1
|
Abdel-Hady GN, Hino T, Murakami H, Miwa A, Thi Thuy Cao L, Kuroki T, Nimura-Matsune K, Ikeda T, Ishida T, Funabashi H, Watanabe S, Kuroda A, Hirota R. Laboratory evolution and characterization of nitrate-resistant phosphite dehydrogenase (PtxD) for enhanced cyanobacterial cultivation. J Biotechnol 2025; 402:59-68. [PMID: 40086668 DOI: 10.1016/j.jbiotec.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Phosphite dehydrogenase (PtxD) catalyzes NAD+-dependent oxidation of phosphite (Pt) to phosphate (Pi), offering various biotechnological applications, such as the creation of Pt-dependency for the biological containment of genetically modified organisms. Previously, we established a Pt-dependent cyanobacterial strain (RH714) by expressing PtxD and a reduced phosphorous compound-specific transporter (HtxBCDE) in Synechococcus elongatus PCC 7942 devoid of its endogenous Pi transporters. This strain demonstrated strict Pt dependency but failed to grow in unbuffered BG-11 medium supplemented with 2 % CO2 owing to medium acidification below approximately pH 6.5. The present study aimed to overcome this limitation by passaging the RH714 strain in an unbuffered growth medium, resulting in mutants capable of growing without buffering. The mutant strains carried a Gly157Ser mutation in the Rossmann fold domain of PtxD, leading to approximately five- and eight-fold higher Km values for NAD+ and Pt, respectively, compared with the wild-type enzyme. Interestingly, PtxDG157S exhibited enhanced resistance to nitrate, a major component of BG-11, suggesting that reduced substrate affinity mitigates nitrate inhibition at lower pH levels. Further kinetic analysis revealed that nitrate inhibits wild-type PtxD through an uncompetitive mechanism, targeting the enzyme-substrate complex at an allosteric site. Consequently, the PtxDG157S mutation reduces nitrate binding, facilitating sustained growth of Pt-dependent strains under conditions without pH buffering. These findings imply that PtxDG157S could significantly enhance the applicability of Pt-dependent cyanobacterial strain.
Collapse
Affiliation(s)
- Gamal Nasser Abdel-Hady
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Tomohito Hino
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hiroki Murakami
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Akari Miwa
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Linh Thi Thuy Cao
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomomi Kuroki
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | | | - Takeshi Ikeda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takenori Ishida
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hisakage Funabashi
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Japan
| | - Ryuichi Hirota
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Japan.
| |
Collapse
|
2
|
Li Z, Kong X, Zhang Z, Tang F, Wang M, Zhao Y, Shi F. The functional mechanisms of phosphite and its applications in crop plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1538596. [PMID: 40260435 PMCID: PMC12009805 DOI: 10.3389/fpls.2025.1538596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/05/2025] [Indexed: 04/23/2025]
Abstract
Phosphite (Phi), the reduced form of phosphate (Pi), is characterized by its stability, high solubility, efficient transport, resistance to fixation in soil, and widespread occurrence in natural environments. Although Phi exhibits greater suitability than Pi as a soil fertilizer, it cannot be metabolized by plants. In agricultural applications, Phi serves as a bio-stimulant, fungicide, herbicide, and has other purposes. As a bio-stimulant, Phi has been shown to promote plant growth, enhance stress resistance, and improve fruit quality. Additionally, when used as a fungicide or pesticide, it effectively inhibits the growth of phytopathogens in various crop species. The discovery of the phosphite dehydrogenase (ptxD) gene in microorganisms has significantly expanded the potential applications of Phi, including its use as a herbicide, phosphatic fertilizer, and a selectable chemical for generating marker-free transgenic plants. Therefore, the dual fertilization and weed control system of ptxD/Phi facilitates the utilization of Phi as the sole phosphorus source while concurrently suppressing the evolution of herbicide-resistant weeds in the future. Notably, ptxD also acts as an ideal selectable marker because its resistant is specific to Phi, thereby eliminating the risk of false positive clones. The application of Phi provides a promising strategy for addressing phosphorus resource shortages and improving the efficiency of phosphatic fertilizers in agriculture. Furthermore, Phi is considered an environmentally friendly fertilizer, as it contributes to the mitigation of eutrophication. In prospect, Phi is anticipated to play a significant role as a chemical fertilizer that promotes the sustainable development of agriculture. In this review, we provide a comprehensive analysis of the functional mechanisms of Phi and its current applications in agriculture, with the aim of offering deeper insights into its potential benefits and practical utility.
Collapse
Affiliation(s)
- Zhenyi Li
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiangjiu Kong
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiqiang Zhang
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingjiu Wang
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
- National Center of Pratacultural Technology Innovation (under preparation), Hohhot, China
| | - Yan Zhao
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
3
|
Zamani K, Mohsenpour M, Malboobi MA. Predicting the allergenic risk of Phosphite-NAD +-Oxidoreductase and purple acid phosphatase 17 proteins in genetically modified canola using bioinformatic approaches. Food Chem Toxicol 2023; 182:114094. [PMID: 37925014 DOI: 10.1016/j.fct.2023.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
Recent advancements in the generation of high-throughput multi-omics data have provided a vast array of candidate genes for the genetic engineering of plants. However, as part of their safety assessment, newly expressed proteins in genetically modified crops must be evaluated for potential cross-reactivity with known allergens. In this study, we developed transgenic canola plants expressing the Arabidopsis thaliana PAP17 gene and a novel selectable marker composed of the ptxD gene from Pseudomonas stutzeri. To evaluate the potential allergenic cross-reactivity of the AtPAP17 and PTXD proteins expressed in transgenic canola, we applied a comprehensive approach utilizing sequence-based, motif-based, and 3D structure-based analyses. Our results demonstrate that the risk of conferring cross-reactivity with known allergens is negligible, indicating that the expression of these proteins in transgenic canola poses a low allergenic risk.
Collapse
Affiliation(s)
- Katayoun Zamani
- Department of Genetic Engineering and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31359-33151, Karaj, Iran.
| | - Motahhareh Mohsenpour
- Department of Genetic Engineering and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31359-33151, Karaj, Iran
| | - Mohammad Ali Malboobi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran, Iran
| |
Collapse
|
4
|
Leaching Potential of Phosphite Fertilizer in Sandy Soils of the Southern Coastal Plain, USA. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Novel biotechnology on transgenic plants capable of metabolizing phosphite (Phi), a reduced form of P, could improve the effectiveness of P fertilizers and reduce the P footprint in agriculture with the benefit of suppressing weed growth. However, potassium Phi (K-Phi) salts used as fertilizer are highly soluble in water. At the same time, sandy soils of the Southern Coastal Plain are vulnerable to leaching losses resulting from long-term Pi fertilizer application. We performed a replicated leaching trial using five soil materials that included three surface and two subsurface layers from cultivated topsoil (Ap horizon) with contrasting Phi and Pi sorption capacities. Each soil received three treatments K-Phi at rates 0 (control), 24, and 49 kg P ha−1 and leached twice with de-ionized water. All K-Phi-treated soils leached Phi except for the controls. A phosphorus saturation ratio (PSR) calculated from P, Al, and Fe in acid extracts indicated increasing environmental risk of Phi leaching in soils with lower Phi and Pi sorption capacities at rising rates of applied K-Phi. Because plants rapidly absorb Phi, further studies on the environmental impact of K-Phi fertilizer use should include the interaction of plants with soil properties and soil microbial activity at optimal Phi application rates for growing transgenic plants able to use Phi as a nutrient source.
Collapse
|
5
|
Yuan H, Wang Y, Liu Y, Zhang M, Zou Z. A novel dominant selection system for plant transgenics based on phosphite metabolism catalyzed by bacterial alkaline phosphatase. PLoS One 2021; 16:e0259600. [PMID: 34735551 PMCID: PMC8568168 DOI: 10.1371/journal.pone.0259600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Selective markers are generally indispensable in plant genetic transformation, of which the frequently used are of antibiotic or herbicide resistance. However, the increasing concerns on transgenic biosafety have encouraged many new and safe selective markers emerging, with an eminent representative as phosphite (Phi) in combination to its dehydrogenase (PTDH, e.g. PtxD). As bacterial alkaline phosphatase (BAP) can resemble PtxD to oxidatively convert toxic Phi into metabolizable phosphate (Pi), herein we harnessed it as the substitute of PtxD to develop an alternative Phi-based selection system. We first validated the Escherichia coli BAP (EcBAP) did own an extra enzymatic activity of oxidizing Phi to Pi. We further revealed EcBAP could be used as a dominant selective marker for Agrobacterium-mediated tobacco transformation. Although the involved Phi selection for transformed tobacco cells surprisingly required the presence of Pi, it showed a considerable transformation efficiency and dramatically accelerated transformation procedure, as compared to the routine kanamycin selection and the well-known PtxD/Phi system. Moreover, the EcBAP transgenic tobaccos could metabolize toxic Phi as a phosphorus (P) fertilizer thus underlying Phi-resistance, and competitively possess a dominant growth over wild-type tobacco and weeds under Phi stress. Therefore, this novel BAP/Phi-coupled system, integrating multiple advantages covering biosafe dominant selective marker, plant P utilization and weed management, can provide a PTDH-bypass technological choice to engineer transgenic plant species, especially those of great importance for sustainable agriculture.
Collapse
Affiliation(s)
- Hang Yuan
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Yuxian Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Yanjuan Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Mengru Zhang
- NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Zhurong Zou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Dormatey R, Sun C, Ali K, Fiaz S, Xu D, Calderón-Urrea A, Bi Z, Zhang J, Bai J. ptxD/Phi as alternative selectable marker system for genetic transformation for bio-safety concerns: a review. PeerJ 2021; 9:e11809. [PMID: 34395075 PMCID: PMC8323600 DOI: 10.7717/peerj.11809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotic and herbicide resistance genes are the most common marker genes for plant transformation to improve crop yield and food quality. However, there is public concern about the use of resistance marker genes in food crops due to the risk of potential gene flow from transgenic plants to compatible weedy relatives, leading to the possible development of “superweeds” and antibiotic resistance. Several selectable marker genes such as aph, nptII, aaC3, aadA, pat, bar, epsp and gat, which have been synthesized to generate transgenic plants by genetic transformation, have shown some limitations. These marker genes, which confer antibiotic or herbicide resistance and are introduced into crops along with economically valuable genes, have three main problems: selective agents have negative effects on plant cell proliferation and differentiation, uncertainty about the environmental effects of many selectable marker genes, and difficulty in performing recurrent transformations with the same selectable marker to pyramid desired genes. Recently, a simple, novel, and affordable method was presented for plant cells to convert non-metabolizable phosphite (Phi) to an important phosphate (Pi) for developing cells by gene expression encoding a phosphite oxidoreductase (PTXD) enzyme. The ptxD gene, in combination with a selection medium containing Phi as the sole phosphorus (P) source, can serve as an effective and efficient system for selecting transformed cells. The selection system adds nutrients to transgenic plants without potential risks to the environment. The ptxD/Phi system has been shown to be a promising transgenic selection system with several advantages in cost and safety compared to other antibiotic-based selection systems. In this review, we have summarized the development of selection markers for genetic transformation and the potential use of the ptxD/Phi scheme as an alternative selection marker system to minimize the future use of antibiotic and herbicide marker genes.
Collapse
Affiliation(s)
- Richard Dormatey
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Kazim Ali
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China.,National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Derong Xu
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Alejandro Calderón-Urrea
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA, USA
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Junlian Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| |
Collapse
|
7
|
Dann E, McLeod A. Phosphonic acid: a long-standing and versatile crop protectant. PEST MANAGEMENT SCIENCE 2021; 77:2197-2208. [PMID: 33099862 DOI: 10.1002/ps.6156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Phosphonic acid-based fungicides, also referred to as phosphonates, have been used extensively as crop protectants in horticulture since the late 1970s, and more recently in native ecosystems and forestry. Discovering that phosphonates are effective against foliar and soilborne oomycete diseases, such as those caused by species of Phytophthora, Pythium and Plasmopara, was a significant breakthrough, especially for soilborne pathogens that are notoriously difficult to manage. Phosphonates have played an important role in protection of forests and sensitive natural ecosystems, under threat from these pathogens. Since introduction, their increased application in management of non-oomycete diseases, along with other functionalities, demonstrates their versatility in agriculture and more broadly. Continued use of phosphonic acid crop protectants will be underpinned by demonstrated efficacy and safety, and a better understanding of specific interactions within the plant, pathogen and environment. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elizabeth Dann
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Adéle McLeod
- Department of Plant Pathology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Nie H, Wang Y, Wei C, Grover CE, Su Y, Wendel JF, Hua J. Embryogenic Calli Induction and Salt Stress Response Revealed by RNA-Seq in Diploid Wild Species Gossypium sturtianum and Gossypium raimondii. FRONTIERS IN PLANT SCIENCE 2021; 12:715041. [PMID: 34512696 PMCID: PMC8424188 DOI: 10.3389/fpls.2021.715041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 05/06/2023]
Abstract
Wild cotton species can contribute to a valuable gene pool for genetic improvement, such as genes related to salt tolerance. However, reproductive isolation of different species poses an obstacle to produce hybrids through conventional breeding. Protoplast fusion technology for somatic cell hybridization provides an opportunity for genetic manipulation and targeting of agronomic traits. Transcriptome sequencing analysis of callus under salt stress is conducive to study salt tolerance genes. In this study, calli were induced to provide materials for extracting protoplasts and also for screening salt tolerance genes. Calli were successfully induced from leaves of Gossypium sturtianum (C1 genome) and hypocotyls of G. raimondii (D5 genome), and embryogenic calli of G. sturtianum and G. raimondii were induced on a differentiation medium with different concentrations of 2, 4-D, KT, and IBA, respectively. In addition, embryogenic calli were also induced successfully from G. raimondii through suspension cultivation. Transcriptome sequencing analysis was performed on the calli of G. raimondii and G. sturtianum, which were treated with 200 mM NaCl at 0, 6, 12, 24, and 48 h, and a total of 12,524 genes were detected with different expression patterns under salt stress. Functional analysis showed that 3,482 genes, which were differentially expressed in calli of G. raimondii and G. sturtianum, were associated with biological processes of nucleic acid binding, plant hormone (such as ABA) biosynthesis, and signal transduction. We demonstrated that DEGs or TFs which related to ABA metabolism were involved in the response to salt stress, including xanthoxin dehydrogenase genes (ABA2), sucrose non-fermenting 1-related protein kinases (SnRK2), NAM, ATAT1/2, and CUC2 transcription factors (NAC), and WRKY class of zinc-finger proteins (WRKY). This research has successfully induced calli from two diploid cotton species and revealed new genes responding to salt stress in callus tissue, which will lay the foundation for protoplast fusion for further understanding of salt stress responses in cotton.
Collapse
Affiliation(s)
- Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yali Wang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chengcheng Wei
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua
| |
Collapse
|
9
|
Changko S, Rajakumar PD, Young REB, Purton S. The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Appl Microbiol Biotechnol 2020; 104:675-686. [PMID: 31788712 PMCID: PMC6943410 DOI: 10.1007/s00253-019-10258-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Edible microalgae have potential as low-cost cell factories for the production and oral delivery of recombinant proteins such as vaccines, anti-bacterials and gut-active enzymes that are beneficial to farmed animals including livestock, poultry and fish. However, a major economic and technical problem associated with large-scale cultivation of microalgae, even in closed photobioreactors, is invasion by contaminating microorganisms. Avoiding this requires costly media sterilisation, aseptic techniques during set-up and implementation of 'crop-protection' strategies during cultivation. Here, we report a strain improvement approach in which the chloroplast of Chlamydomonas reinhardtii is engineered to allow oxidation of phosphite to its bio-available form: phosphate. We have designed a synthetic version of the bacterial gene (ptxD)-encoding phosphite oxidoreductase such that it is highly expressed in the chloroplast but has a Trp→Opal codon reassignment for bio-containment of the transgene. Under mixotrophic conditions, the growth rate of the engineered alga is unaffected when phosphate is replaced with phosphite in the medium. Furthermore, under non-sterile conditions, growth of contaminating microorganisms is severely impeded in phosphite medium. This, therefore, offers the possibility of producing algal biomass under non-sterile conditions. The ptxD gene can also serve as a dominant marker for genetic engineering of any C. reinhardtii strain, thereby avoiding the use of antibiotic resistance genes as markers and allowing the 'retro-fitting' of existing engineered strains. As a proof of concept, we demonstrate the application of our ptxD technology to a strain expressing a subunit vaccine targeting a major viral pathogen of farmed fish.
Collapse
Affiliation(s)
- Saowalak Changko
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Priscilla D Rajakumar
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Rosanna E B Young
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Phosphite binding by the HtxB periplasmic binding protein depends on the protonation state of the ligand. Sci Rep 2019; 9:10231. [PMID: 31308436 PMCID: PMC6629693 DOI: 10.1038/s41598-019-46557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023] Open
Abstract
Phosphorus acquisition is critical for life. In low phosphate conditions, some species of bacteria have evolved mechanisms to import reduced phosphorus compounds, such as phosphite and hypophosphite, as alternative phosphorus sources. Uptake is facilitated by high-affinity periplasmic binding proteins (PBPs) that bind cargo in the periplasm and shuttle it to an ATP-binding cassette (ABC)-transporter in the bacterial inner membrane. PtxB and HtxB are the PBPs responsible for binding phosphite and hypophosphite, respectively. They recognize the P-H bond of phosphite/hypophosphite via a conserved P-H...π interaction, which confers nanomolar dissociation constants for their respective ligands. PtxB also has a low-level binding affinity for phosphate and hypophosphite, whilst HtxB can facilitate phosphite uptake in vivo. However, HtxB does not bind phosphate, thus the HtxBCDE transporter has recently been successfully exploited for biocontainment of genetically modified organisms by phosphite-dependent growth. Here we use a combination of X-ray crystallography, NMR and Microscale Thermophoresis to show that phosphite binding to HtxB depends on the protonation state of the ligand, suggesting that pH may effect the efficiency of phosphite uptake by HtxB in biotechnology applications.
Collapse
|
11
|
Selão TT, Włodarczyk A, Nixon PJ, Norling B. Growth and selection of the cyanobacterium Synechococcus sp. PCC 7002 using alternative nitrogen and phosphorus sources. Metab Eng 2019; 54:255-263. [PMID: 31063791 DOI: 10.1016/j.ymben.2019.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Cyanobacteria, such as Synechococcus sp. PCC 7002 (Syn7002), are promising chassis strains for "green" biotechnological applications as they can be grown in seawater using oxygenic photosynthesis to fix carbon dioxide into biomass. Their other major nutritional requirements for efficient growth are sources of nitrogen (N) and phosphorus (P). As these organisms are more economically cultivated in outdoor open systems, there is a need to develop cost-effective approaches to prevent the growth of contaminating organisms, especially as the use of antibiotic selection markers is neither economically feasible nor ecologically desirable due to the risk of horizontal gene transfer. Here we have introduced a synthetic melamine degradation pathway into Syn7002 and evolved the resulting strain to efficiently use the nitrogen-rich xenobiotic compound melamine as the sole N source. We also show that expression of phosphite dehydrogenase in the absence of its cognate phosphite transporter permits growth of Syn7002 on phosphite and can be used as a selectable marker in Syn7002. We combined these two strategies to generate a strain that can grow on melamine and phosphite as sole N and P sources, respectively. This strain is able to resist deliberate contamination in large excess and should be a useful chassis for metabolic engineering and biotechnological applications using cyanobacteria.
Collapse
Affiliation(s)
| | - Artur Włodarczyk
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Peter J Nixon
- School of Biological Sciences, Nanyang Technological University, Singapore; Sir Ernst Chain Building- Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK
| | - Birgitta Norling
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
12
|
|
13
|
Selective fertilization with phosphite allows unhindered growth of cotton plants expressing the ptxD gene while suppressing weeds. Proc Natl Acad Sci U S A 2018; 115:E6946-E6955. [PMID: 29866830 PMCID: PMC6055188 DOI: 10.1073/pnas.1804862115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An increasing number of herbicide-resistant weeds are being reported in the United States, Argentina, and Brazil. This is becoming a global challenge for the production of several major crops, such as cotton, maize, and soybean. New strategies for weed control are required to sustain agricultural production while reducing our dependence on herbicides. Here, we report that selective fertilization of transgenic cotton, expressing a bacterial phosphite dehydrogenase (PTXD), with phosphite provides an effective way to suppress weed growth. Importantly, we show that the ptxD-transgenic cotton plants successfully outcompete a highly aggressive glyphosate-resistant weed. The ptxD/phosphite system represents one of the most promising technologies of recent times with potential to solve many of the agricultural and environmental problems that we encounter currently. Weeds, which have been the bane of agriculture since the beginning of civilization, are managed manually, mechanically, and, more recently, by chemicals. However, chemical control options are rapidly shrinking due to the recent rise in the number of herbicide-resistant weeds in crop fields, with few alternatives on the horizon. Therefore, there is an urgent need for alternative weed suppression systems to sustain crop productivity while reducing our dependence on herbicides and tillage. Such a development will also allay some of the negative perceptions associated with the use of herbicide-resistance genes and heavy dependence on herbicides. Transgenic plants expressing the bacterial phosphite dehydrogenase (ptxD) gene gain an ability to convert phosphite (Phi) into orthophosphate [Pi, the metabolizable form of phosphorus (P)]. Such plants allow for a selective fertilization scheme, based on Phi as the sole source of P for the crop, while offering an effective alternative for suppressing weed growth. Here, we show that, when P is supplied in the form of Phi, ptxD-expressing cotton (Gossypium hirsutum L.) plants outcompete, in both artificial substrates and natural soils from agricultural fields, three different monocot and dicot weed species intentionally introduced in the experiments, as well as weeds naturally present in the tested soils. Importantly, the ptxD/Phi system proved highly efficacious in inhibiting the growth of glyphosate-resistant Palmer amaranth. With over 250 weed species resistant to currently available herbicides, ptxD-transgenic plants fertilized with Phi could provide an effective alternative to suppressing the growth of these weeds while providing adequate nutrition to the crop.
Collapse
|