1
|
Benevenuto RF, Venter HJ, Zanatta CB, Nodari RO, Agapito-Tenfen SZ. Alterations in genetically modified crops assessed by omics studies: Systematic review and meta-analysis. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
2
|
Zanon Agapito-Tenfen S, Guerra MP, Nodari RO, Wikmark OG. Untargeted Proteomics-Based Approach to Investigate Unintended Changes in Genetically Modified Maize for Environmental Risk Assessment Purpose. FRONTIERS IN TOXICOLOGY 2021; 3:655968. [PMID: 35295118 PMCID: PMC8915820 DOI: 10.3389/ftox.2021.655968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022] Open
Abstract
Profiling technologies, such as proteomics, allow the simultaneous measurement and comparison of thousands of plant components without prior knowledge of their identity. The combination of these non-targeted methods facilitates a more comprehensive approach than targeted methods and thus provides additional opportunities to identify genotypic changes resulting from genetic modification, including new allergens or toxins. The purpose of this study was to investigate unintended changes in GM Bt maize grown in South Africa. In the present study, we used bi-dimensional gel electrophoresis based on fluorescence staining, coupled with mass spectrometry in order to compare the proteome of the field-grown transgenic hybrid (MON810) and its near-isogenic counterpart. Proteomic data showed that energy metabolism and redox homeostasis were unequally modulated in GM Bt and non-GM maize variety samples. In addition, a potential allergenic protein-pathogenesis related protein -1 has been identified in our sample set. Our data shows that the GM variety is not substantially equivalent to its non-transgenic near-isogenic variety and further studies should be conducted in order to address the biological relevance and the potential risks of such changes. These finding highlight the suitability of unbiased profiling approaches to complement current GMO risk assessment practices worldwide.
Collapse
Affiliation(s)
| | - Miguel Pedro Guerra
- CropScience Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rubens Onofre Nodari
- CropScience Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
3
|
Corujo M, Pla M, van Dijk J, Voorhuijzen M, Staats M, Slot M, Lommen A, Barros E, Nadal A, Puigdomènech P, Paz JLL, van der Voet H, Kok E. Use of omics analytical methods in the study of genetically modified maize varieties tested in 90 days feeding trials. Food Chem 2019; 292:359-371. [DOI: 10.1016/j.foodchem.2018.05.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/04/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
|
4
|
Wang X, Zhang X, Yang J, Liu X, Song Y, Wang Z. Genetic variation assessment of stacked-trait transgenic maize via conventional breeding. BMC PLANT BIOLOGY 2019; 19:346. [PMID: 31391002 PMCID: PMC6686426 DOI: 10.1186/s12870-019-1956-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND The safety assessment and control of stacked transgenic crops is increasingly important due to continuous crop development and is urgently needed in China. The genetic stability of foreign genes and unintended effects are the primary problems encountered in safety assessment. Omics techniques are useful for addressing these problems. The stacked transgenic maize variety 12-5 × IE034, which has insect-resistant and glyphosate-tolerant traits, was developed via a breeding stack using 12-5 and IE034 as parents. Using 12-5 × IE034, its parents (12-5 and IE034), and different maize varieties as materials, we performed proteomic profiling, molecular characterization and a genetic stability analysis. RESULTS Our results showed that the copy number of foreign genes in 12-5 × IE034 is identical to that of its parents 12-5 and IE034. Foreign genes can be stably inherited over different generations. Proteomic profiling analysis found no newly expressed proteins in 12-5 × IE034, and the differences in protein expression between 12 and 5 × IE034 and its parents were within the range of variation of conventional maize varieties. The expression levels of key enzymes participating in the shikimic acid pathway which is related to glyphosate tolerance of 12-5 × IE034 were not significantly different from those of its parents or five conventional maize varieties, which indicated that without selective pressure by glyphosate, the introduced EPSPS synthase is not has a pronounced impact on the synthesis of aromatic amino acids in maize. CONCLUSIONS Stacked-trait development via conventional breeding did not have an impact on the genetic stability of T-DNA, and the impact of stacked breeding on the maize proteome was less significant than that of genotypic differences. The results of this study provide a theoretical basis for the development of a safety assessment approach for stacked-trait transgenic crops in China.
Collapse
Affiliation(s)
- Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| | - Xin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| | - Jiangtao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| | - Xiaojing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| | - Yaya Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| |
Collapse
|
5
|
Mishra AK, Duraisamy GS, Khare M, Kocábek T, Jakse J, Bříza J, Patzak J, Sano T, Matoušek J. Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genomics 2018; 19:739. [PMID: 30305019 PMCID: PMC6180420 DOI: 10.1186/s12864-018-5125-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/27/2018] [Indexed: 01/04/2023] Open
Abstract
Background The hop plant (Humulus lupulus L.) is a valuable source of several secondary metabolites, such as flavonoids, bitter acids, and essential oils. These compounds are widely implicated in the beer brewing industry and are having potential biomedical applications. Several independent breeding programs around the world have been initiated to develop new cultivars with enriched lupulin and secondary metabolite contents but met with limited success due to several constraints. In the present work, a pioneering attempt has been made to overexpress master regulator binary transcription factor complex formed by HlWRKY1 and HlWDR1 using a plant expression vector to enhance the level of prenylflavonoid and bitter acid content in the hop. Subsequently, we performed transcriptional profiling using high-throughput RNA-Seq technology in leaves of resultant transformants and wild-type hop to gain in-depth information about the genome-wide functional changes induced by HlWRKY1 and HlWDR1 overexpression. Results The transgenic WW-lines exhibited an elevated expression of structural and regulatory genes involved in prenylflavonoid and bitter acid biosynthesis pathways. In addition, the comparative transcriptome analysis revealed a total of 522 transcripts involved in 30 pathways, including lipids and amino acids biosynthesis, primary carbon metabolism, phytohormone signaling and stress responses were differentially expressed in WW-transformants. It was apparent from the whole transcriptome sequencing that modulation of primary carbon metabolism and other pathways by HlWRKY1 and HlWDR1 overexpression resulted in enhanced substrate flux towards secondary metabolites pathway. The detailed analyses suggested that none of the pathways or genes, which have a detrimental effect on physiology, growth and development processes, were induced on a genome-wide scale in WW-transgenic lines. Conclusions Taken together, our results suggest that HlWRKY1 and HlWDR1 simultaneous overexpression positively regulates the prenylflavonoid and bitter acid biosynthesis pathways in the hop and thus these transgenes are presented as prospective candidates for achieving enhanced secondary metabolite content in the hop. Electronic supplementary material The online version of this article (10.1186/s12864-018-5125-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Mudra Khare
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Jindřich Bříza
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 43846, Žatec, Czech Republic
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Department of Applied Biosciences, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
6
|
Comments on two recent publications on GM maize and Roundup. Sci Rep 2018; 8:13338. [PMID: 30177715 PMCID: PMC6120907 DOI: 10.1038/s41598-018-30440-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/08/2018] [Indexed: 11/24/2022] Open
Abstract
Two -omics studies on genetically modified maize and Roundup-fed rats, recently published in the journal Scientific Reports, contain serious flaws in the experimental design, methodology and interpretation of results, which we point out here. The use of -omics technologies are of increasing importance in research, however we argue for a cautious approach to the potential application in food safety assessments as these exceptionally sensitive and complex methods require a thorough and detailed evaluation of the biological significance of obtained results. Arising from: Mesnage et al. Sci Rep 7:39328 (2017), Mesnage et al. Sci Rep 6:37855 (2016).
Collapse
|
7
|
Kok E, van Dijk J, Voorhuijzen M, Staats M, Slot M, Lommen A, Venema D, Pla M, Corujo M, Barros E, Hutten R, Jansen J, van der Voet H. Omics analyses of potato plant materials using an improved one-class classification tool to identify aberrant compositional profiles in risk assessment procedures. Food Chem 2018; 292:350-358. [PMID: 31054687 DOI: 10.1016/j.foodchem.2018.07.224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
The objective of this study was to quantitatively assess potato omics profiles of new varieties for meaningful differences from analogous profiles of commercial varieties through the SIMCA one-class classification model. Analytical profiles of nine commercial potato varieties, eleven experimental potato varieties, one GM potato variety that had acquired Phytophtora resistance based on a single insert with potato-derived DNA sequences, and its non-GM commercial counterpart were generated. The ten conventional varieties were used to construct the one-class model. Omics profiles from experimental non-GM and GM varieties were assessed using the one-class SIMCA models. No potential unintended effects were identified in the case of the GM variety. The model showed that varieties that were genetically more distant from the commercial varieties were recognized as aberrant, highlighting its potential in determining whether additional evaluation is required for the risk assessment of materials produced from any breeding technique, including genetic modification.
Collapse
Affiliation(s)
- Esther Kok
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| | - Jeroen van Dijk
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Marleen Voorhuijzen
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Martijn Staats
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Martijn Slot
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Arjen Lommen
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Dini Venema
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Maria Pla
- University of Girona, Institute for Food and Agricultural Technology (INTEA), Campus Montilivi (EPS-1), 17003 Girona, Spain
| | - Maria Corujo
- Centre for Research in Agricultural Genomics (CRAG), Edifici CRAG, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - Eugenia Barros
- Council for Scientific and Industrial Research (CSIR), Biosciences, Brummeria, Pretoria, South Africa
| | - Ronald Hutten
- Wageningen University & Research, Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Jeroen Jansen
- University of Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, the Netherlands
| | - Hilko van der Voet
- Wageningen University & Research, Biometris, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
8
|
Wang XJ, Zhang X, Yang JT, Wang ZX. Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidal cry and glyphosate tolerance epsps genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1007-1016. [PMID: 29356248 DOI: 10.1111/tpj.13825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 05/18/2023]
Abstract
Gene stacking is a developing trend in agricultural biotechnology. Unintended effects in stacked transgenic plants are safety issues considered by the public and researchers. Omics techniques provide useful tools to assess unintended effects. In this paper, stacked transgenic maize 12-5×IE034 that contained insecticidal cry and glyphosate tolerance G10-epsps genes was obtained by crossing of transgenic maize varieties 12-5 and IE034. Transcriptome and metabolome analyses were performed for different maize varieties, including 12-5×IE034, 12-5, IE034, and conventional varieties collected from different provinces in China. The transcriptome results were as follows. The nine maize varieties had obvious differences in gene expression. There were 3561-5538 differentially expressed genes between 12-5×IE034 and its parents and transgenic receptor, which were far fewer than the number of differentially expressed genes in different traditional maize varieties. Cluster analysis indicated that there were close relationships between 12-5×IE034 and its parents. The metabolome results were as follows. For the nine detected maize varieties, the number of different metabolites ranged from 0 to 240. Compared with its parents, 12-5 and IE034, the hybrid variety 12-5×IE034 had 15 and 112 different metabolites, respectively. Hierarchical cluster analysis with Pearson's correlation analysis showed that the differences between 12-5×IE034 and its parents were fewer than those between other maize varieties. Shikimate pathway-related genes and metabolites analysis results showed that the effects of hybrid stacking are less than those from transformation and differing genotypes. Thus, the differences due to breeding stack were fewer than those due to natural variation among maize varieties. This paper provides scientific data for assessing unintended effects in stacked transgenic plants.
Collapse
Affiliation(s)
- Xu-Jing Wang
- Biotechnology Research Institute, Chinese Academy Agricultural Sciences, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Xin Zhang
- Biotechnology Research Institute, Chinese Academy Agricultural Sciences, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Jiang-Tao Yang
- Biotechnology Research Institute, Chinese Academy Agricultural Sciences, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Zhi-Xing Wang
- Biotechnology Research Institute, Chinese Academy Agricultural Sciences, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| |
Collapse
|
9
|
Comparative analysis of miRNA expression profiles in transgenic and non-transgenic rice using miRNA-Seq. Sci Rep 2018; 8:338. [PMID: 29321648 PMCID: PMC5762784 DOI: 10.1038/s41598-017-18723-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/15/2017] [Indexed: 12/02/2022] Open
Abstract
Safety assessment for genetically modified organisms (GMOs) is required before their release. To date, miRNAs that play important roles in eukaryotic gene regulation have not been considered in the current assessment system. In this study, we identified 6 independent Bt and EPSPS GM rice lines using PCR and immune strip. We analyzed the expression levels of Cry1Ac and EPSPS using quantitative real-time PCR and western blot. Further, miRNAs from the developing seeds of the 6 GM rice lines and the wild-type line were investigated using deep sequencing and bioinformatic approaches. Although these GM lines have different types of integration sites, copy numbers, and levels of gene expression, 21 differentially expressed miRNAs have been found compared to wild type. There is no correlation between transgenic protein expression level and the quantity of differentially expressed miRNAs. This study provides useful data about the miRNA composition of GM plants, and it might be helpful for future risk assessments of miRNA-based GM plants.
Collapse
|
10
|
Li R, Quan S, Yan X, Biswas S, Zhang D, Shi J. Molecular characterization of genetically-modified crops: Challenges and strategies. Biotechnol Adv 2017; 35:302-309. [DOI: 10.1016/j.biotechadv.2017.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/23/2022]
|
11
|
Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLoS One 2017; 12:e0173069. [PMID: 28245233 PMCID: PMC5330488 DOI: 10.1371/journal.pone.0173069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/14/2017] [Indexed: 01/08/2023] Open
Abstract
Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses.
Collapse
|
12
|
Mesnage R, Agapito-Tenfen SZ, Vilperte V, Renney G, Ward M, Séralini GE, Nodari RO, Antoniou MN. An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process. Sci Rep 2016; 6:37855. [PMID: 27991589 PMCID: PMC5171704 DOI: 10.1038/srep37855] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Glyphosate tolerant genetically modified (GM) maize NK603 was assessed as 'substantially equivalent' to its isogenic counterpart by a nutrient composition analysis in order to be granted market approval. We have applied contemporary in depth molecular profiling methods of NK603 maize kernels (sprayed or unsprayed with Roundup) and the isogenic corn to reassess its substantial equivalence status. Proteome profiles of the maize kernels revealed alterations in the levels of enzymes of glycolysis and TCA cycle pathways, which were reflective of an imbalance in energy metabolism. Changes in proteins and metabolites of glutathione metabolism were indicative of increased oxidative stress. The most pronounced metabolome differences between NK603 and its isogenic counterpart consisted of an increase in polyamines including N-acetyl-cadaverine (2.9-fold), N-acetylputrescine (1.8-fold), putrescine (2.7-fold) and cadaverine (28-fold), which depending on context can be either protective or a cause of toxicity. Our molecular profiling results show that NK603 and its isogenic control are not substantially equivalent.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | | | - Vinicius Vilperte
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
| | - George Renney
- Proteomics Facility, King’s College London, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | - Malcolm Ward
- Proteomics Facility, King’s College London, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | - Gilles-Eric Séralini
- University of Caen, Institute of Biology, EA 2608 and Network on Risks, Quality and Sustainable Environment, MRSH, Esplanade de la Paix, University of Caen, Caen 14032, Cedex, France
| | - Rubens O. Nodari
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| |
Collapse
|
13
|
Rao J, Yang L, Guo J, Quan S, Chen G, Zhao X, Zhang D, Shi J. Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2. PLANT CELL REPORTS 2016; 35:429-437. [PMID: 26581949 DOI: 10.1007/s00299-015-1894-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/20/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Non-targeted metabolomics analysis revealed only intended metabolic changes in transgenic maize over-expressing the Aspergillus niger phyA2. Genetically modified (GM) crops account for a large proportion of modern agriculture worldwide, raising increasingly the public concerns of safety. Generally, according to substantial equivalence principle, if a GM crop is demonstrated to be equivalently safe to its conventional species, it is supposed to be safe. In this study, taking the advantage of an established non-target metabolomic profiling platform based on the combination of UPLC-MS/MS with GC-MS, we compared the mature seed metabolic changes in transgenic maize over-expressing the Aspergillus niger phyA2 with its non-transgenic counterpart and other 14 conventional maize lines. In total, levels of nine out of identified 210 metabolites were significantly changed in transgenic maize as compared with its non-transgenic counterpart, and the number of significantly altered metabolites was reduced to only four when the natural variations were taken into consideration. Notably, those four metabolites were all associated with targeted engineering pathway. Our results indicated that although both intended and non-intended metabolic changes occurred in the mature seeds of this GM maize event, only intended metabolic pathway was found to be out of the range of the natural metabolic variation in the metabolome of the transgenic maize. Therefore, only when natural metabolic variation was taken into account, could non-targeted metabolomics provide reliable objective compositional substantial equivalence analysis on GM crops.
Collapse
Affiliation(s)
- Jun Rao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
- Jiangxi Provincial Cancer Hospital, No. 519 East Beijing Road, Nanchang, 330029, China
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
| | - Jinchao Guo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
| | - Sheng Quan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
- Shanghai Ruifeng Agro-biotechnology Co. Ltd, No 233 Rushan Rd., Shanghai, 200120, China
| | - Guihua Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
| | - Xiangxiang Zhao
- Departmen of Life Science, Huaiyin Normal College, Huaian, 223300, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China.
- Shanghai Ruifeng Agro-biotechnology Co. Ltd, No 233 Rushan Rd., Shanghai, 200120, China.
| |
Collapse
|
14
|
Vidal N, Barbosa H, Jacob S, Arruda M. Comparative study of transgenic and non-transgenic maize ( Zea mays ) flours commercialized in Brazil, focussing on proteomic analyses. Food Chem 2015; 180:288-294. [DOI: 10.1016/j.foodchem.2015.02.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/19/2015] [Accepted: 02/11/2015] [Indexed: 11/16/2022]
|
15
|
Trtikova M, Wikmark OG, Zemp N, Widmer A, Hilbeck A. Transgene expression and Bt protein content in transgenic Bt maize (MON810) under optimal and stressful environmental conditions. PLoS One 2015; 10:e0123011. [PMID: 25853814 PMCID: PMC4390241 DOI: 10.1371/journal.pone.0123011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/26/2015] [Indexed: 11/18/2022] Open
Abstract
Bt protein content in transgenic insect resistant (Bt) maize may vary between tissues within plants and between plants growing under different environmental conditions. However, it is unknown whether and how Bt protein content correlates with transgene expression, and whether this relationship is influenced by stressful environmental conditions. Two Bt maize varieties containing the same transgene cassette (MON 810) were grown under optimal and stressful conditions. Before and during stress exposure, the upper leaves were analysed for transgene expression using quantitative RT-PCR and for Bt content using ELISA. Under optimal conditions there was no significant difference in the transgene expression between the two investigated Bt maize varieties whereas Bt protein content differed significantly. Transgene expression was correlated with Bt protein content in only one of the varieties. Under stressful environmental conditions we found similar transgene expressions as under optimal conditions but Bt content responded differently. These results suggest that Bt content is not only controlled by the transgene expression but is also dependent on the genetic background of the maize variety. Under stressful conditions the concentration of Bt protein is even more difficult to predict.
Collapse
Affiliation(s)
- Miluse Trtikova
- ETH Zurich, IBZ, Plant Ecological Genetics, Universitaetstrasse 16, 8092 Zurich, Switzerland
- * E-mail:
| | | | - Niklaus Zemp
- ETH Zurich, IBZ, Plant Ecological Genetics, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Alex Widmer
- ETH Zurich, IBZ, Plant Ecological Genetics, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Angelika Hilbeck
- ETH Zurich, IBZ, Plant Ecological Genetics, Universitaetstrasse 16, 8092 Zurich, Switzerland
- Genok—Centre for Biosafety, 9294 Tromso, Norway
| |
Collapse
|
16
|
Fast BJ, Schafer AC, Johnson TY, Potts BL, Herman RA. Insect-protected event DAS-81419-2 soybean (Glycine max L.) grown in the United States and Brazil is compositionally equivalent to nontransgenic soybean. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2063-73. [PMID: 25641393 PMCID: PMC4342727 DOI: 10.1021/jf505015y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/28/2015] [Accepted: 01/31/2015] [Indexed: 05/12/2023]
Abstract
The transgenic soybean event DAS-81419-2 contains genes that encode the Cry1F, Cry1Ac, and PAT proteins. Cry1F and Cry1Ac provide protection against key lepidopteran insect pests, while PAT confers tolerance to the herbicide glufosinate. To satisfy regulatory requirements for the safety evaluation of transgenic crops, studies were conducted in the United States and Brazil to evaluate the nutrient and antinutrient composition of event DAS-81419-2 soybean. On the basis of the results of these studies, event DAS-81419-2 soybean is compositionally equivalent to nontransgenic soybean. This conclusion concurs with numerous other published studies in soybean and other crops where compositional equivalence between the transgenic crop and its nontransgenic comparator has been demonstrated.
Collapse
Affiliation(s)
- Brandon J. Fast
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Ariane C. Schafer
- Dow AgroSciences Industrial Ltda., Rod. Anhanguera Km 296, Cravinhos, SP 14140-000, Brazil
| | - Tempest Y. Johnson
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Brian L. Potts
- Covance
Laboratories Inc., 3301
Kinsman Boulevard, Madison, Wisconsin 53704, United States
| | - Rod A. Herman
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
17
|
Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety. PLoS One 2015; 10:e0117073. [PMID: 25692547 PMCID: PMC4333122 DOI: 10.1371/journal.pone.0117073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Maize MON810, grown and commercialised worldwide, is the only cultivated GM event in the EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic line Tietar were studied in different growth conditions, to compare their behaviour in response to drought. Main photosynthetic parameters were significantly affected by drought stress in both GM and non-GM varieties to a similar extent. Though DKC6575 (GM) had a greater sensitivity in the early phase of stress response as compared with Tietar (non-GM), after six days of stress they behaved similarly, and both varieties recovered from stress damage. Profiling gene expression in water deficit regimes and in a generalised drought stress condition showed an up-regulation of many stress-responsive genes, but a greater number of differentially expressed genes was observed in Tietar, with genes belonging to transcription factor families and genes encoding heat shock proteins, late embryogenesis abundant proteins and detoxification enzymes. Since induction of these genes have been indicated from the literature as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient response to drought. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding the delta-endotoxin insecticidal protein) in water deficit conditions. In all the experiments, the CryIAb transcript was not influenced by drought stress, but was expressed at a constant level. This suggests that though possessing a different pattern of sensitivity to stress, the GM variety maintains the same expression level for the transgene.
Collapse
|
18
|
Agapito-Tenfen SZ, Vilperte V, Benevenuto RF, Rover CM, Traavik TI, Nodari RO. Effect of stacking insecticidal cry and herbicide tolerance epsps transgenes on transgenic maize proteome. BMC PLANT BIOLOGY 2014; 14:346. [PMID: 25490888 PMCID: PMC4273480 DOI: 10.1186/s12870-014-0346-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/29/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND The safe use of stacked transgenic crops in agriculture requires their environmental and health risk assessment, through which unintended adverse effects are examined prior to their release in the environment. Molecular profiling techniques can be considered useful tools to address emerging biosafety gaps. Here we report the first results of a proteomic profiling coupled to transgene transcript expression analysis of a stacked commercial maize hybrid containing insecticidal and herbicide tolerant traits in comparison to the single event hybrids in the same genetic background. RESULTS Our results show that stacked genetically modified (GM) genotypes were clustered together and distant from other genotypes analyzed by PCA. Twenty-two proteins were shown to be differentially modulated in stacked and single GM events versus non-GM isogenic maize and a landrace variety with Brazilian genetic background. Enrichment analysis of these proteins provided insight into two major metabolic pathway alterations: energy/carbohydrate and detoxification metabolism. Furthermore, stacked transgene transcript levels had a significant reduction of about 34% when compared to single event hybrid varieties. CONCLUSIONS Stacking two transgenic inserts into the genome of one GM maize hybrid variety may impact the overall expression of endogenous genes. Observed protein changes differ significantly from those of single event lines and a conventional counterpart. Some of the protein modulation did not fall within the range of the natural variability for the landrace used in this study. Higher expression levels of proteins related to the energy/carbohydrate metabolism suggest that the energetic homeostasis in stacked versus single event hybrid varieties also differ. Upcoming global databases on outputs from "omics" analyses could provide a highly desirable benchmark for the safety assessment of stacked transgenic crop events. Accordingly, further studies should be conducted in order to address the biological relevance and implications of such changes.
Collapse
Affiliation(s)
- Sarah Zanon Agapito-Tenfen
- />CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
- />Genøk Center for Biosafety, The Science Park, P.O. Box 6418, 9294 Tromsø, Norway
| | - Vinicius Vilperte
- />CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
| | - Rafael Fonseca Benevenuto
- />CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
| | - Carina Macagnan Rover
- />CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
| | | | - Rubens Onofre Nodari
- />CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
| |
Collapse
|
19
|
Wang HL, Chen J, Tian Q, Wang S, Xia X, Yin W. Identification and validation of reference genes for Populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR. PHYSIOLOGIA PLANTARUM 2014; 152:529-45. [PMID: 24720378 DOI: 10.1111/ppl.12206] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 05/08/2023]
Abstract
Populus euphratica is the only arboreal species that is established in the world's largest shifting-sand desert in China and is well-adapted to the extreme desert environment, so it is widely considered a model system for researching into abiotic stress resistance of woody plants. However, few P. euphratica reference genes (RGs) have been identified for quantitative real-time polymerase chain reaction (qRT-PCR) until now. Validation of suitable RGs is essential for gene expression normalization research. In this study, we screened 16 endogenous candidate RGs in P. euphratica leaves in six abiotic stress treatments, including abscisic acid (ABA), cold, dehydration, drought, short-duration salt (SS) and long-duration salt (LS) treatments, each with 6 treatment gradients. After calculation of PCR efficiencies, three different software tools, NormFinder, geNorm and BestKeeper, were employed to analyze the qRT-PCR data systematically, and the outputs were merged by means of a non-weighted unsupervised rank aggregation method. The genes selected as optimal for gene expression analysis of the six treatments were RPL17 (ribosomal protein L17) in ABA, EF1α (elongation factor-1 alpha) in cold, HIS (histone superfamily protein H3) in dehydration, GIIα in drought and SS, and TUB (tubulin) in LS. The expression of 60S (the 60S ribosomal protein) varied the least during all treatments. To illustrate the suitability of these RGs, the relative quantifications of three stress-inducible genes, PePYL1, PeSCOF-1 and PeSCL7 were investigated with different RGs. The results, calculated using qBasePlus software, showed that compared with the least-appropriate RGs, the expression profiles normalized by the recommended RGs were closer to expectations. Our study provided an important RG application guideline for P. euphratica gene expression characterization.
Collapse
Affiliation(s)
- Hou-Ling Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory for Silviculture and Conservation, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | | | | | | | | | | |
Collapse
|
20
|
Ben Ali SE, Madi ZE, Hochegger R, Quist D, Prewein B, Haslberger AG, Brandes C. Mutation scanning in a single and a stacked genetically modified (GM) event by real-time PCR and high resolution melting (HRM) analysis. Int J Mol Sci 2014; 15:19898-923. [PMID: 25365178 PMCID: PMC4264145 DOI: 10.3390/ijms151119898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/11/2014] [Accepted: 10/21/2014] [Indexed: 12/02/2022] Open
Abstract
Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017 × MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found.
Collapse
Affiliation(s)
- Sina-Elisabeth Ben Ali
- Austrian Agency for Health and Food Safety, Spargelfeldstrasse 191, 1220 Vienna, Austria.
| | - Zita Erika Madi
- Austrian Agency for Health and Food Safety, Spargelfeldstrasse 191, 1220 Vienna, Austria.
| | - Rupert Hochegger
- Austrian Agency for Health and Food Safety, Spargelfeldstrasse 191, 1220 Vienna, Austria.
| | - David Quist
- Centre for Biosafety-GenØk, PB 6418 Science Park, 9294 Tromsoe, Norway.
| | - Bernhard Prewein
- Austrian Agency for Health and Food Safety, Spargelfeldstrasse 191, 1220 Vienna, Austria.
| | - Alexander G Haslberger
- Department of Nutritional Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | - Christian Brandes
- Austrian Agency for Health and Food Safety, Spargelfeldstrasse 191, 1220 Vienna, Austria.
| |
Collapse
|
21
|
Rao J, Yang L, Wang C, Zhang D, Shi J. Digital gene expression analysis of mature seeds of transgenic maize overexpressingAspergillus nigerphyA2and its non-transgenic counterpart. GM CROPS & FOOD 2014; 4:98-108. [DOI: 10.4161/gmcr.25593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
The environment exerts a greater influence than the transgene on the transcriptome of field-grown wheat expressing the Pm3b allele. Transgenic Res 2014; 24:87-97. [PMID: 25095900 DOI: 10.1007/s11248-014-9821-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
Abstract
Wheat provides 20 % of the calories consumed worldwide. Powdery mildew infections of wheat can result in more than 30 % yield loss but it has been demonstrated that wheat overexpressing Pm3b, an allele of the R gene Pm3, has enhanced resistance against powdery mildew under field conditions. A gene expression profile study using GeneChip Wheat Genome Array and Fluidigm 96.96 Dynamic Arrays was performed to obtain insights into the mode of action of Pm3b and to elucidate the molecular basis of pleiotropic effects observed in three out of four independent transgenic events under field conditions. A cluster analysis of the microarray data and a principal component analysis of the Fluidigm 96.96 Dynamic Arrays data showed that transgenic lines and null segregants grouped together. The microarray analysis of samples from fungicide-treated plants revealed that significantly fewer genes were differentially expressed in Pm3b#1 than in Pm3b#2, which had a pleiotropic phenotype in the field, compared to their null segregants. Together, our data provide evidence that the environment influenced gene expression in the Pm3b lines more than the transgene itself.
Collapse
|
23
|
van Dijk JP, de Mello CS, Voorhuijzen MM, Hutten RCB, Arisi ACM, Jansen JJ, Buydens LMC, van der Voet H, Kok EJ. Safety assessment of plant varieties using transcriptomics profiling and a one-class classifier. Regul Toxicol Pharmacol 2014; 70:297-303. [PMID: 25046166 DOI: 10.1016/j.yrtph.2014.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 12/15/2022]
Abstract
An important part of the current hazard identification of novel plant varieties is comparative targeted analysis of the novel and reference varieties. Comparative analysis will become much more informative with unbiased analytical approaches, e.g. omics profiling. Data analysis estimating the similarity of new varieties to a reference baseline class of known safe varieties would subsequently greatly facilitate hazard identification. Further biological and eventually toxicological analysis would then only be necessary for varieties that fall outside this reference class. For this purpose, a one-class classifier tool was explored to assess and classify transcriptome profiles of potato (Solanum tuberosum) varieties in a model study. Profiles of six different varieties, two locations of growth, two year of harvest and including biological and technical replication were used to build the model. Two scenarios were applied representing evaluation of a 'different' variety and a 'similar' variety. Within the model higher class distances resulted for the 'different' test set compared with the 'similar' test set. The present study may contribute to a more global hazard identification of novel plant varieties.
Collapse
Affiliation(s)
| | - Carla Souza de Mello
- RIKILT, Wageningen UR, Wageningen, The Netherlands; Federal University of Santa Catarina, Brazil
| | | | | | | | - Jeroen J Jansen
- Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands
| | - Lutgarde M C Buydens
- Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands
| | | | | |
Collapse
|
24
|
La Paz JL, Pla M, Centeno E, Vicient CM, Puigdomènech P. The use of massive sequencing to detect differences between immature embryos of MON810 and a comparable non-GM maize variety. PLoS One 2014; 9:e100895. [PMID: 24967839 PMCID: PMC4072715 DOI: 10.1371/journal.pone.0100895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/01/2014] [Indexed: 02/05/2023] Open
Abstract
The insect resistant maize YieldGard MON810 was studied to assess the extent to which introduction of a transgene may putatively alter the expression of endogenous genes by comparison of various GM lines vs. their non-transgenic counterparts. To assess the extent to which introduction of a transgene may putatively alter the expression of endogenous genes, GM lines of the insect resistant maize YieldGard MON810 were compared with non-transgenic counterparts. For a more in-depth study, high-throughput deep sequencing together with microarrays were used to compare the transcriptomes of immature embryos of the MON810 variety DKC6575, with a cryIA(b) transgene, and its near-isogenic variety Tietar, grown under controlled environmental conditions. This technique also allows characterisation of the transgenic mRNAs produced. 3'UTR-anchored mRNA-seq produced 1,802,571 sequences from DKC6575 and 1,170,973 from Tietar, which mapped to 14,712 and 14,854 unigenes, respectively. Up to 32 reads from the transgenic embryos matched to the synthetic cry1A(b) sequence, similar to medium-abundant mRNAs. Gene expression analysis, using the R-bioconductor packages EdgeR and DEseq, revealed 140 differentially expressed genes mainly involved in carbohydrate metabolism, protein metabolism and chromatin organisation. Comparison of the expression of 30 selected genes in two additional MON810 and near-isogenic variety pairs showed that most of them were differentially expressed in the three pairs of varieties analysed. Analysis of functional annotation and the precise moment of expression of the differentially expressed genes and physiological data obtained suggest a slight but significant delay in seed and plant maturation of MON810 plants. However, these transcriptomic changes were not associated to undesirable changes in the global phenotype or plant behaviour. Moreover, while most expression changes in MON810 immature embryos were maintained in other transgenic varieties, some gene expression was found to be modulated by the genetic background in which the transgene was introduced through conventional breeding programs.
Collapse
Affiliation(s)
- Jose Luis La Paz
- Department of Molecular Genetics, Center for Research in Agrigenomics, Consejo Superior de Investigaciones Científicas, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Maria Pla
- Department of Molecular Genetics, Center for Research in Agrigenomics, Consejo Superior de Investigaciones Científicas, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi, EPS-I, Girona, Spain
| | - Emilio Centeno
- Department of Molecular Genetics, Center for Research in Agrigenomics, Consejo Superior de Investigaciones Científicas, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Carlos M. Vicient
- Department of Molecular Genetics, Center for Research in Agrigenomics, Consejo Superior de Investigaciones Científicas, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Pere Puigdomènech
- Department of Molecular Genetics, Center for Research in Agrigenomics, Consejo Superior de Investigaciones Científicas, CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
25
|
Zhang W, Chu Y, Ding C, Zhang B, Huang Q, Hu Z, Huang R, Tian Y, Su X. Transcriptome sequencing of transgenic poplar (Populus × euramericana 'Guariento') expressing multiple resistance genes. BMC Genet 2014; 15 Suppl 1:S7. [PMID: 25079970 PMCID: PMC4118631 DOI: 10.1186/1471-2156-15-s1-s7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Transgenic poplar (Populus × euramericana 'Guariento') plants harboring five exogenous, stress-related genes exhibit increased tolerance to multiple stresses including drought, salt, waterlogging, and insect feeding, but the complex mechanisms underlying stress tolerance in these plants have not been elucidated. Here, we analyzed the differences in the transcriptomes of the transgenic poplar line D5-20 and the non-transgenic line D5-0 using high-throughput transcriptome sequencing techniques and elucidated the functions of the differentially expressed genes using various functional annotation methods. Results We generated 11.80 Gb of sequencing data containing 63, 430, 901 sequences, with an average length of 200 bp. The processed sequences were mapped to reference genome sequences of Populus trichocarpa. An average of 62.30% and 61.48% sequences could be aligned with the reference genomes for D5-20 and D5-0, respectively. We detected 11,352 (D5-20) and 11,372 expressed genes (D5-0), 7,624 (56.61%; D5-20) and 7,453 (65.54%; D5-0) of which could be functionally annotated. A total of 782 differentially expressed genes in D5-20 were identified compared with D5-0, including 628 up-regulated and 154 down-regulated genes. In addition, 196 genes with putative functions related to stress responses were also annotated. Gene Ontology (GO) analysis revealed that 346 differentially expressed genes are mainly involved in 67 biological functions, such as DNA binding and nucleus. KEGG annotation revealed that 36 genes (21 up-regulated and 15 down-regulated) were enriched in 51 biological pathways, 9 of which are linked to glucose metabolism. KOG functional classification revealed that 475 genes were enriched in 23 types of KOG functions. Conclusion These results suggest that the transferred exogenous genes altered the expression of stress (biotic and abiotic) response genes, which were distributed in different metabolic pathways and were linked to some extent. Our results provide a theoretic basis for investigating the functional mechanisms of exogenous genes in transgenic plants.
Collapse
|
26
|
Houshyani B, van der Krol AR, Bino RJ, Bouwmeester HJ. Assessment of pleiotropic transcriptome perturbations in Arabidopsis engineered for indirect insect defence. BMC PLANT BIOLOGY 2014; 14:170. [PMID: 24947327 PMCID: PMC4091741 DOI: 10.1186/1471-2229-14-170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/09/2014] [Indexed: 05/14/2023]
Abstract
BACKGROUND Molecular characterization is an essential step of risk/safety assessment of genetically modified (GM) crops. Holistic approaches for molecular characterization using omics platforms can be used to confirm the intended impact of the genetic engineering, but can also reveal the unintended changes at the omics level as a first assessment of potential risks. The potential of omics platforms for risk assessment of GM crops has rarely been used for this purpose because of the lack of a consensus reference and statistical methods to judge the significance or importance of the pleiotropic changes in GM plants. Here we propose a meta data analysis approach to the analysis of GM plants, by measuring the transcriptome distance to untransformed wild-types. RESULTS In the statistical analysis of the transcriptome distance between GM and wild-type plants, values are compared with naturally occurring transcriptome distances in non-GM counterparts obtained from a database. Using this approach we show that the pleiotropic effect of genes involved in indirect insect defence traits is substantially equivalent to the variation in gene expression occurring naturally in Arabidopsis. CONCLUSION Transcriptome distance is a useful screening method to obtain insight in the pleiotropic effects of genetic modification.
Collapse
Affiliation(s)
- Benyamin Houshyani
- Wageningen University, Plant Sciences Group, Laboratory of Plant Physiology, P.O. Box 658, Wageningen 6700 AR, The Netherlands
| | - Alexander R van der Krol
- Wageningen University, Plant Sciences Group, Laboratory of Plant Physiology, P.O. Box 658, Wageningen 6700 AR, The Netherlands
| | - Raoul J Bino
- Wageningen University, Plant Sciences Group, Laboratory of Plant Physiology, P.O. Box 658, Wageningen 6700 AR, The Netherlands
| | - Harro J Bouwmeester
- Wageningen University, Plant Sciences Group, Laboratory of Plant Physiology, P.O. Box 658, Wageningen 6700 AR, The Netherlands
| |
Collapse
|
27
|
Goldstein DA. Tempest in a tea pot: How did the public conversation on genetically modified crops drift so far from the facts? J Med Toxicol 2014; 10:194-201. [PMID: 24798648 PMCID: PMC4057531 DOI: 10.1007/s13181-014-0402-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The debate over genetically modified (GM) crops has raged in Europe since 1996, but had barely risen above a whisper in the USA until recent labeling debates raised public attention. This article will explain GM crops and traits discuss safety assessment provide a view on safety from authoritative organizations discuss selected issues of current debate, and provide the author's perspective as to why the public debate has drifted so far from scientific reality. The economic and environmental benefits of GM crops are beyond scope, but references are provided. GM food and feed undergo comprehensive assessments using recognized approaches to assure they are as safe as the conventional congener. Issues of food safety and nutrition, unrelated to the GM process, may arise when GM foods display novel components or composition. Unanticipated genetic effects in GM crops appear to be limited in contrast to existing variations among conventional varieties resulting from breeding, mutation, and natural mobile genetic elements. Allergenic potential is assessed when selecting genes for introduction into GM crops and remains a theoretical risk to date. Emerging weed and insect resistance is not unique to GM technology and will require the use of integrated pest management/best practices for pest control. Gene flow from GM crops to wild relatives is limited by existing biological barriers but can at time be a relevant consideration in gene selection and planting practices. Insect-resistant GM crops have significantly reduced use of chemical insecticides and appear to have reduced the incidence of pesticide poisoning in areas where small scale farming and hand application are common. Changes in herbicide patterns are more complex and are evolving over time in response to weed resistance management needs. Recent public debate is driven by a combination of unfounded allegations about the technology and purveyors, pseudoscience, and attempts to apply a strict precautionary principle.
Collapse
Affiliation(s)
- Daniel A Goldstein
- Regulatory Affairs, Monsanto Company, Monsanto, Mail Zone C3ND, 800 N.Blvd. St. Louis, Lindbergh, MO, 63167, USA,
| |
Collapse
|
28
|
Agapito-Tenfen SZ, Guerra MP, Wikmark OG, Nodari RO. Comparative proteomic analysis of genetically modified maize grown under different agroecosystems conditions in Brazil. Proteome Sci 2013; 11:46. [PMID: 24304660 PMCID: PMC4176129 DOI: 10.1186/1477-5956-11-46] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Profiling technologies allow the simultaneous measurement and comparison of thousands of cell components without prior knowledge of their identity. In the present study, we used two-dimensional gel electrophoresis combined with mass spectrometry to evaluate protein expression of Brazilian genetically modified maize hybrid grown under different agroecosystems conditions. To this effect, leaf samples were subjected to comparative analysis using the near-isogenic non-GM hybrid as the comparator. RESULTS In the first stage of the analysis, the main sources of variation in the dataset were identified by using Principal Components Analysis which correlated most of the variation to the different agroecosystems conditions. Comparative analysis within each field revealed a total of thirty two differentially expressed proteins between GM and non-GM samples that were identified and their molecular functions were mainly assigned to carbohydrate and energy metabolism, genetic information processing and stress response. CONCLUSIONS To the best of our knowledge this study represents the first evidence of protein identities with differentially expressed isoforms in Brazilian MON810 genetic background hybrid grown under field conditions. As global databases on outputs from "omics" analysis become available, these could provide a highly desirable benchmark for safety assessments.
Collapse
Affiliation(s)
- Sarah Zanon Agapito-Tenfen
- CropScience Department, Federal University of Santa Catarina, Road Admar Gonzaga 1346, Florianópolis 88034-000 Brazil
- Genøk, Center for Biosafety, The Science Park, P.O. Box 6418 Tromsø 9294, Norway
| | - Miguel Pedro Guerra
- CropScience Department, Federal University of Santa Catarina, Road Admar Gonzaga 1346, Florianópolis 88034-000 Brazil
| | - Odd-Gunnar Wikmark
- Genøk, Center for Biosafety, The Science Park, P.O. Box 6418 Tromsø 9294, Norway
| | - Rubens Onofre Nodari
- CropScience Department, Federal University of Santa Catarina, Road Admar Gonzaga 1346, Florianópolis 88034-000 Brazil
| |
Collapse
|
29
|
Herman RA, Price WD. Unintended compositional changes in genetically modified (GM) crops: 20 years of research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11695-701. [PMID: 23414177 DOI: 10.1021/jf400135r] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The compositional equivalency between genetically modified (GM) crops and nontransgenic comparators has been a fundamental component of human health safety assessment for 20 years. During this time, a large amount of information has been amassed on the compositional changes that accompany both the transgenesis process and traditional breeding methods; additionally, the genetic mechanisms behind these changes have been elucidated. After two decades, scientists are encouraged to objectively assess this body of literature and determine if sufficient scientific uncertainty still exists to continue the general requirement for these studies to support the safety assessment of transgenic crops. It is concluded that suspect unintended compositional effects that could be caused by genetic modification have not materialized on the basis of this substantial literature. Hence, compositional equivalence studies uniquely required for GM crops may no longer be justified on the basis of scientific uncertainty.
Collapse
Affiliation(s)
- Rod A Herman
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | | |
Collapse
|
30
|
Valdés A, Simó C, Ibáñez C, García-Cañas V. Foodomics strategies for the analysis of transgenic foods. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Scientific Opinion updating the risk assessment conclusions and risk management recommendations on the genetically modified insect resistant maize MON 810. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
32
|
Liu Z, Li Y, Zhao J, Chen X, Jian G, Peng Y, Qi F. Differentially expressed genes distributed over chromosomes and implicated in certain biological processes for site insertion genetically modified rice Kemingdao. Int J Biol Sci 2012; 8:953-63. [PMID: 22811617 PMCID: PMC3399318 DOI: 10.7150/ijbs.4527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/05/2012] [Indexed: 01/17/2023] Open
Abstract
Release of genetically modified (GM) plants has sparked off intensive debates worldwide partly because of concerns about potential adverse unintended effects of GM plants to the agro system and the safety of foods. In this study, with the aim of revealing the molecular basis for unintended effects of a single site insertion GM Kemingdao (KMD) rice transformed with a synthetic cry1Ab gene, and bridging unintended effects of KMD rice through clues of differentially expressed genes, comparative transcriptome analyses were performed for GM KMD rice and its parent rice of Xiushui11 (XS11). The results showed that 680 differentially expressed transcripts were identified from 30-day old seedlings of GM KMD rice. The absolute majority of these changed expression transcripts dispersed and located over all rice chromosomes, and existed physical distance on chromosome from the insertion site, while only two transcripts were found to be differentially expressed within the 21 genes located within 100 kb up and down-stream of the insertion site. Pathway and biology function analyses further revealed that differentially expressed transcripts of KMD rice were involved in certain biological processes, and mainly implicated in two types of pathways. One type was pathways implicated in plant stress/defense responses, which were considerably in coordination with the reported unintended effects of KMD rice, which were more susceptible to rice diseases compared to its parent rice XS11; the other type was pathways associated with amino acids metabolism. With this clue, new unintended effects for changes in amino acids synthesis of KMD rice leaves were successfully revealed. Such that an actual case was firstly provided for identification of unintended effects in GM plants by comparative transciptome analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuan Ming Yuan Road, Beijing 100193, P. R. China
| | - Fangjun Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuan Ming Yuan Road, Beijing 100193, P. R. China
| |
Collapse
|
33
|
Liu Z, Zhao J, Li Y, Zhang W, Jian G, Peng Y, Qi F. Non-uniform distribution pattern for differentially expressed genes of transgenic rice Huahui 1 at different developmental stages and environments. PLoS One 2012; 7:e37078. [PMID: 22606331 PMCID: PMC3350509 DOI: 10.1371/journal.pone.0037078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/13/2012] [Indexed: 11/18/2022] Open
Abstract
DNA microarray analysis is an effective method to detect unintended effects by detecting differentially expressed genes (DEG) in safety assessment of genetically modified (GM) crops. With the aim to reveal the distribution of DEG of GM crops under different conditions, we performed DNA microarray analysis using transgenic rice Huahui 1 (HH1) and its non-transgenic parent Minghui 63 (MH63) at different developmental stages and environmental conditions. Considerable DEG were selected in each group of HH1 under different conditions. For each group of HH1, the number of DEG was different; however, considerable common DEG were shared between different groups of HH1. These findings suggested that both DEG and common DEG were adequate for investigation of unintended effects. Furthermore, a number of significantly changed pathways were found in all groups of HH1, indicating genetic modification caused everlasting changes to plants. To our knowledge, our study for the first time provided the non-uniformly distributed pattern for DEG of GM crops at different developmental stages and environments. Our result also suggested that DEG selected in GM plants at specific developmental stage and environment could act as useful clues for further evaluation of unintended effects of GM plants.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Wenwei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Guiliang Jian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (FQ); (YP)
| | - Fangjun Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (FQ); (YP)
| |
Collapse
|
34
|
de Oliveira LA, Breton MC, Bastolla FM, Camargo SDS, Margis R, Frazzon J, Pasquali G. Reference genes for the normalization of gene expression in eucalyptus species. PLANT & CELL PHYSIOLOGY 2012; 53:405-22. [PMID: 22197885 PMCID: PMC7107212 DOI: 10.1093/pcp/pcr187] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/18/2011] [Indexed: 05/23/2023]
Abstract
Gene expression analysis is increasingly important in biological research, with reverse transcription-quantitative PCR (RT-qPCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Considering the increased sensitivity, reproducibility and large dynamic range of this method, the requirements for proper internal reference gene(s) for relative expression normalization have become much more stringent. Given the increasing interest in the functional genomics of Eucalyptus, we sought to identify and experimentally verify suitable reference genes for the normalization of gene expression associated with the flower, leaf and xylem of six species of the genus. We selected 50 genes that exhibited the least variation in microarrays of E. grandis leaves and xylem, and E. globulus xylem. We further performed the experimental analysis using RT-qPCR for six Eucalyptus species and three different organs/tissues. Employing algorithms geNorm and NormFinder, we assessed the gene expression stability of eight candidate new reference genes. Classic housekeeping genes were also included in the analysis. The stability profiles of candidate genes were in very good agreement. PCR results proved that the expression of novel Eucons04, Eucons08 and Eucons21 genes was the most stable in all Eucalyptus organs/tissues and species studied. We showed that the combination of these genes as references when measuring the expression of a test gene results in more reliable patterns of expression than traditional housekeeping genes. Hence, novel Eucons04, Eucons08 and Eucons21 genes are the best suitable references for the normalization of expression studies in the Eucalyptus genus.
Collapse
Affiliation(s)
- Luisa Abruzzi de Oliveira
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
- These authors contributed equally to this work
| | - Michèle Claire Breton
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
- These authors contributed equally to this work
| | - Fernanda Macedo Bastolla
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
- These authors contributed equally to this work
| | - Sandro da Silva Camargo
- Universidade Federal do Pampa, Campus Bagé, Travessa 45, 1.650, sala 2.107, Bairro Malafaia, Bagé, RS, 96.413-170, Brazil
| | - Rogério Margis
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
| | - Jeverson Frazzon
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
| | - Giancarlo Pasquali
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
| |
Collapse
|
35
|
Heinemann JA, Kurenbach B, Quist D. Molecular profiling--a tool for addressing emerging gaps in the comparative risk assessment of GMOs. ENVIRONMENT INTERNATIONAL 2011; 37:1285-93. [PMID: 21624662 DOI: 10.1016/j.envint.2011.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/15/2011] [Accepted: 05/05/2011] [Indexed: 05/20/2023]
Abstract
Assessing the risks of genetically modified organisms (GMOs) is required by both international agreement and domestic legislation. Many view the use of the "omics" tools for profiling classes of molecules as useful in risk assessment, but no consensus has formed on the need or value of these techniques for assessing the risks of all GMOs. In this and many other cases, experts support case-by-case use of molecular profiling techniques for risk assessment. We review the latest research on the applicability and usefulness of molecular profiling techniques for GMO risk assessment. As more and more kinds of GMOs and traits are developed, broader use of molecular profiling in a risk assessment may be required to supplement the comparative approach to risk assessment. The literature-based discussions on the use of profiling appear to have settled on two findings: 1. profiling techniques are reliable and relevant, at least no less so than other techniques used in risk assessment; and 2. although not required routinely, regulators should be aware of when they are needed. The dismissal of routine molecular profiling may be confusing to regulators who then lack guidance on when molecular profiling might be worthwhile. Molecular profiling is an important way to increase confidence in risk assessments if the profiles are properly designed to address relevant risks and are applied at the correct stage of the assessment.
Collapse
Affiliation(s)
- Jack A Heinemann
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | | | | |
Collapse
|
36
|
Zhou J, Harrigan GG, Berman KH, Webb EG, Klusmeyer TH, Nemeth MA. Stability in the composition equivalence of grain from insect-protected maize and seed from glyphosate-tolerant soybean to conventional counterparts over multiple seasons, locations, and breeding germplasms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8822-8. [PMID: 21797257 DOI: 10.1021/jf2019038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Insect-protected maize MON 810 and Roundup Ready soybean 40-3-2 represent major milestones in the adoption of genetically modified (GM) crops to enhance agricultural productivity. This study provides an assessment of the compositional stability of these products over multiple seasons, multiple germplasms, and diverse geographies encompassing North, Central, and South America and Europe. The compositional assessment evaluated levels of proximates in MON 810 and proximates, antinutrients, and isoflavones in 40-3-2. The means and range values for component levels in the GM crops and their conventional comparators were consistently similar to each other within each corresponding year from 2000 to 2009. To our knowledge, this study represents the first meta-analysis of comparative composition assessments of GM products. This approach, combined with graphical approaches, provided an effective summary of the overall data set and confirmed the continued compositional equivalence of these important crops to their conventional counterparts over time.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48104, United States
| | | | | | | | | | | |
Collapse
|
37
|
Montero M, Coll A, Nadal A, Messeguer J, Pla M. Only half the transcriptomic differences between resistant genetically modified and conventional rice are associated with the transgene. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:693-702. [PMID: 21040388 DOI: 10.1111/j.1467-7652.2010.00572.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Besides the intended effects that give a genetically modified (GM) plant the desired trait, unintended differences between GM and non-GM comparable plants may also occur. Profiling technologies allow their identification, and a number of examples demonstrating that unintended effects are limited and diverse have recently been reported. Both from the food safety aspect and for research purposes, it is important to discern unintended changes produced by the transgene and its expression from those that may be attributed to other factors. Here, we show differential expression of around 0.40% transcriptome between conventional rice var. Senia and Senia-afp constitutively expressing the AFP antifungal protein. Analysis of one-fifth of the regulated sequences showed that around 35% of the unintended effects could be attributed to the process used to produce GM plants, based on in vitro tissue culture techniques. A further ∼15% were event specific, and their regulation was attributed to host gene disruption and genome rearrangements at the insertion site, and effects on proximal sequences. Thus, only around half the transcriptional unintended effects could be associated to the transgene itself. A significant number of changes in Senia-afp and Senia are part of the plant response to stress conditions, and around half the sequences for which up-regulation was attributed to the transgene were induced in conventional (but not transgenic) plants after wounding. Unintended effects might, as such, putatively result in widening the self-resistance characteristics because of the transgene in GM plants.
Collapse
Affiliation(s)
- Maria Montero
- Institut de Tecnologia Agroalimentària (INTEA), Universitat de Girona, Campus Montilivi, Girona, Spain
| | | | | | | | | |
Collapse
|
38
|
Ricroch AE, Bergé JB, Kuntz M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. PLANT PHYSIOLOGY 2011; 155:1752-61. [PMID: 21350035 PMCID: PMC3091128 DOI: 10.1104/pp.111.173609] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/17/2011] [Indexed: 05/18/2023]
|
39
|
Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields. Transgenic Res 2010; 20:939-49. [DOI: 10.1007/s11248-010-9453-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 10/05/2010] [Indexed: 11/30/2022]
|