1
|
Tamburino R, Castiglia D, Marcolongo L, Sannino L, Ionata E, Scotti N. Tobacco Plastid Transformation as Production Platform of Lytic Polysaccharide MonoOxygenase Auxiliary Enzymes. Int J Mol Sci 2022; 24:ijms24010309. [PMID: 36613758 PMCID: PMC9820616 DOI: 10.3390/ijms24010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Plant biomass is the most abundant renewable resource in nature. In a circular economy perspective, the implementation of its bioconversion into fermentable sugars is of great relevance. Lytic Polysaccharide MonoOxygenases (LPMOs) are accessory enzymes able to break recalcitrant polysaccharides, boosting biomass conversion and subsequently reducing costs. Among them, auxiliary activity of family 9 (AA9) acts on cellulose in synergism with traditional cellulolytic enzymes. Here, we report for the first time, the production of the AA9 LPMOs from the mesophilic Trichoderma reesei (TrAA9B) and the thermophilic Thermoascus aurantiacus (TaAA9B) microorganisms in tobacco by plastid transformation with the aim to test this technology as cheap and sustainable manufacture platform. In order to optimize recombinant protein accumulation, two different N-terminal regulatory sequences were used: 5' untranslated region (5'-UTR) from T7g10 gene (DC41 and DC51 plants), and 5' translation control region (5'-TCR), containing the 5'-UTR and the first 14 amino acids (Downstream Box, DB) of the plastid atpB gene (DC40 and DC50 plants). Protein yields ranged between 0.5 and 5% of total soluble proteins (TSP). The phenotype was unaltered in all transplastomic plants, except for the DC50 line accumulating AA9 LPMO at the highest level, that showed retarded growth and a mild pale green phenotype. Oxidase activity was spectrophotometrically assayed and resulted higher for the recombinant proteins without the N-terminal fusion (DC41 and DC51), with a 3.9- and 3.4-fold increase compared to the fused proteins.
Collapse
Affiliation(s)
- Rachele Tamburino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Portici, Italy
| | - Daniela Castiglia
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Portici, Italy
- CNR-ICB, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | | | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Portici, Italy
| | - Elena Ionata
- CNR-IRET, Research Institute on Terrestrial Ecosystems, 80131 Naples, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Portici, Italy
- Correspondence:
| |
Collapse
|
2
|
Tamburino R, Marcolongo L, Sannino L, Ionata E, Scotti N. Plastid Transformation: New Challenges in the Circular Economy Era. Int J Mol Sci 2022; 23:ijms232315254. [PMID: 36499577 PMCID: PMC9736159 DOI: 10.3390/ijms232315254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In a circular economy era the transition towards renewable and sustainable materials is very urgent. The development of bio-based solutions, that can ensure technological circularity in many priority areas (e.g., agriculture, biotechnology, ecology, green industry, etc.), is very strategic. The agricultural and fishing industry wastes represent important feedstocks that require the development of sustainable and environmentally-friendly industrial processes to produce and recover biofuels, chemicals and bioactive molecules. In this context, the replacement, in industrial processes, of chemicals with enzyme-based catalysts assures great benefits to humans and the environment. In this review, we describe the potentiality of the plastid transformation technology as a sustainable and cheap platform for the production of recombinant industrial enzymes, summarize the current knowledge on the technology, and display examples of cellulolytic enzymes already produced. Further, we illustrate several types of bacterial auxiliary and chitinases/chitin deacetylases enzymes with high biotechnological value that could be manufactured by plastid transformation.
Collapse
Affiliation(s)
- Rachele Tamburino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | | | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | - Elena Ionata
- CNR-IRET, Research Institute on Terrestrial Ecosystems, 80131 Naples, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
- Correspondence:
| |
Collapse
|
3
|
Lv N, Zhang L, Yang Z, Wang H, Yang N, Li H. Label-free biological sample detection and non-contact separation system based on microfluidic chip. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:063104. [PMID: 35778042 DOI: 10.1063/5.0086109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The detection and separation of biological samples are of great significance for achieving accurate diagnoses and state assessments. Currently, the detection and separation of cells mostly adopt labeling methods, which will undoubtedly affect the original physiological state and functions of cells. Therefore, in this study, a label-free cell detection method based on microfluidic chips is proposed. By measuring the scattering of cells to identify cells and then using optical tweezers to separate the target cells, the whole process without any labeling and physical contact could realize automatic cell identification and separation. Different concentrations of 15 µm polystyrene microspheres and yeast mixed solution are used as samples for detection and separation. The detection accuracy is over 90%, and the separation accuracy is over 73%.
Collapse
Affiliation(s)
- Ning Lv
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Lu Zhang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Zewen Yang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Huijun Wang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Nan Yang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Hao Li
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| |
Collapse
|
4
|
Schmidt JA, Richter LV, Condoluci LA, Ahner BA. Mitigation of deleterious phenotypes in chloroplast-engineered plants accumulating high levels of foreign proteins. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:42. [PMID: 33568217 PMCID: PMC7877051 DOI: 10.1186/s13068-021-01893-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/28/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND The global demand for functional proteins is extensive, diverse, and constantly increasing. Medicine, agriculture, and industrial manufacturing all rely on high-quality proteins as major active components or process additives. Historically, these demands have been met by microbial bioreactors that are expensive to operate and maintain, prone to contamination, and relatively inflexible to changing market demands. Well-established crop cultivation techniques coupled with new advancements in genetic engineering may offer a cheaper and more versatile protein production platform. Chloroplast-engineered plants, like tobacco, have the potential to produce large quantities of high-value proteins, but often result in engineered plants with mutant phenotypes. This technology needs to be fine-tuned for commercial applications to maximize target protein yield while maintaining robust plant growth. RESULTS Here, we show that a previously developed Nicotiana tabacum line, TetC-cel6A, can produce an industrial cellulase at levels of up to 28% of total soluble protein (TSP) with a slight dwarf phenotype but no loss in biomass. In seedlings, the dwarf phenotype is recovered by exogenous application of gibberellic acid. We also demonstrate that accumulating foreign protein represents an added burden to the plants' metabolism that can make them more sensitive to limiting growth conditions such as low nitrogen. The biomass of nitrogen-limited TetC-cel6A plants was found to be as much as 40% lower than wildtype (WT) tobacco, although heterologous cellulase production was not greatly reduced compared to well-fertilized TetC-cel6A plants. Furthermore, cultivation at elevated carbon dioxide (1600 ppm CO2) restored biomass accumulation in TetC-cel6A plants to that of WT, while also increasing total heterologous protein yield (mg Cel6A plant-1) by 50-70%. CONCLUSIONS The work reported here demonstrates that well-fertilized tobacco plants have a substantial degree of flexibility in protein metabolism and can accommodate considerable levels of some recombinant proteins without exhibiting deleterious mutant phenotypes. Furthermore, we show that the alterations to protein expression triggered by growth at elevated CO2 can help rebalance endogenous protein expression and/or increase foreign protein production in chloroplast-engineered tobacco.
Collapse
Affiliation(s)
- Jennifer A Schmidt
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Lubna V Richter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Lisa A Condoluci
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Beth A Ahner
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Huang CH, Huang TL, Liu YC, Chen TC, Lin SM, Shaw SY, Chang CC. Overexpression of a multifunctional β-glucosidase gene from thermophilic archaeon Sulfolobus solfataricus in transgenic tobacco could facilitate glucose release and its use as a reporter. Transgenic Res 2020; 29:511-527. [PMID: 32776308 DOI: 10.1007/s11248-020-00212-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/25/2020] [Indexed: 11/25/2022]
Abstract
The β-glucosidase, which hydrolyzes the β(1-4) glucosidic linkage of disaccharides, oligosaccharides and glucose-substituted molecules, has been used in many biotechnological applications. The current commercial source of β-glucosidase is mainly microbial fermentation. Plants have been developed as bioreactors to produce various kinds of proteins including β-glucosidase because of the potential low cost. Sulfolobus solfataricus is a thermoacidophilic archaeon that can grow optimally at high temperature, around 80 °C, and pH 2-4. We overexpressed the β-glucosidase gene from S. solfataricus in transgenic tobacco via Agrobacteria-mediated transformation. Three transgenic tobacco lines with β-glucosidase gene expression driven by the rbcS promoter were obtained, and the recombinant proteins were accumulated in chloroplasts, endoplasmic reticulum and vacuoles up to 1%, 0.6% and 0.3% of total soluble protein, respectively. By stacking the transgenes via crossing distinct transgenic events, the level of β-glucosidase in plants could further increase. The plant-expressed β-glucosidase had optimal activity at 80 °C and pH 5-6. In addition, the plant-expressed β-glucosidase showed high thermostability; on heat pre-treatment at 80 °C for 2 h, approximately 70% residual activity remained. Furthermore, wind-dried leaf tissues of transgenic plants showed good stability in short-term storage at room temperature, with β-glucosidase activity of about 80% still remaining after 1 week of storage as compared with fresh leaf. Furthermore, we demonstrated the possibility of using the archaebacterial β-glucosidase gene as a reporter in plants based on alternative β-galactosidase activity.
Collapse
Affiliation(s)
- Chih-Hao Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tzu-Ling Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Chang Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ting-Chieh Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shyh-Yu Shaw
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Ching-Chun Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
6
|
Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer? Int J Mol Sci 2020; 21:ijms21144854. [PMID: 32659946 PMCID: PMC7402345 DOI: 10.3390/ijms21144854] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, plant genetic engineering has advanced agriculture in terms of crop improvement, stress and disease resistance, and pharmaceutical biosynthesis. Cells from land plants and algae contain three organelles that harbor DNA: the nucleus, plastid, and mitochondria. Although the most common approach for many plant species is the introduction of foreign DNA into the nucleus (nuclear transformation) via Agrobacterium- or biolistics-mediated delivery of transgenes, plastid transformation offers an alternative means for plant transformation. Since there are many copies of the chloroplast genome in each cell, higher levels of protein accumulation can often be achieved from transgenes inserted in the chloroplast genome compared to the nuclear genome. Chloroplasts are therefore becoming attractive hosts for the introduction of new agronomic traits, as well as for the biosynthesis of high-value pharmaceuticals, biomaterials and industrial enzymes. This review provides a comprehensive historical and biological perspective on plastid transformation, with a focus on current and emerging approaches such as the use of single-walled carbon nanotubes (SWNTs) as DNA delivery vehicles, overexpressing morphogenic regulators to enhance regeneration ability, applying genome editing techniques to accelerate double-stranded break formation, and reconsidering protoplasts as a viable material for plastid genome engineering, even in transformation-recalcitrant species.
Collapse
|
7
|
Richter LV, Yang H, Yazdani M, Hanson MR, Ahner BA. A downstream box fusion allows stable accumulation of a bacterial cellulase in Chlamydomonas reinhardtii chloroplasts. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:133. [PMID: 29760775 PMCID: PMC5944112 DOI: 10.1186/s13068-018-1127-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/23/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND We investigated strategies to improve foreign protein accumulation in the chloroplasts of the model algae Chlamydomonas reinhardtii and tested the outcome in both standard culture conditions as well as one pertinent to algal biofuel production. The downstream box (DB) of the TetC or NPTII genes, the first 15 codons following the start codon, was N-terminally fused to the coding region of cel6A, an endoglucanase from Thermobifida fusca. We also employed a chimeric regulatory element, consisting of the 16S rRNA promoter and the atpA 5'UTR, previously reported to enhance protein expression, to regulate the expression of the TetC-cel6A gene. We further investigated the accumulation of TetC-Cel6A under N-deplete growth conditions. RESULTS Both of the DB fusions improved intracellular accumulation of Cel6A in transplastomic C. reinhardtii strains though the TetC DB was much more effective than the NPTII DB. Furthermore, using the chimeric regulatory element, the TetC-Cel6A protein accumulation displayed a significant increase to 0.3% total soluble protein (TSP), whereas NPTII-Cel6A remained too low to quantify. Comparable levels of TetC- and NPTII-cel6A transcripts were observed, which suggests that factors other than transcript abundance mediate the greater TetC-Cel6A accumulation. The TetC-Cel6A accumulation was stable regardless of the growth stage, and the transplastomic strain growth rate was not altered. When transplastomic cells were suspended in N-deplete medium, cellular levels of TetC-Cel6A increased over time along with TSP, and were greater than those in cells suspended in N-replete medium. CONCLUSIONS The DB fusion holds great value as a tool to enhance foreign protein accumulation in C. reinhardtii chloroplasts and its influence is related to translation or other post-transcriptional processes. Our results also suggest that transplastomic protein production can be compatible with algal biofuel production strategies. Cells displayed a consistent accumulation of recombinant protein throughout the growth phase and nitrogen starvation, a strategy used to induce lipid production in algae, led to higher cellular heterologous protein content. The latter result is contrary to what might have been expected a priori and is an important result for the development of future algal biofuel systems, which will likely require co-products for economic sustainability.
Collapse
Affiliation(s)
- Lubna V. Richter
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
| | - Huijun Yang
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY USA
| | - Mohammad Yazdani
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY USA
| | - Beth A. Ahner
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
| |
Collapse
|
8
|
Deng C, Li J, Shin HD, Du G, Chen J, Liu L. Efficient expression of cyclodextrin glycosyltransferase from Geobacillus stearothermophilus in Escherichia coli by promoter engineering and downstream box evolution. J Biotechnol 2017; 266:77-83. [PMID: 29247671 DOI: 10.1016/j.jbiotec.2017.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/14/2017] [Accepted: 12/09/2017] [Indexed: 11/28/2022]
Abstract
Cyclodextrin glycosyltransferase (CGTase) catalyzes hydrolysis, cyclization, coupling, and disproportionation reactions and is widely used in the starch processing industry. In this work, the expression of CGTase from Geobacillus stearothermophilus in Escherichia coli BL21 (DE3) was significantly improved by promoter engineering and downstream box evolution. Firstly, the effects of the promoter type (PT7, Ptrp, PlacUV5, and the hybrid promoters PtacI and PtacII) and spacer sequence on the expression of CGTase were examined. PtacI demonstrated the highest rate of transcriptional activity, which was 4.4-, 7.1-, 3.3-, and 1.5-fold greater than that of PT7, Ptrp, PlacUV5, and PtacII, respectively. The spacer sequence of the promoter was optimized using a degenerate base library, and the GC content of the spacer was found to be inversely proportional to CGTase expression. In addition, CGTase expression was higher when TG:CA and TA:TA dimers were present in the spacer sequence. Under the control of the PtacI promoter with an optimized spacer sequence, extracellular CGTase activity reached 170.6 U/mL, which was seven times higher than that of the original strain (25.2 U/mL). Directed evolution of the downstream box sequence was then performed by randomization of the sequence using degenerate codons, similarly as for the optimization of the spacer sequence. After optimizing the downstream box sequence, CGTase activity increased from 170.6 to 214 U/mL. The results obtained here indicate that in addition to promoter type, the spacer sequence of the promoter and the downstream box are important target elements for improved gene expression.
Collapse
Affiliation(s)
- Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Mir BA, Myburg AA, Mizrachi E, Cowan DA. In planta expression of hyperthermophilic enzymes as a strategy for accelerated lignocellulosic digestion. Sci Rep 2017; 7:11462. [PMID: 28904370 PMCID: PMC5597601 DOI: 10.1038/s41598-017-11026-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/14/2017] [Indexed: 11/24/2022] Open
Abstract
Conversion of lignocellulosic biomass to biofuels and biomaterials suffers from high production costs associated with biomass pretreatment and enzymatic hydrolysis. In-planta expression of lignocellulose-digesting enzymes is a promising approach to reduce these cost elements. However, this approach faces a number of challenges, including auto-hydrolysis of developing cell walls, plant growth and yield penalties, low expression levels and the limited stability of expressed enzymes at the high temperatures generally used for biomass processing to release fermentable sugars. To overcome these challenges we expressed codon-optimized recombinant hyperthermophilic endoglucanase (EG) and xylanase (Xyn) genes in A. thaliana. Transgenic Arabidopsis lines expressing EG and Xyn enzymes at high levels without any obvious plant growth or yield penalties were selected for further analysis. The highest enzyme activities were observed in the dry stems of transgenic lines, indicating that the enzymes were not degraded during stem senescence and storage. Biomass from transgenic lines exhibited improved saccharification efficiency relative to WT control plants. We conclude that the expression of hyperthermophilic enzymes in plants is a promising approach for combining pretreatment and enzymatic hydrolysis processes in lignocellulosic digestion. This study provides a valid foundation for further studies involving in planta co-expression of core and accessory lignocellulose-digesting enzymes.
Collapse
Affiliation(s)
- Bilal Ahmad Mir
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.,Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.,Department of Botany, School of Life Sciences, Satellite Campus Kargil, University of Kashmir, Jammu & Kashmir, India
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.
| |
Collapse
|
10
|
Adem M, Beyene D, Feyissa T. Recent achievements obtained by chloroplast transformation. PLANT METHODS 2017; 13:30. [PMID: 28428810 PMCID: PMC5395794 DOI: 10.1186/s13007-017-0179-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/09/2017] [Indexed: 05/22/2023]
Abstract
Chloroplasts play a great role for sustained wellbeing of life on the planet. They have the power and raw materials that can be used as sophisticated biological factories. They are rich in energy as they have lots of pigment-protein complexes capable of collecting sunlight, in sugar produced by photosynthesis and in minerals imported from the plant cell. Chloroplast genome transformation offers multiple advantages over nuclear genome which among others, include: integration of the transgene via homologus recombination that enables to eliminate gene silencing and position effect, higher level of transgene expression resulting into higher accumulations of foreign proteins, and significant reduction in environmental dispersion of the transgene due to maternal inheritance which helps to minimize the major critic of plant genetic engineering. Chloroplast genetic engineering has made fruit full progresses in the development of plants resistance to various stresses, phytoremediation of toxic metals, and production of vaccine antigens, biopharmaceuticals, biofuels, biomaterials and industrial enzymes. Although successful results have been achieved, there are still difficulties impeding full potential exploitation and expansion of chloroplast transformation technology to economical plants. These include, lack of species specific regulatory sequences, problem of selection and shoot regeneration, and massive expression of foreign genes resulting in phenotypic alterations of transplastomic plants. The aim of this review is to critically recapitulate the latest development of chloroplast transformation with special focus on the different traits of economic interest.
Collapse
Affiliation(s)
- Muhamed Adem
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Department of Forestry, School of Agriculture and Natural Resources, Madawalabu University, P.O. Box 247, Bale Robe, Oromiya Ethiopia
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
| | - Tileye Feyissa
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Boudabbous M, Ben Hmad I, Saibi W, Mssawra M, Belghith H, Gargouri A. Trans-glycosylation capacity of a highly glycosylated multi-specific β-glucosidase from Fusarium solani. Bioprocess Biosyst Eng 2016; 40:559-571. [DOI: 10.1007/s00449-016-1721-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/05/2016] [Indexed: 01/20/2023]
|
12
|
Hanson MR, Lin MT, Carmo-Silva AE, Parry MA. Towards engineering carboxysomes into C3 plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:38-50. [PMID: 26867858 PMCID: PMC4970904 DOI: 10.1111/tpj.13139] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Photosynthesis in C3 plants is limited by features of the carbon-fixing enzyme Rubisco, which exhibits a low turnover rate and can react with O2 instead of CO2 , leading to photorespiration. In cyanobacteria, bacterial microcompartments, known as carboxysomes, improve the efficiency of photosynthesis by concentrating CO2 near the enzyme Rubisco. Cyanobacterial Rubisco enzymes are faster than those of C3 plants, though they have lower specificity toward CO2 than the land plant enzyme. Replacement of land plant Rubisco by faster bacterial variants with lower CO2 specificity will improve photosynthesis only if a microcompartment capable of concentrating CO2 can also be installed into the chloroplast. We review current information about cyanobacterial microcompartments and carbon-concentrating mechanisms, plant transformation strategies, replacement of Rubisco in a model C3 plant with cyanobacterial Rubisco and progress toward synthesizing a carboxysome in chloroplasts.
Collapse
Affiliation(s)
- Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853 USA
| | - Myat T. Lin
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853 USA
| | | | - Martin A.J. Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| |
Collapse
|
13
|
Park SH, Ong RG, Sticklen M. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1329-44. [PMID: 26627868 PMCID: PMC5063159 DOI: 10.1111/pbi.12505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 05/18/2023]
Abstract
Microbial cell wall-deconstructing enzymes are widely used in the food, wine, pulp and paper, textile, and detergent industries and will be heavily utilized by cellulosic biorefineries in the production of fuels and chemicals. Due to their ability to use freely available solar energy, genetically engineered bioenergy crops provide an attractive alternative to microbial bioreactors for the production of cell wall-deconstructing enzymes. This review article summarizes the efforts made within the last decade on the production of cell wall-deconstructing enzymes in planta for use in the deconstruction of lignocellulosic biomass. A number of strategies have been employed to increase enzyme yields and limit negative impacts on plant growth and development including targeting heterologous enzymes into specific subcellular compartments using signal peptides, using tissue-specific or inducible promoters to limit the expression of enzymes to certain portions of the plant or certain times, and fusion of amplification sequences upstream of the coding region to enhance expression. We also summarize methods that have been used to access and maintain activity of plant-generated enzymes when used in conjunction with thermochemical pretreatments for the production of lignocellulosic biofuels.
Collapse
Affiliation(s)
- Sang-Hyuck Park
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Rebecca Garlock Ong
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Mariam Sticklen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Nakamura M, Hibi Y, Okamoto T, Sugiura M. Cooperation between the chloroplast psbA 5'-untranslated region and coding region is important for translational initiation: the chloroplast translation machinery cannot read a human viral gene coding region. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:772-80. [PMID: 26931095 DOI: 10.1111/tpj.13150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
Chloroplast mRNA translation is regulated by the 5'-untranslated region (5'-UTR). Chloroplast 5'-UTRs also support translation of the coding regions of heterologous genes. Using an in vitro translation system from tobacco chloroplasts, we detected no translation from a human immunodeficiency virus tat coding region fused directly to the tobacco chloroplast psbA 5'-UTR. This lack of apparent translation could have been due to rapid degradation of mRNA templates or synthesized protein products. Replacing the psbA 5'-UTR with the E. coli phage T7 gene 10 5'-UTR, a highly active 5'-UTR, and substituting synonymous codons led to some translation of the tat coding region. The Tat protein thus synthesized was stable during translation reactions. No significant degradation of the added tat mRNAs was observed after translation reactions. These results excluded the above two possibilities and confirmed that the tat coding region prevented its own translation. The tat coding region was then fused to the psbA 5'-UTR with a cognate 5'-coding segment. Significant translation was detected from the tat coding region when fused after 10 or more codons. That is, translation could be initiated from the tat coding region once translation had started, indicating that the tat coding region inhibits translational initiation but not elongation. Hence, cooperation/compatibility between the 5'-UTR and its coding region is important for translational initiation.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan
| | - Yurina Hibi
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan
| |
Collapse
|
15
|
Castiglia D, Sannino L, Marcolongo L, Ionata E, Tamburino R, De Stradis A, Cobucci-Ponzano B, Moracci M, La Cara F, Scotti N. High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:154. [PMID: 27453729 PMCID: PMC4957871 DOI: 10.1186/s13068-016-0569-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/12/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Biofuels production from plant biomasses is a complex multi-step process with important economic burdens. Several biotechnological approaches have been pursued to reduce biofuels production costs. The aim of the present study was to explore the production in tobacco plastome of three genes encoding (hemi)cellulolytic enzymes from thermophilic and hyperthermophilic bacterium and Archaea, respectively, and test their application in the bioconversion of an important industrially pretreated biomass feedstock (A. donax) for production of second-generation biofuels. RESULTS The selected enzymes, endoglucanase, endo-β-1,4-xylanase and β-glucosidase, were expressed in tobacco plastome with a protein yield range from 2 % to more than 75 % of total soluble proteins (TSP). The accumulation of endoglucanase (up to 2 % TSP) gave altered plant phenotypes whose severity was directly linked to the enzyme yield. The most severe seedling-lethal phenotype was due to the impairment of plastid development associated to the binding of endoglucanase protein to thylakoids. Endo-β-1,4-xylanase and β-glucosidase, produced at very high level without detrimental effects on plant development, were enriched (fourfold) by heat treatment (105.4 and 255.4 U/mg, respectively). Both plastid-derived biocatalysts retained the main features of the native or recombinantly expressed enzymes with interesting differences. Plastid-derived xylanase and β-glucosidase resulted more thermophilic than the E. coli recombinant and native counterpart, respectively. Bioconversion experiments, carried out at 50 and 60 °C, demonstrated that plastid-derived enzymes were able to hydrolyse an industrially pretreated giant reed biomass. In particular, the replacement of commercial enzyme with plastid-derived xylanase, at 60 °C, produced an increase of both xylose recovery and hydrolysis rate; whereas the replacement of both xylanase and β-glucosidase produced glucose levels similar to those observed with the commercial cocktails, and xylose yields always higher in the whole 24-72 h range. CONCLUSIONS The very high production level of thermophilic and hyperthermophilic enzymes, their stability and bioconversion efficiencies described in this study demonstrate that plastid transformation represents a real cost-effective production platform for cellulolytic enzymes.
Collapse
Affiliation(s)
- Daniela Castiglia
- />CNR-IBBR UOS Portici, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Via Università 133, 80055 Portici, NA Italy
| | - Lorenza Sannino
- />CNR-IBBR UOS Portici, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Via Università 133, 80055 Portici, NA Italy
| | - Loredana Marcolongo
- />CNR-IBBR UOS Naples, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Naples, Via P. Castellino 111, Naples, Italy
- />CNR-IBAF UOS Napoli, National Research Council of Italy, Institute of Agro-environmental and Forest Biology, Research Division Naples, Via P. Castellino 111, Naples, Italy
| | - Elena Ionata
- />CNR-IBBR UOS Naples, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Naples, Via P. Castellino 111, Naples, Italy
- />CNR-IBAF UOS Napoli, National Research Council of Italy, Institute of Agro-environmental and Forest Biology, Research Division Naples, Via P. Castellino 111, Naples, Italy
| | - Rachele Tamburino
- />CNR-IBBR UOS Portici, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Via Università 133, 80055 Portici, NA Italy
| | - Angelo De Stradis
- />CNR-IPSP UOS Bari, National Research Council of Italy, Institute for Sustainable Plant Protection, Research Division Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Beatrice Cobucci-Ponzano
- />CNR-IBBR UOS Naples, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Naples, Via P. Castellino 111, Naples, Italy
| | - Marco Moracci
- />CNR-IBBR UOS Naples, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Naples, Via P. Castellino 111, Naples, Italy
| | - Francesco La Cara
- />CNR-IBBR UOS Naples, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Naples, Via P. Castellino 111, Naples, Italy
- />CNR-IBAF UOS Napoli, National Research Council of Italy, Institute of Agro-environmental and Forest Biology, Research Division Naples, Via P. Castellino 111, Naples, Italy
| | - Nunzia Scotti
- />CNR-IBBR UOS Portici, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Via Università 133, 80055 Portici, NA Italy
| |
Collapse
|
16
|
Klinger J, Fischer R, Commandeur U. Comparison of Thermobifida fusca Cellulases Expressed in Escherichia coli and Nicotiana tabacum Indicates Advantages of the Plant System for the Expression of Bacterial Cellulases. FRONTIERS IN PLANT SCIENCE 2015; 6:1047. [PMID: 26648951 PMCID: PMC4664618 DOI: 10.3389/fpls.2015.01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The economic conversion of lignocellulosic biomass to biofuels requires in addition to pretreatment techniques access to large quantities of inexpensive cellulases to be competitive with established first generation processes. A solution to this problem could be achieved by plant based expression of these enzymes. We expressed the complete set of six cellulases and an additional β-glucosidase expressed from Thermobifida fusca in the bacterium Escherichia coli and in tobacco plants (Nicotiana tabacum). This was done to determine whether functional enzyme expression was feasible in these organisms. In extracts of recombinant E. coli cells, five of the proteins were detected by western blot analysis, but exocellulases E3 and E6 were undetectable. In the plant-based expression system we were able to detect all six cellulases but not the β-glucosidase even though activity was detectable. When E. coli was used as the expression system, endocellulase E2 was active, while endocellulases E1 and E5 showed only residual activity. The remaining cellulases appeared completely inactive against the model substrates azo-carboxymethyl-cellulose (Azo-CMC) and 4-methylumbelliferyl-cellobioside (4-MUC). Only the β-glucosidase showed high activity against 4-MUC. In contrast, all the plant-derived enzymes were active against the respective model substrates. Our data indicate that some enzymes of bacterial origin are more active and more efficiently expressed in plants than in a bacterial host.
Collapse
Affiliation(s)
- Johannes Klinger
- Institute for Biology VII (Molecular Biotechnology), RWTH Aachen UniversityAachen, Germany
| | - Rainer Fischer
- Institute for Biology VII (Molecular Biotechnology), RWTH Aachen UniversityAachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied EcologyAachen, Germany
| | - Ulrich Commandeur
- Institute for Biology VII (Molecular Biotechnology), RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
17
|
Jin S, Daniell H. The Engineered Chloroplast Genome Just Got Smarter. TRENDS IN PLANT SCIENCE 2015; 20:622-640. [PMID: 26440432 PMCID: PMC4606472 DOI: 10.1016/j.tplants.2015.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/18/2015] [Accepted: 07/20/2015] [Indexed: 05/18/2023]
Abstract
Chloroplasts are known to sustain life on earth by providing food, fuel, and oxygen through the process of photosynthesis. However, the chloroplast genome has also been smartly engineered to confer valuable agronomic traits and/or serve as bioreactors for the production of industrial enzymes, biopharmaceuticals, bioproducts, or vaccines. The recent breakthrough in hyperexpression of biopharmaceuticals in edible leaves has facilitated progression to clinical studies by major pharmaceutical companies. This review critically evaluates progress in developing new tools to enhance or simplify expression of targeted genes in chloroplasts. These tools hold the promise to further the development of novel fuels and products, enhance the photosynthetic process, and increase our understanding of retrograde signaling and cellular processes.
Collapse
Affiliation(s)
- Shuangxia Jin
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Hahn S, Giritch A, Bartels D, Bortesi L, Gleba Y. A novel and fully scalable Agrobacterium spray-based process for manufacturing cellulases and other cost-sensitive proteins in plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:708-16. [PMID: 25470212 DOI: 10.1111/pbi.12299] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 05/17/2023]
Abstract
Transient transfection of plants by vacuum infiltration of Agrobacterium vectors represents the state of the art in plant-based protein manufacturing; however, the complexity and cost of this approach restrict it to pharmaceutical proteins. We demonstrated that simple spraying of Nicotiana plants with Agrobacterium vectors in the presence of a surfactant can substitute for vacuum inoculation. When the T-DNA of Agrobacterium encodes viral replicons capable of cell-to-cell movement, up to 90% of the leaf cells can be transfected and express a recombinant protein at levels up to 50% of total soluble protein. This simple, fast and indefinitely scalable process was successfully applied to produce cellulases, one of the most volume- and cost-sensitive biotechnology products. We demonstrate here for the first time that representatives of all hydrolase classes necessary for cellulosic biomass decomposition can be expressed at high levels, stored as silage without significant loss of activity and then used directly as enzyme additives. This process enables production of cellulases, and other potential high-volume products such as noncaloric sweetener thaumatin and antiviral protein griffithsin, at commodity agricultural prices and could find broad applicability in the large-scale production of many other cost-sensitive proteins.
Collapse
Affiliation(s)
- Simone Hahn
- Nomad Bioscience GmbH, Halle (Saale), Germany
| | | | | | | | - Yuri Gleba
- Nomad Bioscience GmbH, Halle (Saale), Germany
| |
Collapse
|
19
|
Espinoza-Sánchez EA, Álvarez-Hernández MH, Torres-Castillo JA, Rascón-Cruz Q, Gutiérrez-Díez A, Zavala-García F, Sinagawa-García SR. Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
20
|
Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR. A faster Rubisco with potential to increase photosynthesis in crops. Nature 2014; 513:547-50. [PMID: 25231869 PMCID: PMC4176977 DOI: 10.1038/nature13776] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/14/2014] [Indexed: 01/20/2023]
Abstract
In photosynthetic organisms, D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major enzyme assimilating atmospheric CO2 into the biosphere. Owing to the wasteful oxygenase activity and slow turnover of Rubisco, the enzyme is among the most important targets for improving the photosynthetic efficiency of vascular plants. It has been anticipated that introducing the CO2-concentrating mechanism (CCM) from cyanobacteria into plants could enhance crop yield. However, the complex nature of Rubisco's assembly has made manipulation of the enzyme extremely challenging, and attempts to replace it in plants with the enzymes from cyanobacteria and red algae have not been successful. Here we report two transplastomic tobacco lines with functional Rubisco from the cyanobacterium Synechococcus elongatus PCC7942 (Se7942). We knocked out the native tobacco gene encoding the large subunit of Rubisco by inserting the large and small subunit genes of the Se7942 enzyme, in combination with either the corresponding Se7942 assembly chaperone, RbcX, or an internal carboxysomal protein, CcmM35, which incorporates three small subunit-like domains. Se7942 Rubisco and CcmM35 formed macromolecular complexes within the chloroplast stroma, mirroring an early step in the biogenesis of cyanobacterial β-carboxysomes. Both transformed lines were photosynthetically competent, supporting autotrophic growth, and their respective forms of Rubisco had higher rates of CO2 fixation per unit of enzyme than the tobacco control. These transplastomic tobacco lines represent an important step towards improved photosynthesis in plants and will be valuable hosts for future addition of the remaining components of the cyanobacterial CCM, such as inorganic carbon transporters and the β-carboxysome shell proteins.
Collapse
Affiliation(s)
- Myat T Lin
- 1] Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA [2]
| | - Alessandro Occhialini
- 1] Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK [2]
| | - P John Andralojc
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Martin A J Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
21
|
Mir BA, Mewalal R, Mizrachi E, Myburg AA, Cowan DA. Recombinant hyperthermophilic enzyme expression in plants: a novel approach for lignocellulose digestion. Trends Biotechnol 2014; 32:281-9. [PMID: 24732021 DOI: 10.1016/j.tibtech.2014.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/14/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
Plant biomass, as an abundant renewable carbon source, is a promising alternative to fossil fuels. However, the enzymes most commonly used for depolymerization of lignocellulosic biomass are expensive, and the development of cost-effective alternative conversion technologies would be desirable. One possible option is the heterologous expression of genes encoding lignocellulose-digesting enzymes in plant tissues. To overcome simultaneously issues of toxicity and incompatibility with high-temperature steam explosion processes, the use of heterologous genes encoding hyperthermophilic enzymes may be an attractive alternative. This approach could reduce the need for exogenous enzyme additions prior to fermentation, reducing the cost of the complete processing operation. This review highlights recent advances and future prospects for using hyperthermophilic enzymes in the biofuels industry.
Collapse
Affiliation(s)
- Bilal Ahmad Mir
- Center for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Private bag X20, Pretoria 0028, South Africa; Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Ritesh Mewalal
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Don A Cowan
- Center for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Private bag X20, Pretoria 0028, South Africa.
| |
Collapse
|
22
|
Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:135. [PMID: 25356086 PMCID: PMC4212100 DOI: 10.1186/s13068-014-0135-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/03/2014] [Indexed: 05/03/2023]
Abstract
Second generation biofuel development is increasingly reliant on the recombinant expression of cellulases. Designing or identifying successful expression systems is thus of preeminent importance to industrial progress in the field. Recombinant production of cellulases has been performed using a wide range of expression systems in bacteria, yeasts and plants. In a number of these systems, particularly when using bacteria and plants, significant challenges have been experienced in expressing full-length proteins or proteins at high yield. Further difficulties have been encountered in designing recombinant systems for surface-display of cellulases and for use in consolidated bioprocessing in bacteria and yeast. For establishing cellulase expression in plants, various strategies are utilized to overcome problems, such as the auto-hydrolysis of developing plant cell walls. In this review, we investigate the major challenges, as well as the major advances made to date in the recombinant expression of cellulases across the commonly used bacterial, plant and yeast systems. We review some of the critical aspects to be considered for industrial-scale cellulase production.
Collapse
Affiliation(s)
- Camilla Lambertz
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Megan Garvey
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: School of Medicine, Deakin University, CSIRO Australian Animal Health Laboratory, 5 Portarlington Rd, Newcomb, VIC 3219 Australia
| | - Johannes Klinger
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Dirk Heesel
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Holger Klose
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Rainer Fischer
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Ulrich Commandeur
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
23
|
Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 2013; 31:581-93. [DOI: 10.1016/j.tibtech.2013.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
24
|
Bock R. Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 2013; 26:7-13. [PMID: 24679252 DOI: 10.1016/j.copbio.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
The plastid genome represents an attractive target of genetic engineering in crop plants. Plastid transgenes often give high expression levels, can be stacked in operons and are largely excluded from pollen transmission. Recent research has greatly expanded our toolbox for plastid genome engineering and many new proof-of-principle applications have highlighted the enormous potential of the transplastomic technology in both crop improvement and the development of plants as bioreactors for the sustainable and cost-effective production of biopharmaceuticals, enzymes and raw materials for the chemical industry. This review describes recent technological advances with plastid transformation in seed plants. It focuses on novel tools for plastid genome engineering and transgene expression and summarizes progress with harnessing the potential of plastid transformation in biotechnology.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
25
|
Kolotilin I, Kaldis A, Pereira EO, Laberge S, Menassa R. Optimization of transplastomic production of hemicellulases in tobacco: effects of expression cassette configuration and tobacco cultivar used as production platform on recombinant protein yields. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:65. [PMID: 23642171 PMCID: PMC3655837 DOI: 10.1186/1754-6834-6-65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/29/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Chloroplast transformation in tobacco has been used extensively to produce recombinant proteins and enzymes. Chloroplast expression cassettes can be designed with different configurations of the cis-acting elements that govern foreign gene expression. With the aim to optimize production of recombinant hemicellulases in transplastomic tobacco, we developed a set of cassettes that incorporate elements known to facilitate protein expression in chloroplasts and examined expression and accumulation of a bacterial xylanase XynA. Biomass production is another important factor in achieving sustainable and high-volume production of cellulolytic enzymes. Therefore, we compared productivity of two tobacco cultivars - a low-alkaloid and a high-biomass - as transplastomic expression platforms. RESULTS Four different cassettes expressing XynA produced various mutant phenotypes of the transplastomic plants, affected their growth rate and resulted in different accumulation levels of the XynA enzyme. The most productive cassette was identified and used further to express XynA and two additional fungal xylanases, Xyn10A and Xyn11B, in a high-biomass tobacco cultivar. The high biomass cultivar allowed for a 60% increase in XynA production per plant. Accumulation of the fungal enzymes reached more than 10-fold higher levels than the bacterial enzyme, constituting up to 6% of the total soluble protein in the leaf tissue. Use of a well-characterized translational enhancer with the selected expression cassette revealed inconsistent effects on accumulation of the recombinant xylanases. Additionally, differences in the enzymatic activity of crude plant extracts measured in leaves of different age suggest presence of a specific xylanase inhibitor in the green leaf tissue. CONCLUSION Our results demonstrate the pivotal importance of the expression cassette design and appropriate tobacco cultivar for high-level transplastomic production of recombinant proteins.
Collapse
Affiliation(s)
- Igor Kolotilin
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Angelo Kaldis
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Eridan Orlando Pereira
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| | - Serge Laberge
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
26
|
Yang H, Gray BN, Ahner BA, Hanson MR. Bacteriophage 5' untranslated regions for control of plastid transgene expression. PLANTA 2013; 237:517-27. [PMID: 23053542 DOI: 10.1007/s00425-012-1770-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Expression of foreign proteins from transgenes incorporated into plastid genomes requires regulatory sequences that can be recognized by the plastid transcription and translation machinery. Translation signals harbored by the 5' untranslated region (UTR) of plastid transcripts can profoundly affect the level of accumulation of proteins expressed from chimeric transgenes. Both endogenous 5' UTRs and the bacteriophage T7 gene 10 (T7g10) 5' UTR have been found to be effective in combination with particular coding regions to mediate high-level expression of foreign proteins. We investigated whether two other bacteriophage 5' UTRs could be utilized in plastid transgenes by fusing them to the aadA (aminoglycoside-3'-adenyltransferase) coding region that is commonly used as a selectable marker in plastid transformation. Transplastomic plants containing either the T7g1.3 or T4g23 5' UTRs fused to Myc-epitope-tagged aadA were successfully obtained, demonstrating the ability of these 5' UTRs to regulate gene expression in plastids. Placing the Thermobifida fusca cel6A gene under the control of the T7g1.3 or T4g23 5' UTRs, along with a tetC downstream box, resulted in poor expression of the cellulase in contrast with high-level accumulation while using the T7g10 5' UTR. However, transplastomic plants with the bacteriophage 5' UTRs controlling the aadA coding region exhibited fewer undesired recombinant species than plants containing the same marker gene regulated by the Nicotiana tabacum psbA 5' UTR. Furthermore, expression of the T7g1.3 and T4g23 5' UTR::aadA fusions downstream of the cel6A gene provided sufficient spectinomycin resistance to allow selection of homoplasmic transgenic plants and had no effect on Cel6A accumulation.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
27
|
Hanson MR, Gray BN, Ahner BA. Chloroplast transformation for engineering of photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:731-42. [PMID: 23162121 DOI: 10.1093/jxb/ers325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many efforts are underway to engineer improvements in photosynthesis to meet the challenges of increasing demands for food and fuel in rapidly changing environmental conditions. Various transgenes have been introduced into either the nuclear or plastid genomes in attempts to increase photosynthetic efficiency. We examine the current knowledge of the critical features that affect levels of expression of plastid transgenes and protein accumulation in transplastomic plants, such as promoters, 5' and 3' untranslated regions, RNA-processing sites, translation signals and amino acid sequences that affect protein turnover. We review the prior attempts to manipulate the properties of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) through plastid transformation. We illustrate how plastid operons could be created for expression of the multiple genes needed to introduce new pathways or enzymes to enhance photosynthetic rates or reduce photorespiration. We describe here the past accomplishments and future prospects for manipulating plant enzymes and pathways to enhance carbon assimilation through plastid transformation.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
28
|
Del L Yácono M, Farran I, Becher ML, Sander V, Sánchez VR, Martín V, Veramendi J, Clemente M. A chloroplast-derived Toxoplasma gondii GRA4 antigen used as an oral vaccine protects against toxoplasmosis in mice. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1136-44. [PMID: 23020088 DOI: 10.1111/pbi.12001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/16/2012] [Accepted: 08/25/2012] [Indexed: 05/25/2023]
Abstract
The parasitic protozoan Toxoplasma gondii, the causal agent of toxoplasmosis, can infect most mammals and birds. In human medicine, T. gondii can cause complications in pregnant women and immunodeficient individuals, while in veterinary medicine, T. gondii infection has economic importance due to abortion and neonatal loss in livestock. Thus, the development of an effective anti-Toxoplasma vaccine would be of great value. In this study, we analysed the expression of T. gondii GRA4 antigen by chloroplast transformation (chlGRA4) in tobacco plants and evaluated the humoral and cellular responses and the grade of protection after oral administration of chlGRA4 in a murine model. The Western blot analysis revealed a specific 34-kDa band mainly present in the insoluble fractions. The chlGRA4 accumulation levels were approximately 6 μg/g of fresh weight (equivalent to 0.2% of total protein). Oral immunization with chlGRA4 resulted in a decrease of 59% in the brain cyst load of mice compared to control mice. ChlGRA4 immunization elicited both a mucosal immune response characterized by the production of specific IgA, and IFN-γ, IL-4 and IL-10 secretion by mesenteric lymph node cells, and a systemic response in terms of GRA4-specific serum antibodies and secretion of IFN-γ, IL-4 and IL-10 by splenocytes. Our results indicate that oral administration of chlGRA4 promotes the elicitation of both mucosal and systemic balanced Th1/Th2 responses that control Toxoplasma infection, reducing parasite loads.
Collapse
Affiliation(s)
- María Del L Yácono
- Laboratorio de Biotecnología Vegetal, IIB-INTECH, CONICET-UNSAM, Chascomús, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Plants have been proved as a novel production platform for a wide range of biologically important compounds such as enzymes, therapeutic proteins, antibiotics, and proteins with immunological properties. In this context, plastid genetic engineering can be potentially used to produce recombinant proteins. However, several challenges still remain to be overcome if the full potential of plastid transformation technology is to be realized. They include the development of plastid transformation systems for species other than tobacco, the expression of transgenes in non-green plastids, the increase of protein accumulation and the appearance of pleiotropic effects. In this paper, we discuss the novel tools recently developed to overcome some limitations of chloroplast transformation.
Collapse
Affiliation(s)
- M. Manuela Rigano
- Department of Soil, Plant, Environmental and Animal Production Sciences; University of Naples ‘Federico II’; Portici, Italy
| | - Nunzia Scotti
- CNR-IGV; National Research Council of Italy; Institute of Plant Genetics; Res. Div. Portici; Portici, Italy
| | - Teodoro Cardi
- CNR-IGV; National Research Council of Italy; Institute of Plant Genetics; Res. Div. Portici; Portici, Italy
- CRA-ORT; Agricultural Research Council; Research Centre for Vegetable and Ornamental Crops; Pontecagnano, Italy
| |
Collapse
|
30
|
Venkatesh J, Park SW. Plastid genetic engineering in Solanaceae. PROTOPLASMA 2012; 249:981-99. [PMID: 22395455 PMCID: PMC3459085 DOI: 10.1007/s00709-012-0391-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/21/2012] [Indexed: 05/23/2023]
Abstract
Plastid genetic engineering has come of age, becoming today an attractive alternative approach for the expression of foreign genes, as it offers several advantages over nuclear transformants. Significant progress has been made in plastid genetic engineering in tobacco and other Solanaceae plants, through the use of improved regeneration procedures and transformation vectors with efficient promoters and untranslated regions. Many genes encoding for industrially important proteins and vaccines, as well as genes conferring important agronomic traits, have been stably integrated and expressed in the plastid genome. Despite these advances, it remains a challenge to achieve marked levels of plastid transgene expression in non-green tissues. In this review, we summarize the basic requirements of plastid genetic engineering and discuss the current status, limitations, and the potential of plastid transformation for expanding future studies relating to Solanaceae plants.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Se Won Park
- Department of Molecular Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| |
Collapse
|
31
|
De Marchis F, Pompa A, Bellucci M. Plastid proteostasis and heterologous protein accumulation in transplastomic plants. PLANT PHYSIOLOGY 2012; 160:571-81. [PMID: 22872774 PMCID: PMC3461539 DOI: 10.1104/pp.112.203778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
32
|
Qiu WM, Zhu AD, Wang Y, Chai LJ, Ge XX, Deng XX, Guo WW. Comparative transcript profiling of gene expression between seedless Ponkan mandarin and its seedy wild type during floral organ development by suppression subtractive hybridization and cDNA microarray. BMC Genomics 2012; 13:397. [PMID: 22897898 PMCID: PMC3495689 DOI: 10.1186/1471-2164-13-397] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/11/2012] [Indexed: 01/11/2023] Open
Abstract
Background Seedlessness is an important agronomic trait for citrus, and male sterility (MS) is one main cause of seedless citrus fruit. However, the molecular mechanism of citrus seedlessness remained not well explored. Results An integrative strategy combining suppression subtractive hybridization (SSH) library with cDNA microarray was employed to study the underlying mechanism of seedlessness of a Ponkan mandarin seedless mutant (Citrus reticulata Blanco). Screening with custom microarray, a total of 279 differentially expressed clones were identified, and 133 unigenes (43 contigs and 90 singletons) were obtained after sequencing. Gene Ontology (GO) distribution based on biological process suggested that the majority of differential genes are involved in metabolic process and respond to stimulus and regulation of biology process; based on molecular function they function as DNA/RNA binding or have catalytic activity and oxidoreductase activity. A gene encoding male sterility-like protein was highly up-regulated in the seedless mutant compared with the wild type, while several transcription factors (TFs) such as AP2/EREBP, MYB, WRKY, NAC and C2C2-GATA zinc-finger domain TFs were down-regulated. Conclusion Our research highlighted some candidate pathways that participated in the citrus male gametophyte development and could be beneficial for seedless citrus breeding in the future.
Collapse
Affiliation(s)
- Wen-Ming Qiu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education); National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Segretin ME, Lentz EM, Wirth SA, Morgenfeld MM, Bravo-Almonacid FF. Transformation of Solanum tuberosum plastids allows high expression levels of β-glucuronidase both in leaves and microtubers developed in vitro. PLANTA 2012; 235:807-18. [PMID: 22071556 DOI: 10.1007/s00425-011-1541-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/21/2011] [Indexed: 05/03/2023]
Abstract
Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of β-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of β-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on β-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased β-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.
Collapse
Affiliation(s)
- María Eugenia Segretin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-INGEBI-CONICET, Vuelta de Obligado 2490, 2do. Piso, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
34
|
Production of foreign proteins using plastid transformation. Biotechnol Adv 2012; 30:387-97. [DOI: 10.1016/j.biotechadv.2011.07.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/10/2011] [Accepted: 07/25/2011] [Indexed: 12/19/2022]
|
35
|
Chou HL, Dai Z, Hsieh CW, Ku MSB. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:58. [PMID: 22152050 PMCID: PMC3307496 DOI: 10.1186/1754-6834-4-58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 12/10/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. RESULTS In this study, the cellulose hydrolytic enzyme β-1, 4-endoglucanase (E1) gene, from the thermophilic bacterium Acidothermus cellulolyticus, was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial E1 gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer, with the signal peptide of tobacco pathogenesis-related protein for targeting the E1 protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial E1 enzyme were obtained that expressed the gene at high levels without severely impairing plant growth and development. However, some transgenic plants exhibited a shorter stature and flowered earlier than the wild type plants. The E1 specific activities in the leaves of the highest expressing transgenic rice lines were about 20-fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. A zymogram and temperature-dependent activity analyses demonstrated the thermostability of the E1 enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid for one hour at 39°C and another hour at 81°C yielded 43% more reducing sugars than wild type rice straw. CONCLUSION Taken together, these data suggest that transgenic rice can effectively serve as a bioreactor for the large-scale production of active, thermostable cellulose hydrolytic enzymes. As a feedstock, direct expression of large amount of cellulases in transgenic rice may also facilitate saccharification of cellulose in rice straw and significantly reduce the costs for hydrolytic enzymes.
Collapse
Affiliation(s)
- Hong Li Chou
- Institute of Bioagricultural Science, National Chiayi University, Chiayi, 60004 Taiwan
| | - Ziyu Dai
- Fungal Biotechnology Team, Chemical and Biological Processing Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chia Wen Hsieh
- Departmet of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, 60004 Taiwan
| | - Maurice SB Ku
- Institute of Bioagricultural Science, National Chiayi University, Chiayi, 60004 Taiwan
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4238, USA
| |
Collapse
|
36
|
Gray BN, Bougri O, Carlson AR, Meissner J, Pan S, Parker MH, Zhang D, Samoylov V, Ekborg NA, Michael Raab R. Global and grain-specific accumulation of glycoside hydrolase family 10 xylanases in transgenic maize (Zea mays). PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1100-8. [PMID: 21689368 DOI: 10.1111/j.1467-7652.2011.00632.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In planta expression of cell wall degrading enzymes is a promising approach for developing optimized biomass feedstocks that enable low-cost cellulosic biofuels production. Transgenic plants could serve as either an enzyme source for the hydrolysis of pretreated biomass or as the primary biomass feedstock in an autohydrolysis process. In this study, two xylanase genes, Bacillus sp. NG-27 bsx and Clostridium stercorarium xynB, were expressed in maize (Zea mays) under the control of two different promoters. Severe phenotypic effects were associated with xylanase accumulation in maize, including stunted plants and sterile grains. Global expression of these xylanases from the rice ubiquitin 3 promoter (rubi3) resulted in enzyme accumulation of approximately 0.01 mg enzyme per gram dry weight, or approximately 0.1% of total soluble protein (TSP). Grain-specific expression of these enzymes from the rice glutelin 4 promoter (GluB-4) resulted in higher-level accumulation of active enzyme, with BSX and XynB accumulating up to 4.0% TSP and 16.4% TSP, respectively, in shriveled grains from selected T0 plants. These results demonstrate the potential utility of the GluB-4 promoter for biotechnological applications. The phenotypic effects of xylanase expression in maize presented here demonstrate the difficulties of hemicellulase expression in an important crop for cellulosic biofuels production. Potential alternate approaches to achieve xylanase accumulation in planta without the accompanying negative phenotypes are discussed.
Collapse
|