1
|
Hosseini R, Heidari M. Impact of drought stress on biochemical and molecular responses in lavender ( Lavandula angustifolia Mill.): effects on essential oil composition and antibacterial activity. FRONTIERS IN PLANT SCIENCE 2025; 16:1506660. [PMID: 40271444 PMCID: PMC12014543 DOI: 10.3389/fpls.2025.1506660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
Drought stress significantly influences the physiological, biochemical, and molecular processes in plants, directly impacting their growth and defense mechanisms. This study evaluates the response of Lavandula angustifolia (lavender) to different levels of water deficit, with field capacity (FC) treatments set at 20%, 40%, 60%, and 80%. We assessed various biochemical parameters, including protein content, chlorophyll a and b levels, flavonoid and phenolic content, and antioxidant activity, to determine how drought stress affects lavender's primary and secondary metabolism. As water availability decreased, we observed a reduction in total protein and chlorophyll content, while the highest levels of flavonoids, phenolics, and antioxidant activity were recorded in control plants at 80% FC. Gene expression analysis of key terpene synthase genes revealed differential expression patterns, with linalool synthase and α-pinene synthase peaking at 40% FC, and 1,8-cineole synthase and β-phellandrene synthase reaching their highest activity under severe drought (20% FC). Despite this, a clear correlation between gene expression and metabolite accumulation in essential oils was not observed. Drought-induced changes in essential oil composition were associated with enhanced antibacterial activity, particularly against foodborne Gram-positive and Gram-negative bacteria, suggesting that water stress can modulate the therapeutic potential of lavender oil.
Collapse
Affiliation(s)
- Ramin Hosseini
- Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
- Forestry and Forest Tree Breeding Department, Georg-August University, Göttingen, Germany
| | - Mahsa Heidari
- Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
2
|
Oseni OM, Sajaditabar R, Mahmoud SS. Metabolic engineering of terpene metabolism in lavender. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:67. [PMID: 38988370 PMCID: PMC11230991 DOI: 10.1186/s43088-024-00524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
Background Several members of the Lamiaceae family of plants produce large amounts of essential oil [EO] that find extensive applications in the food, cosmetics, personal hygiene, and alternative medicine industries. There is interest in enhancing EO metabolism in these plants. Main body Lavender produces a valuable EO that is highly enriched in monoterpenes, the C10 class of the isoprenoids or terpenoids. In recent years, substantial effort has been made by researchers to study terpene metabolism and enhance lavender EO through plant biotechnology. This paper reviews recent advances related to the cloning of lavender monoterpene biosynthetic genes and metabolic engineering attempts aimed at improving the production of lavender monoterpenes in plants and microbes. Conclusion Metabolic engineering has led to the improvement of EO quality and yield in several plants, including lavender. Furthermore, several biologically active EO constituents have been produced in microorganisms.
Collapse
Affiliation(s)
- Ojo Michael Oseni
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| | - Reza Sajaditabar
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| |
Collapse
|
3
|
Srividya N, Kim H, Simone R, Lange BM. Chemical diversity in angiosperms - monoterpene synthases control complex reactions that provide the precursors for ecologically and commercially important monoterpenoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:28-55. [PMID: 38565299 DOI: 10.1111/tpj.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Narayanan Srividya
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| | - Hoshin Kim
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Raugei Simone
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bernd Markus Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| |
Collapse
|
4
|
Li J, Li H, Wang Y, Zhang W, Wang D, Dong Y, Ling Z, Bai H, Jin X, Hu X, Shi L. Decoupling subgenomes within hybrid lavandin provide new insights into speciation and monoterpenoid diversification of Lavandula. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2084-2099. [PMID: 37399213 PMCID: PMC10502749 DOI: 10.1111/pbi.14115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/17/2023] [Accepted: 06/17/2023] [Indexed: 07/05/2023]
Abstract
Polyploidization and transposon elements contribute to shape plant genome diversity and secondary metabolic variation in some edible crops. However, the specific contribution of these variations to the chemo-diversity of Lamiaceae, particularly in economic shrubs, is still poorly documented. The rich essential oils (EOs) of Lavandula plants are distinguished by monoterpenoids among the main EO-producing species, L. angustifolia (LA), L. × intermedia (LX) and L. latifolia (LL). Herein, the first allele-aware chromosome-level genome was assembled using a lavandin cultivar 'Super' and its hybrid origin was verified by two complete subgenomes (LX-LA and LX-LL). Genome-wide phylogenetics confirmed that LL, like LA, underwent two lineage-specific WGDs after the γ triplication event, and their speciation occurred after the last WGD. Chloroplast phylogenetic analysis indicated LA was the maternal source of 'Super', which produced premium EO (higher linalyl/lavandulyl acetate and lower 1,8-cineole and camphor) close to LA. Gene expression, especially the monoterpenoid biosynthetic genes, showed bias to LX-LA alleles. Asymmetric transposon insertions in two decoupling 'Super' subgenomes were responsible for speciation and monoterpenoid divergence of the progenitors. Both hybrid and parental evolutionary analysis revealed that LTR (long terminal repeat) retrotransposon associated with AAT gene loss cause no linalyl/lavandulyl acetate production in LL, and multi-BDH copies retained by tandem duplication and DNA transposon resulted in higher camphor accumulation of LL. Advances in allelic variations of monoterpenoids have the potential to revolutionize future lavandin breeding and EO production.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Hui Li
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Yiming Wang
- Novogene Bioinformatics InstituteBeijingChina
| | - Wenying Zhang
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Di Wang
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Yanmei Dong
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Zhengyi Ling
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Hongtong Bai
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Xiaohua Jin
- China National Botanical GardenBeijingChina
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Xiaodi Hu
- Novogene Bioinformatics InstituteBeijingChina
| | - Lei Shi
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| |
Collapse
|
5
|
Habán M, Korczyk-Szabó J, Čerteková S, Ražná K. Lavandula Species, Their Bioactive Phytochemicals, and Their Biosynthetic Regulation. Int J Mol Sci 2023; 24:ijms24108831. [PMID: 37240177 DOI: 10.3390/ijms24108831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Lavandula species are one of the most useful aromatic and medicinal plants and have great economic potential. The phytopharmaceutical contribution of the secondary metabolites of the species is unquestionable. Most recent studies have been focusing on the elucidation of the genetic background of secondary metabolite production in lavender species. Therefore, knowledge of not only genetic but especially epigenetic mechanisms for the regulation of secondary metabolites is necessary for the modification of those biosynthesis processes and the understanding of genotypic differences in the content and compositional variability of these products. The review discusses the genetic diversity of Lavandula species in relation to the geographic area, occurrence, and morphogenetic factors. The role of microRNAs in secondary-metabolites biosynthesis is described.
Collapse
Affiliation(s)
- Miroslav Habán
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Joanna Korczyk-Szabó
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Simona Čerteková
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Katarína Ražná
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
6
|
Rostamkalaei SS, Iman M, Ataee R, Bahari Z. The effects of Lavandula angustifolia essential oil on analgesic effects and percutaneous absorption of naproxen sodium gel; an in vivo and in vitro study. Clin Exp Pharmacol Physiol 2023; 50:298-306. [PMID: 36573522 DOI: 10.1111/1440-1681.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
The percutaneous bioavailability of naproxen is low and several technologies have been utilized to overcome the problem. Although, some studies have reported the permeation-enhancing properties of natural essential oils, no research has reflected the effectiveness of Lavandula angustifolia essential oil (LAEO) on increasing the percutaneous absorption of naproxen sodium from a topical gel. Therefore, the present study was designed to investigate whether LAEO increased the percutaneous absorption and the analgesic effects of naproxen sodium topical gel. In the present study, naproxen topical gel was formulated using carbopol 940 (a gelling agent) and several vehicles such as PEG 400, ethanol, and water and the properties of gels were measured. Percutaneous absorption-enhancing properties of LAEO were measured too. Based on our data, the essential oil-containing formulation of naproxen represented greater penetration into (222.19 ± 24.87 vs. 107.65 ± 6.38 μg/cm2 ), and also across (22.07 ± 4.42 vs. 13.14 ± 2.87 μg/cm2 ) skin layers compared to the naproxen gel. Additionally, a significant analgesic property was observed in the naproxen topical gel containing 0.5% essential oil during both first and late phases of formalin test, as well as the late phase of tail-flick test. It could be concluded that LAEO significantly enhanced naproxen percutaneous absorption and also its analgesic effects.
Collapse
Affiliation(s)
- Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
| | - Maryam Iman
- Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramin Ataee
- Department of Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lange BM, Srividya N, Lange I, Parrish AN, Benzenberg LR, Pandelova I, Vining KJ, Wüst M. Biochemical basis for the formation of organ-specific volatile blends in mint. FRONTIERS IN PLANT SCIENCE 2023; 14:1125065. [PMID: 37123862 PMCID: PMC10140540 DOI: 10.3389/fpls.2023.1125065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Above-ground material of members of the mint family is commercially distilled to extract essential oils, which are then formulated into a myriad of consumer products. Most of the research aimed at characterizing the processes involved in the formation of terpenoid oil constituents has focused on leaves. We now demonstrate, by investigating three mint species, peppermint (Mentha ˣ piperita L.), spearmint (Mentha spicata L.) and horsemint (Mentha longifolia (L.) Huds.; accessions CMEN 585 and CMEN 584), that other organs - namely stems, rhizomes and roots - also emit volatiles and that the terpenoid volatile composition of these organs can vary substantially from that of leaves, supporting the notion that substantial, currently underappreciated, chemical diversity exists. Differences in volatile quantities released by plants whose roots had been dipped in a Verticillium dahliae-spore suspension (experimental) or dipped in water (controls) were evident: increases of some volatiles in the root headspace of mint species that are susceptible to Verticillium wilt disease (peppermint and M. longifolia CMEN 584) were detected, while the quantities of certain volatiles decreased in rhizomes of species that show resistance to the disease (spearmint and M. longifolia CMEN 585). To address the genetic and biochemical basis underlying chemical diversity, we took advantage of the newly sequenced M. longifolia CMEN 585 genome to identify candidate genes putatively coding for monoterpene synthases (MTSs), the enzymes that catalyze the first committed step in the biosynthesis of monoterpenoid volatiles. The functions of these genes were established by heterologous expression in Escherichia coli, purification of the corresponding recombinant proteins, and enzyme assays, thereby establishing the existence of MTSs with activities to convert a common substrate, geranyl diphosphate, to (+)-α-terpineol, 1,8-cineole, γ-terpinene, and (-)-bornyl diphosphate, but were not active with other potential substrates. In conjunction with previously described MTSs that catalyze the formation of (-)-β-pinene and (-)-limonene, the product profiles of the MTSs identified here can explain the generation of all major monoterpene skeletons represented in the volatiles released by different mint organs.
Collapse
Affiliation(s)
- B. Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
- *Correspondence: B. Markus Lange,
| | - Narayanan Srividya
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
| | - Iris Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
| | - Amber N. Parrish
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
| | - Lukas R. Benzenberg
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich Wilhelms-UniversitätBonn, Bonn, Germany
| | - Iovanna Pandelova
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Kelly J. Vining
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Matthias Wüst
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich Wilhelms-UniversitätBonn, Bonn, Germany
| |
Collapse
|
8
|
Adal AM, Najafianashrafi E, Sarker LS, Mahmoud SS. Cloning, functional characterization and evaluating potential in metabolic engineering for lavender ( +)-bornyl diphosphate synthase. PLANT MOLECULAR BIOLOGY 2023; 111:117-130. [PMID: 36271988 DOI: 10.1007/s11103-022-01315-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
We isolated and functionally characterized a new ( +)-bornyl diphosphate synthase (( +)-LiBPPS) from Lavandula x intermedia. The in planta functions of ( +)-LiBPPS were evaluated in sense and antisense transgenic plants. The monoterpene ( +)-borneol contributes scent and medicinal properties to some plants. It also is the immediate precursor to camphor, another important determinant of aroma and medicinal properties in many plants. ( +)-Borneol is generated through the dephosphorylation of bornyl diphosphate (BPP), which is itself derived from geranyl diphosphate (GPP) by the enzyme ( +)-bornyl diphosphate synthase (( +)-BPPS). In this study we isolated and functionally characterized a novel ( +)-BPPS cDNA from Lavandula x intermedia. The cDNA excluding its transit peptide was expressed in E. coli, and the corresponding recombinant protein was purified with Ni-NTA agarose affinity chromatography. The recombinant ( +)-LiBPPS catalyzed the conversion of GPP to BPP as a major product, and a few minor products. We also investigated the in planta role of ( +)-LiBPPS in terpenoid metabolism through its overexpression in sense and antisense orientations in stably transformed Lavandula latifolia plants. The overexpression of ( +)-LiBPPS in antisense resulted in reduced production of ( +)-borneol and camphor without compromising plant growth and development. As anticipated, the overexpression of the gene led to enhanced production of borneol and camphor, although growth and development were severely impaired in most transgenic lines strongly and ectopically expressing the ( +)-LiBPPS transgene in sense. Our results demonstrate that LiBPPS would be useful in studies aimed at the production of recombinant borneol and camphor in vitro, and in metabolic engineering efforts aimed at lowering borneol and camphor production in plants. However, overexpression in sense may require a targeted expression of the gene in glandular trichomes using a trichome-specific promoter.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Innovate Phytoceuticals Inc, 3485 Velocity Ave, Kelowna, BC, V1V 3C2, Canada
| | - Elaheh Najafianashrafi
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Department of Micro, Immuno and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA, 22908, USA
| | - Lukman S Sarker
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Innovate Phytoceuticals Inc, 3485 Velocity Ave, Kelowna, BC, V1V 3C2, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
9
|
Vining KJ, Pandelova I, Lange I, Parrish AN, Lefors A, Kronmiller B, Liachko I, Kronenberg Z, Srividya N, Lange BM. Chromosome-level genome assembly of Mentha longifolia L. reveals gene organization underlying disease resistance and essential oil traits. G3 GENES|GENOMES|GENETICS 2022; 12:6584825. [PMID: 35551385 PMCID: PMC9339296 DOI: 10.1093/g3journal/jkac112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.
Collapse
Affiliation(s)
- Kelly J Vining
- Department of Horticulture, Oregon State University , Corvallis, OR 97331, USA
| | - Iovanna Pandelova
- Department of Horticulture, Oregon State University , Corvallis, OR 97331, USA
| | - Iris Lange
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Amber N Parrish
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Andrew Lefors
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Brent Kronmiller
- Center for Quantitative Life Sciences, Oregon State University , Corvallis, OR 97331, USA
| | | | | | - Narayanan Srividya
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - B Markus Lange
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| |
Collapse
|
10
|
Ashaari NS, Ab Rahim MH, Sabri S, Lai KS, Song AAL, Abdul Rahim R, Ong Abdullah J. Kinetic studies and homology modeling of a dual-substrate linalool/nerolidol synthase from Plectranthus amboinicus. Sci Rep 2021; 11:17094. [PMID: 34429465 PMCID: PMC8385045 DOI: 10.1038/s41598-021-96524-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Linalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis-Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10-3 µM-1 s-1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.
Collapse
Affiliation(s)
- Nur Suhanawati Ashaari
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mohd Hairul Ab Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Kok Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Mahmoud SS, Maddock S, Adal AM. Isoprenoid Metabolism and Engineering in Glandular Trichomes of Lamiaceae. FRONTIERS IN PLANT SCIENCE 2021; 12:699157. [PMID: 34349773 PMCID: PMC8326662 DOI: 10.3389/fpls.2021.699157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 05/24/2023]
Abstract
The isoprenoids play important ecological and physiological roles in plants. They also have a tremendous impact on human lives as food additives, medicines, and industrial raw materials, among others. Though some isoprenoids are highly abundant in nature, plants produce many at extremely low levels. Glandular trichomes (GT), which cover the aerial parts of more than 25% of vascular plants, have been considered as natural biofactories for the mass production of rare industrially important isoprenoids. In several plant genera (e.g., Lavandula and Mentha), GTs produce and store large quantities of the low molecular weight isoprenoids, in particular mono- and sesquiterpenes, as essential oil constituents. Within each trichome, a group of secretory cells is specialized to strongly and specifically express isoprenoid biosynthetic genes, and to synthesize and deposit copious amounts of terpenoids into the trichome's storage reservoir. Despite the abundance of certain metabolites in essential oils and defensive resins, plants, particularly those lacking glandular trichomes, accumulate small quantities of many of the biologically active and industrially important isoprenoids. Therefore, there is a pressing need for technologies to enable the mass production of such metabolites, and to help meet the ever-increasing demand for plant-based bioproducts, including medicines and renewable materials. Considerable contemporary research has focused on engineering isoprenoid metabolism in GTs, with the goal of utilizing them as natural biofactories for the production of valuable phytochemicals. In this review, we summarize recent advances related to the engineering of isoprenoid biosynthetic pathways in glandular trichomes.
Collapse
|
12
|
Lei D, Qiu Z, Qiao J, Zhao GR. Plasticity engineering of plant monoterpene synthases and application for microbial production of monoterpenoids. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:147. [PMID: 34193244 PMCID: PMC8247113 DOI: 10.1186/s13068-021-01998-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/18/2021] [Indexed: 05/17/2023]
Abstract
Plant monoterpenoids with structural diversities have extensive applications in food, cosmetics, pharmaceuticals, and biofuels. Due to the strong dependence on the geographical locations and seasonal annual growth of plants, agricultural production for monoterpenoids is less effective. Chemical synthesis is also uneconomic because of its high cost and pollution. Recently, emerging synthetic biology enables engineered microbes to possess great potential for the production of plant monoterpenoids. Both acyclic and cyclic monoterpenoids have been synthesized from fermentative sugars through heterologously reconstructing monoterpenoid biosynthetic pathways in microbes. Acting as catalytic templates, plant monoterpene synthases (MTPSs) take elaborate control of the monoterpenoids production. Most plant MTPSs have broad substrate or product properties, and show functional plasticity. Thus, the substrate selectivity, product outcomes, or enzymatic activities can be achieved by the active site mutations and domain swapping of plant MTPSs. This makes plasticity engineering a promising way to engineer MTPSs for efficient production of natural and non-natural monoterpenoids in microbial cell factories. Here, this review summarizes the key advances in plasticity engineering of plant MTPSs, including the fundamental aspects of functional plasticity, the utilization of natural and non-natural substrates, and the outcomes from product isomers to complexity-divergent monoterpenoids. Furthermore, the applications of plasticity engineering for improving monoterpenoids production in microbes are addressed.
Collapse
Affiliation(s)
- Dengwei Lei
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Zetian Qiu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
13
|
Quick and efficient approach to develop genomic resources in orphan species: Application in Lavandula angustifolia. PLoS One 2020; 15:e0243853. [PMID: 33306734 PMCID: PMC7732122 DOI: 10.1371/journal.pone.0243853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Next-Generation Sequencing (NGS) technologies, by reducing the cost and increasing the throughput of sequencing, have opened doors to generate genomic data in a range of previously poorly studied species. In this study, we propose a method for the rapid development of a large-scale molecular resources for orphan species. We studied as an example the true lavender (Lavandula angustifolia Mill.), a perennial sub-shrub plant native from the Mediterranean region and whose essential oil have numerous applications in cosmetics, pharmaceuticals, and alternative medicines. The heterozygous clone “Maillette” was used as a reference for DNA and RNA sequencing. We first built a reference Unigene, compound of coding sequences, thanks to de novo RNA-seq assembly. Then, we reconstructed the complete genes sequences (with introns and exons) using an Unigene-guided DNA-seq assembly approach. This aimed to maximize the possibilities of finding polymorphism between genetically close individuals despite the lack of a reference genome. Finally, we used these resources for SNP mining within a collection of 16 commercial lavender clones and tested the SNP within the scope of a genetic distance analysis. We obtained a cleaned reference of 8, 030 functionally in silico annotated genes. We found 359K polymorphic sites and observed a high SNP frequency (mean of 1 SNP per 90 bp) and a high level of heterozygosity (more than 60% of heterozygous SNP per genotype). On overall, we found similar genetic distances between pairs of clones, which is probably related to the out-crossing nature of the species and the restricted area of cultivation. The proposed method is transferable to other orphan species, requires little bioinformatics resources and can be realized within a year. This is also the first reported large-scale SNP development on Lavandula angustifolia. All the genomics resources developed herein are publicly available and provide a rich pool of molecular resources to explore and exploit lavender genetic diversity in breeding programs.
Collapse
|
14
|
Transcriptome profiling of spike provides expression features of genes related to terpene biosynthesis in lavender. Sci Rep 2020; 10:6933. [PMID: 32332830 PMCID: PMC7181790 DOI: 10.1038/s41598-020-63950-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/07/2020] [Indexed: 11/25/2022] Open
Abstract
Lavender (Lavandula angustifolia) is an important economic plant because of the value of its essential oil (EO). The Yili Valley in Xinjiang has become the largest lavender planting base in China. However, there is a lack of research on the gene expression regulation of EO biosynthesis and metabolism in local varieties. Here, de novo transcriptome analysis of inflorescence of three development stages from initial flower bud to flowering stage 50% from two lavender cultivars with contrasting EO production revealed the dynamics of 100,177 differentially expressed transcripts (DETs) in various stages of spike development within and across the cultivars. The lavender transcriptome contained 77 DETs with annotations related to terpenoid biosynthesis. The expression profiles of the 27 genes involved in the methylerythritol phosphate (MEP) pathway, 22 genes in the mevalonate (MVA) pathway, 28 genes related to monoterpene and sesquiterpene biosynthesis during inflorescence development were comprehensively characterized, and possible links between the expression changes of genes and contents of EO constituents were explored. The upregulated genes were mainly concentrated in the MEP pathway, while most genes in the MVA pathway were downregulated during flower development, and cultivars with a higher EO content presented higher expression of genes in the MEP pathway, indicating that EOs were chiefly produced through the MEP pathway. Additionally, MYB transcription factors constituted the largest number of transcripts in all samples, suggesting their potential roles in regulating EO biosynthesis. The sequences and transcriptional patterns of the transcripts will be helpful for understanding the molecular basis of lavender terpene biosynthesis.
Collapse
|
15
|
Adal AM, Mahmoud SS. Short-chain isoprenyl diphosphate synthases of lavender (Lavandula). PLANT MOLECULAR BIOLOGY 2020; 102:517-535. [PMID: 31927660 DOI: 10.1007/s11103-020-00962-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/03/2020] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE We reported the functional characterization of cDNAs encoding short-chain isoprenyl diphosphate synthases that control the partitioning of precursors for lavender terpenoids. Lavender essential oil is composed of regular and irregular monoterpenes, which are derived from linear precursors geranyl diphosphate (GPP) and lavandulyl diphosphate (LPP), respectively. Although this plant strongly expresses genes responsible for the biosynthesis of both monoterpene classes, it is unclear why regular monoterpenes dominate the oil. Here, we cloned and characterized Lavandula x intermedia cDNAs encoding geranyl diphosphate synthase (LiGPPS), geranylgeranyl diphosphate synthase (LiGGPPS) and farnesyl diphosphate synthase (LiFPPS). LiGPPS was heteromeric protein, consisting of a large subunit (LiGPPS.LSU) and a small subunit for which two different cDNAs (LiGPPS.SSU1 and LiGPPS.SSU2) were detected. Neither recombinant LiGPPS subunits was active by itself. However, when co-expressed in E. coli LiGPPS.LSU and LiGPPS.SSU1 formed an active heteromeric GPPS, while LiGPPS.LSU and LiGPPS.SSU2 did not form an active protein. Recombinant LiGGPPS, LiFPPS and LPP synthase (LPPS) proteins were active individually. Further, LiGPPS.SSU1 modified the activity of LiGGPPS (to produce GPP) in bacterial cells co-expressing both proteins. Given this, and previous evidence indicating that GPPS.SSU can modify the activity of GGPPS to GPPS in vitro and in plants, we hypothesized that LiGPPS.SSU1 modifies the activity of L. x intermedia LPP synthase (LiLPPS), thus accounting for the relatively low abundance of LPP-derived irregular monoterpenes in this plant. However, LiGPPS.SSU1 did not affect the activity of LiLPPS. These results, coupled to the observation that LiLPPS transcripts are more abundant than those of GPPS subunits in L. x intermedia flowers, suggest that regulatory mechanisms other than transcriptional control of LPPS regulate precursor partitioning in lavender flowers.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
16
|
Marques NT, Filipe A, Pinto P, Barroso J, Trindade H, Power DM, Figueiredo AC. Trichome Density in Relation to Volatiles Emission and 1,8-Cineole Synthase Gene Expression in Thymus albicans Vegetative and Reproductive Organs. Chem Biodivers 2020; 17:e1900669. [PMID: 31984627 DOI: 10.1002/cbdv.201900669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022]
Abstract
1,8-Cineole is the main volatile produced by Thymus albicans Hoffmanns. & Link 1,8-cineole chemotype. To understand the contribution of distinct plant organs to the high 1,8-cineole production, trichome morphology and density, as well as emitted volatiles and transcriptional expression of the 1,8-cineole synthase (CIN) gene were determined separately for T. albicans leaves, bracts, calyx, corolla and inflorescences. Scanning electron microscopy (SEM) and stereoscope microscopy observations showed the highest peltate trichome density in leaves and bracts, significantly distinct from calyx and corolla. T. albicans volatiles were collected by solid phase micro extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC/MS) and by GC for component identification and quantification, respectively. Of the 23 components identified, 1,8-cineole was the dominant volatile (57-93 %) in all T. albicans plant organs. The relative amounts of emitted volatiles clearly separated vegetative from reproductive organs. Gene expression of CIN was assigned to all organs analyzed and was consistent with the relatively high emission of 1,8-cineole in leaves and bracts. Further studies will be required to analyze monoterpenoid biosynthesis by each type of glandular trichome.
Collapse
Affiliation(s)
- Natália T Marques
- Centro de Eletrónica, Optoeletrónica e Telecomunicações, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Alexandra Filipe
- Núcleo de Biologia Comparativa e Integrativa, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Patrícia Pinto
- Núcleo de Biologia Comparativa e Integrativa, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - José Barroso
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016, Lisboa, Portugal
| | - Helena Trindade
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016, Lisboa, Portugal
| | - Deborah M Power
- Núcleo de Biologia Comparativa e Integrativa, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
17
|
Wells RS, Adal AM, Bauer L, Najafianashrafi E, Mahmoud SS. Cloning and functional characterization of a floral repressor gene from Lavandula angustifolia. PLANTA 2020; 251:41. [PMID: 31907678 DOI: 10.1007/s00425-019-03333-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/21/2019] [Indexed: 05/22/2023]
Abstract
Using RNA-Seq, we identified genes involved in floral development in lavenders and functionally characterized the floral repressor LaSVP. The molecular aspects of flower initiation and development have not been adequately investigated in lavender (Lavandula). In order to identify genes that control these processes, we employed RNA-Seq to obtain sequence information for transcripts originating from the vegetative shoot apical meristem (SAM) and developing inflorescence tissues of Lavandula angustifolia and Lavandula × intermedia plants, and assemble a comprehensive transcriptome of 105,294 contigs. Homology-based annotation provided gene ontology terms for the majority of transcripts, including over 100 genes homologous to those that control flower initiation and organ identity in Arabidopsis thaliana. Expression analysis revealed that most of these genes are differentially expressed during flower development. For example, LaSVP, a homolog of the floral repressor SHORT VEGETATIVE PHASE (SVP), was strongly expressed in vegetative SAM compared to developing flowers, implicating its potential involvement in flowering repression in lavender. To investigate LaSVP further, we constitutively expressed the gene in transformed A. thaliana plants, evaluating its effects on flower initiation and morphology. Expression of the LaSVP in A. thaliana delayed flowering and affected flower organ identity in a dosage-dependent manner. Two of the highest expressing lines produced sepals instead of petals and were sterile as they failed to develop proper seed pods. This study provides the foundation for future investigations aimed at elucidating flower initiation and development in lavender.
Collapse
Affiliation(s)
- Rebecca S Wells
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Ayelign M Adal
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Lina Bauer
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Elaheh Najafianashrafi
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
18
|
Sarker LS, Adal AM, Mahmoud SS. Diverse transcription factors control monoterpene synthase expression in lavender (Lavandula). PLANTA 2019; 251:5. [PMID: 31776766 DOI: 10.1007/s00425-019-03298-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION We cloned eight transcription factors that activate lavender monoterpene synthase promoters. In this study, we employed the Yeast One-Hybrid (Y1H) assay system to identify transcription factors that control promoters for two Lavandula × intermedia monoterpene synthase genes, linalool synthase (LiLINS) and 1,8-cineole synthase (LiCINS). The bait sequences used in the assay were either a 768-bp LiLINS, or a 1087-bp LiCINS promoter. The prey included proteins expressed in L. × intermedia floral tissue. The assay identified 96 sequences encoding proteins that interacted with one or both promoters. To explore the nature of this interaction, the LiLINS and LiCINS promoter fragments were each fused to the E. coli gusA (GUS) reporter gene. The constructs were separately transformed into tobacco (Nicotiana benthamiana) leaves co-expressing individually a subset of ten representative transcription factors (TFs) predicted to control these promoters. Six TFs induced expression from both promoters, two activated LiCINS promoter alone, and two did not induce expression from either promoter. The TFs identified in this study belong to various groups including those containing conserved domains typical of MYB, bZIP, NAC, GeBP and SBP-related proteins.
Collapse
Affiliation(s)
- Lukman S Sarker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
19
|
Malli RPN, Adal AM, Sarker LS, Liang P, Mahmoud SS. De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production. PLANTA 2019; 249:251-256. [PMID: 30269192 DOI: 10.1007/s00425-018-3012-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/15/2018] [Indexed: 05/11/2023]
Abstract
The first draft genome for a member of the genus Lavandula is described. This 870 Mbp genome assembly is composed of over 688 Mbp of non-gap sequences comprising 62,141 protein-coding genes. Lavenders (Lavandula: Lamiaceae) are economically important plants widely grown around the world for their essential oils (EOs), which contribute to the cosmetic, personal hygiene, and pharmaceutical industries. To better understand the genetic mechanisms involved in EO production, identify genes involved in important biological processes, and find genetic markers for plant breeding, we generated the first de novo draft genome assembly for L. angustifolia (Maillette). This high-quality draft reveals a moderately repeated (> 48% repeated elements) 870 Mbp genome, composed of over 688 Mbp of non-gap sequences in 84,291 scaffolds with an N50 value of 96,735 bp. The genome contains 62,141 protein-coding genes and 2003 RNA-coding genes, with a large proportion of genes showing duplications, possibly reflecting past genome polyploidization. The draft genome contains full-length coding sequences for all genes involved in both cytosolic and plastidial pathways of isoprenoid metabolism, and all terpene synthase genes previously described from lavenders. Of particular interest is the observation that the genome contains a high copy number (14 and 7, respectively) of DXS (1-deoxyxylulose-5-phosphate synthase) and HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, encoding the two known regulatory steps in the plastidial isoprenoid biosynthetic pathway. The latter generates precursors for the production of monoterpenes, the most abundant essential oil constituents in lavender. Furthermore, the draft genome contains a variety of monoterpene synthase genes, underlining the production of several monoterpene essential oil constituents in lavender. Taken together, these findings indicate that the genome of L. angustifolia is highly duplicated and optimized for essential oil production.
Collapse
Affiliation(s)
- Radesh P N Malli
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada.
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
20
|
Demissie ZA, Tarnowycz M, Adal AM, Sarker LS, Mahmoud SS. A lavender ABC transporter confers resistance to monoterpene toxicity in yeast. PLANTA 2019; 249:139-144. [PMID: 30535718 DOI: 10.1007/s00425-018-3064-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Functional expression of a multidrug resistance-type ABC transporter from Lavandulaangustifolia improved yeast resistance to geraniol, a monoterpene constituent of lavender essential oil. Plant ATP-binding cassette (ABC) transporters are a large family of membrane proteins involved in active and selective transport of structurally diverse compounds. In this study, we functionally evaluated LaABCB1, a multidrug resistance (MDR)-type ABC transporter strongly expressed in the secretory cells of lavender glandular trichomes, where monoterpene essential oil constituents are synthesized and secreted. We used LaABCB1 to complement a yeast knockout mutant in which 16 ABC transporters were deleted. Expression of LaABCB1 enhanced tolerance of yeast mutants to geraniol, a key constituent of essential oils in lavenders and numerous other plants. Our findings suggest a role for the MDR-type ABC transporters in the toxicity tolerance of at least certain essential oil constituents in lavender oil glands.
Collapse
Affiliation(s)
- Zerihun A Demissie
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
- National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada.
| | - Mike Tarnowycz
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
21
|
Adal AM, Sarker LS, Malli RPN, Liang P, Mahmoud SS. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula). PLANTA 2019; 249:271-290. [PMID: 29948128 DOI: 10.1007/s00425-018-2935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/01/2018] [Indexed: 05/07/2023]
Abstract
Using RNA-Seq, we cloned and characterized a unique monoterpene synthase responsible for the formation of a scent-determining S-linalool constituent of lavender oils from Lavandula × intermedia. Several species of Lavandula produce essential oils (EOs) consisting mainly of monoterpenes including linalool, one of the most abundant and scent-determining oil constituents. Although R-linalool dominates the EOs of lavenders, varying amounts (depending on the species) of the S-linalool enantiomer can also be found in these plants. Despite its relatively low abundance, S-linalool contributes a sweet, pleasant scent and is an important constituent of lavender EOs. While several terpene synthase genes including R-linalool synthase have been cloned from lavenders many important terpene synthases including S-linalool synthase have not been described from these plants. In this study, we employed RNA-Seq and other complementary sequencing data to clone and functionally characterize the sparsely expressed S-linalool synthase cDNA (LiS-LINS) from Lavandula × intermedia. Recombinant LiS-LINS catalyzed the conversion of the universal monoterpene precursor geranyl diphosphate to S-linalool as the sole product. Intriguingly, LiS-LINS exhibited very low (~ 30%) sequence similarity to other Lavandula terpene synthases, including R-linalool synthase. However, the predicted 3D structure of this protein, including the composition and arrangement of amino acids at the active site, is highly homologous to known terpene synthase proteins. LiS-LINS transcripts were detected in flowers, but were much less abundant than those corresponding to LiR-LINS, paralleling enantiomeric composition of linalool in L. × intermedia oils. These data indicate that production of S-linalool is at least partially controlled at the level of transcription from LiS-LINS. The cloned LiS-LINS cDNA may be used to enhance oil composition in lavenders and other plants through metabolic engineering.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Radesh P N Malli
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
22
|
Du F, Wang T, Fan JM, Liu ZZ, Zong JX, Fan WX, Han YH, Grierson D. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. HORTICULTURE RESEARCH 2019; 6:110. [PMID: 31645964 PMCID: PMC6804824 DOI: 10.1038/s41438-019-0192-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/03/2019] [Accepted: 07/24/2019] [Indexed: 05/12/2023]
Abstract
Lily is a well-known ornamental plant with a diversity of fragrant types. Basic information on lily floral scent compounds has been obtained for only a few accessions, and little is known about Lilium aroma types, the terpene synthase genes that may play roles in the production of key volatiles, or the range of monoterpenes that these genes produce. In this study, 41 cultivars were analyzed for volatile emissions, and a total of 46 individual volatile compounds were identified, 16 for the first time in lilies. Lily accessions were classified into six groups according to the composition of major scent components: faint-scented, cool, fruity, musky, fruity-honey, and lily. Monoterpenes were one of the main groups of volatiles identified, and attention was focused on terpene synthase (TPS) genes, which encode enzymes that catalyze the last steps in monoterpene synthesis. Thirty-two candidate monoterpene synthase cDNAs were obtained from 66 lily cultivars, and 64 SNPs were identified. Two InDels were also shown to result from variable splicing, and sequence analysis suggested that different transcripts arose from the same gene. All identified nucleotide substitution sites were highly correlated with the amounts of myrcene emitted, and InDel site 230 was highly correlated with the emission of all major monoterpenoid components, especially (E)-β-ocimene. Heterologous expression of five cDNAs cloned from faint-scented and strong-scented lilies showed that their corresponding enzymes could convert geranyl diphosphate to (E)-β-ocimene, α-pinene, and limonene. The findings from this study provide a major resource for the assessment of lily scent volatiles and will be helpful in breeding of improved volatile components.
Collapse
Affiliation(s)
- Fang Du
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Ting Wang
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Jun-miao Fan
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
- College of Horticulture, Nanjing Agricultural University, 210095 Nangjing, Jiangsu China
| | - Zhi-zhi Liu
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Jia-xin Zong
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Wei-xin Fan
- Experimental Teaching Center, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Yuan-huai Han
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Donald Grierson
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
23
|
Filipe A, Cardoso JCR, Miguel G, Anjos L, Trindade H, Figueiredo AC, Barroso J, Power DM, Marques NT. Molecular cloning and functional characterization of a monoterpene synthase isolated from the aromatic wild shrub Thymus albicans. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:35-44. [PMID: 28763707 DOI: 10.1016/j.jplph.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 05/15/2023]
Abstract
The essential oil of Thymus albicans Hoffmanns. & Link, a native shrub from the Iberian Peninsula, is mainly composed of monoterpenes. In this study, a 1,8-cineole synthase was isolated from the 1,8-cineole chemotype. A partial sequence that lacked the complete plastid transit peptide but contained an extended C-terminal when compared to other related terpene synthases was generated by PCR and Rapid Amplification of cDNA Ends (RACE). The predicted mature polypeptide was 593 amino acids in length and shared 78% and 77% sequence similarity with the homologue 1,8-cineole synthase from Rosmarinus officinalis and Salvia officinalis, respectively. The putative protein possessed the characteristic conserved motifs of plant monoterpene synthases including the RRx8W and DDxxD motifs and phylogenetic analysis indicated that the amplified 1,8-cineole synthase bears greater sequence similarity with other 1,8-cineole synthases from Lamiaceae family relative to the terpene synthases from the genus Thymus. Functional expression of the recombinant protein in Escherichia coli revealed that in the presence of geranyl diphosphate (GPP) 1,8-cineole was the major product but that its production was too low for robust quantification. Other minor conversion products included α-pinene, β-pinene, sabinene and β-myrcene suggesting the isolated 1,8-cineole synthase may be a multi-product enzyme. To our knowledge, this is the first report of a functionally characterized monoterpene synthase from Thymus albicans.
Collapse
Affiliation(s)
- Alexandra Filipe
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - João C R Cardoso
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Graça Miguel
- Centre for Mediterranean Bioresources and Food (MeditBio), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Liliana Anjos
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Helena Trindade
- Centro de Estudos do Ambiente e do Mar Lisboa, Faculdade de Ciências, Universidade de Lisboa, CBV, DBV, 1749-016 Lisboa, Portugal.
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar Lisboa, Faculdade de Ciências, Universidade de Lisboa, CBV, DBV, 1749-016 Lisboa, Portugal.
| | - José Barroso
- Centro de Estudos do Ambiente e do Mar Lisboa, Faculdade de Ciências, Universidade de Lisboa, CBV, DBV, 1749-016 Lisboa, Portugal.
| | - Deborah M Power
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Natália T Marques
- Center of Electronics, Optoelectronics and Telecommunications, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
24
|
Padovan A, Keszei A, Hassan Y, Krause ST, Köllner TG, Degenhardt J, Gershenzon J, Külheim C, Foley WJ. Four terpene synthases contribute to the generation of chemotypes in tea tree (Melaleuca alternifolia). BMC PLANT BIOLOGY 2017; 17:160. [PMID: 28978322 PMCID: PMC5628445 DOI: 10.1186/s12870-017-1107-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Terpene rich leaves are a characteristic of Myrtaceae. There is significant qualitative variation in the terpene profile of plants within a single species, which is observable as "chemotypes". Understanding the molecular basis of chemotypic variation will help explain how such variation is maintained in natural populations as well as allowing focussed breeding for those terpenes sought by industry. The leaves of the medicinal tea tree, Melaleuca alternifolia, are used to produce terpinen-4-ol rich tea tree oil, but there are six naturally occurring chemotypes; three cardinal chemotypes (dominated by terpinen-4-ol, terpinolene and 1,8-cineole, respectively) and three intermediates. It has been predicted that three distinct terpene synthases could be responsible for the maintenance of chemotypic variation in this species. RESULTS We isolated and characterised the most abundant terpene synthases (TPSs) from the three cardinal chemotypes of M. alternifolia. Functional characterisation of these enzymes shows that they produce the dominant compounds in the foliar terpene profile of all six chemotypes. Using RNA-Seq, we investigated the expression of these and 24 additional putative terpene synthases in young leaves of all six chemotypes of M. alternifolia. CONCLUSIONS Despite contributing to the variation patterns observed, variation in gene expression of the three TPS genes is not enough to explain all variation for the maintenance of chemotypes. Other candidate terpene synthases as well as other levels of regulation must also be involved. The results of this study provide novel insights into the complexity of terpene biosynthesis in natural populations of a non-model organism.
Collapse
Affiliation(s)
- Amanda Padovan
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Andras Keszei
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Yasmin Hassan
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Sandra T. Krause
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, 06120 Halle, Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Jörg Degenhardt
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, 06120 Halle, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Carsten Külheim
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - William J. Foley
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| |
Collapse
|
25
|
Celedon JM, Bohlmann J. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis. Methods Enzymol 2017; 576:47-67. [PMID: 27480682 DOI: 10.1016/bs.mie.2016.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols.
Collapse
Affiliation(s)
- J M Celedon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - J Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Mendez-Perez D, Alonso-Gutierrez J, Hu Q, Molinas M, Baidoo EEK, Wang G, Chan LJG, Adams PD, Petzold CJ, Keasling JD, Lee TS. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol Bioeng 2017; 114:1703-1712. [PMID: 28369701 DOI: 10.1002/bit.26296] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/04/2017] [Accepted: 03/24/2017] [Indexed: 12/27/2022]
Abstract
Monoterpenes (C10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP production but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes. Biotechnol. Bioeng. 2017;114: 1703-1712. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Mendez-Perez
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jorge Alonso-Gutierrez
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Qijun Hu
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Margaux Molinas
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Edward E K Baidoo
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - George Wang
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Leanne J G Chan
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Paul D Adams
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Christopher J Petzold
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jay D Keasling
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Horsholm, Denmark.,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California.,Department of Bioengineering, University of California, Berkeley, California
| | - Taek S Lee
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
27
|
Despinasse Y, Fiorucci S, Antonczak S, Moja S, Bony A, Nicolè F, Baudino S, Magnard JL, Jullien F. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality. PHYTOCHEMISTRY 2017; 137:24-33. [PMID: 28190677 DOI: 10.1016/j.phytochem.2017.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 05/06/2023]
Abstract
Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221.
Collapse
Affiliation(s)
- Yolande Despinasse
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice, UMR-CNRS 7272, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Serge Antonczak
- Institut de Chimie de Nice, UMR-CNRS 7272, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Sandrine Moja
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Aurélie Bony
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Florence Nicolè
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Sylvie Baudino
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Jean-Louis Magnard
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Frédéric Jullien
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France.
| |
Collapse
|
28
|
Adal AM, Sarker LS, Lemke AD, Mahmoud SS. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia. PLANT MOLECULAR BIOLOGY 2017; 93:641-657. [PMID: 28258552 DOI: 10.1007/s11103-017-0588-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
A methyl jasmonate responsive 3-carene synthase (Li3CARS) gene was isolated from Lavandula x intermedia and functionally characterized in vitro. Lavenders produce essential oils consisting mainly of monoterpenes, including the potent antimicrobial and insecticidal monoterpene 3-carene. In this study we isolated and functionally characterized a leaf-specific, methyl jasmonate (MeJA)-responsive monoterpene synthase (Li3CARS) from Lavandula x intermedia. The ORF excluding transit peptides encoded a 64.9 kDa protein that was expressed in E. coli, and purified with Ni-NTA agarose affinity chromatography. The recombinant Li3CARS converted GPP into 3-carene as the major product, with K m and k cat of 3.69 ± 1.17 µM and 2.01 s-1 respectively. Li3CARS also accepted NPP as a substrate to produce multiple products including a small amount of 3-carene. The catalytic efficiency of Li3CARS to produce 3-carene was over ten fold higher for GPP (k cat /K m = 0.56 µM-1s-1) than NPP (k cat /K m = 0.044 µM-1s-1). Production of distinct end product profiles from different substrates (GPP versus NPP) by Li3CARS indicates that monoterpene metabolism may be controlled in part through substrate availability. Li3CARS transcripts were found to be highly abundant in leaves (16-fold) as compared to flower tissues. The transcriptional activity of Li3CARS correlated with 3-carene production, and was up-regulated (1.18- to 3.8-fold) with MeJA 8-72 h post-treatment. The results suggest that Li3CARS may have a defensive role in Lavandula.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Ashley D Lemke
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada.
| |
Collapse
|
29
|
Adal A, Demissie Z, Mahmoud S. EST-SSR Analysis and Cross-species Transferability Study in Lavandula. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
30
|
Sarker LS, Mahmoud SS. Cloning and functional characterization of two monoterpene acetyltransferases from glandular trichomes of L. x intermedia. PLANTA 2015; 242:709-719. [PMID: 25998527 DOI: 10.1007/s00425-015-2325-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/07/2015] [Indexed: 06/04/2023]
Abstract
Two alcohol acetyltransferases, LiAAT-3 and LiAAT-4, from L. x intermedia were cloned, expressed in bacteria, and functionally characterized. Two monoterpene acetyltransferase cDNA clones (LiAAT-3 and LiAAT-4) were isolated from L. x intermedia glandular trichomes, expressed in bacteria to produce, and functionally characterize the encoded proteins in vitro. The recombinant LiAAT-3 and LiAAT-4 proteins had molecular weights of ca. 47 and 49 kDa, respectively, as evidenced by SDS-PAGE. The K m (mM) values for the recombinant LiAAT-3 and LiAAT-4 were 1.046 and 0.354 for lavandulol, 1.31 and 0.279 for geraniol, and 0.87 and 0.113 for nerol, respectively. The V max (pkat/mg) values for LiAAT-3 and LiAAT-4 were 92.13 and 105.1 for lavandulol, 81.07 and 52.17 for geraniol, and 15.02 and 15.8 for nerol, correspondingly. Catalytic efficiencies (mM(-1) min(-1)) for LiAAT-3 and LiAAT-4 were 0.27 and 0.85 for lavandulol, 0.19 and 0.54 for geraniol, and 0.052 and 0.4 for nerol, respectively. These kinetic properties are in the range of those reported for other plant acetyltransferases, and indicate that LiAAT-4 has a better catalytic efficiency than LiAAT-3, with lavandulol serving as the preferred substrate for both enzymes. Transcripts for both genes were abundant in L. angustifolia and L. x intermedia flowers, where monoterpene acetates are produced, and were undetectable (or present in trace quantities) in L. latifolia flowers, which do not accumulate significant amounts of these metabolites.
Collapse
Affiliation(s)
- Lukman S Sarker
- Department of Biology, University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | | |
Collapse
|
31
|
Adal AM, Demissie ZA, Mahmoud SS. Identification, validation and cross-species transferability of novel Lavandula EST-SSRs. PLANTA 2015; 241:987-1004. [PMID: 25534945 DOI: 10.1007/s00425-014-2226-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
We identified and characterized EST-SSRs with strong discrimination power against Lavandula angustifolia and Lavandula x intermedia . The markers also showed considerable cross-species transferability rate into six related Lavandula species. Lavenders (Lavandula) are important economical crops grown around the globe for essential oil production. In an attempt to develop genetic markers for these plants, we analyzed over 13,000 unigenes developed from L. angustifolia and L. x intermedia EST databases, and identified 3,459 simple sequence repeats (SSR), which were dominated by trinucleotides (41.2 %) and dinucleotides (31.45 %). Approximately, 19 % of the unigenes contained at least one SSR marker, over 60 % of which were localized in the UTRs. Only 252 EST-SSRs were 18 bp or longer from which 31 loci were validated, and 24 amplified discrete fragments with 85 % polymorphism in L. x intermedia and L. angustifolia. The average number of alleles in L. x intermedia and L. angustifolia were 3.42 and 3.71 per marker with average PIC values of 0.47 and 0.52, respectively. These values suggest a moderate to strong level of informativeness for the markers, with some loci producing unique fingerprints. The cross-species transferability rate of the markers ranges 50-100 % across eight species. The utility of these markers was assessed in eight Lavandula species and 15 L. angustifolia and L. x intermedia cultivars, and the dendrogram deduced from their similarity indexes successfully delineated the species into their respective sections and the cultivars into their respective species. These markers have potential for application in fingerprinting, diversity studies and marker-assisted breeding of Lavandula.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC, V1V 1V7, Canada
| | | | | |
Collapse
|
32
|
Liu J, Huang F, Wang X, Zhang M, Zheng R, Wang J, Yu D. Genome-wide analysis of terpene synthases in soybean: functional characterization of GmTPS3. Gene 2014; 544:83-92. [PMID: 24768723 DOI: 10.1016/j.gene.2014.04.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 02/02/2023]
Abstract
Terpenes (terpenoids or isoprenoids) constitute a large class of plant natural products and play numerous functional roles in primary and secondary metabolism as well as inecological interactions. This study presents a genomic analysis of 23 putative soybean (Glycine max) terpene synthase genes (GmTPSs) distributed over 10 of 20 chromosomes. The GmTPSs are grouped into six types based on gene architecture and sequence identity. Sequence alignment indicates that most GmTPSs contain the conserved aspartate-rich DDX2D motif, and two clades encoded by TPS-a and TPS-b contain variations of an arginine-rich RRX8W motif. Quantitative real-time PCR analysis demonstrated that GmTPSs were predominantly expressed in reproductive organs. Heterologous expression followed by enzymatic assay suggested that GmTPS3 functions as a geraniol synthase. We also generated transgenic tobacco plants ectopically expressing GmTPS3. In dual-choice feeding-preference and force-feeding assays, the transgenic tobacco lines expressing GmTPS3 exhibited enhanced resistance to cotton leafworms and an increased level of geraniol. Taken together, these data provide a comprehensive understanding of the TPS family in soybeans and suggest a promising approach to engineering transgenic plants with enhanced insect resistance.
Collapse
Affiliation(s)
- Jianyu Liu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Xia Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Man Zhang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Rui Zheng
- College of Life Science, Ningxia University, Yinchuan 750021, China.
| | - Jiao Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
33
|
Jullien F, Moja S, Bony A, Legrand S, Petit C, Benabdelkader T, Poirot K, Fiorucci S, Guitton Y, Nicolè F, Baudino S, Magnard JL. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia. PLANT MOLECULAR BIOLOGY 2014; 84:227-41. [PMID: 24078339 DOI: 10.1007/s11103-013-0131-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 09/15/2013] [Indexed: 05/12/2023]
Abstract
In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.
Collapse
|
34
|
Sarker LS, Demissie ZA, Mahmoud SS. Cloning of a sesquiterpene synthase from Lavandula x intermedia glandular trichomes. PLANTA 2013; 238:983-989. [PMID: 23918183 DOI: 10.1007/s00425-013-1937-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
The essential oil (EO) of Lavandula is dominated by monoterpenes, but can also contain small amounts of sesquiterpenes, depending on species and environmental conditions. For example, the sesquiterpene 9-epi-caryophyllene can make up to 8 % of the EO in a few species, including those commercially propagated for EO production. Here, we report the cloning and functional characterization of 9-epi-caryophyllene synthase (LiCPS) from the glandular trichomes of Lavandula x intermedia, cv. Grosso. The 1,617 bp open reading frame of LiCPS, which did not encode a transit peptide, was expressed in Escherichia coli and the recombinant protein purified by Ni-NTA agarose affinity chromatography. The ca. 60 kDa recombinant protein specifically converted farnesyl diphosphate to 9-epi-caryophyllene. LiCPS also produced a few monoterpenes when assayed with the monoterpene precursor geranyl diphosphate (GPP), but--unlike most monoterpene synthases--was not able to derive detectable amounts of any products from the cis isomer of GPP, neryl diphosphate. The LiCPS transcripts accumulated in developing L. x intermedia flowers and were highly enriched in glandular trichomes, but were not detected in leaves suggesting that the transcriptional expression of this gene is spatially and developmentally regulated.
Collapse
|
35
|
Lima AS, Schimmel J, Lukas B, Novak J, Barroso JG, Figueiredo AC, Pedro LG, Degenhardt J, Trindade H. Genomic characterization, molecular cloning and expression analysis of two terpene synthases from Thymus caespititius (Lamiaceae). PLANTA 2013; 238:191-204. [PMID: 23624978 DOI: 10.1007/s00425-013-1884-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 05/28/2023]
Abstract
The identification, isolation and functional characterization of two genes encoding two monoterpene synthases-γ-terpinene synthase (Tctps2) and α-terpineol synthase (Tctps5)-from three chemically distinct Thymus caespititius (Lamiaceae) genotypes were performed. Genomic exon-intron structure was also determined for both terpene synthase genes, revealing an organization with seven exons and six introns. The cDNA of Tctps2 was 2,308 bp long and had an open reading frame of 1,794 bp encoding for a protein with 598 amino acids. Tctps5 was longer, mainly due to intron sequences, and presented high intraspecific variability on the plants analyzed. It encoded for a protein of 602 amino acids from an open reading frame of 1,806 bp comprising a total of 2,507 bp genomic sequence. The amino acid sequence of these two active Tctps genes shared 74 % pairwise identity, ranging between 42 and 94 % similarity with about 50 known terpene synthases of other Lamiaceae species. Gene expression revealed a multi-product Tctps2 and Tctps5 enzymes, producing γ-terpinene and α-terpineol as major components, respectively. These enzymatic results were consistent with the monoterpene profile present in T. caespititius field plants, suggesting a transcriptional regulation in leaves. Herewith reported for the first time for this species, these two newly characterized Tctps genes improve the understanding of the molecular mechanisms of reaction responsible for terpene biosynthesis and chemical diversity found in T. caespititius.
Collapse
Affiliation(s)
- A Sofia Lima
- Departmento de Biologia Vegetal, Faculdade de Ciências, Centro de Biotecnologia Vegetal, Instituto de Biotecnologia e Bioengenharia, Universidade de Lisboa, C2, Campo Grande, 1749-016 Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gallone A. Reply to comments on ‘Lavender and peppermint essential oils as effective mushroom tyrosinase inhibitors: a basic study’, D. Fiocco, D. Fiorentino, L. Frabboni, S. Benvenuti, G. Orlandini, F. Pellati, A. Gallone,Flavour Fragr. J. 2011,26, 441-446. FLAVOUR FRAG J 2013. [DOI: 10.1002/ffj.3154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Gallone
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso; Policlinico di Bari; P.zza Giulio Cesare; I- 11 70124; Bari; Italy
| |
Collapse
|
37
|
Demissie ZA, Erland LAE, Rheault MR, Mahmoud SS. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase. J Biol Chem 2013; 288:6333-41. [PMID: 23306202 DOI: 10.1074/jbc.m112.431171] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.
Collapse
Affiliation(s)
- Zerihun A Demissie
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | | | | | |
Collapse
|
38
|
Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia. Arch Biochem Biophys 2012; 528:163-70. [DOI: 10.1016/j.abb.2012.09.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/28/2012] [Accepted: 09/29/2012] [Indexed: 11/21/2022]
|
39
|
Gonçalves S, Romano A. In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites. Biotechnol Adv 2012; 31:166-74. [PMID: 23022737 DOI: 10.1016/j.biotechadv.2012.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
Abstract
Lavenders (Lavandula spp., Lamiaceae) are aromatic ornamental plants that are used widely in the food, perfume and pharmaceutical industries. The large-scale production of lavenders requires efficient in vitro propagation techniques to avoid the overexploitation of natural populations and to allow the application of biotechnology-based approaches for plant improvement and the production of valuable secondary metabolites. In this review we discuss micropropagation methods that have been developed in several lavender species, mainly based on meristem proliferation and organogenesis. Specific requirements during stages of micropropagation (establishment, shoot multiplication, root induction and acclimatization) and requisites for plant regeneration trough organogenesis, as an important step for the implementation of plant improvement programs, were revised. We also discuss different methods for the in vitro production of valuable secondary metabolites, focusing on the prospects for highly scalable cultures to meet the market demand for lavender-derived products.
Collapse
Affiliation(s)
- Sandra Gonçalves
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB), Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | | |
Collapse
|