1
|
Dölger JL, Sagervanshi A, Pitann B, Mühling KH. The magnesium-specific uptake and translocation transporters ZmMGT10 and MGR6 are upregulated not only by magnesium deficiency but also by high potassium concentrations in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109977. [PMID: 40334516 DOI: 10.1016/j.plaphy.2025.109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
The antagonism between potassium (K+) and magnesium (Mg2+) is the primary cause of Mg2+ deficiency worldwide. Recent studies have demonstrated that the suppressive effect of K+ on Mg2+ uptake is significantly reduced as the K+/Mg2+ ratio increases, as both cations share non-specific cation channels. Concomitantly, the relative root/shoot translocation of Mg2+ increased. In contrast, there are indications that elevated tissue [K+] impedes the primary physiological functions of Mg2+. In this study on Zea mays L., the involvement of the only known specific Mg2+ uptake transporter ZmMGT10 and that of the translocation transporter MGR6 was examined. In a hydroponic setup, young maize plants were subjected to eight distinct K+/Mg2+ ratios. Relative RNA expression of the two transporters was examined. In a second experiment, the effect of elevated leaf [K+] on the physiological functions of Mg2+ was investigated, while uptake antagonism was avoided. The maize plants here were subjected to a sufficient Mg2+ supply and absolute deficiency under conditions of adequate and excess [K+]. The analysis included chlorophyll values, starch, and nutrient concentration. While ZmMGT10;1 was higher expressed due to K+-induced lower root [Mg+2], ZmMGT10;2 showed a higher expression at high K+ exposure, although this response was independent of root [Mg+2]. A similar response was also observed for MGR6. It was found that the physiological functions of Mg2+ were not affected by increased [K+] in the tissue. In conclusion, the higher uptake and the elevated expression of translocation transporters were identified as an adaptation strategy of maize plants to K+-induced Mg2+ deficiency.
Collapse
Affiliation(s)
- Jasper Lauritz Dölger
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany.
| | - Amit Sagervanshi
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany
| | - Britta Pitann
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany.
| | - Karl Hermann Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany.
| |
Collapse
|
2
|
Wang K, Wu Z, Zhang M, Lu X, Lai J, Zhang M, Wang Y. Metal ion transport in maize: survival in a variable stress environment. J Genet Genomics 2025; 52:297-306. [PMID: 39824435 DOI: 10.1016/j.jgg.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
Maize (Zea mays) is the most widely cultivated crop in the world. Maize production is closely linked to the extensive uptake and utilization of various mineral nutrients. Potassium (K), calcium (Ca), and magnesium (Mg) are essential metallic macronutrients for plant growth and development. Sodium (Na) is an essential micronutrient for some C4 and CAM plants. Several metallic micronutrients like iron (Fe), manganese (Mn), and zinc (Zn) serve as enzyme components or co-factors in plant cells. Maize has to face the combined ion stress conditions in the natural environment. The limited availability of these nutrients in soils restricts maize production. In saline land, excessive Na could inhibit the uptake of mineral elements. Additionally, aluminum (Al) and heavy metals cadmium (Cd) and lead (Pb) in soils are toxic to maize and pose a threat to food security. Thus, plants must evolve complex mechanisms to increase nutrient uptake and utilization while restraining harmful elements. This review summarizes the research progress on the uptake and transport of metal ions in maize, highlights the regulation mechanism of metal ion transporters under stress conditions, and discusses the future challenges for the improvement of maize with high nutrient utilization efficiency (NUE).
Collapse
Affiliation(s)
- Kangqi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Wu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Man Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyao Lu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Meiling Zhang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China.
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Li J, Wen T, Zhang R, Hu X, Guo F, Zhao H, Wang P, Wang Y, Ni D, Wang M. Metabolome profiling and transcriptome analysis unveiling the crucial role of magnesium transport system for magnesium homeostasis in tea plants. HORTICULTURE RESEARCH 2024; 11:uhae152. [PMID: 38994447 PMCID: PMC11237192 DOI: 10.1093/hr/uhae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/19/2024] [Indexed: 07/13/2024]
Abstract
Magnesium (Mg2+) is a crucial nutrient for the growth and development of Camellia sinensis and is closely related to the quality of tea. However, the underlying mechanisms responding to low-Mg 2+ stress in tea plants remain largely unknown. In this study, photosynthetic parameters, metabolomics, and transcriptomics were utilized to explore the potential effects of low Mg2+ on the growth and metabolism of C. sinensis. Low-Mg2+ treatment increased the ratio of shoot dry weight to root dry weight but decreased the photosynthesis of C. sinensis. Forty and thirty metabolites were impacted by Mg2+ shortage in C. sinensis shoots and roots, respectively. Integrated transcriptome and metabolome analyses revealed the possible reasons for the decreased contents of chlorophyll and catechins and the increased theanine content in C. sinensis roots. Weighted gene co-expression network analysis indicated that the Mg2+ transport system was essential in the regulation of Mg2+ homeostasis in C. sinensis, in which CsMGT5 was identified to be the key regulator according to CsMGT5-overexpressing and complementary assays in Arabidopsis thaliana. Moreover, silencing of CsMGT5 in vivo reduced the content of chlorophyll in C. sinensis shoots. In addition, CsMGT5 might collaborate with ammonium transporters to keep the amino acid content steady, suggesting its potential application for tea quality improvement. All these findings demonstrate the key roles of CsMGTs for Mg2+ homeostasis in C. sinensis, providing a theoretical basis for Mg2+ efficient utilization in plants.
Collapse
Affiliation(s)
- Jing Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiming Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinlong Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Pu Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingle Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Du YX, Dong JM, Liu HX, Fu XM, Guo J, Lai XP, Liu HM, Yang D, Yang HX, Zhou XY, Mao JM, Chen M, Zhang JZ, Yue JQ, Li J. Transcription-related metabolic regulation in grafted lemon seedlings under magnesium deficiency stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108615. [PMID: 38631158 DOI: 10.1016/j.plaphy.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Magnesium is one of the essential nutrients for plant growth, and plays a pivotal role in plant development and metabolism. Soil magnesium deficiency is evident in citrus production, which ultimately leads to failure of normal plant growth and development, as well as decreased productivity. Citrus is mainly propagated by grafting, so it is necessary to fully understand the different regulatory mechanisms of rootstock and scion response to magnesium deficiency. Here, we characterized the differences in morphological alterations, physiological metabolism and differential gene expression between trifoliate orange rootstocks and lemon scions under normal and magnesium-deficient conditions, revealing the different responses of rootstocks and scions to magnesium deficiency. The transcriptomic data showed that differentially expressed genes were enriched in 14 and 4 metabolic pathways in leaves and roots, respectively, after magnesium deficiency treatment. And the magnesium transport-related genes MHX and MRS2 may respond to magnesium deficiency stress. In addition, magnesium deficiency may affect plant growth by affecting POD, SOD, and CAT enzyme activity, as well as altering the levels of hormones such as IAA, ABA, GA3, JA, and SA, and the expression of related responsive genes. In conclusion, our research suggests that the leaves of lemon grafted onto trifoliate orange were more significantly affected than the roots under magnesium-deficient conditions, further indicating that the metabolic imbalance of scion lemon leaves was more severe.
Collapse
Affiliation(s)
- Yu-Xia Du
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Jian-Mei Dong
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Hang-Xiu Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100010, China
| | - Xiao-Men Fu
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Jun Guo
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Xin-Pu Lai
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Hong-Ming Liu
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Di Yang
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Hong-Xia Yang
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Xian-Yan Zhou
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Jia-Mei Mao
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Min Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jian-Qiang Yue
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Jing Li
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China.
| |
Collapse
|
5
|
Tang L, Xiao L, Chen E, Lei X, Ren J, Yang Y, Xiao B, Gong C. Magnesium transporter CsMGT10 of tea plants plays a key role in chlorosis leaf vein greening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107842. [PMID: 37352698 DOI: 10.1016/j.plaphy.2023.107842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
Magnesium (Mg2+), as the central atom of chlorophyll, is the most abundant divalent cation for plant growth and development in living cells. MRS2/MGT magnesium transporters play important roles in coping with magnesium stress, chloroplast development and photosynthesis. However, the molecular mechanism of MGT influencing tea plant leaf vein color remains unknown. Here, we demonstrate that CsMGT10 may be a potential transporter influencing leaf vein color. CsMGT10 belongs to Clade A member of MRS2/MGT family. CsMGT10 has the highest expression level in leaves of tea plants. And it is mainly expressed in aboveground parts, especially in vascular bundles. Moreover, CsMGT10 localizes to the chloroplast envelope of tea plants with a high affinity to Mg2+. And the GMN motif is required for its magnesium transport function. Ectopic expression of CsMGT10 in Arabidopsis leaf variegation mutant var5-1 can restore green color of chlorosis leaf veins, and the contents of chlorophyll and carotenoid change significantly, proving its essential role in leaf vein greening. Furthermore, the chlorophyll and carotenoid of tea leaves treated with CsMGT10 antisense oligonucleotides also decrease significantly. Our findings indicate that CsMGT10 mainly acts as Mg2+ transporter in chloroplast envelope of leaf veins, which may play a key role in leaf vein greening of tea plants.
Collapse
Affiliation(s)
- Lei Tang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luodan Xiao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Yibin Research Institute of Tea Industry, Yibin, 644000, China
| | - Enxiang Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingyu Lei
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiejie Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yajun Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Tea Research Institute, Chinese Academy of Agricultural Sciences /National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Liu W, Khan S, Tong M, Hu H, Yin L, Huang J. Identification and Expression of the CorA/MRS2/ALR Type Magnesium Transporters in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2512. [PMID: 37447072 DOI: 10.3390/plants12132512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Magnesium (Mg2+) is the most abundant divalent ion in plants, participating in numerous metabolic processes in growth and development. CorA/MRS2/ALR type Mg2+ transporters are essential for maintaining Mg2+ homeostasis in plants. However, the candidate protein and its potential functions in the tomato plant have not been fully understood. In this study, we identified seven MGT genes (SlMRS2) in tomato based on sequence similarity, domain analysis, conserved motif identification, and structure prediction. Two SlMRS2 genes were analyzed in the bacterial strain MM281, and a functional complementary assay demonstrated their high-affinity transport of Mg2+. Quantitative real-time PCR analysis revealed that the expressions of these Mg2+ transporters were down-regulated in leaves under Mg2+ limitation, with a greater impact on lower and middle leaves compared to young leaves. Conversely, under Mg2+ toxicity, several genes were up-regulated in leaves with a circadian rhythm. Our findings indicate that members of the SlMRS2 family function as Mg2+ transporters and lay the groundwork for further analysis of their distinct functions in tomato.
Collapse
Affiliation(s)
- Wen Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shahbaz Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Mengying Tong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Liyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Jiaquan Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Tang Y, Yang X, Li H, Shuai Y, Chen W, Ma D, Lü Z. Uncovering the role of wheat magnesium transporter family genes in abiotic responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1078299. [PMID: 36844102 PMCID: PMC9948656 DOI: 10.3389/fpls.2023.1078299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND The CorA / MGT / MRS2 family proteins are an important group of magnesium transporter proteins that maintain magnesium ion homeostasis in plant cells. However, little is known about the MGT functions in wheat. METHODS The known MGT sequences were used as queries to BlastP against wheat genome IWGSC RefSeq v2.1 assembly (E-value <10-5). Chromosome localization information for each TaMGT gene was obtained from the GFF3 file of the wheat genome data (IWGSCv2.1).The sequence of 1500 bp upstream of the TaMGT genes was extracted from the wheat genome data. The cis-elements were analyzed using PlantCARE online tool. RESULT A total of 24 MGT genes were identified on 18 chromosomes of wheat. After functional domain analysis, only TaMGT1A, TaMGT1B, and TaMGT1D had GMN mutations to AMN, while all the other genes had conserved GMN tripeptide motifs. Expression profiling showed that the TaMGT genes were differentially expressed under different stresses and at different growth and development stages. The expression levels of TaMGT4B and TaMGT4A were significantly up-regulated in cold damage. In addition, qRT-PCR results also confirmed that these TaMGT genes are involved in the wheat abiotic stress responses. CONCLUSION In conclusion, The results of our research provide a theoretical basis for further research on the function of TaMGT gene family in wheat.
Collapse
Affiliation(s)
- Yanhong Tang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyue Yang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yating Shuai
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Wang Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- *Correspondence: Wang Chen, ; Dongfang Ma, ; Zhichuang Lü,
| | - Dongfang Ma
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Wang Chen, ; Dongfang Ma, ; Zhichuang Lü,
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Wang Chen, ; Dongfang Ma, ; Zhichuang Lü,
| |
Collapse
|
8
|
Kan B, Yang Y, Du P, Li X, Lai W, Hu H. Chlorophyll decomposition is accelerated in banana leaves after the long-term magnesium deficiency according to transcriptome analysis. PLoS One 2022; 17:e0270610. [PMID: 35749543 PMCID: PMC9231763 DOI: 10.1371/journal.pone.0270610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Magnesium (Mg) is an essential macronutrient for plant growth and development. Physiological and transcriptome analyses were conducted to elucidate the adaptive mechanisms to long-term Mg deficiency (MD) in banana seedlings at the 6-leaf stage. Banana seedlings were irrigated with a Mg-free nutrient solution for 42 days, and a mock control was treated with an optimum Mg supply. Leaf edge chlorosis was observed on the 9th leaf, which gradually turned yellow from the edge to the interior region. Accordingly, the total chlorophyll content was reduced by 47.1%, 47.4%, and 53.8% in the interior, center and edge regions, respectively, and the net photosynthetic rate was significantly decreased in the 9th leaf. Transcriptome analysis revealed that MD induced 9,314, 7,425 and 5,716 differentially expressed genes (DEGs) in the interior, center and edge regions, respectively. Of these, the chlorophyll metabolism pathway was preferentially enriched according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The expression levels of the five candidate genes in leaves were consistent with what is expected during chlorophyll metabolism. Our results suggest that changes in the expression of genes related to chlorophyll synthesis and decomposition result in the yellowing of banana seedling leaves, and these results are helpful for understanding the banana response mechanism to long-term MD.
Collapse
Affiliation(s)
- Baolin Kan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
| | - Yong Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
| | - Pengmeng Du
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
| | - Xinping Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
| | - Wenjie Lai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
- * E-mail:
| |
Collapse
|
9
|
Ge M, Zhong R, Sadeghnezhad E, Hakeem A, Xiao X, Wang P, Fang J. Genome-wide identification and expression analysis of magnesium transporter gene family in grape (Vitis vinifera). BMC PLANT BIOLOGY 2022; 22:217. [PMID: 35477360 PMCID: PMC9047265 DOI: 10.1186/s12870-022-03599-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/14/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Magnesium ion is one of the essential mineral elements for plant growth and development, which participates in a variety of physiological and biochemical processes. Since there is no report on the research of magnesium ion transporter in grape, the study of the structure and function of magnesium ion transporters (MGT) is helpful to understand the dynamic balance mechanism of intracellular magnesium ions and their inter- or intra-cellular activities. RESULT In this study, we identified the members of MGT protein family in grape and performed the phylogenetic and expression analysis. We have identified nine VvMGT genes in grape genome, which are distributed on eight different chromosomes. Phylogenetic analysis showed that MGT family members of grapes were divided into five subfamilies and had obvious homology with Arabidopsis, maize, and pear. Based on transcriptome data from the web databases, we analyzed the expression patterns of VvMGTs at different development stages and in response to abiotic stresses including waterlogging, drought, salinity, and copper. Using qRT-PCR method, we tested the expression of grape VvMGTs under magnesium and aluminum treatments and found significant changes in VvMGTs expression. In addition, four of the MGT proteins in grape were located in the nucleus. CONCLUSION Overall, in this study we investigated the structural characteristics, evolution pattern, and expression analysis of VvMGTs in depth, which laid the foundation for further revealing the function of VvMGT genes in grape.
Collapse
Affiliation(s)
- Mengqing Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Abdul Hakeem
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Du HM, Liu C, Jin XW, Du CF, Yu Y, Luo S, He WZ, Zhang SZ. Overexpression of the Aldehyde Dehydrogenase Gene ZmALDH Confers Aluminum Tolerance in Arabidopsis thaliana. Int J Mol Sci 2022; 23:477. [PMID: 35008903 PMCID: PMC8745680 DOI: 10.3390/ijms23010477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Aluminum (Al) toxicity is the main factor limiting plant growth and the yield of cereal crops in acidic soils. Al-induced oxidative stress could lead to the excessive accumulation of reactive oxygen species (ROS) and aldehydes in plants. Aldehyde dehydrogenase (ALDH) genes, which play an important role in detoxification of aldehydes when exposed to abiotic stress, have been identified in most species. However, little is known about the function of this gene family in the response to Al stress. Here, we identified an ALDH gene in maize, ZmALDH, involved in protection against Al-induced oxidative stress. Al stress up-regulated ZmALDH expression in both the roots and leaves. The expression of ZmALDH only responded to Al toxicity but not to other stresses including low pH and other metals. The heterologous overexpression of ZmALDH in Arabidopsis increased Al tolerance by promoting the ascorbate-glutathione cycle, increasing the transcript levels of antioxidant enzyme genes as well as the activities of their products, reducing MDA, and increasing free proline synthesis. The overexpression of ZmALDH also reduced Al accumulation in roots. Taken together, these findings suggest that ZmALDH participates in Al-induced oxidative stress and Al accumulation in roots, conferring Al tolerance in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Han-Mei Du
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China
| | - Chan Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| | - Xin-Wu Jin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| | - Cheng-Feng Du
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| | - Yan Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| | - Shuai Luo
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| | - Wen-Zhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Su-Zhi Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| |
Collapse
|
11
|
Tian XY, He DD, Bai S, Zeng WZ, Wang Z, Wang M, Wu LQ, Chen ZC. Physiological and molecular advances in magnesium nutrition of plants. PLANT AND SOIL 2021; 468:1-17. [PMID: 0 DOI: 10.1007/s11104-021-05139-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/25/2021] [Indexed: 05/27/2023]
|
12
|
Du H, Hu X, Yang W, Hu W, Yan W, Li Y, He W, Cao M, Zhang X, Luo B, Gao S, Zhang S. ZmXTH, a xyloglucan endotransglucosylase/hydrolase gene of maize, conferred aluminum tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153520. [PMID: 34536904 DOI: 10.1016/j.jplph.2021.153520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Aluminum (Al) toxicity is one of the primary factors limiting crop production in acid soils worldwide. The cell wall is the major target of Al toxicity owing to the presence of many Al binding sites. Previous studies have found that XTH, encoding xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET), could participate in cell wall extension and affect the binding ability of the cell wall to Al by impeding the activities of these two enzymes. In this study, we found that ZmXTH, an XTH gene in maize, was involved in Al detoxification. The Al-induced up-regulation of ZmXTH occurred in the roots, prominently in the root tips. Additionally, the expression of ZmXTH was specifically induced by Al3+ but no other divalent or trivalent cations. Compared with the wild-type Arabidopsis, ZmXTH overexpressing plants grew more healthy and had decreased Al content in their root and root cell wall after Al stress. Overall, the results suggest that ZmXTH could confer the Al tolerance of transgenic Arabidopsis plants by reducing the Al accumulation in their roots and cell walls.
Collapse
Affiliation(s)
- Hanmei Du
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoqi Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wanpeng Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weina Yan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yushan Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenzhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Moju Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bowen Luo
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suzhi Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
13
|
Singhal T, Satyavathi CT, Singh SP, Kumar A, Sankar SM, Bhardwaj C, Mallik M, Bhat J, Anuradha N, Singh N. Multi-Environment Quantitative Trait Loci Mapping for Grain Iron and Zinc Content Using Bi-parental Recombinant Inbred Line Mapping Population in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:659789. [PMID: 34093617 PMCID: PMC8169987 DOI: 10.3389/fpls.2021.659789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 05/24/2023]
Abstract
Pearl millet is a climate-resilient, nutritious crop with low input requirements that could provide economic returns in marginal agro-ecologies. In this study, we report quantitative trait loci (QTLs) for iron (Fe) and zinc (Zn) content from three distinct production environments. We generated a genetic linkage map using 210 F6 recombinant inbred line (RIL) population derived from the (PPMI 683 × PPMI 627) cross using genome-wide simple sequence repeats (SSRs). The molecular linkage map (seven linkage groups) of 151 loci was 3,273.1 cM length (Kosambi). The content of grain Fe in the RIL population ranged between 36 and 114 mg/Kg, and that of Zn from 20 to 106 mg/Kg across the 3 years (2014-2016) at over the three locations (Delhi, Dharwad, and Jodhpur). QTL analysis revealed a total of 22 QTLs for grain Fe and Zn, of which 14 were for Fe and eight were for Zn on three consecutive years at all locations. The observed phenotypic variance (R 2) explained by different QTLs for grain Fe and Zn content ranged from 2.85 (QGFe.E3.2014-2016_Q3) to 19.66% (QGFe.E1.2014-2016_Q3) and from 2.93 (QGZn.E3.2014-2016_Q3) to 25. 95% (QGZn.E1.2014-2016_Q1), respectively. Two constitutive expressing QTLs for both Fe and Zn co-mapped in this population, one on LG 2 and second one on LG 3. Inside the QTLs candidate genes such as Ferritin gene, Al3+ Transporter, K+ Transporters, Zn2+ transporters and Mg2+ transporters were identified using bioinformatics approaches. The identified QTLs and candidate genes could be useful in pearl millet population improvement programs, seed, restorer parents, and marker-assisted selection programs.
Collapse
Affiliation(s)
- Tripti Singhal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - C. Tara Satyavathi
- ICAR-All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - S. P. Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | | - C. Bhardwaj
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - M. Mallik
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jayant Bhat
- Regional Research Centre, ICAR-Indian Agricultural Research Institute, Dharwad, India
| | - N. Anuradha
- Acharya N. G. Ranga Agricultural University, Vizianagaram, India
| | - Nirupma Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
14
|
Faraji S, Ahmadizadeh M, Heidari P. Genome-wide comparative analysis of Mg transporter gene family between Triticum turgidum and Camelina sativa. Biometals 2021; 34:639-660. [PMID: 33783656 DOI: 10.1007/s10534-021-00301-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
Magnesium (Mg) as a bimetal plays critical roles in biochemical processes, membrane stability, and enzyme activity. Mg transporters (MGTs) are involving in maintaining Mg homeostasis in cells. Although the MGT family members have been identified in different plant species, there is no comprehensive analysis of the other plants' MGT genes. In the current study, 62 and 41 non-redundant putative MGT proteins were recognized into the genome of Camelina sativa, and Triticum turgidum and they were compared based on physicochemical properties, protein structure, expression, and interaction. All identified MGTs were classified into three subgroups, NIPA, CorA, and MRS2/MGT, based on conserved-motifs distribution. The results showed that the secondary structure pattern in NIPA and MRS2 subfamily members in both studied plant species were highly similar. Furthermore, MGTs encompass the conserved structures and the critical sites mainly in the metal ion and Mg2+ binding centers as well as the catalytic sites were observed. The highest numbers of protein channels were predicted in CorA proteins in both C. sativa and T. turgidum with 24 and 17 channel numbers, respectively. The Ser, Pro, Gly, Lys, Tyr, and Arg amino acids were predicted as the binding residues in MGTs channel regions. The expression pattern of identified genes demonstrated that MGT genes have diverse tissue-specific expression and stress response expression patterns. Besides, 147 co-expressed genes with MGTs were clustered into the eight co-expression nodes involved in N-glycan biosynthesis, protein processing in the endoplasmic reticulum, carbon metabolism, biosynthesis of amino acids, and endocytosis. In the present study, all interpretations are based on in silico predictions, which can be used in further studies related to functional genomics of MGT genes.
Collapse
Affiliation(s)
- Sahar Faraji
- Department of Plant Breeding, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University (SANRU), 4818168984, Sari, Iran
| | | | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, 3619995161, Shahrood, Iran.
| |
Collapse
|
15
|
de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. THE NEW PHYTOLOGIST 2021; 229:2446-2469. [PMID: 33175410 DOI: 10.1111/nph.17074] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 05/22/2023]
Abstract
The visual deficiency symptoms developing on plants constitute the ultimate manifestation of suboptimal nutrient supply. In classical plant nutrition, these symptoms have been extensively used as a tool to characterise the nutritional status of plants and to optimise fertilisation. Here we expand this concept by bridging the typical deficiency symptoms for each of the six essential macronutrients to their molecular and physiological functionalities in higher plants. We focus on the most recent insights obtained during the last decade, which now allow us to better understand the links between symptom and function for each element. A deep understanding of the mechanisms underlying the visual deficiency symptoms enables us to thoroughly understand how plants react to nutrient limitations and how these disturbances may affect the productivity and biodiversity of terrestrial ecosystems. A proper interpretation of visual deficiency symptoms will support the potential for sustainable crop intensification through the development of new technologies that facilitate automatised management practices based on imaging technologies, remote sensing and in-field sensors, thereby providing the basis for timely application of nutrients via smart and more efficient fertilisation.
Collapse
Affiliation(s)
- Thomas Christian de Bang
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Kristian Holst Laursen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| |
Collapse
|
16
|
Identification and functional analysis of the CorA/MGT/MRS2-type magnesium transporter in banana. PLoS One 2020; 15:e0239058. [PMID: 33001980 PMCID: PMC7529347 DOI: 10.1371/journal.pone.0239058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/28/2020] [Indexed: 01/20/2023] Open
Abstract
Magnesium (Mg) plays an irreplaceable role in plant growth and development. Mg
transporters, especially CorA/MGT/MRS2 family proteins, played a vital role in
regulating Mg content in plant cells. Although extensive work has been conducted
in model crops, such as Arabidopsis, rice, and maize, the relevant information
is scarce in tropical crops. In this study, 10 MaMRS2 genes in
banana (Musa acuminata) were isolated from its genome and
classified into five distinct clades. The putative physiochemical properties,
chromosome location, gene structure, cis-acting elements, and duplication
relationships in between these members were analyzed. Complementary experiments
revealed that three MaMRS2 gene members
(MaMRS2-1, MaMRS2-4,
MaMRS2-7), from three distinct phylogenetic branches, were
capable of restoring the function of Mg transport in Salmonella
typhimurium mutants. Semi-quantitative RT-PCR showed that
MaMRS2 genes were differentially expressed in banana
cultivar ‘Baxijiao’ (Musa spp. AAA Cavendish)
seedlings. The result was confirmed by real-time PCR analysis, in addition to
tissue specific expression, expression differences among MaMRS2
members were also observed under Mg deficiency conditions. These results showed
that Mg transporters may play a versatile role in banana growth and development,
and our work will shed light on the functional analysis of Mg transporters in
banana.
Collapse
|
17
|
Wang Y, Deng C, Cota-Ruiz K, Peralta-Videa JR, Sun Y, Rawat S, Tan W, Reyes A, Hernandez-Viezcas JA, Niu G, Li C, Gardea-Torresdey JL. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138387. [PMID: 32298898 DOI: 10.1016/j.scitotenv.2020.138387] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/04/2023]
Abstract
With the exponential growth of nanomaterial production in the last years, nano copper (Cu)-based compounds are gaining more consideration in agriculture since they can work as pesticides or fertilizers. Chinese scallions (Allium fistulosum), which are characterized by their high content of the antioxidant allicin, were the chosen plants for this study. Spectroscopic and microscopic techniques were used to evaluate the nutrient element, allicin content, and enzyme antioxidant properties of scallion plants. Plants were harvested after growing for 80 days at greenhouse conditions in soil amended with CuO particles [nano (nCuO) and bulk (bCuO)] and CuSO4 at 75-600 mg/kg]. Two-photon microscopy images demonstrated the particulate Cu uptake in nCuO and bCuO treated roots. In plants exposed to 150 mg/kg of the Cu-based compounds, root Cu content was higher in plants treated with nCuO compared with bCuO, CuSO4, and control (p ≤ 0.05). At 150 mg/kg, nCuO increased root Ca (86%), root Fe (71%), bulb Ca (74%), and bulb Mg (108%) content, compared with control (p ≤ 0.05). At the same concentration, bCuO reduced root Ca (67%) and root Mg (33%), compared with control (p ≤ 0.05). At all concentrations, nCuO and CuSO4 increased leaf allicin (56-187% and 42-90%, respectively), compared with control (p ≤ 0.05). The antioxidant enzymes were differentially affected by the Cu-based treatments. Overall, the data showed that nCuO enhances nutrient and allicin contents in scallion, which suggests they might be used as a nanofertilizer for onion production.
Collapse
Affiliation(s)
- Yi Wang
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Chaoyi Deng
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Keni Cota-Ruiz
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Jose R Peralta-Videa
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Youping Sun
- Texas A&M Agrilife Research and Extension Centre at Dallas, 17360 Coit Road, TX 75252, USA
| | - Swati Rawat
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Wenjuan Tan
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Andres Reyes
- Department of Physics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jose A Hernandez-Viezcas
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Genhua Niu
- Texas A&M Agrilife Research and Extension Centre at Dallas, 17360 Coit Road, TX 75252, USA
| | - Chunqiang Li
- Department of Physics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jorge L Gardea-Torresdey
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA.
| |
Collapse
|
18
|
Ogura T, Kobayashi NI, Hermans C, Ichihashi Y, Shibata A, Shirasu K, Aoki N, Sugita R, Ogawa T, Suzuki H, Iwata R, Nakanishi TM, Tanoi K. Short-Term Magnesium Deficiency Triggers Nutrient Retranslocation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:563. [PMID: 32582226 PMCID: PMC7287120 DOI: 10.3389/fpls.2020.00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/15/2020] [Indexed: 05/03/2023]
Abstract
Magnesium (Mg) is essential for many biological processes in plant cells, and its deficiency causes yield reduction in crop systems. Low Mg status reportedly affects photosynthesis, sucrose partitioning and biomass allocation. However, earlier physiological responses to Mg deficiency are scarcely described. Here, we report that Mg deficiency in Arabidopsis thaliana first modified the mineral profile in mature leaves within 1 or 2 days, then affected sucrose partitioning after 4 days, and net photosynthesis and biomass production after 6 days. The short-term Mg deficiency reduced the contents of phosphorus (P), potassium, manganese, zinc and molybdenum in mature but not in expanding (young) leaves. While P content decreased in mature leaves, P transport from roots to mature leaves was not affected, indicating that Mg deficiency triggered retranslocation of the mineral nutrients from mature leaves. A global transcriptome analysis revealed that Mg deficiency triggered the expression of genes involved in defence response in young leaves.
Collapse
Affiliation(s)
- Takaaki Ogura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsuko I. Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory, Interfacultary School of Bioengineers, Université libre de Bruxelles, Brussels, Belgium
| | | | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Naohiro Aoki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Sugita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Ogawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisashi Suzuki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Tomoko M. Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Hoshi University, Tokyo, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
19
|
Li Q, Jin C, Wang G, Ji J, Guan C, Li X. Enhancement of endogenous SA accumulation improves poor-nutrition stress tolerance in transgenic tobacco plants overexpressing a SA-binding protein gene. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110384. [PMID: 32005389 DOI: 10.1016/j.plantsci.2019.110384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 05/12/2023]
Abstract
Salicylic acid (SA) plays an important role in the response of plants to abiotic stresses. Starvation stress affects plant cell metabolic activities, which further limits the normal growth and development of plants. It was reported that SA might play a regulatory role in the process of plant against starvation stress, but the mechanism involved in this process is still unclear. Thus, in this study, the transgenic plants overexpressing a SA binding protein 2 (SABP2) gene were exposed to starvation stress and the transgenic lines showed starvation-tolerant phenotype. Compared with wild-type (WT) plants, transgenic plants showed better growth status under poor-nutrition stress. Transgenic plants also showed more vigorous roots than WT plants. Physiological tests indicated that the transgenic plants showed higher relative water content (RWC), chlorophyll content, photosynthetic capacity, endogenous SA content, and lower ROS level compared to WT plants. Transcriptome analysis of tobacco plants identified 3, 748 differentially expressed genes (DEGs) between transgenic and WT plants under starvation stress. These DEGs are mainly involved in glycolysis/gluconeogenesis pathway group, MAPK signaling pathway group and plant hormone signal transduction pathway group. As determined by qPCR, up-regulated expression of fifteen genes such as abscisic acid receptor PYR1-like gene (NtPYR1-like), bidirectional sugar transporter N3-like gene (NtSWEETN3-like) and superoxide dismutase [Fe] chloroplastic-like gene (NtFeSOD-like), etc., was observed in transgenic plants under poor-nutrition stress which was in accordance with RNA-sequencing results. The modified pathways involved in plant hormone signaling are thought to be at least one of the main causes of the increased starvation tolerance of transgenic tobacco plants with altered SA homeostasis.
Collapse
Affiliation(s)
- Qian Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chao Jin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Xiaozhou Li
- Tianjin Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300070, China.
| |
Collapse
|
20
|
Genome-wide analysis of magnesium transporter genes in Solanum lycopersicum. Comput Biol Chem 2019; 80:498-511. [DOI: 10.1016/j.compbiolchem.2019.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 11/18/2022]
|
21
|
Wang Y, Hua X, Xu J, Chen Z, Fan T, Zeng Z, Wang H, Hour AL, Yu Q, Ming R, Zhang J. Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum. BMC Genomics 2019; 20:83. [PMID: 30678642 PMCID: PMC6345045 DOI: 10.1186/s12864-019-5437-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Sugarcane served as the model plant for discovery of the C4 photosynthetic pathway. Magnesium is the central atom of chlorophyll, and thus is considered as a critical nutrient for plant development and photosynthesis. In plants, the magnesium transporter (MGT) family is composed of a number of membrane proteins, which play crucial roles in maintaining Mg homeostasis. However, to date there is no information available on the genomics of MGTs in sugarcane due to the complexity of the Saccharum genome. Results Here, we identified 10 MGTs from the Saccharum spontaneum genome. Phylogenetic analysis of MGTs suggested that the MGTs contained at least 5 last common ancestors before the origin of angiosperms. Gene structure analysis suggested that MGTs family of dicotyledon may be accompanied by intron loss and pseudoexon phenomena during evolution. The pairwise synonymous substitution rates corresponding to a divergence time ranged from 142.3 to 236.6 Mya, demonstrating that the MGTs are an ancient gene family in plants. Both the phylogeny and Ks analyses indicated that SsMGT1/SsMGT2 originated from the recent ρWGD, and SsMGT7/SsMGT8 originated from the recent σ WGD. These 4 recently duplicated genes were shown low expression levels and assumed to be functionally redundant. MGT6, MGT9 and MGT10 weredominant genes in the MGT family and werepredicted to be located inthe chloroplast. Of the 3 dominant MGTs, SsMGT6 expression levels were found to be induced in the light period, while SsMGT9 and SsMTG10 displayed high expression levels in the dark period. These results suggested that SsMGT6 may have a function complementary to SsMGT9 and SsMTG10 that follows thecircadian clock for MGT in the leaf tissues of S. spontaneum. MGT3, MGT7 and MGT10 had higher expression levels Insaccharum officinarum than in S. spontaneum, suggesting their functional divergence after the split of S. spontaneum and S. officinarum. Conclusions This study of gene evolution and expression of MGTs in S. spontaneum provided basis for the comprehensive genomic study of the entire MGT genes family in Saccharum. The results are valuable for further functional analyses of MGT genes and utilization of the MGTs for Saccharum genetic improvement. Electronic supplementary material The online version of this article (10.1186/s12864-019-5437-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongjun Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
| | - Xiuting Hua
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
| | - Jingsheng Xu
- Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
| | - Zhichang Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Tianqu Fan
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaohui Zeng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hengbo Wang
- Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
| | - Ai-Ling Hour
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., Taibei, 242, Taiwan
| | - Qingyi Yu
- Texas A&M AgriLife Research, Department of Plant Pathology and Microbiology, Texas A&M University System, Dallas, TX, 75252, USA
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|