1
|
Brant E, Zuniga‐Soto E, Altpeter F. RNAi and genome editing of sugarcane: Progress and prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70048. [PMID: 40051334 PMCID: PMC11886501 DOI: 10.1111/tpj.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Sugarcane, which provides 80% of global table sugar and 40% of biofuel, presents unique breeding challenges due to its highly polyploid, heterozygous, and frequently aneuploid genome. Significant progress has been made in developing genetic resources, including the recently completed reference genome of the sugarcane cultivar R570 and pan-genomic resources from sorghum, a closely related diploid species. Biotechnological approaches including RNA interference (RNAi), overexpression of transgenes, and gene editing technologies offer promising avenues for accelerating sugarcane improvement. These methods have successfully targeted genes involved in important traits such as sucrose accumulation, lignin biosynthesis, biomass oil accumulation, and stress response. One of the main transformation methods-biolistic gene transfer or Agrobacterium-mediated transformation-coupled with efficient tissue culture protocols, is typically used for implementing these biotechnology approaches. Emerging technologies show promise for overcoming current limitations. The use of morphogenic genes can help address genotype constraints and improve transformation efficiency. Tissue culture-free technologies, such as spray-induced gene silencing, virus-induced gene silencing, or virus-induced gene editing, offer potential for accelerating functional genomics studies. Additionally, novel approaches including base and prime editing, orthogonal synthetic transcription factors, and synthetic directed evolution present opportunities for enhancing sugarcane traits. These advances collectively aim to improve sugarcane's efficiency as a crop for both sugar and biofuel production. This review aims to discuss the progress made in sugarcane methodologies, with a focus on RNAi and gene editing approaches, how RNAi can be used to inform functional gene targets, and future improvements and applications.
Collapse
Affiliation(s)
- Eleanor Brant
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| | - Evelyn Zuniga‐Soto
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| |
Collapse
|
2
|
Yu H, Zhang G, Liu J, Liu P, Peng H, Teng Z, Li Y, Ren X, Fu C, Tang J, Li M, Wang Y, Wang L, Peng L. A functional cascading of lignin modification via repression of caffeic acid O-methyltransferase for bioproduction and anti-oxidation in rice. J Adv Res 2025:S2090-1232(25)00067-0. [PMID: 39914488 DOI: 10.1016/j.jare.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
INTRODUCTION Crop straws provide substantial biomass resources that are transformable for sustainable biofuels and valuable bioproducts. However, the natural lignocellulose recalcitrance results in an expensive biomass process and secondary waste liberation. As lignin is a major recalcitrant factor, genetic engineering of lignin biosynthesis is increasingly being implemented in bioenergy crops, but much remains unclear about the desired lignocellulose alteration and resulting function. OBJECTIVES This study attempted to explore the mechanisms of lignin modification responsible for efficient lignocellulose conversion in vitro and an effective plant anti-oxidation response in vivo. METHODS We initially selected specific rice mutants by performing modern CRISPR/cas9 editing with caffeic acid O-methyltransferase involved in the synthetic pathways of monolignols (G, S) and ferulic acid (FA), and then explored lignocellulose conversion and plant cadmium (Cd) accumulation using advanced chemical, biochemical and thermal-chemical analyses. RESULTS Notable lignin modification was achieved from the predominately synergistic down-regulation of S-monomer synthesis in three mutants. This consequently upgraded lignocellulose porosity by up to 1.8 folds to account for significantly enhanced biomass saccharification and bioethanol production by 20 %-26 % relative to the wild-type. The modified lignin also favors the dissection of diverse lignin nanoparticles with dimensions reduced by 1.5-1.9 folds, applicable for thermal-chemical conversion into the carbon quantum dots with increased yields by 15 % and 31 %. The proportions of G-monomers and FA were significantly increased in the mutants, and the lignin extractions were further assayed with higher activities for two standard antioxidants (DPPH and ABTS) in vitro compared to the wild-type, revealing a distinctively enhanced plant antioxidative capacity in the mutants. Water culture showed that young mutant seedlings accumulated more Cd than wild-type did (p < 0.01, n = 3), suggesting effective heavy metal phytoremediation in the mutants. CONCLUSION A hypothetical model of characteristic lignin modification for specific S-monomer reduction, accountable for improved lignocellulose recalcitrance, was proposed. It provides a powerful strategy for achieving high-yield biofuels and value-added bioproducts or enhancing plant antioxidative capacity for heavy metal phytoremediation.
Collapse
Affiliation(s)
- Hua Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guifen Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyuan Liu
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Peng Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Hao Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhipeng Teng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xifeng Ren
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jingfeng Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Mi Li
- Center for Renewable Carbon, School of Natural Resources, University of Tennessee-Knoxville, Knoxville, TN 37996, United States
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingqiang Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture. GM CROPS & FOOD 2024; 15:279-302. [PMID: 39481911 PMCID: PMC11533803 DOI: 10.1080/21645698.2024.2411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.
Collapse
Affiliation(s)
- Peter Amoah
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | | | - Moise Hubert Byiringiro
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Neo Jeremiah Mahula
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Nyimasata Manneh
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Yetunde Ruth Oluwasegun
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abebawork Tilahun Assfaw
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Hellen Mawia Mukiti
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abubakar Danlami Garba
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Felicity Kido Chiemeke
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Faculty of Science, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
4
|
Portilla Llerena JP, Kiyota E, dos Santos FRC, Garcia JC, de Lima RF, Mayer JLS, dos Santos Brito M, Mazzafera P, Creste S, Nobile PM. ShF5H1 overexpression increases syringyl lignin and improves saccharification in sugarcane leaves. GM CROPS & FOOD 2024; 15:67-84. [PMID: 38507337 PMCID: PMC10956634 DOI: 10.1080/21645698.2024.2325181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing ShF5H1 under the control of the C4H (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that ShF5H1 overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the ShF5H1 overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.
Collapse
Affiliation(s)
- Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Eduardo Kiyota
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Julio C. Garcia
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
| | | | | | - Michael dos Santos Brito
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Silvana Creste
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
5
|
Brant EJ, May D, Eid A, Altpeter F. Comparison of genotyping assays for detection of targeted CRISPR/Cas mutagenesis in highly polyploid sugarcane. Front Genome Ed 2024; 6:1505844. [PMID: 39726635 PMCID: PMC11669508 DOI: 10.3389/fgeed.2024.1505844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Sugarcane (Saccharum spp.) is an important biofuel feedstock and a leading source of global table sugar. Saccharum hybrid cultivars are highly polyploid (2n = 100-130), containing large numbers of functionally redundant hom(e)ologs in their genomes. Genome editing with sequence-specific nucleases holds tremendous promise for sugarcane breeding. However, identification of plants with the desired level of co-editing within a pool of primary transformants can be difficult. While DNA sequencing provides direct evidence of targeted mutagenesis, it is cost-prohibitive as a primary screening method in sugarcane and most other methods of identifying mutant lines have not been optimized for use in highly polyploid species. In this study, non-sequencing methods of mutant screening, including capillary electrophoresis (CE), Cas9 RNP assay, and high-resolution melt analysis (HRMA), were compared to assess their potential for CRISPR/Cas9-mediated mutant screening in sugarcane. These assays were used to analyze sugarcane lines containing mutations at one or more of six sgRNA target sites. All three methods distinguished edited lines from wild type, with co-mutation frequencies ranging from 2% to 100%. Cas9 RNP assays were able to identify mutant sugarcane lines with as low as 3.2% co-mutation frequency, and samples could be scored based on undigested band intensity. CE was highlighted as the most comprehensive assay, delivering precise information on both mutagenesis frequency and indel size to a 1 bp resolution across all six targets. This represents an economical and comprehensive alternative to sequencing-based genotyping methods which could be applied in other polyploid species.
Collapse
Affiliation(s)
- Eleanor J. Brant
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - David May
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Ayman Eid
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| |
Collapse
|
6
|
Ghane A, Malhotra PK, Sanghera GS, Verma SK, Jamwal NS, Kashyap L, Wani SH. CRISPR/Cas technology: fueling the future of Biofuel production with sugarcane. Funct Integr Genomics 2024; 24:205. [PMID: 39495322 DOI: 10.1007/s10142-024-01487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The objective of present review is to provide a scientific overview of sugarcane as a potential feedstock for biofuel and use of genome editing approach for improvement of industrial and agronomical traits in sugarcane. Sugarcane, a perennial tropical grass with a high biomass index, is a promising feedstock for bioethanol production, and its bagasse, rich in lignocellulosic material, serves as an ideal feedstock for producing second-generation bioethanol. To improve the conversion of sugarcane biomass into biofuels, developing varieties with improved biomass degradability and high biomass and sucrose content is essential. The complex genome architecture and earlier lack of sequence data hindered biotechnological advancements in sugarcane, but recent genome sequence updates offer new opportunities for sugarcane improvement. The first genetically modified sugarcane was developed in 1992 by Bower and Birch using microprojectile bombardment of embryogenic callus. Since then, transgenic techniques have rapidly evolved, leading to the advancement of genome editing technologies. Application of genome editing tools particularly CRISPR/Cas system has been successfully used in sugarcane for editing. Recently, multiple alleles of the magnesium chelatase and acetolactate synthase genes in sugarcane have been successfully edited through multiplexing. Additionally, CRISPR-edited sugarcane varieties with modified cell wall components and increased sucrose content for enhanced bioethanol production have been developed. At the end, the future of CRISPR-edited crops will depend on how well regulatory frameworks adapt to the rapidly evolving technology.
Collapse
Affiliation(s)
- A Ghane
- School of Agricultural Biotechnology, PAU, Ludhiana, India
| | - P K Malhotra
- School of Agricultural Biotechnology, PAU, Ludhiana, India.
| | - G S Sanghera
- Regional., Research Station, Punjab Agricultural University, Kapurthala, India
| | - S K Verma
- Institute of Biological Science, SAGE University, Indore, India
| | - N S Jamwal
- Regional., Research Station, Punjab Agricultural University, Kapurthala, India
| | - L Kashyap
- Department of Plant Breeding and Genetics, PAU, Ludhiana, India
| | - S H Wani
- Mountain Research Center for Field Crop, SKUAST Srinagar, Jammu and Kashmir, Khudwani, India
| |
Collapse
|
7
|
Kumari R, Saha T, Kumar P, Singh AK. CRISPR/Cas9-mediated genome editing technique to control fall armyworm ( Spodoptera frugiperda) in crop plants with special reference to maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1161-1173. [PMID: 39100879 PMCID: PMC11291824 DOI: 10.1007/s12298-024-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Fall Armyworm imposes a major risk to agricultural losses. Insecticides have historically been used to manage its infestations, but it eventually becomes resistant to them. To combat the pest, a more recent strategy based on the use of transgenic maize that expresses Bt proteins such as Cry1F from the bacteria has been used. Nonetheless, there have been numerous reports of Cry1F maize resistance in FAW populations. Nowadays, the more effective and less time-consuming genome editing method known as CRISPR/Cas9 technology has gradually supplanted these various breeding techniques. This method successfully edits the genomes of various insects, including Spodoptera frugiperda. On the other hand, this new technique can change an insect's DNA to overcome its tolerance to specific insecticides or to generate a gene drive. The production of plant cultivars resistant to fall armyworms holds great potential for the sustainable management of this pest, given the swift advancement of CRISPR/Cas9 technology and its varied uses. Thus, this review article discussed and critically assessed the use of CRISPR/Cas9 genome-editing technology in long-term fall armyworm pest management. However, this review study focuses primarily on the mechanism of the CRISPR-Cas9 system in both crop plants and insects for FAW management.
Collapse
Affiliation(s)
- Rima Kumari
- Division of Plant Biotechnology, College of Agricultural Biotechnology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Tamoghna Saha
- Department of Entomology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Pankaj Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - A. K. Singh
- Bihar Agricultural University, Sabour, 813210 Bihar India
| |
Collapse
|
8
|
Kumar T, Wang JG, Xu CH, Lu X, Mao J, Lin XQ, Kong CY, Li CJ, Li XJ, Tian CY, Ebid MHM, Liu XL, Liu HB. Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1739. [PMID: 38999579 PMCID: PMC11244436 DOI: 10.3390/plants13131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Sugarcane, a vital cash crop, contributes significantly to the world's sugar supply and raw materials for biofuel production, playing a significant role in the global sugar industry. However, sustainable productivity is severely hampered by biotic and abiotic stressors. Genetic engineering has been used to transfer useful genes into sugarcane plants to improve desirable traits and has emerged as a basic and applied research method to maintain growth and productivity under different adverse environmental conditions. However, the use of transgenic approaches remains contentious and requires rigorous experimental methods to address biosafety challenges. Clustered regularly interspaced short palindromic repeat (CRISPR) mediated genome editing technology is growing rapidly and may revolutionize sugarcane production. This review aims to explore innovative genetic engineering techniques and their successful application in developing sugarcane cultivars with enhanced resistance to biotic and abiotic stresses to produce superior sugarcane cultivars.
Collapse
Affiliation(s)
- Tanweer Kumar
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
- Sugar Crops Research Institute, Agriculture, Fisheries and Co-Operative Department, Charsadda Road, Mardan 23210, Khyber Pakhtunkhwa, Pakistan
| | - Jun-Gang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Chao-Hua Xu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xin Lu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Jun Mao
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xiu-Qin Lin
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Yan Kong
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Jia Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xu-Juan Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Yan Tian
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Mahmoud H. M. Ebid
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
- Sugar Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Xin-Long Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Hong-Bo Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| |
Collapse
|
9
|
Tanveer M, Abidin ZU, Alawadi HFN, Shahzad AN, Mahmood A, Khan BA, Qari S, Oraby HF. Recent advances in genome editing strategies for balancing growth and defence in sugarcane ( Saccharum officinarum). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24036. [PMID: 38696670 DOI: 10.1071/fp24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/14/2024] [Indexed: 05/04/2024]
Abstract
Sugarcane (Saccharum officinarum ) has gained more attention worldwide in recent decades because of its importance as a bioenergy resource and in producing table sugar. However, the production capabilities of conventional varieties are being challenged by the changing climates, which struggle to meet the escalating demands of the growing global population. Genome editing has emerged as a pivotal field that offers groundbreaking solutions in agriculture and beyond. It includes inserting, removing or replacing DNA in an organism's genome. Various approaches are employed to enhance crop yields and resilience in harsh climates. These techniques include zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/associated protein (CRISPR/Cas). Among these, CRISPR/Cas is one of the most promising and rapidly advancing fields. With the help of these techniques, several crops like rice (Oryza sativa ), tomato (Solanum lycopersicum ), maize (Zea mays ), barley (Hordeum vulgare ) and sugarcane have been improved to be resistant to viral diseases. This review describes recent advances in genome editing with a particular focus on sugarcane and focuses on the advantages and limitations of these approaches while also considering the regulatory and ethical implications across different countries. It also offers insights into future prospects and the application of these approaches in agriculture.
Collapse
Affiliation(s)
- Maira Tanveer
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Zain Ul Abidin
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | | | - Ahmad Naeem Shahzad
- Department of Agronomy, Bahauddin Zakarriya University, Multan 60650, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Sameer Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hesham Farouk Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia; and Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
10
|
Li C, Iqbal MA. Leveraging the sugarcane CRISPR/Cas9 technique for genetic improvement of non-cultivated grasses. FRONTIERS IN PLANT SCIENCE 2024; 15:1369416. [PMID: 38601306 PMCID: PMC11004347 DOI: 10.3389/fpls.2024.1369416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Under changing climatic scenarios, grassland conservation and development have become imperative to impart functional sustainability to their ecosystem services. These goals could be effectively and efficiently achieved with targeted genetic improvement of native grass species. To the best of our literature search, very scant research findings are available pertaining to gene editing of non-cultivated grass species (switch grass, wild sugarcane, Prairie cordgrass, Bermuda grass, Chinese silver grass, etc.) prevalent in natural and semi-natural grasslands. Thus, to explore this novel research aspect, this study purposes that gene editing techniques employed for improvement of cultivated grasses especially sugarcane might be used for non-cultivated grasses as well. Our hypothesis behind suggesting sugarcane as a model crop for genetic improvement of non-cultivated grasses is the intricacy of gene editing owing to polyploidy and aneuploidy compared to other cultivated grasses (rice, wheat, barley, maize, etc.). Another reason is that genome editing protocols in sugarcane (x = 10-13) have been developed and optimized, taking into consideration the high level of genetic redundancy. Thus, as per our knowledge, this review is the first study that objectively evaluates the concept and functioning of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 technique in sugarcane regarding high versatility, target specificity, efficiency, design simplicity, and multiplexing capacity in order to explore novel research perspectives for gene editing of non-cultivated grasses against biotic and abiotic stresses. Additionally, pronounced challenges confronting sugarcane gene editing have resulted in the development of different variants (Cas9, Cas12a, Cas12b, and SpRY) of the CRISPR tool, whose technicalities have also been critically assessed. Moreover, different limitations of this technique that could emerge during gene editing of non-cultivated grass species have also been highlighted.
Collapse
Affiliation(s)
- Chunjia Li
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| | - Muhammad Aamir Iqbal
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| |
Collapse
|
11
|
Lam LPY, Lui ACW, Bartley LE, Mikami B, Umezawa T, Lo C. Multifunctional 5-hydroxyconiferaldehyde O-methyltransferases (CAldOMTs) in plant metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1671-1695. [PMID: 38198655 DOI: 10.1093/jxb/erae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
Lignin, flavonoids, melatonin, and stilbenes are plant specialized metabolites with diverse physiological and biological functions, supporting plant growth and conferring stress resistance. Their biosynthesis requires O-methylations catalyzed by 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT; also called caffeic acid O-methyltransferase, COMT). CAldOMT was first known for its roles in syringyl (S) lignin biosynthesis in angiosperm cell walls and later found to be multifunctional. This enzyme also catalyzes O-methylations in flavonoid, melatonin, and stilbene biosynthetic pathways. Phylogenetic analysis indicated the convergent evolution of enzymes with OMT activities towards the monolignol biosynthetic pathway intermediates in some gymnosperm species that lack S-lignin and Selaginella moellendorffii, a lycophyte which produces S-lignin. Furthermore, neofunctionalization of CAldOMTs occurred repeatedly during evolution, generating unique O-methyltransferases (OMTs) with novel catalytic activities and/or accepting novel substrates, including lignans, 1,2,3-trihydroxybenzene, and phenylpropenes. This review summarizes multiple aspects of CAldOMTs and their related proteins in plant metabolism and discusses their evolution, molecular mechanism, and roles in biorefineries, agriculture, and synthetic biology.
Collapse
Affiliation(s)
- Lydia Pui Ying Lam
- Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita 010-0852, Japan
| | - Andy C W Lui
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
12
|
Lu G, Liu P, Wu Q, Zhang S, Zhao P, Zhang Y, Que Y. Sugarcane breeding: a fantastic past and promising future driven by technology and methods. FRONTIERS IN PLANT SCIENCE 2024; 15:1375934. [PMID: 38525140 PMCID: PMC10957636 DOI: 10.3389/fpls.2024.1375934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Sugarcane is the most important sugar and energy crop in the world. During sugarcane breeding, technology is the requirement and methods are the means. As we know, seed is the cornerstone of the development of the sugarcane industry. Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses. Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic biology, combined with information technology such as remote sensing and deep learning. In view of this, we focus on sugarcane breeding from the perspective of technology and methods, reviewing the main history, pointing out the current status and challenges, and providing a reasonable outlook on the prospects of smart breeding.
Collapse
Affiliation(s)
- Guilong Lu
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Purui Liu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Qibin Wu
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuzhen Zhang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
| | - Peifang Zhao
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
| | - Yuebin Zhang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
| | - Youxiong Que
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Wolabu TW, Mahmood K, Chen F, Torres-Jerez I, Udvardi M, Tadege M, Cong L, Wang Z, Wen J. Mutating alfalfa COUMARATE 3-HYDROXYLASE using multiplex CRISPR/Cas9 leads to reduced lignin deposition and improved forage quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1363182. [PMID: 38504900 PMCID: PMC10948404 DOI: 10.3389/fpls.2024.1363182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Alfalfa (Medicago sativa L.) forage quality is adversely affected by lignin deposition in cell walls at advanced maturity stages. Reducing lignin content through RNA interference or antisense approaches has been shown to improve alfalfa forage quality and digestibility. We employed a multiplex CRISPR/Cas9-mediated gene-editing system to reduce lignin content and alter lignin composition in alfalfa by targeting the COUMARATE 3-HYDROXYLASE (MsC3H) gene, which encodes a key enzyme in lignin biosynthesis. Four guide RNAs (gRNAs) targeting the first exon of MsC3H were designed and clustered into a tRNA-gRNA polycistronic system and introduced into tetraploid alfalfa via Agrobacterium-mediated transformation. Out of 130 transgenic lines, at least 73 lines were confirmed to contain gene-editing events in one or more alleles of MsC3H. Fifty-five lines were selected for lignin content/composition analysis. Amongst these lines, three independent tetra-allelic homozygous lines (Msc3h-013, Msc3h-121, and Msc3h-158) with different mutation events in MsC3H were characterized in detail. Homozygous mutation of MsC3H in these three lines significantly reduced the lignin content and altered lignin composition in stems. Moreover, these lines had significantly lower levels of acid detergent fiber and neutral detergent fiber as well as higher levels of total digestible nutrients, relative feed values, and in vitro true dry matter digestibility. Taken together, these results showed that CRISPR/Cas9-mediated editing of MsC3H successfully reduced shoot lignin content, improved digestibility, and nutritional values without sacrificing plant growth and biomass yield. These lines could be used in alfalfa breeding programs to generate elite transgene-free alfalfa cultivars with reduced lignin and improved forage quality.
Collapse
Affiliation(s)
- Tezera W. Wolabu
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Kashif Mahmood
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Fang Chen
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Ivone Torres-Jerez
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Michael Udvardi
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Million Tadege
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Lili Cong
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zengyu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiangqi Wen
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| |
Collapse
|
14
|
Laksana C, Sophiphun O, Chanprame S. Lignin reduction in sugarcane by performing CRISPR/Cas9 site-direct mutation of SoLIM transcription factor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111987. [PMID: 38220093 DOI: 10.1016/j.plantsci.2024.111987] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Genetic engineering of plant cell walls is limited for reducing lignocellulose recalcitrance, so mild and/or green-like pretreatment is still required for sequential enzymatic saccharification. Here, we report a method to reduce lignin content in sugarcane stalks using the CRISPR/Cas 9 technique. Three target sequences of SoLIM were designed and fused to pRGEB32. The cassette constructs were introduced into sugarcane calli cv. KK3 through Agrobacterium-mediated transformation. We produced one base substitution and one insertion line for the 1st target site; two insertions, one deletion, and one base substitution for the 2nd target site; and one base substitution and insertion for the 3rd target site. qRT-PCR analysis of SoLIM, SoPAL, SoC4H, and SoCAD showeded that downregulation of SoLIM by single nucleotide insertions or deletions reduced the expression of SoPAL, SoC4H, and SoCAD. Consequently, the edited lines contained 9.74 to 51.46% less lignin content compared to that in the wild-type plants. The syringyl/guaiacyl (S/G) ratio of the edited lines ranged between 0.23 and 0.49, while the wild-type was 0.22. The histochemical evaluation and scanning electron microscopy of the cell walls supported this observation. A low lignin content sugarcane will provide a better feedstock for second-generation bioethanol production.
Collapse
Affiliation(s)
- Chanakan Laksana
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Onsulang Sophiphun
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Sontichai Chanprame
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
15
|
Mathur S, Singh D, Ranjan R. Recent advances in plant translational genomics for crop improvement. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:335-382. [PMID: 38448140 DOI: 10.1016/bs.apcsb.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The growing population, climate change, and limited agricultural resources put enormous pressure on agricultural systems. A plateau in crop yields is occurring and extreme weather events and urbanization threaten the livelihood of farmers. It is imperative that immediate attention is paid to addressing the increasing food demand, ensuring resilience against emerging threats, and meeting the demand for more nutritious, safer food. Under uncertain conditions, it is essential to expand genetic diversity and discover novel crop varieties or variations to develop higher and more stable yields. Genomics plays a significant role in developing abundant and nutrient-dense food crops. An alternative to traditional breeding approach, translational genomics is able to improve breeding programs in a more efficient and precise manner by translating genomic concepts into practical tools. Crop breeding based on genomics offers potential solutions to overcome the limitations of conventional breeding methods, including improved crop varieties that provide more nutritional value and are protected from biotic and abiotic stresses. Genetic markers, such as SNPs and ESTs, contribute to the discovery of QTLs controlling agronomic traits and stress tolerance. In order to meet the growing demand for food, there is a need to incorporate QTLs into breeding programs using marker-assisted selection/breeding and transgenic technologies. This chapter primarily focuses on the recent advances that are made in translational genomics for crop improvement and various omics techniques including transcriptomics, metagenomics, pangenomics, single cell omics etc. Numerous genome editing techniques including CRISPR Cas technology and their applications in crop improvement had been discussed.
Collapse
Affiliation(s)
- Shivangi Mathur
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India
| | - Deeksha Singh
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India
| | - Rajiv Ranjan
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India.
| |
Collapse
|
16
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
17
|
Prado GS, Rocha DC, dos Santos LN, Contiliani DF, Nobile PM, Martinati-Schenk JC, Padilha L, Maluf MP, Lubini G, Pereira TC, Monteiro-Vitorello CB, Creste S, Boscariol-Camargo RL, Takita MA, Cristofani-Yaly M, de Souza AA. CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 14:1331258. [PMID: 38259920 PMCID: PMC10801916 DOI: 10.3389/fpls.2023.1331258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | - Dhiôvanna Corrêia Rocha
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Nascimento dos Santos
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Danyel Fernandes Contiliani
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Paula Macedo Nobile
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
| | | | - Lilian Padilha
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Mirian Perez Maluf
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Greice Lubini
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Tiago Campos Pereira
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Silvana Creste
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Marco Aurélio Takita
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | | | | |
Collapse
|
18
|
Sharma S, Malhotra PK, Goyal M, Sharma V, Mittal A, Yadav IS, Sanghera GS, Chhuneja P. Characterization of sugarcane mutants developed through gamma irradiations for their lignin content and caffeic acid-O-methyl transferase ( COMT) gene mutations. Int J Radiat Biol 2024; 100:619-626. [PMID: 38166242 DOI: 10.1080/09553002.2023.2295962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE Bagasse, the residue left after extracting juice from sugarcane stalks, is rich in lignocellulosic biomass. The lignin present in this plant biomass is the key factor that hinders the efficient extraction of ethanol from the bagasse. In the current study, γ-irradiated sugarcane mutants were evaluated for variation in lignin content and its corresponding caffeic acid-O-methyl transferase (COMT) gene. MATERIALS AND METHODS The acetyl bromide method was used to estimate lignin content in sugarcane mutants. PCR-based cloning of the COMT gene was performed in low lignin mutants as well as control plants in E. coli (strain DH5α) to understand the mechanism of variation at the molecular level. The Sanger sequencing for cloned gene was performed to check variation in gene sequence. RESULTS In comparison to the control (21.5%), the mutant plants' lignin content ranged from 13 to 28%. The Sanger sequencing revealed approximately the same length of the gene from mutants as well as a control plant. In comparison to the reference gene, the mutated gene showed SNPs and indels in different regions, which may have an impact on lignin content. CONCLUSIONS Therefore, γ-irradiated mutagenesis is an acceptable approach to develop novel mutants of sugarcane with low lignin content to enhance bioethanol production from waste material using bioprocess technology.
Collapse
Affiliation(s)
- Shaweta Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Pawan Kumar Malhotra
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Meenakshi Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Vishal Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Inderjit Singh Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
19
|
Cao VD, Luo G, Korynta S, Liu H, Liang Y, Shanklin J, Altpeter F. Intron-mediated enhancement of DIACYLGLYCEROL ACYLTRANSFERASE1 expression in energycane promotes a step change for lipid accumulation in vegetative tissues. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:153. [PMID: 37838699 PMCID: PMC10576891 DOI: 10.1186/s13068-023-02393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Metabolic engineering for hyperaccumulation of lipids in vegetative tissues is a novel strategy for enhancing energy density and biofuel production from biomass crops. Energycane is a prime feedstock for this approach due to its high biomass production and resilience under marginal conditions. DIACYLGLYCEROL ACYLTRANSFERASE (DGAT) catalyzes the last and only committed step in the biosynthesis of triacylglycerol (TAG) and can be a rate-limiting enzyme for the production of TAG. RESULTS In this study, we explored the effect of intron-mediated enhancement (IME) on the expression of DGAT1 and resulting accumulation of TAG and total fatty acid (TFA) in leaf and stem tissues of energycane. To maximize lipid accumulation these evaluations were carried out by co-expressing the lipogenic transcription factor WRINKLED1 (WRI1) and the TAG protect factor oleosin (OLE1). Including an intron in the codon-optimized TmDGAT1 elevated the accumulation of its transcript in leaves by seven times on average based on 5 transgenic lines for each construct. Plants with WRI1 (W), DGAT1 with intron (Di), and OLE1 (O) expression (WDiO) accumulated TAG up to a 3.85% of leaf dry weight (DW), a 192-fold increase compared to non-modified energycane (WT) and a 3.8-fold increase compared to the highest accumulation under the intron-less gene combination (WDO). This corresponded to TFA accumulation of up to 8.4% of leaf dry weight, a 2.8-fold or 6.1-fold increase compared to WDO or WT, respectively. Co-expression of WDiO resulted in stem accumulations of TAG up to 1.14% of DW or TFA up to 2.08% of DW that exceeded WT by 57-fold or 12-fold and WDO more than twofold, respectively. Constitutive expression of these lipogenic "push pull and protect" factors correlated with biomass reduction. CONCLUSIONS Intron-mediated enhancement (IME) of the expression of DGAT resulted in a step change in lipid accumulation of energycane and confirmed that under our experimental conditions it is rate limiting for lipid accumulation. IME should be applied to other lipogenic factors and metabolic engineering strategies. The findings from this study may be valuable in developing a high biomass feedstock for commercial production of lipids and advanced biofuels.
Collapse
Affiliation(s)
- Viet Dang Cao
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Guangbin Luo
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Shelby Korynta
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY, USA
| | - Yuanxue Liang
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY, USA.
- Biosciences Department, Brookhaven National Laboratory, Upton, NY, USA.
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA.
| |
Collapse
|
20
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
21
|
Surya Krishna S, Viswanathan R, Valarmathi R, Lakshmi K, Appunu C. CRISPR/Cas-Mediated Genome Editing Approach for Improving Virus Resistance in Sugarcane. SUGAR TECH 2023; 25:735-750. [DOI: 10.1007/s12355-023-01252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 01/11/2025]
|
22
|
May D, Sanchez S, Gilby J, Altpeter F. Multi-allelic gene editing in an apomictic, tetraploid turf and forage grass ( Paspalum notatum Flüggé) using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2023; 14:1225775. [PMID: 37521929 PMCID: PMC10373592 DOI: 10.3389/fpls.2023.1225775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Polyploidy is common among grasses (Poaceae) and poses challenges for conventional breeding. Genome editing technology circumvents crossing and selfing, enabling targeted modifications to multiple gene copies in a single generation while maintaining the heterozygous context of many polyploid genomes. Bahiagrass (Paspalum notatum Flüggé; 2n=4x=40) is an apomictic, tetraploid C4 species that is widely grown in the southeastern United States as forage in beef cattle production and utility turf. The chlorophyll biosynthesis gene magnesium chelatase (MgCh) was selected as a rapid readout target for establishing genome editing in tetraploid bahiagrass. Vectors containing sgRNAs, Cas9 and nptII were delivered to callus cultures by biolistics. Edited plants were characterized through PCR-based assays and DNA sequencing, and mutagenesis frequencies as high as 99% of Illumina reads were observed. Sequencing of wild type (WT) bahiagrass revealed a high level of sequence variation in MgCh likely due to the presence of at least two copies with possibly eight different alleles, including pseudogenes. MgCh mutants exhibited visible chlorophyll depletion with up to 82% reductions in leaf greenness. Two lines displayed progression of editing over time which was linked to somatic editing. Apomictic progeny of a chimeric MgCh editing event were obtained and allowed identification of uniformly edited progeny plants among a range of chlorophyll depletion phenotypes. Sanger sequencing of a highly edited mutant revealed elevated frequency of a WT allele, probably due to frequent homology-directed repair (HDR). To our knowledge these experiments comprise the first report of genome editing applied in perennial, warm-season turf or forage grasses. This technology will accelerate bahiagrass cultivar development.
Collapse
Affiliation(s)
- David May
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Sara Sanchez
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jennifer Gilby
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Cellular and Molecular Biology Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Miller S, Rønager A, Holm R, Fontanet-Manzaneque JB, Caño-Delgado AI, Bjarnholt N. New methods for sorghum transformation in temperate climates. AOB PLANTS 2023; 15:plad030. [PMID: 37396498 PMCID: PMC10308921 DOI: 10.1093/aobpla/plad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Sorghum (Sorghum bicolor) is an emerging cereal crop in temperate climates due to its high drought tolerance and other valuable traits. Genetic transformation is an important tool for the improvement of cereals. However, sorghum is recalcitrant to genetic transformation which is almost only successful in warmer climates. Here, we test the application of two new techniques for sorghum transformation in temperate climates, namely transient transformation by Agrobacterium tumefaciens-mediated agroinfiltration and stable transformation using gold particle bombardment and leaf whorls as explants. We optimized the transient transformation method, including post-infiltration incubation of plants in the dark and using Agrobacterium grown on plates with a high cell density (OD600 = 2.0). Expression of the green fluorescence protein (GFP)-tagged endogenous sorghum gene SbDHR2 was achieved with low transformation efficiency, and our results point out a potential weakness in using this approach for localization studies. Furthermore, we succeeded in the production of callus and somatic embryos from leaf whorls, although no genetic transformation was accomplished with this method. Both methods show potential, even if they seem to be influenced by climatic conditions and therefore need further optimization to be applied routinely in temperate climates.
Collapse
Affiliation(s)
- Sara Miller
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Asta Rønager
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Rose Holm
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Juan B Fontanet-Manzaneque
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Nanna Bjarnholt
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
24
|
Singh C, Kumar R, Sehgal H, Bhati S, Singhal T, Gayacharan, Nimmy MS, Yadav R, Gupta SK, Abdallah NA, Hamwieh A, Kumar R. Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global hunger threat. Front Genet 2023; 14:1085024. [PMID: 37144131 PMCID: PMC10153629 DOI: 10.3389/fgene.2023.1085024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 09/09/2023] Open
Abstract
Genomics and genome editing promise enormous opportunities for crop improvement and elementary research. Precise modification in the specific targeted location of a genome has profited over the unplanned insertional events which are generally accomplished employing unadventurous means of genetic modifications. The advent of new genome editing procedures viz; zinc finger nucleases (ZFNs), homing endonucleases, transcription activator like effector nucleases (TALENs), Base Editors (BEs), and Primer Editors (PEs) enable molecular scientists to modulate gene expressions or create novel genes with high precision and efficiency. However, all these techniques are exorbitant and tedious since their prerequisites are difficult processes that necessitate protein engineering. Contrary to first generation genome modifying methods, CRISPR/Cas9 is simple to construct, and clones can hypothetically target several locations in the genome with different guide RNAs. Following the model of the application in crop with the help of the CRISPR/Cas9 module, various customized Cas9 cassettes have been cast off to advance mark discrimination and diminish random cuts. The present study discusses the progression in genome editing apparatuses, and their applications in chickpea crop development, scientific limitations, and future perspectives for biofortifying cytokinin dehydrogenase, nitrate reductase, superoxide dismutase to induce drought resistance, heat tolerance and higher yield in chickpea to encounter global climate change, hunger and nutritional threats.
Collapse
Affiliation(s)
- Charul Singh
- USBT, Guru Govind Singh Indraprastha University, Delhi, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad Prayagraj, Prayagraj, India
| | - Hansa Sehgal
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, India
| | - Sharmista Bhati
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Tripti Singhal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gayacharan
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - M. S. Nimmy
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | | | | | - Aladdin Hamwieh
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Cairo, Egypt
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
25
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
26
|
Verma V, Kumar A, Partap M, Thakur M, Bhargava B. CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1122940. [PMID: 36824195 PMCID: PMC9941649 DOI: 10.3389/fpls.2023.1122940] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The acceptance of new crop varieties by consumers is contingent on the presence of consumer-preferred traits, which include sensory attributes, nutritional value, industrial products and bioactive compounds production. Recent developments in genome editing technologies provide novel insight to identify gene functions and improve the various qualitative and quantitative traits of commercial importance in plants. Various conventional as well as advanced gene-mutagenesis techniques such as physical and chemical mutagenesis, CRISPR-Cas9, Cas12 and base editors are used for the trait improvement in crops. To meet consumer demand, breakthrough biotechnologies, especially CRISPR-Cas have received a fair share of scientific and industrial interest, particularly in plant genome editing. CRISPR-Cas is a versatile tool that can be used to knock out, replace and knock-in the desired gene fragments at targeted locations in the genome, resulting in heritable mutations of interest. This review highlights the existing literature and recent developments in CRISPR-Cas technologies (base editing, prime editing, multiplex gene editing, epigenome editing, gene delivery methods) for reliable and precise gene editing in plants. This review also discusses the potential of gene editing exhibited in crops for the improvement of consumer-demanded traits such as higher nutritional value, colour, texture, aroma/flavour, and production of industrial products such as biofuel, fibre, rubber and pharmaceuticals. In addition, the bottlenecks and challenges associated with gene editing system, such as off targeting, ploidy level and the ability to edit organelle genome have also been discussed.
Collapse
Affiliation(s)
- Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Akhil Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
27
|
Verma KK, Song XP, Budeguer F, Nikpay A, Enrique R, Singh M, Zhang BQ, Wu JM, Li YR. Genetic engineering: an efficient approach to mitigating biotic and abiotic stresses in sugarcane cultivation. PLANT SIGNALING & BEHAVIOR 2022; 17:2108253. [PMID: 35959678 PMCID: PMC9377231 DOI: 10.1080/15592324.2022.2108253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses are the foremost limiting factors for crop productivity. Crop plants need to cope with adverse external pressure caused by various environmental conditions with their intrinsic biological mechanisms to keep their growth, development, and productivity. Climate-resilient, high-yielding crops need to be developed to maintain sustainable food supply. Over the last decade, understanding of the genetic complexity of agronomic traits in sugarcane has prompted the integrated application of genetic engineering to address specific biological questions. Genes for adaptation to environmental stress and yield enhancement traits are being determined and introgressed to develop elite sugarcane cultivars with improved characteristics through genetic engineering approaches. Here, we discuss the advancement to provide a reference for future sugarcane (Saccharum spp.) genetic engineering.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Florencia Budeguer
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estacion Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Amin Nikpay
- Department of Plant Protection, Sugarcane and By-Products Development Company, Salman Farsi Agroindustry, AhwazIran
| | - Ramon Enrique
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estacion Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow–India
| | - Bao-Qing Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jian-Ming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
28
|
Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN. Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 2022; 40:1454-1468. [PMID: 36241578 DOI: 10.1016/j.tibtech.2022.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Plant-based biosynthesis of fuels, chemicals, and materials promotes environmental sustainability, which includes decreases in greenhouse gas emissions, water pollution, and loss of biodiversity. Advances in plant synthetic biology (synbio) should improve precision and efficacy of genetic engineering for sustainability. Applicable synbio innovations include genome editing, gene circuit design, synthetic promoter development, gene stacking technologies, and the design of environmental sensors. Moreover, recent advancements in developing spatially resolved and single-cell omics contribute to the discovery and characterization of cell-type-specific mechanisms and spatiotemporal gene regulations in distinct plant tissues for the expression of cell- and tissue-specific genes, resulting in improved bioproduction. This review highlights recent plant synbio progress and new single-cell molecular profiling towards sustainable biofuel and biomaterial production.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Timothy Alexander Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
29
|
Shcherban AB. Plant genome modification: from induced mutagenesis to genome editing. Vavilovskii Zhurnal Genet Selektsii 2022; 26:684-696. [DOI: 10.18699/vjgb-22-83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- A. B. Shcherban
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Kurchatov Genomic Center of ICG SB RAS
| |
Collapse
|
30
|
Rozas P, Kessi-Pérez EI, Martínez C. Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biol Res 2022; 55:31. [PMID: 36266673 DOI: 10.1186/s40659-022-00399-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/06/2022] [Indexed: 12/26/2022] Open
Abstract
Genetic modification of living organisms has been a prosperous activity for research and development of agricultural, industrial and biomedical applications. Three decades have passed since the first genetically modified products, obtained by transgenesis, become available to the market. The regulatory frameworks across the world have not been able to keep up to date with new technologies, monitoring and safety concerns. New genome editing techniques are opening new avenues to genetic modification development and uses, putting pressure on these frameworks. Here we discuss the implications of definitions of living/genetically modified organisms, the evolving genome editing tools to obtain them and how the regulatory frameworks around the world have taken these technologies into account, with a focus on agricultural crops. Finally, we expand this review beyond commercial crops to address living modified organism uses in food industry, biomedical applications and climate change-oriented solutions.
Collapse
Affiliation(s)
- Pablo Rozas
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo I Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile. .,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
31
|
Dinesh Babu KS, Janakiraman V, Palaniswamy H, Kasirajan L, Gomathi R, Ramkumar TR. A short review on sugarcane: its domestication, molecular manipulations and future perspectives. GENETIC RESOURCES AND CROP EVOLUTION 2022; 69:2623-2643. [PMID: 36159774 PMCID: PMC9483297 DOI: 10.1007/s10722-022-01430-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/11/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane (Saccharum spp.) is a special crop plant that underwent anthropogenic evolution from a wild grass species to an important food, fodder, and energy crop. Unlike any other grass species which were selected for their kernels, sugarcane was selected for its high stem sucrose accumulation. Flowering in sugarcane is not favored since flowering diverts the stored sugar resources for the reproductive and developmental energy needs. Cultivars are vegetatively propagated and sugarcane breeding is still essentially focused on conventional methods, since the knowledge of sugarcane genetics has lagged that of other major crops. Cultivar improvement has been extremely challenging due to its polyploidy and aneuploidy nature derived from a few interspecific hybridizations between Saccharum officinarum and Saccharum spontaneum, revealing the coexistence of two distinct genome organization modes in the modern variety. Alongside implementation of modern agricultural techniques, generation of hybrid clones, transgenics and genome edited events will help to meet the ever-growing bioenergy needs. Additionally, there are two common biotechnological approaches to improve plant stress tolerance, which includes marker-assisted selection (MAS) and genetic transformation. During the past two decades, the use of molecular approaches has contributed greatly to a better understanding of the genetic and biochemical basis of plant stress-tolerance and in some cases, it led to the development of plants with enhanced tolerance to abiotic stress. Hence, this review mainly intends on the events that shaped the sugarcane as what it is now and what challenges ahead and measures taken to further improve its yield, production and maximize utilization to beat the growing demands.
Collapse
Affiliation(s)
| | - Vardhana Janakiraman
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced studies (VISTAS), Chennai, TN 600117 India
| | - Harunipriya Palaniswamy
- Tissue Culture Laboratory, Division of Crop Improvement, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Lakshmi Kasirajan
- Genomics Laboratory, Division of Crop Improvement, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Raju Gomathi
- Plant Physiology Laboratory, Division of Crop Production, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Thakku R. Ramkumar
- Agronomy Department, IFAS, University of Florida, Gainesville, FL 32611 USA
- Department of Biological Sciences, Delaware State University, Dover, DE 19001 USA
| |
Collapse
|
32
|
Meena MR, Appunu C, Arun Kumar R, Manimekalai R, Vasantha S, Krishnappa G, Kumar R, Pandey SK, Hemaprabha G. Recent Advances in Sugarcane Genomics, Physiology, and Phenomics for Superior Agronomic Traits. Front Genet 2022; 13:854936. [PMID: 35991570 PMCID: PMC9382102 DOI: 10.3389/fgene.2022.854936] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in sugarcane breeding have contributed significantly to improvements in agronomic traits and crop yield. However, the growing global demand for sugar and biofuel in the context of climate change requires further improvements in cane and sugar yields. Attempts to achieve the desired rates of genetic gain in sugarcane by conventional breeding means are difficult as many agronomic traits are genetically complex and polygenic, with each gene exerting small effects. Unlike those of many other crops, the sugarcane genome is highly heterozygous due to its autopolyploid nature, which further hinders the development of a comprehensive genetic map. Despite these limitations, many superior agronomic traits/genes for higher cane yield, sugar production, and disease/pest resistance have been identified through the mapping of quantitative trait loci, genome-wide association studies, and transcriptome approaches. Improvements in traits controlled by one or two loci are relatively easy to achieve; however, this is not the case for traits governed by many genes. Many desirable phenotypic traits are controlled by quantitative trait nucleotides (QTNs) with small and variable effects. Assembling these desired QTNs by conventional breeding methods is time consuming and inefficient due to genetic drift. However, recent developments in genomics selection (GS) have allowed sugarcane researchers to select and accumulate desirable alleles imparting superior traits as GS is based on genomic estimated breeding values, which substantially increases the selection efficiency and genetic gain in sugarcane breeding programs. Next-generation sequencing techniques coupled with genome-editing technologies have provided new vistas in harnessing the sugarcane genome to look for desirable agronomic traits such as erect canopy, leaf angle, prolonged greening, high biomass, deep root system, and the non-flowering nature of the crop. Many desirable cane-yielding traits, such as single cane weight, numbers of tillers, numbers of millable canes, as well as cane quality traits, such as sucrose and sugar yield, have been explored using these recent biotechnological tools. This review will focus on the recent advances in sugarcane genomics related to genetic gain and the identification of favorable alleles for superior agronomic traits for further utilization in sugarcane breeding programs.
Collapse
Affiliation(s)
- Mintu Ram Meena
- Regional Centre, ICAR-Sugarcane Breeding Institute, Karnal, India
- *Correspondence: Mintu Ram Meena, ; Chinnaswamy Appunu,
| | - Chinnaswamy Appunu
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
- *Correspondence: Mintu Ram Meena, ; Chinnaswamy Appunu,
| | - R. Arun Kumar
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | | | - S. Vasantha
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | | | - Ravinder Kumar
- Regional Centre, ICAR-Sugarcane Breeding Institute, Karnal, India
| | - S. K. Pandey
- Regional Centre, ICAR-Sugarcane Breeding Institute, Karnal, India
| | - G. Hemaprabha
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| |
Collapse
|
33
|
Bulbul Ahmed M, Humayan Kabir A. Understanding of the various aspects of gene regulatory networks related to crop improvement. Gene 2022; 833:146556. [PMID: 35609798 DOI: 10.1016/j.gene.2022.146556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
Abstract
The hierarchical relationship between transcription factors, associated proteins, and their target genes is defined by a gene regulatory network (GRN). GRNs allow us to understand how the genotype and environment of a plant are incorporated to control the downstream physiological responses. During plant growth or environmental acclimatization, GRNs are diverse and can be differently regulated across tissue types and organs. An overview of recent advances in the development of GRN that speed up basic and applied plant research is given here. Furthermore, the overview of genome and transcriptome involving GRN research along with the exciting advancement and application are discussed. In addition, different approaches to GRN predictions were elucidated. In this review, we also describe the role of GRN in crop improvement, crop plant manipulation, stress responses, speed breeding and identifying genetic variations/locus. Finally, the challenges and prospects of GRN in plant biology are discussed.
Collapse
Affiliation(s)
- Md Bulbul Ahmed
- Plant Science Department, McGill University, 21111 lakeshore Road, Ste. Anne de Bellevue H9X3V9, Quebec, Canada; Institut de Recherche en Biologie Végétale (IRBV), University of Montreal, Montréal, Québec H1X 2B2, Canada.
| | | |
Collapse
|
34
|
Viviani A, Spada M, Giordani T, Fambrini M, Pugliesi C. Origin of the genome editing systems: application for crop improvement. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Fathima AA, Sanitha M, Tripathi L, Muiruri S. Cassava (
Manihot esculenta
) dual use for food and bioenergy: A review. Food Energy Secur 2022. [DOI: 10.1002/fes3.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Anwar Aliya Fathima
- Department of Bioinformatics Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
| | - Mary Sanitha
- Department of Bioinformatics Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| | - Samwel Muiruri
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
- Department of Plant Sciences Kenyatta University Nairobi Kenya
| |
Collapse
|
36
|
Mohan C, Easterling M, Yau YY. Gene Editing Technologies for Sugarcane Improvement: Opportunities and Limitations. SUGAR TECH : AN INTERNATIONAL JOURNAL OF SUGAR CROPS & RELATED INDUSTRIES 2022; 24:369-385. [PMID: 34667393 PMCID: PMC8517945 DOI: 10.1007/s12355-021-01045-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Plant-based biofuels present a promising alternative to depleting non-renewable fuel resources. One of the benefits of biofuel is reduced environmental impact, including reduction in greenhouse gas emission which causes climate change. Sugarcane is one of the most important bioenergy crops. Sugarcane juice is used to produce table sugar and first-generation biofuel (e.g., bioethanol). Sugarcane bagasse is also a potential material for second-generation cellulosic biofuel production. Researchers worldwide are striving to improve sugarcane biomass yield and quality by a variety of means including biotechnological tools. This paper reviews the use of sugarcane as a feedstock for biofuel production, and gene manipulation tools and approaches, including RNAi and genome-editing tools, such as TALENs and CRISPR-Cas9, for improving its quality. The specific focus here is on CRISPR system because it is low cost, simple in design and versatile compared to other genome-editing tools. The advance of CRISPR-Cas9 technology has transformed plant research with its ability to precisely delete, insert or replace genes in recent years. Lignin is the primary material responsible for biomass recalcitrance in biofuel production. The use of genome editing technology to modify lignin composition and distribution in sugarcane cell wall has been realized. The current and potential applications of genome editing technology for sugarcane improvement are discussed. The advantages and limitations of utilizing RNAi and TALEN techniques in sugarcane improvement are discussed as well.
Collapse
Affiliation(s)
- Chakravarthi Mohan
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Mona Easterling
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
- Northeast Campus, Tulsa Community College, 3727 East Apache St, Tulsa, OK 74115 USA
| | - Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| |
Collapse
|
37
|
Kawall K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2259. [PMID: 34834620 PMCID: PMC8622673 DOI: 10.3390/plants10112259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The use of site-directed nucleases (SDNs) in crop plants to alter market-oriented traits is expanding rapidly. At the same time, there is an on-going debate around the safety and regulation of crops altered with the site-directed nuclease 1 (SDN-1) technology. SDN-1 applications can be used to induce a variety of genetic alterations ranging from fairly 'simple' genetic alterations to complex changes in plant genomes using, for example, multiplexing approaches. The resulting plants can contain modified alleles and associated traits, which are either known or unknown in conventionally bred plants. The European Commission recently published a study on new genomic techniques suggesting an adaption of the current GMO legislation by emphasizing that targeted mutagenesis techniques can produce genomic alterations that can also be obtained by natural mutations or conventional breeding techniques. This review highlights the need for a case-specific risk assessment of crop plants derived from SDN-1 applications considering both the characteristics of the product and the process to ensure a high level of protection of human and animal health and the environment. The published literature on so-called market-oriented traits in crop plants altered with SDN-1 applications is analyzed here to determine the types of SDN-1 application in plants, and to reflect upon the complexity and the naturalness of such products. Furthermore, it demonstrates the potential of SDN-1 applications to induce complex alterations in plant genomes that are relevant to generic SDN-associated risks. In summary, it was found that nearly half of plants with so-called market-oriented traits contain complex genomic alterations induced by SDN-1 applications, which may also pose new types of risks. It further underscores the need for data on both the process and the end-product for a case-by-case risk assessment of plants derived from SDN-1 applications.
Collapse
Affiliation(s)
- Katharina Kawall
- Fachstelle Gentechnik und Umwelt, Frohschammerstr. 14, 80807 Munich, Germany
| |
Collapse
|
38
|
Sushree Shyamli P, Rana S, Suranjika S, Muthamilarasan M, Parida A, Prasad M. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3147-3165. [PMID: 34091694 DOI: 10.1007/s00122-021-03878-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Improving the nutritional content of graminaceous crops is imperative to ensure nutritional security, wherein omics approaches play pivotal roles in dissecting this complex trait and contributing to trait improvement. Micronutrients regulate the metabolic processes to ensure the normal functioning of the biological system in all living organisms. Micronutrient deficiency, thereby, can be detrimental that can result in serious health issues. Grains of graminaceous crops serve as an important source of micronutrients to the human population; however, the rise in hidden hunger and malnutrition indicates an insufficiency in meeting the nutritional requirements. Improving the elemental composition and nutritional value of the graminaceous crops using conventional and biotechnological approaches is imperative to address this issue. Identifying the genetic determinants underlying the micronutrient biosynthesis and accumulation is the first step toward achieving this goal. Genetic and genomic dissection of this complex trait has been accomplished in major cereals, and several genes, alleles, and QTLs underlying grain micronutrient content were identified and characterized. However, no comprehensive study has been reported on minor cereals such as small millets, which are rich in micronutrients and other bioactive compounds. A comparative narrative on the reports available in major and minor Graminaceae species will illustrate the knowledge gained from studying the micronutrient traits in major cereals and provides a roadmap for dissecting this trait in other minor species, including millets. In this context, this review explains the progress made in studying micronutrient traits in major cereals and millets using omics approaches. Moreover, it provides insights into deploying integrated omics approaches and strategies for genetic improvement in micronutrient traits in graminaceous crops.
Collapse
Affiliation(s)
- P Sushree Shyamli
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Sumi Rana
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sandhya Suranjika
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Ajay Parida
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
39
|
Kashtwari M, Mansoor S, Wani AA, Najar MA, Deshmukh RK, Baloch FS, Abidi I, Zargar SM. Random mutagenesis in vegetatively propagated crops: opportunities, challenges and genome editing prospects. Mol Biol Rep 2021; 49:5729-5749. [PMID: 34427889 DOI: 10.1007/s11033-021-06650-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022]
Abstract
In order to meet the growing human food and nutrition demand a perpetual process of crop improvement is idealized. It has seen changing trends and varying concepts throughout human history; from simple selection to complex gene-editing. Among these techniques, random mutagenesis has been shown to be a promising technology to achieve desirable genetic gain with less time and minimal efforts. Over the decade, several hundred varieties have been released through random mutagenesis, but the production is falling behind the demand. Several food crops like banana, potato, cassava, sweet potato, apple, citrus, and others are vegetatively propagated. Since such crops are not propagated through seed, genetic improvement through classical breeding is impractical for them. Besides, in the case of polyploids, accomplishment of allelic homozygosity requires a considerable land area, extensive fieldwork with huge manpower, and hefty funding for an extended period of time. Apart from induction, mapping of induced genes to facilitate the knowledge of biological processes has been performed only in a few selected facultative vegetative crops like banana and cassava which can form a segregating population. During the last few decades, there has been a shift in the techniques used for crop improvement. With the introduction of the robust technologies like meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) more and more crops are being subjected to gene editing. However, more work needs to be done in case of vegetatively propagated crops.
Collapse
Affiliation(s)
- Mahpara Kashtwari
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Sheikh Mansoor
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, FBSc, Jammu, Jammu and Kashmir, 180009, India
| | - Aijaz A Wani
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mushtaq Ahmad Najar
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Rupesh K Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140308, India
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Ishfaq Abidi
- Directorate of Research, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Jammu and Kashmir, 190025, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
40
|
Oz MT, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-Mediated Multi-Allelic Gene Targeting in Sugarcane Confers Herbicide Tolerance. Front Genome Ed 2021; 3:673566. [PMID: 34713261 PMCID: PMC8525412 DOI: 10.3389/fgeed.2021.673566] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Sugarcane is the source of 80% of the sugar and 26% of the bioethanol produced globally. However, its complex, highly polyploid genome (2n = 100 - 120) impedes crop improvement. Here, we report efficient and reproducible gene targeting (GT) in sugarcane, enabling precise co-editing of multiple alleles via template-mediated and homology-directed repair (HDR) of DNA double strand breaks induced by the programmable nuclease CRISPR/Cas9. The evaluation of 146 independently transformed plants from five independent experiments revealed a targeted nucleotide replacement that resulted in both targeted amino acid substitutions W574L and S653I in the acetolactate synthase (ALS) in 11 lines in addition to single, targeted amino acid substitutions W574L or S653I in 25 or 18 lines, respectively. Co-editing of up to three ALS copies/alleles that confer herbicide tolerance was confirmed by Sanger sequencing of cloned long polymerase chain reaction (PCR) amplicons. This work will enable crop improvement by conversion of inferior alleles to superior alleles through targeted nucleotide substitutions.
Collapse
Affiliation(s)
- Mehmet Tufan Oz
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Angelika Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
| | - Aldo Merotto
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| |
Collapse
|
41
|
Maren N, Zhao F, Aryal R, Touchell D, Liu W, Ranney T, Ashrafi H. Reproductive developmental transcriptome analysis of Tripidium ravennae (Poaceae). BMC Genomics 2021; 22:483. [PMID: 34182921 PMCID: PMC8237498 DOI: 10.1186/s12864-021-07641-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tripidium ravennae is a cold-hardy, diploid species in the sugarcane complex (Poaceae subtribe Saccharinae) with considerable potential as a genetic resource for developing improved bioenergy and ornamental grasses. An improved understanding of the genetic regulation of reproductive processes (e.g., floral induction, inflorescence development, and seed development) will enable future applications of precision breeding and gene editing of floral and seed development. In particular, the ability to silence reproductive processes would allow for developing seedless forms of valuable but potentially invasive plants. The objective of this research was to characterize the gene expression environment of reproductive development in T. ravennae. RESULTS During the early phases of inflorescence development, multiple key canonical floral integrators and pathways were identified. Annotations of type II subfamily of MADS-box transcription factors, in particular, were over-represented in the GO enrichment analyses and tests for differential expression (FDR p-value < 0.05). The differential expression of floral integrators observed in the early phases of inflorescence development diminished prior to inflorescence determinacy regulation. Differential expression analysis did not identify many unique genes at mid-inflorescence development stages, though typical biological processes involved in plant growth and development expressed abundantly. The increase in inflorescence determinacy regulatory elements and putative homeotic floral development unigenes at mid-inflorescence development coincided with the expression of multiple meiosis annotations and multicellular organism developmental processes. Analysis of seed development identified multiple unigenes involved in oxidative-reductive processes. CONCLUSION Reproduction in grasses is a dynamic system involving the sequential coordination of complex gene regulatory networks and developmental processes. This research identified differentially expressed transcripts associated with floral induction, inflorescence development, and seed development in T. ravennae. These results provide insights into the molecular regulation of reproductive development and provide a foundation for future investigations and analyses, including genome annotation, functional genomics characterization, gene family evolutionary studies, comparative genomics, and precision breeding.
Collapse
Affiliation(s)
- Nathan Maren
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA.
| | - Fangzhou Zhao
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
| | - Darren Touchell
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
| | - Thomas Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA.
| |
Collapse
|
42
|
Miladinovic D, Antunes D, Yildirim K, Bakhsh A, Cvejić S, Kondić-Špika A, Marjanovic Jeromela A, Opsahl-Sorteberg HG, Zambounis A, Hilioti Z. Targeted plant improvement through genome editing: from laboratory to field. PLANT CELL REPORTS 2021; 40:935-951. [PMID: 33475781 PMCID: PMC8184711 DOI: 10.1007/s00299-020-02655-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/20/2020] [Indexed: 05/19/2023]
Abstract
This review illustrates how far we have come since the emergence of GE technologies and how they could be applied to obtain superior and sustainable crop production. The main challenges of today's agriculture are maintaining and raising productivity, reducing its negative impact on the environment, and adapting to climate change. Efficient plant breeding can generate elite varieties that will rapidly replace obsolete ones and address ongoing challenges in an efficient and sustainable manner. Site-specific genome editing in plants is a rapidly evolving field with tangible results. The technology is equipped with a powerful toolbox of molecular scissors to cut DNA at a pre-determined site with different efficiencies for designing an approach that best suits the objectives of each plant breeding strategy. Genome editing (GE) not only revolutionizes plant biology, but provides the means to solve challenges related to plant architecture, food security, nutrient content, adaptation to the environment, resistance to diseases and production of plant-based materials. This review illustrates how far we have come since the emergence of these technologies and how these technologies could be applied to obtain superior, safe and sustainable crop production. Synergies of genome editing with other technological platforms that are gaining significance in plants lead to an exciting new, post-genomic era for plant research and production. In previous months, we have seen what global changes might arise from one new virus, reminding us of what drastic effects such events could have on food production. This demonstrates how important science, technology, and tools are to meet the current time and the future. Plant GE can make a real difference to future sustainable food production to the benefit of both mankind and our environment.
Collapse
Affiliation(s)
| | | | - Kubilay Yildirim
- Department of Molecular Biology and Genetics, Faculty of Sciences, Ondokuzmayıs University, Samsun, Turkey
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Sandra Cvejić
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | | | | | | | - Antonios Zambounis
- Department of Deciduous Fruit Trees, Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, Naoussa, Greece
| | - Zoe Hilioti
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece.
| |
Collapse
|
43
|
Hodgson-Kratky K, Perlo V, Furtado A, Choudhary H, Gladden JM, Simmons BA, Botha F, Henry RJ. Association of gene expression with syringyl to guaiacyl ratio in sugarcane lignin. PLANT MOLECULAR BIOLOGY 2021; 106:173-192. [PMID: 33738678 DOI: 10.1007/s11103-021-01136-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 05/11/2023]
Abstract
A transcriptome analysis reveals the transcripts and alleles differentially expressed in sugarcane genotypes with contrasting lignin composition. Sugarcane bagasse is a highly abundant resource that may be used as a feedstock for the production of biofuels and bioproducts in order to meet increasing demands for renewable replacements for fossil carbon. However, lignin imparts rigidity to the cell wall that impedes the efficient breakdown of the biomass into fermentable sugars. Altering the ratio of the lignin units, syringyl (S) and guaiacyl (G), which comprise the native lignin polymer in sugarcane, may facilitate the processing of bagasse. This study aimed to identify genes and markers associated with S/G ratio in order to accelerate the development of sugarcane bioenergy varieties with modified lignin composition. The transcriptome sequences of 12 sugarcane genotypes that contrasted for S/G ratio were compared and there were 2019 transcripts identified as differentially expressed (DE) between the high and low S/G ratio groups. These included transcripts encoding possible monolignol biosynthetic pathway enzymes, transporters, dirigent proteins and transcriptional and post-translational regulators. Furthermore, the frequencies of single nucleotide polymorphisms (SNPs) were compared between the low and high S/G ratio groups to identify specific alleles expressed with the phenotype. There were 2063 SNP loci across 787 unique transcripts that showed group-specific expression. Overall, the DE transcripts and SNP alleles identified in this study may be valuable for breeding sugarcane varieties with altered S/G ratio that may provide desirable bioenergy traits.
Collapse
Affiliation(s)
- K Hodgson-Kratky
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - V Perlo
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - A Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - H Choudhary
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - J M Gladden
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - B A Simmons
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - F Botha
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - R J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
44
|
Eid A, Mohan C, Sanchez S, Wang D, Altpeter F. Multiallelic, Targeted Mutagenesis of Magnesium Chelatase With CRISPR/Cas9 Provides a Rapidly Scorable Phenotype in Highly Polyploid Sugarcane. Front Genome Ed 2021; 3:654996. [PMID: 34713257 PMCID: PMC8525377 DOI: 10.3389/fgeed.2021.654996] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Genome editing with sequence-specific nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), is revolutionizing crop improvement. Developing efficient genome-editing protocols for highly polyploid crops, including sugarcane (x = 10-13), remains challenging due to the high level of genetic redundancy in these plants. Here, we report the efficient multiallelic editing of magnesium chelatase subunit I (MgCh) in sugarcane. Magnesium chelatase is a key enzyme for chlorophyll biosynthesis. CRISPR/Cas9-mediated targeted co-mutagenesis of 49 copies/alleles of magnesium chelatase was confirmed via Sanger sequencing of cloned PCR amplicons. This resulted in severely reduced chlorophyll contents, which was scorable at the time of plant regeneration in the tissue culture. Heat treatment following the delivery of genome editing reagents elevated the editing frequency 2-fold and drastically promoted co-editing of multiple alleles, which proved necessary to create a phenotype that was visibly distinguishable from the wild type. Despite their yellow leaf color, the edited plants were established well in the soil and did not show noticeable growth retardation. This approach will facilitate the establishment of genome editing protocols for recalcitrant crops and support further optimization, including the evaluation of alternative RNA-guided nucleases to overcome the limitations of the protospacer adjacent motif (PAM) site or to develop novel delivery strategies for genome editing reagents.
Collapse
Affiliation(s)
- Ayman Eid
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Chakravarthi Mohan
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Sara Sanchez
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Duoduo Wang
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| |
Collapse
|
45
|
Genome editing of polyploid crops: prospects, achievements and bottlenecks. Transgenic Res 2021; 30:337-351. [PMID: 33846956 PMCID: PMC8316217 DOI: 10.1007/s11248-021-00251-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Plant breeding aims to develop improved crop varieties. Many crops have a polyploid and often highly heterozygous genome, which may make breeding of polyploid crops a real challenge. The efficiency of traditional breeding based on crossing and selection has been improved by using marker-assisted selection (MAS), and MAS is also being applied in polyploid crops, which helps e.g. for introgression breeding. However, methods such as random mutation breeding are difficult to apply in polyploid crops because there are multiple homoeologous copies (alleles) of each gene. Genome editing technology has revolutionized mutagenesis as it enables precisely selecting targets. The genome editing tool CRISPR/Cas is especially valuable for targeted mutagenesis in polyploids, as all alleles and/or copies of a gene can be targeted at once. Even multiple genes, each with multiple alleles, may be targeted simultaneously. In addition to targeted mutagenesis, targeted replacement of undesirable alleles by desired ones may become a promising application of genome editing for the improvement of polyploid crops, in the near future. Several examples of the application of genome editing for targeted mutagenesis are described here for a range of polyploid crops, and achievements and bottlenecks are highlighted.
Collapse
|
46
|
Eid A, Mohan C, Sanchez S, Wang D, Altpeter F. Multiallelic, Targeted Mutagenesis of Magnesium Chelatase With CRISPR/Cas9 Provides a Rapidly Scorable Phenotype in Highly Polyploid Sugarcane. Front Genome Ed 2021. [PMID: 34713257 DOI: 10.3389/fgeed.2021.65499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Genome editing with sequence-specific nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), is revolutionizing crop improvement. Developing efficient genome-editing protocols for highly polyploid crops, including sugarcane (x = 10-13), remains challenging due to the high level of genetic redundancy in these plants. Here, we report the efficient multiallelic editing of magnesium chelatase subunit I (MgCh) in sugarcane. Magnesium chelatase is a key enzyme for chlorophyll biosynthesis. CRISPR/Cas9-mediated targeted co-mutagenesis of 49 copies/alleles of magnesium chelatase was confirmed via Sanger sequencing of cloned PCR amplicons. This resulted in severely reduced chlorophyll contents, which was scorable at the time of plant regeneration in the tissue culture. Heat treatment following the delivery of genome editing reagents elevated the editing frequency 2-fold and drastically promoted co-editing of multiple alleles, which proved necessary to create a phenotype that was visibly distinguishable from the wild type. Despite their yellow leaf color, the edited plants were established well in the soil and did not show noticeable growth retardation. This approach will facilitate the establishment of genome editing protocols for recalcitrant crops and support further optimization, including the evaluation of alternative RNA-guided nucleases to overcome the limitations of the protospacer adjacent motif (PAM) site or to develop novel delivery strategies for genome editing reagents.
Collapse
Affiliation(s)
- Ayman Eid
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Chakravarthi Mohan
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Sara Sanchez
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Duoduo Wang
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| |
Collapse
|
47
|
Calderan-Rodrigues MJ, de Barros Dantas LL, Cheavegatti Gianotto A, Caldana C. Applying Molecular Phenotyping Tools to Explore Sugarcane Carbon Potential. FRONTIERS IN PLANT SCIENCE 2021; 12:637166. [PMID: 33679852 PMCID: PMC7935522 DOI: 10.3389/fpls.2021.637166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 05/21/2023]
Abstract
Sugarcane (Saccharum spp.), a C4 grass, has a peculiar feature: it accumulates, gradient-wise, large amounts of carbon (C) as sucrose in its culms through a complex pathway. Apart from being a sustainable crop concerning C efficiency and bioenergetic yield per hectare, sugarcane is used as feedstock for producing ethanol, sugar, high-value compounds, and products (e.g., polymers and succinate), and bioelectricity, earning the title of the world's leading biomass crop. Commercial cultivars, hybrids bearing high levels of polyploidy, and aneuploidy, are selected from a large number of crosses among suitable parental genotypes followed by the cloning of superior individuals among the progeny. Traditionally, these classical breeding strategies have been favoring the selection of cultivars with high sucrose content and resistance to environmental stresses. A current paradigm change in sugarcane breeding programs aims to alter the balance of C partitioning as a means to provide more plasticity in the sustainable use of this biomass for metabolic engineering and green chemistry. The recently available sugarcane genetic assemblies powered by data science provide exciting perspectives to increase biomass, as the current sugarcane yield is roughly 20% of its predicted potential. Nowadays, several molecular phenotyping tools can be applied to meet the predicted sugarcane C potential, mainly targeting two competing pathways: sucrose production/storage and biomass accumulation. Here we discuss how molecular phenotyping can be a powerful tool to assist breeding programs and which strategies could be adopted depending on the desired final products. We also tackle the advances in genetic markers and mapping as well as how functional genomics and genetic transformation might be able to improve yield and saccharification rates. Finally, we review how "omics" advances are promising to speed up plant breeding and reach the unexplored potential of sugarcane in terms of sucrose and biomass production.
Collapse
Affiliation(s)
| | | | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- *Correspondence: Camila Caldana,
| |
Collapse
|
48
|
Budeguer F, Enrique R, Perera MF, Racedo J, Castagnaro AP, Noguera AS, Welin B. Genetic Transformation of Sugarcane, Current Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2021; 12:768609. [PMID: 34858464 PMCID: PMC8632530 DOI: 10.3389/fpls.2021.768609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 05/13/2023]
Abstract
Sugarcane (Saccharum spp.) is a tropical and sub-tropical, vegetative-propagated crop that contributes to approximately 80% of the sugar and 40% of the world's biofuel production. Modern sugarcane cultivars are highly polyploid and aneuploid hybrids with extremely large genomes (>10 Gigabases), that have originated from artificial crosses between the two species, Saccharum officinarum and S. spontaneum. The genetic complexity and low fertility of sugarcane under natural growing conditions make traditional breeding improvement extremely laborious, costly and time-consuming. This, together with its vegetative propagation, which allows for stable transfer and multiplication of transgenes, make sugarcane a good candidate for crop improvement through genetic engineering. Genetic transformation has the potential to improve economically important properties in sugarcane as well as diversify sugarcane beyond traditional applications, such as sucrose production. Traits such as herbicide, disease and insect resistance, improved tolerance to cold, salt and drought and accumulation of sugar and biomass have been some of the areas of interest as far as the application of transgenic sugarcane is concerned. Although there have been much interest in developing transgenic sugarcane there are only three officially approved varieties for commercialization, all of them expressing insect-resistance and recently released in Brazil. Since the early 1990's, different genetic transformation systems have been successfully developed in sugarcane, including electroporation, Agrobacterium tumefaciens and biobalistics. However, genetic transformation of sugarcane is a very laborious process, which relies heavily on intensive and sophisticated tissue culture and plant generation procedures that must be optimized for each new genotype to be transformed. Therefore, it remains a great technical challenge to develop an efficient transformation protocol for any sugarcane variety that has not been previously transformed. Additionally, once a transgenic event is obtained, molecular studies required for a commercial release by regulatory authorities, which include transgene insertion site, number of transgenes and gene expression levels, are all hindered by the genomic complexity and the lack of a complete sequenced reference genome for this crop. The objective of this review is to summarize current techniques and state of the art in sugarcane transformation and provide information on existing and future sugarcane improvement by genetic engineering.
Collapse
Affiliation(s)
- Florencia Budeguer
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Ramón Enrique
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - María Francisca Perera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Josefina Racedo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Atilio Pedro Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- Centro Cientifico Tecnológico (CCT) CONICET NOA Sur, San Miguel de Tucumán, Argentina
| | - Aldo Sergio Noguera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Bjorn Welin
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- *Correspondence: Bjorn Welin,
| |
Collapse
|
49
|
Abstract
RNA interference (RNAi) is an innate cellular mechanism triggered by a double-stranded RNA (dsRNA) molecule causing selective inhibition of gene expression. Here, we demonstrated the RNAi technology for gene silencing in sugarcane for biofuel production. This chapter describes an efficient model system that established to target the caffeic acid O-methyltransferase (COMT) gene and the RNAi construct is designed and delivered through Agrobacterium mediated stable sugarcane transformation. Also, the approach for an analysis of resulting putative transgenic plants for a targeted RNAi mediated gene silencing is described.
Collapse
Affiliation(s)
- Naveenarani Murugan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Chakravarthi Mohan
- Agronomy Department, IFAS, University of Florida, Gainesville, FL, USA
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Baskaran Kannan
- Agronomy Department, IFAS, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
50
|
Zhan X, Lu Y, Zhu JK, Botella JR. Genome editing for plant research and crop improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:3-33. [PMID: 33369120 DOI: 10.1111/jipb.13063] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 05/27/2023]
Abstract
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) has had a profound impact on plant biology, and crop improvement. In this review, we summarize the state-of-the-art development of CRISPR technologies and their applications in plants, from the initial introduction of random small indel (insertion or deletion) mutations at target genomic loci to precision editing such as base editing, prime editing and gene targeting. We describe advances in the use of class 2, types II, V, and VI systems for gene disruption as well as for precise sequence alterations, gene transcription, and epigenome control.
Collapse
Affiliation(s)
- Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Xianyang, 712100, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|