as Nepeta species. Furthermore, these results highlight the possibility of using NrEO as a bioherbicide in BASTA-treated crop fields to mitigate the effect of BASTA residues in contaminated soils.
Collapse
Affiliation(s)
- Slavica Dmitrović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Milan Dragićević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena Savić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Milica Milutinović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Suzana Živković
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Vuk Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dragana Matekalo
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Mišić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
41
|
Desiderio F, Zarei L, Licciardello S, Cheghamirza K, Farshadfar E, Virzi N, Sciacca F, Bagnaresi P, Battaglia R, Guerra D, Palumbo M, Cattivelli L, Mazzucotelli E. Genomic Regions From an Iranian Landrace Increase Kernel Size in Durum Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:448. [PMID: 31057571 PMCID: PMC6482228 DOI: 10.3389/fpls.2019.00448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2019] [Indexed: 05/27/2023]
Abstract
Kernel size and shape are important parameters determining the wheat profitability, being main determinants of yield and its technological quality. In this study, a segregating population of 118 recombinant inbred lines, derived from a cross between the Iranian durum landrace accession "Iran_249" and the Iranian durum cultivar "Zardak", was used to investigate durum wheat kernel morphology factors and their relationships with kernel weight, and to map the corresponding QTLs. A high density genetic map, based on wheat 90k iSelect Infinium SNP assay, comprising 6,195 markers, was developed and used to perform the QTL analysis for kernel length and width, traits related to kernel shape and weight, and heading date, using phenotypic data from three environments. Overall, a total of 31 different QTLs and 9 QTL interactions for kernel size, and 21 different QTLs and 5 QTL interactions for kernel shape were identified. The landrace Iran_249 contributed the allele with positive effect for most of the QTLs related to kernel length and kernel weight suggesting that the landrace might have considerable potential toward enhancing the existing gene pool for grain shape and size traits and for further yield improvement in wheat. The correlation among traits and co-localization of corresponding QTLs permitted to define 11 clusters suggesting causal relationships between simplest kernel size trait, like kernel length and width, and more complex secondary trait, like kernel shape and weight related traits. Lastly, the recent release of the T. durum reference genome sequence allowed to define the physical interval of our QTL/clusters and to hypothesize novel candidate genes inspecting the gene content of the genomic regions associated to target traits.
Collapse
Affiliation(s)
- Francesca Desiderio
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Leila Zarei
- Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran
| | - Stefania Licciardello
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Acireale, Italy
| | | | | | - Nino Virzi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Acireale, Italy
| | - Fabiola Sciacca
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Acireale, Italy
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Raffaella Battaglia
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Davide Guerra
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Massimo Palumbo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Acireale, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| |
Collapse
|
42
|
Casartelli A, Melino VJ, Baumann U, Riboni M, Suchecki R, Jayasinghe NS, Mendis H, Watanabe M, Erban A, Zuther E, Hoefgen R, Roessner U, Okamoto M, Heuer S. Opposite fates of the purine metabolite allantoin under water and nitrogen limitations in bread wheat. PLANT MOLECULAR BIOLOGY 2019; 99:477-497. [PMID: 30721380 DOI: 10.1007/s11103-019-00831-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/24/2019] [Indexed: 05/06/2023]
Abstract
Degradation of nitrogen-rich purines is tightly and oppositely regulated under drought and low nitrogen supply in bread wheat. Allantoin is a key target metabolite for improving nitrogen homeostasis under stress. The metabolite allantoin is an intermediate of the catabolism of purines (components of nucleotides) and is known for its housekeeping role in nitrogen (N) recycling and also for its function in N transport and storage in nodulated legumes. Allantoin was also shown to differentially accumulate upon abiotic stress in a range of plant species but little is known about its role in cereals. To address this, purine catabolic pathway genes were identified in hexaploid bread wheat and their chromosomal location was experimentally validated. A comparative study of two Australian bread wheat genotypes revealed a highly significant increase of allantoin (up to 29-fold) under drought. In contrast, allantoin significantly decreased (up to 22-fold) in response to N deficiency. The observed changes were accompanied by transcriptional adjustment of key purine catabolic genes, suggesting that the recycling of purine-derived N is tightly regulated under stress. We propose opposite fates of allantoin in plants under stress: the accumulation of allantoin under drought circumvents its degradation to ammonium (NH4+) thereby preventing N losses. On the other hand, under N deficiency, increasing the NH4+ liberated via allantoin catabolism contributes towards the maintenance of N homeostasis.
Collapse
Affiliation(s)
- Alberto Casartelli
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
- Strube Research GmbH & Co. KG, 38387, Söllingen, Germany
| | - Vanessa J Melino
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ute Baumann
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Matteo Riboni
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Radoslaw Suchecki
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Nirupama S Jayasinghe
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Himasha Mendis
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mutsumi Watanabe
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Alexander Erban
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
| | - Ellen Zuther
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
| | - Rainer Hoefgen
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
| | - Ute Roessner
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mamoru Okamoto
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Sigrid Heuer
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia.
- Rothamsted Research, Plant Science Department, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
43
|
|
44
|
Zhang Q, Cui Q, Yue S, Lu Z, Zhao M. Enantioselective effect of glufosinate on the growth of maize seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:171-178. [PMID: 30387058 DOI: 10.1007/s11356-018-3576-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Glufosinate is a non-selective chiral herbicide, which has been used extensively around the world. However, limited information on the enantioselectivity of Rac- and L-glufosinate against crops. In this study, the enantioselective effects on the growth, antioxidant, and targeted enzyme activities of maize seedlings of chiral glufosinate were investigated. The results showed the enantioselective growth inhibitions were observed at both 1 and 5 mg/L concentration levels. L-Glufosinate induced more growth rate reduction in shoot height and weight compared to Rac-glufosinate. All of the antioxidant enzyme activities increased obviously in the leaves of maize seedlings treated by 1 mg/L of glufosinate. Superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, glutathione reductase (GR) activity, and malondialdehyde (MDA) content induced by L-glufosinate were 1.36, 1.16, 1.51, 1.65, and 1.65 times higher than those by Rac-glufosinate, respectively Notably, the glutamine synthetase (GS) activity was significantly reduced to 80% and 57% in the control group at 1 mg/L treated with Rac- and L-glufosinate, respectively. Our results indicated that Rac- and L-glufosinate showed the obvious enantioselectivity in the growth of maize seedlings, which has shed light on the potential enantioselective phytotoxicity of glufosinate. Data provided here will be helpful to develop the environmentally friendly herbicides.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Qingmiao Cui
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Siqing Yue
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Zhengbiao Lu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
45
|
Luo L, Qin R, Liu T, Yu M, Yang T, Xu G. OsASN1 Plays a Critical Role in Asparagine-Dependent Rice Development. Int J Mol Sci 2018; 20:ijms20010130. [PMID: 30602689 PMCID: PMC6337572 DOI: 10.3390/ijms20010130] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/25/2018] [Accepted: 12/25/2018] [Indexed: 01/07/2023] Open
Abstract
Asparagine is one of the important amino acids for long-distance transport of nitrogen (N) in plants. However, little is known about the effect of asparagine on plant development, especially in crops. Here, a new T-DNA insertion mutant, asparagine synthetase 1 (asn1), was isolated and showed a different plant height, root length, and tiller number compared with wild type (WT). In asn1, the amount of asparagine decreased sharply while the total nitrogen (N) absorption was not influenced. In later stages, asn1 showed reduced tiller number, which resulted in suppressed tiller bud outgrowth. The relative expression of many genes involved in the asparagine metabolic pathways declined in accordance with the decreased amino acid concentration. The CRISPR/Cas9 mutant lines of OsASN1 showed similar phenotype with asn1. These results suggest that OsASN1 is involved in the regulation of rice development and is specific for tiller outgrowth.
Collapse
Affiliation(s)
- Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ruyi Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tao Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ming Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tingwen Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Hu M, Zhao X, Liu Q, Hong X, Zhang W, Zhang Y, Sun L, Li H, Tong Y. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1858-1867. [PMID: 29577547 PMCID: PMC6181211 DOI: 10.1111/pbi.12921] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 05/18/2023]
Abstract
The plastidic glutamine synthetase isoform (GS2) plays a key role in nitrogen (N) assimilation. We introduced TaGS2-2Abpro::TaGS2-2Ab, the favourable allele of TaGS2-2A in the winter wheat (Triticum aestivum) variety Ji5265. Transgenic expression of TaGS2-2Ab significantly increased GS2 abundance and GS activity in leaves. Two consecutive field experiments showed the transgenic lines had higher grain yield, spike number, grain number per spike and 1000-grain weight than did the wild type under both low N and high N conditions. Analysis of N use-related traits showed that transgenic expression of TaGS2-2Ab increased root ability to acquire N, N uptake before and after flowering, remobilization of N to grains and N harvest index. Measurement of chlorophyll content and net photosynthesis rate in flag leaves during grain filling stage revealed that the transgenic lines had prolonged leaf functional duration as compared with the wild type. These results suggest that TaGS2 plays important role in N use, and the favourable allele TaGS2-2Ab is valuable in engineering wheat with improved N use efficiency and grain yield.
Collapse
Affiliation(s)
- Mengyun Hu
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Xueqiang Zhao
- State Key Laboratory for Plant Cell and Chromosome EngineeringChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
| | - Qian Liu
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Xia Hong
- State Key Laboratory for Plant Cell and Chromosome EngineeringChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
| | - Wei Zhang
- State Key Laboratory for Plant Cell and Chromosome EngineeringChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
| | - Yingjun Zhang
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Lijing Sun
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Hui Li
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Yiping Tong
- State Key Laboratory for Plant Cell and Chromosome EngineeringChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
| |
Collapse
|
47
|
Vita F, Giuntoli B, Arena S, Quaranta F, Bertolini E, Lucarotti V, Guglielminetti L, Alessio M, Scaloni A, Alpi A. Effects of different nitrogen fertilizers on two wheat cultivars: An integrated approach. PLANT DIRECT 2018; 2:e00089. [PMID: 31245689 PMCID: PMC6508776 DOI: 10.1002/pld3.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 06/09/2023]
Abstract
Investigation of cultivated plant physiology grown under low energy input plays an important role to indicate their fitness to the new environmental conditions. The durum-wheat cultivars Creso and Dylan were tested to evaluate the growth, production, and proteomic and transcriptomic profiles of the crop under different synthetic and organic nitrogen fertilization regimes. In this work, a two-dimensional gel electrophoresis (2-DE) approach combined with liquid chromatography-mass spectrometry (LC-MS) was used to investigate the protein changes induced by the use of different nitrogen sources (hydrolysate of proteins 1 and 2, rhizovit, synthesis, leather) on wheat plants. Proteomic studies were integrated with qPCR analysis of genes related to glutamine synthetase/glutamine-2-oxoglutarate aminotransferase (GS-GOGAT) and tricarboxylic acid (TCA) metabolic pathways because most relevant for nitrogen-dependent plants growth. The proteomic analysis lead to the isolation of 23 spots that were able to distinguish the analyzed samples. These spots yielded the identification of 60 proteins involved in photosynthesis, glycolysis, and nitrogen metabolism. As an example, the quinone oxidoreductase-like protein and probable glutathione S-transferase GSTU proteins were identified in two spots that represents the most statistically significant ones in Dylan samples. Transcript analysis indicated that related genes exhibited different expression trends; the heat map also revealed the different behaviors of the hydrolysates of the proteins 1 and 2 nitrogen sources. The effects of nitrogenous fertilizers at the proteomic and agronomic levels revealed that plants fertilized with synthesis or rhizovit gave the best results concerning yield, whereas rhizovit and protein hydrolysates were most effective for proteins content in the grain (% of dry weight). Therefore, all parameters measured in this study indicated that different kinds of nitrogen fertilization used have a relevant impact on plant growth and production.
Collapse
Affiliation(s)
- Federico Vita
- LINV-Department of Plant Soil and Environmental Science University of Florence Florence Italy
- A.R.E.A. Foundation Pisa Italy
| | - Beatrice Giuntoli
- Biology Department University of Pisa Pisa Italy
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
| | - Simona Arena
- Proteomics and Mass Spectrometry Laboratory I.S.P.A.A.M. National Research Council Napoli Italy
| | - Fabrizio Quaranta
- Council for Agricultural Research and Agricultural Economics Analysis Unità di ricerca per la valorizzazione qualitativa dei cereali (CREA-QCE) Rome Italy
| | - Edoardo Bertolini
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
- Present address: Donald Danforth Plant Science Center Saint Louis Missouri
| | - Valentina Lucarotti
- Department of Agriculture, Food and Environment (DiSAAA) University of Pisa Pisa Italy
| | | | - Massimo Alessio
- Proteome Biochemistry Unit IRCCS-San Raffaele Scientific Institute Milan Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory I.S.P.A.A.M. National Research Council Napoli Italy
| | | |
Collapse
|
48
|
Moison M, Marmagne A, Dinant S, Soulay F, Azzopardi M, Lothier J, Citerne S, Morin H, Legay N, Chardon F, Avice JC, Reisdorf-Cren M, Masclaux-Daubresse C. Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4379-4393. [PMID: 29873769 PMCID: PMC6093384 DOI: 10.1093/jxb/ery217] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/30/2018] [Indexed: 05/22/2023]
Abstract
Glutamine synthetase (GS) is central for ammonium assimilation and consists of cytosolic (GS1) and chloroplastic (GS2) isoenzymes. During plant ageing, GS2 protein decreases due to chloroplast degradation, and GS1 activity increases to support glutamine biosynthesis and N remobilization from senescing leaves. The role of the different Arabidopsis GS1 isoforms in nitrogen remobilization was examined using 15N tracing experiments. Only the gln1;1-gln1;2-gln1;3 triple-mutation affecting the three GLN1;1, GLN1;2, and GLN1;3 genes significantly reduced N remobilization, total seed yield, individual seed weight, harvest index, and vegetative biomass. The triple-mutant accumulated a large amount of ammonium that could not be assimilated by GS1. Alternative ammonium assimilation through asparagine biosynthesis was increased and was related to higher ASN2 asparagine synthetase transcript levels. The GS2 transcript, protein, and activity levels were also increased to compensate for the lack of GS1-related glutamine biosynthesis. Localization of the different GLN1 genes showed that they were all expressed in the phloem companion cells but in veins of different order. Our results demonstrate that glutamine biosynthesis for N-remobilization occurs in veins of all orders (major and minor) in leaves, it is mainly catalysed by the three major GS1 isoforms (GLN1;1, GLN1;2, and GLN1;3), and it is alternatively supported by AS2 in the veins and GS2 in the mesophyll cells.
Collapse
Affiliation(s)
- Michael Moison
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Fabienne Soulay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marianne Azzopardi
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jérémy Lothier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Halima Morin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Nicolas Legay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jean-Christophe Avice
- UCBN, INRA, UMR INRA-UBCN Ecophysiologie Végétale, Agronomie and Nutrition N.C.S., Université de Caen Normandie, Caen, France
| | - Michèle Reisdorf-Cren
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Correspondence:
| |
Collapse
|
49
|
Nitrogen Supply and Leaf Age Affect the Expression of TaGS1 or TaGS2 Driven by a Constitutive Promoter in Transgenic Tobacco. Genes (Basel) 2018; 9:genes9080406. [PMID: 30103455 PMCID: PMC6115907 DOI: 10.3390/genes9080406] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 11/26/2022] Open
Abstract
Glutamine synthetase (GS) plays a key role in nitrogen metabolism. Here, two types of tobacco transformants, overexpressing Triticum aestivum GS1 (TaGS1) or GS2 (TaGS2), were analysed. Four independent transformed lines, GS1-TR1, GS1-TR2, GS2-TR1 and GS2-TR2, were used for the nitrogen treatment. Under nitrogen-sufficient conditions, the leaves of GS2-TR showed high accumulation of the TaGS2 transcript, while those of GS1-TR showed a low TaGS1 transcript levels. However, compared with nitrogen-sufficient conditions, the TaGS1 transcript level increased in the leaves under nitrogen starvation, but the TaGS2 transcript level decreased. In addition, the TaGS1 and TaGS2 transcript levels were highest in the middle leaves under nitrogen-sufficient and starvation conditions. These results show that nitrogen supply and leaf age regulate TaGS expression, even when they are driven by a super-promoter. Additionally, in regard to nitrogen metabolism level, the lower leaves of the GS1-TR exhibited lower NH4+ and higher amino acid contents, while the upper leaves exhibited higher amino acid, soluble protein and chlorophyll contents. The leaves of the GS2-TR exhibited lower NH4+ but higher amino acid, soluble protein and chlorophyll contents. Given the role that GS isoforms play in nitrogen metabolism, these data suggest that TaGS1 overexpression may improve nitrogen transport, and that TaGS2 overexpression may improve nitrogen assimilation under nitrogen stress.
Collapse
|
50
|
Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Sci Rep 2018; 8:11928. [PMID: 30093727 PMCID: PMC6085318 DOI: 10.1038/s41598-018-30451-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Basis for the effects of nitrogen (N) on wheat grain storage proteins (GSPs) and on the establishment of processing quality are far from clear. The response of GSPs and processing quality parameters to four N levels of four common wheat cultivars were investigated at two sites over two growing seasons. Except gluten index (GI), processing quality parameters as well as GSPs quantities were remarkably improved by increasing N level. N level explained 4.2~59.2% and 10.4~80.0% variability in GSPs fractions and processing quality parameters, respectively. The amount of N remobilized from vegetative organs except spike was significantly increased when enhancing N application. GSPs fractions and processing quality parameters except GI were only highly and positively correlated with the amount of N remobilized from stem with sheath. N reassimilation in grain was remarkably strengthened by the elevated activity and expression level of glutamine synthetase. Transcriptome analysis showed the molecular mechanism of seeds in response to N levels during 10~35 days post anthesis. Collectively, we provided comprehensive understanding of N-responding mechanisms with respect to wheat processing quality from N source to GSPs biosynthesis at the agronomic, physiological and molecular levels, and screened candidate genes for quality breeding.
Collapse
|