1
|
Qin K, Ye X, Luo S, Fernie AR, Zhang Y. Engineering carbon assimilation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:926-948. [PMID: 39783795 DOI: 10.1111/jipb.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/03/2024] [Indexed: 01/12/2025]
Abstract
Carbon assimilation is a crucial part of the photosynthetic process, wherein inorganic carbon, typically in the form of CO2, is converted into organic compounds by living organisms, including plants, algae, and a subset of bacteria. Although several carbon fixation pathways have been elucidated, the Calvin-Benson-Bassham (CBB) cycle remains fundamental to carbon metabolism, playing a pivotal role in the biosynthesis of starch and sucrose in plants, algae, and cyanobacteria. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the key carboxylase enzyme of the CBB cycle, exhibits low kinetic efficiency, low substrate specificity, and high temperature sensitivity, all of which have the potential to limit flux through this pathway. Consequently, RuBisCO needs to be present at very high concentrations, which is one of the factors contributing to its status as the most prevalent protein on Earth. Numerous attempts have been made to optimize the catalytic efficiency of RuBisCO and thereby promote plant growth. Furthermore, the limitations of this process highlight the potential benefits of engineering or discovering more efficient carbon fixation mechanisms, either by improving RuBisCO itself or by introducing alternative pathways. Here, we review advances in artificial carbon assimilation engineering, including the integration of synthetic biology, genetic engineering, metabolic pathway optimization, and artificial intelligence in order to create plants capable of performing more efficient photosynthesis. We additionally provide a perspective of current challenges and potential solutions alongside a personal opinion of the most promising future directions of this emerging field.
Collapse
Affiliation(s)
- Kezhen Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingyan Ye
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Luo
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, , Potsdam-Golm, 14476, Germany
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Kimata-Ariga Y, Tanaka H, Kuwano S. Amino acid residues responsible for the different pH dependency of cell-specific ferredoxins in the electron transfer reaction with ferredoxin-NADP+ reductase from maize leaves. J Biochem 2024; 176:237-244. [PMID: 38861409 DOI: 10.1093/jb/mvae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
In the chloroplast stroma, dynamic pH changes occur from acidic to alkaline in response to fluctuating light conditions. We investigated the pH dependency of the electron transfer reaction of ferredoxin-NADP+ reductase (FNR) with ferredoxin (Fd) isoproteins, Fd1 and Fd2, which are localized in mesophyll cells and bundle sheath cells, respectively, in the leaves of C4 plant maize. The pH-dependent profile of the electron transfer activity with FNR was quite different between Fd1 and Fd2, which was mainly explained by the opposite pH dependency of the Km value of these Fds for FNR. Replacement of the amino acid residue at position of 65 (D65N) and 78 (H78A) between the two Fds conferred different effect on their pH dependency of the Km value. Double mutations of the two residues between Fd1 and Fd2 (Fd1D65N/H78A and Fd2N65D/A78H) led to the mutual exchange of the pH dependency of the electron transfer activity. This exchange was mainly explained by the changes in the pH-dependent profile of the Km values. Therefore, the differences in Asp/Asn at position 65 and His/Ala at position 78 between Fd1 and Fd2 were shown to be the major determinants for their different pH dependency in the electron transfer reaction with FNR.
Collapse
Affiliation(s)
| | - Hikaru Tanaka
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shunsuke Kuwano
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
3
|
Nakanishi A, Yomogita M, Horimoto T. Evaluation of Cellular Responses by Chlamydomonas reinhardtii in Media Containing Dairy-Processing Residues Derived from Cheese as Nutrients by Analyzing Cell Growth Activity and Comprehensive Gene Transcription Levels. Microorganisms 2024; 12:715. [PMID: 38674659 PMCID: PMC11052199 DOI: 10.3390/microorganisms12040715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Utilities of whey powder (WP) and whey protein concentrate 34% powder (WPC34) prepared as dairy-processing residues were evaluated using a green alga Chlamydomonas reinhardtii. Analysis of C. reinhardtii growth showed that the strain used WP and WPC34 as nitrogen sources. Its specific growth rate and maximum cell density in WP-containing medium were higher than those in WPC34-containing medium; growth with WPC34 was improved by adding KCl or K2HPO4, which content was decreased as a result of WPC34's preparation from WP. Although the lipid contents in media containing dairy-processing residues were 2.72 ± 0.31 wt% and 2.62 ± 0.20 wt% with no significant difference, the composition ratio of fatty acid C14 with WPC34 was higher than that with WP and the composition ratio of the sum of fatty acid-C16 and -C18 with WPC34 tended to be lower than that with WP. Additionally, analyses of gene transcription showed that the transcription level of acetyl-CoA carboxylase biotin carboxyl carrier protein in WPC34-containing medium was lower than that in WP-containing medium, possibly affecting the ratios of the chain lengths of fatty acids. The transcription of genes involved in glycolysis and the TCA cycle was outstandingly lower in algae grown in WPC34-containing medium when compared to those cultivated in the presence of WP, resulting in differences in energy production for cell proliferation.
Collapse
Affiliation(s)
- Akihito Nakanishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | - Misaki Yomogita
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | | |
Collapse
|
4
|
Gurrieri L, Sparla F, Zaffagnini M, Trost P. Dark complexes of the Calvin-Benson cycle in a physiological perspective. Semin Cell Dev Biol 2024; 155:48-58. [PMID: 36889996 DOI: 10.1016/j.semcdb.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) are two enzymes of the Calvin Benson cycle that stand out for some peculiar properties they have in common: (i) they both use the products of light reactions for catalysis (NADPH for GAPDH, ATP for PRK), (ii) they are both light-regulated through thioredoxins and (iii) they are both involved in the formation of regulatory supramolecular complexes in the dark or low photosynthetic conditions, with or without the regulatory protein CP12. In the complexes, enzymes are transiently inactivated but ready to recover full activity after complex dissociation. Fully active GAPDH and PRK are in large excess for the functioning of the Calvin-Benson cycle, but they can limit the cycle upon complex formation. Complex dissociation contributes to photosynthetic induction. CP12 also controls PRK concentration in model photosynthetic organisms like Arabidopsis thaliana and Chlamydomonas reinhardtii. The review combines in vivo and in vitro data into an integrated physiological view of the role of GAPDH and PRK dark complexes in the regulation of photosynthesis.
Collapse
Affiliation(s)
- Libero Gurrieri
- University of Bologna, Department of Pharmacy and Biotechnology, Via Irnerio 42, 40126 Bologna, Italy.
| | - Francesca Sparla
- University of Bologna, Department of Pharmacy and Biotechnology, Via Irnerio 42, 40126 Bologna, Italy.
| | - Mirko Zaffagnini
- University of Bologna, Department of Pharmacy and Biotechnology, Via Irnerio 42, 40126 Bologna, Italy.
| | - Paolo Trost
- University of Bologna, Department of Pharmacy and Biotechnology, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
5
|
Chang H, Chen YT, Huang HE, Ger MJ. Overexpressing plant ferredoxin-like protein enhances photosynthetic efficiency and carbohydrates accumulation in Phalaenopsis. Transgenic Res 2023; 32:547-560. [PMID: 37851307 DOI: 10.1007/s11248-023-00370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Crassulacean acid metabolism (CAM) is one of three major models of carbon dioxide assimilation pathway with better water-use efficiency and slower photosynthetic efficiency in photosynthesis. Previous studies indicated that the gene of sweet pepper plant ferredoxin-like protein (PFLP) shows high homology to the ferredoxin-1(Fd-1) family that belongs to photosynthetic type Fd and involves in photosystem I. It is speculated that overexpressing pflp in the transgenic plant may enhance photosynthetic efficiency through the electron transport chain (ETC). To reveal the function of PFLP in photosynthetic efficiency, pflp transgenic Phalaenopsis, a CAM plant, was generated to analyze photosynthetic markers. Transgenic plants exhibited 1.2-folds of electron transport rate than that of wild type (WT), and higher CO2 assimilation rates up to 1.6 and 1.5-folds samples at 4 pm and 10 pm respectively. Enzyme activity of phosphoenolpyruvate carboxylase (PEPC) was increased to 5.9-folds in Phase III, and NAD+-linked malic enzyme (NAD+-ME) activity increased 1.4-folds in Phase IV in transgenic plants. The photosynthesis products were analyzed between transgenic plants and WT. Soluble sugars contents such as glucose, fructose, and sucrose were found to significantly increase to 1.2, 1.8, and 1.3-folds higher in transgenic plants. The starch grains were also accumulated up to 1.4-folds in transgenic plants than that of WT. These results indicated that overexpressing pflp in transgenic plants increases carbohydrates accumulation by enhancing electron transport flow during photosynthesis. This is the first evidence for the PFLP function in CAM plants. Taken altogether, we suggest that pflp is an applicable gene for agriculture application that enhances electron transport chain efficiency during photosynthesis.
Collapse
Affiliation(s)
- Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
6
|
Simkin AJ, Alqurashi M, Lopez-Calcagno PE, Headland LR, Raines CA. Glyceraldehyde-3-phosphate dehydrogenase subunits A and B are essential to maintain photosynthetic efficiency. PLANT PHYSIOLOGY 2023; 192:2989-3000. [PMID: 37099455 PMCID: PMC11025378 DOI: 10.1093/plphys/kiad256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
In plants, glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) reversibly converts 1,3-bisphosphoglycerate to glyceraldehyde-3-phosphate coupled with the reduction of NADPH to NADP+. The GAPDH enzyme that functions in the Calvin-Benson cycle is assembled either from 4 glyceraldehyde-3-phosphate dehydrogenase A (GAPA) subunit proteins forming a homotetramer (A4) or from 2 GAPA and 2 glyceraldehyde-3-phosphate dehydrogenase B (GAPB) subunit proteins forming a heterotetramer (A2B2). The relative importance of these 2 forms of GAPDH in determining the rate of photosynthesis is unknown. To address this question, we measured the photosynthetic rates of Arabidopsis (Arabidopsis thaliana) plants containing reduced amounts of the GAPDH A and B subunits individually and jointly, using T-DNA insertion lines of GAPA and GAPB and transgenic GAPA and GAPB plants with reduced levels of these proteins. Here, we show that decreasing the levels of either the A or B subunits decreased the maximum efficiency of CO2 fixation, plant growth, and final biomass. Finally, these data showed that the reduction in GAPA protein to 9% wild-type levels resulted in a 73% decrease in carbon assimilation rates. In contrast, eliminating GAPB protein resulted in a 40% reduction in assimilation rates. This work demonstrates that the GAPA homotetramer can compensate for the loss of GAPB, whereas GAPB alone cannot compensate fully for the loss of the GAPA subunit.
Collapse
Affiliation(s)
- Andrew J Simkin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Mohammed Alqurashi
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Patricia E Lopez-Calcagno
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Lauren R Headland
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Christine A Raines
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
7
|
Niu Z, Ye S, Liu J, Lyu M, Xue L, Li M, Lyu C, Zhao J, Shen B. Two apicoplast dwelling glycolytic enzymes provide key substrates for metabolic pathways in the apicoplast and are critical for Toxoplasma growth. PLoS Pathog 2022; 18:e1011009. [PMID: 36449552 PMCID: PMC9744290 DOI: 10.1371/journal.ppat.1011009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/12/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Many apicomplexan parasites harbor a non-photosynthetic plastid called the apicoplast, which hosts important metabolic pathways like the methylerythritol 4-phosphate (MEP) pathway that synthesizes isoprenoid precursors. Yet many details in apicoplast metabolism are not well understood. In this study, we examined the physiological roles of four glycolytic enzymes in the apicoplast of Toxoplasma gondii. Many glycolytic enzymes in T. gondii have two or more isoforms. Endogenous tagging each of these enzymes found that four of them were localized to the apicoplast, including pyruvate kinase2 (PYK2), phosphoglycerate kinase 2 (PGK2), triosephosphate isomerase 2 (TPI2) and phosphoglyceraldehyde dehydrogenase 2 (GAPDH2). The ATP generating enzymes PYK2 and PGK2 were thought to be the main energy source of the apicoplast. Surprisingly, deleting PYK2 and PGK2 individually or simultaneously did not cause major defects on parasite growth or virulence. In contrast, TPI2 and GAPDH2 are critical for tachyzoite proliferation. Conditional depletion of TPI2 caused significant reduction in the levels of MEP pathway intermediates and led to parasite growth arrest. Reconstitution of another isoprenoid precursor synthesis pathway called the mevalonate pathway in the TPI2 depletion mutant partially rescued its growth defects. Similarly, knocking down the GAPDH2 enzyme that produces NADPH also reduced isoprenoid precursor synthesis through the MEP pathway and inhibited parasite proliferation. In addition, it reduced de novo fatty acid synthesis in the apicoplast. Together, these data suggest a model that the apicoplast dwelling TPI2 provides carbon source for the synthesis of isoprenoid precursor, whereas GAPDH2 supplies reducing power for pathways like MEP, fatty acid synthesis and ferredoxin redox system in T. gondii. As such, both enzymes are critical for parasite growth and serve as potential targets for anti-toxoplasmic intervention designs. On the other hand, the dispensability of PYK2 and PGK2 suggest additional sources for energy in the apicoplast, which deserves further investigation.
Collapse
Affiliation(s)
- Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Shu Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Jiaojiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Mengyu Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Lilan Xue
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, PR China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, PR China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, PR China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, PR China
- * E-mail:
| |
Collapse
|
8
|
Marotta R, Del Giudice A, Gurrieri L, Fanti S, Swuec P, Galantini L, Falini G, Trost P, Fermani S, Sparla F. Unravelling the regulation pathway of photosynthetic AB-GAPDH. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:1399-1411. [DOI: 10.1107/s2059798322010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/13/2022] [Indexed: 03/08/2023]
Abstract
Oxygenic phototrophs perform carbon fixation through the Calvin–Benson cycle. Different mechanisms adjust the cycle and the light-harvesting reactions to rapid environmental changes. Photosynthetic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a key enzyme in the cycle. In land plants, different photosynthetic GAPDHs exist: the most abundant isoform is formed by A2B2 heterotetramers and the least abundant by A4 homotetramers. Regardless of the subunit composition, GAPDH is the major consumer of photosynthetic NADPH and its activity is strictly regulated. While A4-GAPDH is regulated by CP12, AB-GAPDH is autonomously regulated through the C-terminal extension (CTE) of its B subunits. Reversible inhibition of AB-GAPDH occurs via the oxidation of a cysteine pair located in the CTE and the substitution of NADP(H) with NAD(H) in the cofactor-binding site. These combined conditions lead to a change in the oligomerization state and enzyme inhibition. SEC–SAXS and single-particle cryo-EM analysis were applied to reveal the structural basis of this regulatory mechanism. Both approaches revealed that spinach (A2B2)
n
-GAPDH oligomers with n = 1, 2, 4 and 5 co-exist in a dynamic system. B subunits mediate the contacts between adjacent tetramers in A4B4 and A8B8 oligomers. The CTE of each B subunit penetrates into the active site of a B subunit of the adjacent tetramer, which in turn moves its CTE in the opposite direction, effectively preventing the binding of the substrate 1,3-bisphosphoglycerate in the B subunits. The whole mechanism is made possible, and eventually controlled, by pyridine nucleotides. In fact, NAD(H), by removing NADP(H) from A subunits, allows the entrance of the CTE into the active site of the B subunit, hence stabilizing inhibited oligomers.
Collapse
|
9
|
Mattioli EJ, Rossi J, Meloni M, De Mia M, Marchand CH, Tagliani A, Fanti S, Falini G, Trost P, Lemaire SD, Fermani S, Calvaresi M, Zaffagnini M. Structural snapshots of nitrosoglutathione binding and reactivity underlying S-nitrosylation of photosynthetic GAPDH. Redox Biol 2022; 54:102387. [PMID: 35793584 PMCID: PMC9287727 DOI: 10.1016/j.redox.2022.102387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 10/30/2022] Open
Abstract
S-nitrosylation is a redox post-translational modification widely recognized to play an important role in cellular signaling as it can modulate protein function and conformation. At the physiological level, nitrosoglutathione (GSNO) is considered the major physiological NO-releasing compound due to its ability to transfer the NO moiety to protein thiols but the structural determinants regulating its redox specificity are not fully elucidated. In this study, we employed photosynthetic glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii (CrGAPA) to investigate the molecular mechanisms underlying GSNO-dependent thiol oxidation. We first observed that GSNO causes reversible enzyme inhibition by inducing S-nitrosylation. While the cofactor NADP+ partially protects the enzyme from GSNO-mediated S-nitrosylation, protein inhibition is not observed in the presence of the substrate 1,3-bisphosphoglycerate, indicating that the S-nitrosylation of the catalytic Cys149 is responsible for CrGAPA inactivation. The crystal structures of CrGAPA in complex with NADP+ and NAD+ reveal a general structural similarity with other photosynthetic GAPDH. Starting from the 3D structure, we carried out molecular dynamics simulations to identify the protein residues involved in GSNO binding. The reaction mechanism of GSNO with CrGAPA Cys149 was investigated by quantum mechanical/molecular mechanical calculations, which permitted to disclose the relative contribution of protein residues in modulating the activation barrier of the trans-nitrosylation reaction. Based on our findings, we provide functional and structural insights into the response of CrGAPA to GSNO-dependent regulation, possibly expanding the mechanistic features to other protein cysteines susceptible to be oxidatively modified by GSNO.
Collapse
Affiliation(s)
- Edoardo Jun Mattioli
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy
| | - Maria Meloni
- Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy
| | - Marcello De Mia
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, UMR8226, F-75005, Paris, France
| | - Christophe H Marchand
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, UMR8226, F-75005, Paris, France; CNRS, Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, F-75005, Paris, France
| | - Andrea Tagliani
- Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy; CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, UMR8226, F-75005, Paris, France
| | - Silvia Fanti
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy
| | - Giuseppe Falini
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy
| | - Stéphane D Lemaire
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, UMR8226, F-75005, Paris, France; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238, F-75005, Paris, France
| | - Simona Fermani
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy; CIRI Health Sciences & Technologies (HST), University of Bologna, I-40064, Bologna, Italy.
| | - Matteo Calvaresi
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy; CIRI Health Sciences & Technologies (HST), University of Bologna, I-40064, Bologna, Italy.
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy.
| |
Collapse
|
10
|
Gérard C, Carrière F, Receveur-Bréchot V, Launay H, Gontero B. A Trajectory of Discovery: Metabolic Regulation by the Conditionally Disordered Chloroplast Protein, CP12. Biomolecules 2022; 12:1047. [PMID: 36008940 PMCID: PMC9406205 DOI: 10.3390/biom12081047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
The chloroplast protein CP12, which is widespread in photosynthetic organisms, belongs to the intrinsically disordered proteins family. This small protein (80 amino acid residues long) presents a bias in its composition; it is enriched in charged amino acids, has a small number of hydrophobic residues, and has a high proportion of disorder-promoting residues. More precisely, CP12 is a conditionally disordered proteins (CDP) dependent upon the redox state of its four cysteine residues. During the day, reducing conditions prevail in the chloroplast, and CP12 is fully disordered. Under oxidizing conditions (night), its cysteine residues form two disulfide bridges that confer some stability to some structural elements. Like many CDPs, CP12 plays key roles, and its redox-dependent conditional disorder is important for the main function of CP12: the dark/light regulation of the Calvin-Benson-Bassham (CBB) cycle responsible for CO2 assimilation. Oxidized CP12 binds to glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase and thereby inhibits their activity. However, recent studies reveal that CP12 may have other functions beyond the CBB cycle regulation. In this review, we report the discovery of this protein, its features as a disordered protein, and the many functions this small protein can have.
Collapse
Affiliation(s)
| | | | | | - Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 9, 13 402 Marseille, France; (C.G.); (F.C.); (V.R.-B.)
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 9, 13 402 Marseille, France; (C.G.); (F.C.); (V.R.-B.)
| |
Collapse
|
11
|
Wu L, Meng X, Huang H, Liu Y, Jiang W, Su X, Wang Z, Meng F, Wang L, Peng D, Xing S. Comparative Proteome and Phosphoproteome Analyses Reveal Different Molecular Mechanism Between Stone Planting Under the Forest and Greenhouse Planting of Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:937392. [PMID: 35873990 PMCID: PMC9301318 DOI: 10.3389/fpls.2022.937392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The highly esteemed Chinese herb, Dendrobium huoshanense, whose major metabolites are polysaccharides and alkaloids, is on the verge of extinction. The stone planting under the forest (SPUF) and greenhouse planting (GP) of D. huoshanense are two different cultivation methods of pharmaceutical Dendrobium with significantly differences in morphology, metabolites content and composition, and medication efficacy. Here, we conducted proteomics and phosphoproteomics analyses to reveal differences in molecular mechanisms between SPUF and GP. We identified 237 differentially expressed proteins (DEPs) between the two proteomes, and 291 modification sites belonging to 215 phosphoproteins with a phosphorylation level significantly changed (PLSC) were observed. GO, KEGG pathway, protein domain, and cluster analyses revealed that these DEPs were mainly localized in the chloroplast; involved in processes such as posttranslational modification, carbohydrate transport and metabolism, and secondary metabolite biosynthesis; and enriched in pathways mainly including linoleic acid metabolism, plant-pathogen interactions, and phenylpropanoid, cutin, suberin, and wax biosynthesis. PLSC phosphoproteins were mainly located in the chloroplast, and highly enriched in responses to different stresses and signal transduction mechanisms through protein kinase and phosphotransferase activities. Significant differences between SPUF and GP were observed by mapping the DEPs and phosphorylated proteins to photosynthesis and polysaccharide and alkaloid biosynthesis pathways. Phosphorylation characteristics and kinase categories in D. huoshanense were also clarified in this study. We analyzed different molecular mechanisms between SPUF and GP at proteomic and phosphoproteomic levels, providing valuable information for the development and utilization of D. huoshanense.
Collapse
Affiliation(s)
- Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| | - Huizhen Huang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Longhai Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Kimata-Ariga Y, Fukuta K, Miyata M. Role of Histidine 78 of leaf ferredoxin in the interaction with ferredoxin-NADP+ reductase: regulation of pH dependency and negative cooperativity with NADP(H). Biosci Biotechnol Biochem 2022; 86:618-623. [PMID: 35136937 DOI: 10.1093/bbb/zbac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 11/12/2022]
Abstract
In chloroplast stroma, dynamic pH change occurs in response to fluctuating light conditions. We investigated the pH-dependent electron transfer activity between ferredoxin-NADP+ reductase (FNR) and ferredoxin (Fd) isoproteins from maize leaves. By increasing pH (from 5.5 to 8.5), the electron transfer activity from FNR to photosynthetic-type Fd (Fd1) significantly increased while the activity to nonphotosynthetic type Fd (Fd3) decreased, which was mainly due to their differences in the pH dependency of Km for Fd. Mutation of His78 of Fd1 to Val, corresponding amino acid residue in Fd3, lost the pH dependency, indicating a regulatory role of the His78 in the interaction with FNR. We previously showed that the interaction between FNR and Fd was weakened by the allosteric binding of NADP(H) on FNR. His78Val Fd1 mutant largely suppressed this negative cooperativity. These results indicate the involvement of Fd1 His78 in pH dependency and negative cooperativity in the interaction with FNR.
Collapse
Affiliation(s)
- Yoko Kimata-Ariga
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Karen Fukuta
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Masayuki Miyata
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi, Japan
| |
Collapse
|
13
|
Yu King Hing N, Aryal UK, Morgan JA. Probing Light-Dependent Regulation of the Calvin Cycle Using a Multi-Omics Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:733122. [PMID: 34671374 PMCID: PMC8521058 DOI: 10.3389/fpls.2021.733122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Photoautotrophic microorganisms are increasingly explored for the conversion of atmospheric carbon dioxide into biomass and valuable products. The Calvin-Benson-Bassham (CBB) cycle is the primary metabolic pathway for net CO2 fixation within oxygenic photosynthetic organisms. The cyanobacteria, Synechocystis sp. PCC 6803, is a model organism for the study of photosynthesis and a platform for many metabolic engineering efforts. The CBB cycle is regulated by complex mechanisms including enzymatic abundance, intracellular metabolite concentrations, energetic cofactors and post-translational enzymatic modifications that depend on the external conditions such as the intensity and quality of light. However, the extent to which each of these mechanisms play a role under different light intensities remains unclear. In this work, we conducted non-targeted proteomics in tandem with isotopically non-stationary metabolic flux analysis (INST-MFA) at four different light intensities to determine the extent to which fluxes within the CBB cycle are controlled by enzymatic abundance. The correlation between specific enzyme abundances and their corresponding reaction fluxes is examined, revealing several enzymes with uncorrelated enzyme abundance and their corresponding flux, suggesting flux regulation by mechanisms other than enzyme abundance. Additionally, the kinetics of 13C labeling of CBB cycle intermediates and estimated inactive pool sizes varied significantly as a function of light intensity suggesting the presence of metabolite channeling, an additional method of flux regulation. These results highlight the importance of the diverse methods of regulation of CBB enzyme activity as a function of light intensity, and highlights the importance of considering these effects in future kinetic models.
Collapse
Affiliation(s)
- Nathaphon Yu King Hing
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - John A. Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
Gurrieri L, Fermani S, Zaffagnini M, Sparla F, Trost P. Calvin-Benson cycle regulation is getting complex. TRENDS IN PLANT SCIENCE 2021; 26:898-912. [PMID: 33893047 DOI: 10.1016/j.tplants.2021.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
Oxygenic phototrophs use the Calvin-Benson cycle to fix CO2 during photosynthesis. In the dark, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), two enzymes of the Calvin-Benson cycle, form an inactive complex with the regulatory protein CP12, mainly under the control of thioredoxins and pyridine nucleotides. In the light, complex dissociation allows GAPDH and PRK reactivation. The GAPDH/CP12/PRK complex is conserved from cyanobacteria to angiosperms and coexists in land plants with an autoassembling GAPDH that is analogously regulated. With the recently described 3D structures of PRK and GAPDH/CP12/PRK, the structural proteome of this ubiquitous regulatory system has been completed. This outcome opens a new avenue for understanding the regulatory potential of photosynthetic carbon fixation by laying the foundation for its knowledge-based manipulation.
Collapse
Affiliation(s)
- Libero Gurrieri
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Simona Fermani
- Department of Chemistry Giacomo Ciamician, University of Bologna, I-40126 Bologna, Italy; CIRI Health Sciences and Technologies, University of Bologna, I-40126 Bologna, Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy.
| |
Collapse
|
15
|
Le Moigne T, Gurrieri L, Crozet P, Marchand CH, Zaffagnini M, Sparla F, Lemaire SD, Henri J. Crystal structure of chloroplastic thioredoxin z defines a type-specific target recognition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:434-447. [PMID: 33930214 DOI: 10.1111/tpj.15300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous disulfide oxidoreductases structured according to a highly conserved fold. TRXs are involved in a myriad of different processes through a common chemical mechanism. Plant TRXs evolved into seven types with diverse subcellular localization and distinct protein target selectivity. Five TRX types coexist in the chloroplast, with yet scarcely described specificities. We solved the crystal structure of a chloroplastic z-type TRX, revealing a conserved TRX fold with an original electrostatic surface potential surrounding the redox site. This recognition surface is distinct from all other known TRX types from plant and non-plant sources and is exclusively conserved in plant z-type TRXs. We show that this electronegative surface endows thioredoxin z (TRXz) with a capacity to activate the photosynthetic Calvin-Benson cycle enzyme phosphoribulokinase. The distinct electronegative surface of TRXz thereby extends the repertoire of TRX-target recognitions.
Collapse
Affiliation(s)
- Théo Le Moigne
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
- Faculty of Sciences, Doctoral School of Plant Sciences, Université Paris-Saclay, Saint-Aubin, 91190, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 13 Rue Pierre et Marie Curie, Paris, 75005, France
| | - Libero Gurrieri
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Pierre Crozet
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 13 Rue Pierre et Marie Curie, Paris, 75005, France
- Sorbonne Université, Polytech Sorbonne, Paris, 75005, France
| | - Christophe H Marchand
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 13 Rue Pierre et Marie Curie, Paris, 75005, France
- Plateforme de Protéomique, Institut de Biologie Physico-Chimique, FR 550, CNRS, 13 Rue Pierre et Marie Curie, Paris, 75005, France
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Stéphane D Lemaire
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 13 Rue Pierre et Marie Curie, Paris, 75005, France
| | - Julien Henri
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 13 Rue Pierre et Marie Curie, Paris, 75005, France
| |
Collapse
|
16
|
Thangaraj S, Palanisamy SK, Zhang G, Sun J. Quantitative Proteomic Profiling of Marine Diatom Skeletonema dohrnii in Response to Temperature and Silicate Induced Environmental Stress. Front Microbiol 2021; 11:554832. [PMID: 33519723 PMCID: PMC7841394 DOI: 10.3389/fmicb.2020.554832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
Global warming is expected to reduce the nutrient concentration in the upper ocean and affect the physiology of marine diatoms, but the underlying molecular mechanisms controlling these physiological changes are currently unknown. To understand these mechanisms, here we investigated iTRAQ based proteomic profiling of diatom Skeletonema dohrnii in a multifactorial experimental with a combining change of temperature and silicate concentrations. In total, 3369 differently abundant proteins were detected in four different environmental conditions, and the function of all proteins was identified using Gene Ontology and KEGG pathway analysis. For discriminating the proteome variation among samples, multivariate statistical analysis (PCA, PLS-DA) was performed by comparing the protein ratio differences. Further, performing pathway analysis on diatom proteomes, we here demonstrated downregulation of photosynthesis, carbon metabolism, and ribosome biogenesis in the cellular process that leads to decrease the oxidoreductase activity and affects the cell cycle of the diatom. Using PLS-DA VIP score plot analysis, we identified 15 protein biomarkers for discriminating studied samples. Of these, five proteins or gene (rbcL, PRK, atpB, DNA-binding, and signal transduction) identified as key biomarkers, induced by temperature and silicate stress in diatom metabolism. Our results show that proteomic finger-printing of S. dohrnii with different environmental conditions adds biological information that strengthens marine phytoplankton proteome analysis.
Collapse
Affiliation(s)
| | - Satheesh Kumar Palanisamy
- Department of Zoology, School of Natural Science, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Guicheng Zhang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
17
|
Wittmann D, Sinha N, Grimm B. Thioredoxin-dependent control balances the metabolic activities of tetrapyrrole biosynthesis. Biol Chem 2020; 402:379-397. [PMID: 33068374 DOI: 10.1515/hsz-2020-0308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/13/2020] [Indexed: 11/15/2022]
Abstract
Plastids are specialized organelles found in plants, which are endowed with their own genomes, and differ in many respects from the intracellular compartments of organisms belonging to other kingdoms of life. They differentiate into diverse, plant organ-specific variants, and are perhaps the most versatile organelles known. Chloroplasts are the green plastids in the leaves and stems of plants, whose primary function is photosynthesis. In response to environmental changes, chloroplasts use several mechanisms to coordinate their photosynthetic activities with nuclear gene expression and other metabolic pathways. Here, we focus on a redox-based regulatory network composed of thioredoxins (TRX) and TRX-like proteins. Among multiple redox-controlled metabolic activities in chloroplasts, tetrapyrrole biosynthesis is particularly rich in TRX-dependent enzymes. This review summarizes the effects of plastid-localized reductants on several enzymes of this pathway, which have been shown to undergo dithiol-disulfide transitions. We describe the impact of TRX-dependent control on the activity, stability and interactions of these enzymes, and assess its contribution to the provision of adequate supplies of metabolic intermediates in the face of diurnal and more rapid and transient changes in light levels and other environmental factors.
Collapse
Affiliation(s)
- Daniel Wittmann
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| | - Neha Sinha
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| |
Collapse
|
18
|
Yu J, Li Y, Qin Z, Guo S, Li Y, Miao Y, Song C, Chen S, Dai S. Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics. Antioxid Redox Signal 2020; 33:35-57. [PMID: 31989831 DOI: 10.1089/ars.2019.7823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Plant chloroplasts generate reactive oxygen species (ROS) during photosynthesis, especially under stresses. The sulfhydryl groups of protein cysteine residues are susceptible to redox modifications, which regulate protein structure and function, and thus different signaling and metabolic processes. The ROS-governed protein thiol redox switches play important roles in chloroplasts. Recent Advances: Various high-throughput thiol redox proteomic approaches have been developed, and they have enabled the improved understanding of redox regulatory mechanisms in chloroplasts. For example, the thioredoxin-modulated antioxidant enzymes help to maintain cellular ROS homeostasis. The light- and dark-dependent redox regulation of photosynthetic electron transport, the Calvin/Benson cycle, and starch biosynthesis ensures metabolic coordination and efficient energy utilization. In addition, redox cascades link the light with the dynamic changes of metabolites in nitrate and sulfur assimilation, shikimate pathway, and biosynthesis of fatty acid hormone as well as purine, pyrimidine, and thiamine. Importantly, redox regulation of tetrapyrrole and chlorophyll biosynthesis is critical to balance the photodynamic tetrapyrrole intermediates and prevent oxidative damage. Moreover, redox regulation of diverse elongation factors, chaperones, and kinases plays an important role in the modulation of gene expression, protein conformation, and posttranslational modification that contribute to photosystem II (PSII) repair, state transition, and signaling in chloroplasts. Critical Issues: This review focuses on recent advances in plant thiol redox proteomics and redox protein networks toward understanding plant chloroplast signaling, metabolism, and stress responses. Future Directions: Using redox proteomics integrated with biochemical and molecular genetic approaches, detailed studies of cysteine residues, their redox states, cross talk with other modifications, and the functional implications will yield a holistic understanding of chloroplast stress responses.
Collapse
Affiliation(s)
- Juanjuan Yu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Yongfang Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Chunpeng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| |
Collapse
|
19
|
Liu Y, Pan T, Tang Y, Zhuang Y, Liu Z, Li P, Li H, Huang W, Tu S, Ren G, Wang T, Wang S. Proteomic Analysis of Rice Subjected to Low Light Stress and Overexpression of OsGAPB Increases the Stress Tolerance. RICE (NEW YORK, N.Y.) 2020; 13:30. [PMID: 32488648 PMCID: PMC7266901 DOI: 10.1186/s12284-020-00390-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/11/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Light provides the energy for photosynthesis and determines plant morphogenesis and development. Low light compromises photosynthetic efficiency and leads to crop yield loss. It remains unknown how rice responds to low light stress at a proteomic level. RESULTS In this study, the quantitative proteomic analysis with isobaric tags for relative and absolute quantitation (iTRAQ) was used and 1221 differentially expressed proteins (DEPs) were identified from wild type rice plants grown in control or low light condition (17% light intensity of control), respectively. Bioinformatic analysis of DEPs indicated low light remarkably affects the abundance of chloroplastic proteins. Specifically, the proteins involved in carbon fixation (Calvin cycle), electron transport, and ATPase complex are severely downregulated under low light. Furthermore, overexpression of the downregulated gene encoding rice β subunit of glyceraldehyde-3-phosphate dehydrogenase (OsGAPB), an enzyme in Calvin cycle, significantly increased the CO2 assimilation rate, chlorophyll content and fresh weight under low light conditions but have no obvious effect on rice growth and development under control light. CONCLUSION Our results revealed that low light stress on vegetative stage of rice inhibits photosynthesis possibly by decreasing the photosynthetic proteins and OsGAPB gene is a good candidate for manipulating rice tolerance to low light stress.
Collapse
Affiliation(s)
- Yangxuan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuying Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Zhuang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijian Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Ren
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
20
|
Launay H, Receveur-Bréchot V, Carrière F, Gontero B. Orchestration of algal metabolism by protein disorder. Arch Biochem Biophys 2019; 672:108070. [PMID: 31408624 DOI: 10.1016/j.abb.2019.108070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/12/2023]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that provide many functional advantages in a large number of metabolic and signalling pathways. Because of their high flexibility that endows them with pressure-, heat- and acid-resistance, IDPs are valuable metabolic regulators that help algae to cope with extreme conditions of pH, temperature, pressure and light. They have, however, been overlooked in these organisms. In this review, we present some well-known algal IDPs, including the conditionally disordered CP12, a protein involved in the regulation of CO2 assimilation, as probably the best known example, whose disorder content is strongly dependent on the redox conditions, and the essential pyrenoid component 1 that serves as a scaffold for ribulose-1, 5-bisphosphate carboxylase/oxygenase. We also describe how some enzymes are regulated by protein regions, called intrinsically disordered regions (IDRs), such as ribulose-1, 5-bisphosphate carboxylase/oxygenase activase, the A2B2 form of glyceraldehyde-3-phosphate dehydrogenase and the adenylate kinase. Several molecular chaperones, which are crucial for cell proteostasis, also display significant disorder propensities such as the algal heat shock proteins HSP33, HSP70 and HSP90. This review confirms the wide distribution of IDPs in algae but highlights that further studies are needed to uncover their full role in orchestrating algal metabolism.
Collapse
Affiliation(s)
- Hélène Launay
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | | | - Frédéric Carrière
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France.
| |
Collapse
|
21
|
Simkin AJ, López-Calcagno PE, Raines CA. Feeding the world: improving photosynthetic efficiency for sustainable crop production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1119-1140. [PMID: 30772919 PMCID: PMC6395887 DOI: 10.1093/jxb/ery445] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
A number of recent studies have provided strong support demonstrating that improving the photosynthetic processes through genetic engineering can provide an avenue to improve yield potential. The major focus of this review is on improvement of the Calvin-Benson cycle and electron transport. Consideration is also given to how altering regulatory process may provide an additional route to increase photosynthetic efficiency. Here we summarize some of the recent successes that have been observed through genetic manipulation of photosynthesis, showing that, in both the glasshouse and the field, yield can be increased by >40%. These results provide a clear demonstration of the potential for increasing yield through improvements in photosynthesis. In the final section, we consider the need to stack improvement in photosynthetic traits with traits that target the yield gap in order to provide robust germplasm for different crops across the globe.
Collapse
Affiliation(s)
- Andrew J Simkin
- NIAB EMR, New Road, East Malling, Kent, UK
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | | | - Christine A Raines
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| |
Collapse
|
22
|
Lemaire SD, Tedesco D, Crozet P, Michelet L, Fermani S, Zaffagnini M, Henri J. Crystal Structure of Chloroplastic Thioredoxin f2 from Chlamydomonas reinhardtii Reveals Distinct Surface Properties. Antioxidants (Basel) 2018; 7:E171. [PMID: 30477165 PMCID: PMC6316601 DOI: 10.3390/antiox7120171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Protein disulfide reduction by thioredoxins (TRXs) controls the conformation of enzyme active sites and their multimeric complex formation. TRXs are small oxidoreductases that are broadly conserved in all living organisms. In photosynthetic eukaryotes, TRXs form a large multigenic family, and they have been classified in different types: f, m, x, y, and z types are chloroplastic, while o and h types are located in mitochondria and cytosol. In the model unicellular alga Chlamydomonas reinhardtii, the TRX family contains seven types, with f- and h-types represented by two isozymes. Type-f TRXs interact specifically with targets in the chloroplast, controlling photosynthetic carbon fixation by the Calvin⁻Benson cycle. We solved the crystal structures of TRX f2 and TRX h1 from C. reinhardtii. The systematic comparison of their atomic features revealed a specific conserved electropositive crown around the active site of TRX f, complementary to the electronegative surface of their targets. We postulate that this surface provides specificity to each type of TRX.
Collapse
Affiliation(s)
- Stéphane D Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226 CNRS Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Daniele Tedesco
- Bio-Pharmaceutical Analysis Section (Bio-PhASe), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy.
| | - Pierre Crozet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226 CNRS Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Laure Michelet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226 CNRS Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Mirko Zaffagnini
- Laboratory of Molecular Plant Physiology, Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 42, 40126 Bologna, Italy.
| | - Julien Henri
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226 CNRS Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
23
|
Knuesting J, Scheibe R. Small Molecules Govern Thiol Redox Switches. TRENDS IN PLANT SCIENCE 2018; 23:769-782. [PMID: 30149854 DOI: 10.1016/j.tplants.2018.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 05/13/2023]
Abstract
Oxygenic photosynthesis gave rise to a regulatory mechanism based on reversible redox-modifications of enzymes. In chloroplasts, such on-off switches separate metabolic pathways to avoid futile cycles. During illumination, the redox interconversions allow for rapidly and finely adjusting activation states of redox-regulated enzymes. Noncovalent effects by metabolites binding to these enzymes, here addressed as 'small molecules', affect the rates of reduction and oxidation. The chloroplast enzymes provide an example for a versatile regulatory principle where small molecules govern thiol switches to integrate redox state and metabolism for an appropriate response to environmental challenges. In general, this principle can be transferred to reactive thiols involved in redox signaling, oxidative stress responses, and in disease of all organisms.
Collapse
Affiliation(s)
- Johannes Knuesting
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany.
| |
Collapse
|
24
|
Zhang Y, Launay H, Liu F, Lebrun R, Gontero B. Interaction between adenylate kinase 3 and glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii. FEBS J 2018; 285:2495-2503. [PMID: 29727516 DOI: 10.1111/febs.14494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/22/2018] [Accepted: 04/26/2018] [Indexed: 01/21/2023]
Abstract
The critical and ubiquitous enzyme adenylate kinase (ADK) catalyzes the nucleotide phosphoryl exchange reaction: 2ADP ↔ ATP + AMP. The ADK3 in the chloroplasts of the green alga Chlamydomonas reinhardtii, bears an unusual C-terminal extension that is similar to the C-terminal end of the intrinsically disordered protein CP12. In this study, we report that this enzyme, when oxidized but not when reduced, is able to interact with the chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forming a stable complex as shown by native electrophoresis and mass spectrometry. In this bienzyme complex, the activity of ADK3 is unchanged while the NADPH-dependent activity of GAPDH is significantly inhibited. Moreover ADK3, like CP12, can protect GAPDH against thermal inactivation and aggregation. The ADK3-GAPDH bienzyme complex is unable to recruit phosphoribulokinase (PRK), in contrast with the ternary complex formed between GAPDH-CP12 and PRK. The interaction between ADK3 and GAPDH might be a mechanism to regulate the crucial ATP: NADPH ratio within chloroplasts to optimize the Calvin-Benson cycle during rapid fluctuation in environmental resources. ENZYMES Adenylate kinase (EC 2.7.4.3), glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.13), phosphoribulokinase (PRK, EC 2.7.1.19).
Collapse
Affiliation(s)
- Yizhi Zhang
- Aix Marseille Univ, CNRS, BIP, UMR 7281, Marseille, France
| | - Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR 7281, Marseille, France
| | - Fan Liu
- Aix Marseille Univ, CNRS, BIP, UMR 7281, Marseille, France.,Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, China
| | - Régine Lebrun
- Plate-forme Protéomique, Marseille Protéomique (MaP), IMM, FR 3479, CNRS, Marseille, France
| | | |
Collapse
|
25
|
Pérez-Pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation. MOLECULAR PLANT 2017; 10:1107-1125. [PMID: 28739495 DOI: 10.1016/j.molp.2017.07.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
Thiol-based redox post-translational modifications have emerged as important mechanisms of signaling and regulation in all organisms, and thioredoxin plays a key role by controlling the thiol-disulfide status of target proteins. Recent redox proteomic studies revealed hundreds of proteins regulated by glutathionylation and nitrosylation in the unicellular green alga Chlamydomonas reinhardtii, while much less is known about the thioredoxin interactome in this organism. By combining qualitative and quantitative proteomic analyses, we have comprehensively investigated the Chlamydomonas thioredoxome and 1188 targets have been identified. They participate in a wide range of metabolic pathways and cellular processes. This study broadens not only the redox regulation to new enzymes involved in well-known thioredoxin-regulated metabolic pathways but also sheds light on cellular processes for which data supporting redox regulation are scarce (aromatic amino acid biosynthesis, nuclear transport, etc). Moreover, we characterized 1052 thioredoxin-dependent regulatory sites and showed that these data constitute a valuable resource for future functional studies in Chlamydomonas. By comparing this thioredoxome with proteomic data for glutathionylation and nitrosylation at the protein and cysteine levels, this work confirms the existence of a complex redox regulation network in Chlamydomonas and provides evidence of a tremendous selectivity of redox post-translational modifications for specific cysteine residues.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adeline Mauriès
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Nicolas J Tourasse
- Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Hamon
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
26
|
Elena López-Calcagno P, Omar Abuzaid A, Lawson T, Anne Raines C. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin-Benson cycle. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2285-2298. [PMID: 28430985 PMCID: PMC5447874 DOI: 10.1093/jxb/erx084] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
CP12 is a small, redox-sensitive protein, the most detailed understanding of which is the thioredoxin-mediated regulation of the Calvin-Benson cycle, where it facilitates the formation of a complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in response to changes in light intensity. In most organisms, CP12 proteins are encoded by small multigene families, where the importance of each individual CP12 gene in vivo has not yet been reported. We used Arabidopsis thaliana T-DNA mutants and RNAi transgenic lines with reduced levels of CP12 transcript to determine the relative importance of each of the CP12 genes. We found that single cp12-1, cp12-2, and cp12-3 mutants do not develop a severe photosynthetic or growth phenotype. In contrast, reductions of both CP12-1 and CP12-2 transcripts lead to reductions in photosynthetic capacity and to slower growth and reduced seed yield. No clear phenotype for CP12-3 was evident. Additionally, the levels of PRK protein are reduced in the cp12-1, cp12-1/2, and multiple mutants. Our results suggest that there is functional redundancy between CP12-1 and CP12-2 in Arabidopsis where these proteins have a role in determining the level of PRK in mature leaves and hence photosynthetic capacity.
Collapse
Affiliation(s)
| | - Amani Omar Abuzaid
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Tracy Lawson
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Christine Anne Raines
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
27
|
Thieulin-Pardo G, Schramm A, Lignon S, Lebrun R, Kojadinovic M, Gontero B. The intriguing CP12-like tail of adenylate kinase 3 fromChlamydomonas reinhardtii. FEBS J 2016; 283:3389-407. [DOI: 10.1111/febs.13814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Affiliation(s)
| | - Antoine Schramm
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| | - Sabrina Lignon
- Plate-forme Protéomique; Marseille Protéomique (MaP); Institut de Microbiologie de la Méditerranée; CNRS, FR 3479 Marseille Cedex 20 France
| | - Régine Lebrun
- Plate-forme Protéomique; Marseille Protéomique (MaP); Institut de Microbiologie de la Méditerranée; CNRS, FR 3479 Marseille Cedex 20 France
| | - Mila Kojadinovic
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| | - Brigitte Gontero
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| |
Collapse
|
28
|
Zaffagnini M, Fermani S, Calvaresi M, Orrù R, Iommarini L, Sparla F, Falini G, Bottoni A, Trost P. Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of Arabidopsis thaliana. Antioxid Redox Signal 2016; 24:502-17. [PMID: 26650776 DOI: 10.1089/ars.2015.6417] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Cysteines and H2O2 are fundamental players in redox signaling. Cysteine thiol deprotonation favors the reaction with H2O2 that generates sulfenic acids with dual electrophilic/nucleophilic nature. The protein microenvironment surrounding the target cysteine is believed to control whether sulfenic acid can be reversibly regulated by disulfide formation or irreversibly oxidized to sulfinates/sulfonates. In this study, we present experimental oxidation kinetics and a quantum mechanical/molecular mechanical (QM/MM) investigation to elucidate the reaction of H2O2 with glycolytic and photosynthetic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana (cytoplasmic AtGAPC1 and chloroplastic AtGAPA, respectively). RESULTS Although AtGAPC1 and AtGAPA have almost identical 3D structure and similar acidity of their catalytic Cys149, AtGAPC1 is more sensitive to H2O2 and prone to irreversible oxidation than AtGAPA. As a result, sulfenic acid is more stable in AtGAPA. INNOVATION Based on crystallographic structures of AtGAPC1 and AtGAPA, the reaction potential energy surface for Cys149 oxidation by H2O2 was calculated by QM. In both enzymes, sulfenic acid formation was characterized by a lower energy barrier than sulfinate formation, and sulfonate formation was prevented by very high energy barriers. Activation energies for both oxidation steps were lower in AtGAPC1 than AtGAPA, supporting the higher propensity of AtGAPC1 toward irreversible oxidation. CONCLUSIONS QM/MM calculations coupled to fingerprinting analyses revealed that two Arg of AtGAPA (substituted by Gly and Val in AtGAPC1), located at 8-15 Å distance from Cys149, are the major factors responsible for sulfenic acid stability, underpinning the importance of long-distance polar interactions in tuning sulfenic acid stability in native protein microenvironments.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Matteo Calvaresi
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Roberto Orrù
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Luisa Iommarini
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Giuseppe Falini
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Andrea Bottoni
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| |
Collapse
|
29
|
Del Giudice A, Pavel NV, Galantini L, Falini G, Trost P, Fermani S, Sparla F. Unravelling the shape and structural assembly of the photosynthetic GAPDH-CP12-PRK complex from Arabidopsis thaliana by small-angle X-ray scattering analysis. ACTA ACUST UNITED AC 2015; 71:2372-85. [PMID: 26627646 DOI: 10.1107/s1399004715018520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/03/2015] [Indexed: 12/15/2022]
Abstract
Oxygenic photosynthetic organisms produce sugars through the Calvin-Benson cycle, a metabolism that is tightly linked to the light reactions of photosynthesis and is regulated by different mechanisms, including the formation of protein complexes. Two enzymes of the cycle, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), form a supramolecular complex with the regulatory protein CP12 with the formula (GAPDH-CP122-PRK)2, in which both enzyme activities are transiently inhibited during the night. Small-angle X-ray scattering analysis performed on both the GAPDH-CP12-PRK complex and its components, GAPDH-CP12 and PRK, from Arabidopsis thaliana showed that (i) PRK has an elongated, bent and screwed shape, (ii) the oxidized N-terminal region of CP12 that is not embedded in the GAPDH-CP12 complex prefers a compact conformation and (iii) the interaction of PRK with the N-terminal region of CP12 favours the approach of two GAPDH tetramers. The interaction between the GAPDH tetramers may contribute to the overall stabilization of the GAPDH-CP12-PRK complex, the structure of which is presented here for the first time.
Collapse
Affiliation(s)
| | | | | | - Giuseppe Falini
- Department of Chemistry `G. Ciamician', University of Bologna, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy
| | - Simona Fermani
- Department of Chemistry `G. Ciamician', University of Bologna, Bologna, Italy
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Thieulin-Pardo G, Avilan L, Kojadinovic M, Gontero B. Fairy "tails": flexibility and function of intrinsically disordered extensions in the photosynthetic world. Front Mol Biosci 2015; 2:23. [PMID: 26042223 PMCID: PMC4436894 DOI: 10.3389/fmolb.2015.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022] Open
Abstract
Intrinsically Disordered Proteins (IDPs), or protein fragments also called Intrinsically Disordered Regions (IDRs), display high flexibility as the result of their amino acid composition. They can adopt multiple roles. In globular proteins, IDRs are usually found as loops and linkers between secondary structure elements. However, not all disordered fragments are loops: some proteins bear an intrinsically disordered extension at their C- or N-terminus, and this flexibility can affect the protein as a whole. In this review, we focus on the disordered N- and C-terminal extensions of globular proteins from photosynthetic organisms. Using the examples of the A2B2-GAPDH and the α Rubisco activase isoform, we show that intrinsically disordered extensions can help regulate their “host” protein in response to changes in light, thereby participating in photosynthesis regulation. As IDPs are famous for their large number of protein partners, we used the examples of the NAC, bZIP, TCP, and GRAS transcription factor families to illustrate the fact that intrinsically disordered extremities can allow a protein to have an increased number of partners, which directly affects its regulation. Finally, for proteins from the cryptochrome light receptor family, we describe how a new role for the photolyase proteins may emerge by the addition of an intrinsically disordered extension, while still allowing the protein to absorb blue light. This review has highlighted the diverse repercussions of the disordered extension on the regulation and function of their host protein and outlined possible future research avenues.
Collapse
Affiliation(s)
- Gabriel Thieulin-Pardo
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Luisana Avilan
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Mila Kojadinovic
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Brigitte Gontero
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|
31
|
Moparthi SB, Thieulin-Pardo G, de Torres J, Ghenuche P, Gontero B, Wenger J. FRET analysis of CP12 structural interplay by GAPDH and PRK. Biochem Biophys Res Commun 2015; 458:488-493. [PMID: 25666947 DOI: 10.1016/j.bbrc.2015.01.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
Abstract
CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex.
Collapse
Affiliation(s)
- Satish Babu Moparthi
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France.
| | - Gabriel Thieulin-Pardo
- Aix Marseille Université, CNRS, UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines, 13402 Marseille Cedex 20, France
| | - Juan de Torres
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France
| | - Petru Ghenuche
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France
| | - Brigitte Gontero
- Aix Marseille Université, CNRS, UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines, 13402 Marseille Cedex 20, France
| | - Jérôme Wenger
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France
| |
Collapse
|
32
|
Pérez-Pérez ME, Zaffagnini M, Marchand CH, Crespo JL, Lemaire SD. The yeast autophagy protease Atg4 is regulated by thioredoxin. Autophagy 2014; 10:1953-64. [PMID: 25483965 DOI: 10.4161/auto.34396] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a membrane-trafficking process whereby double-membrane vesicles called autophagosomes engulf and deliver intracellular material to the vacuole for degradation. Atg4 is a cysteine protease with an essential function in autophagosome formation. Mounting evidence suggests that reactive oxygen species may play a role in the control of autophagy and could regulate Atg4 activity but the precise mechanisms remain unclear. In this study, we showed that reactive oxygen species activate autophagy in the model yeast Saccharomyces cerevisiae and unraveled the molecular mechanism by which redox balance controls Atg4 activity. A combination of biochemical assays, redox titrations, and site-directed mutagenesis revealed that Atg4 is regulated by oxidoreduction of a single disulfide bond between Cys338 and Cys394. This disulfide has a low redox potential and is very efficiently reduced by thioredoxin, suggesting that this oxidoreductase plays an important role in Atg4 regulation. Accordingly, we found that autophagy activation by rapamycin was more pronounced in a thioredoxin mutant compared with wild-type cells. Moreover, in vivo studies indicated that Cys338 and Cys394 are required for the proper regulation of autophagosome biogenesis, since mutation of these cysteines resulted in increased recruitment of Atg8 to the phagophore assembly site. Thus, we propose that the fine-tuning of Atg4 activity depending on the intracellular redox state may regulate autophagosome formation.
Collapse
Key Words
- ATG, autophagy-related
- Ape1, aminopeptidase I
- Asc, ascorbate
- Atg4
- Cvt, cytoplasm-to-vacuole targeting
- DTNB, 5, 5′-dithiobis (2-nitro-benzoic acid)
- DTT, dithiothreitol
- DTTox, oxidized DTT
- DTTred, reduced DTT
- Eh, redox potential
- Em, midpoint redox potential
- GSH, reduced glutathione
- GSNO, S-nitrosoglutathione
- GSSG, oxidized glutathione
- Gsr, glutathione reductase
- IAM, iodoacetamide
- NEM, N-ethylmaleimide
- PAS, phagophore assembly site
- PE, phosphatidylethanolamine
- PTM, post-translational modification
- ROS, reactive oxygen species
- SD, synthetic minimal medium
- Trr1, thioredoxin reductase 1
- Trx1, thioredoxin 1
- YPD, yeast peptone dextrose
- autophagy
- phagophore assembly site
- rap, rapamycin
- redox regulation
- thioredoxin
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- a Centre National de la Recherche Scientifique; UMR8226; Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes; Institut de Biologie Physico-Chimique ; Paris , France
| | | | | | | | | |
Collapse
|
33
|
Balsera M, Uberegui E, Schürmann P, Buchanan BB. Evolutionary development of redox regulation in chloroplasts. Antioxid Redox Signal 2014; 21:1327-55. [PMID: 24483204 DOI: 10.1089/ars.2013.5817] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The post-translational modification of thiol groups stands out as a key strategy that cells employ for metabolic regulation and adaptation to changing environmental conditions. Nowhere is this more evident than in chloroplasts-the O2-evolving photosynthetic organelles of plant cells that are fitted with multiple redox systems, including the thioredoxin (Trx) family of oxidoreductases functional in the reversible modification of regulatory thiols of proteins in all types of cells. The best understood member of this family in chloroplasts is the ferredoxin-linked thioredoxin system (FTS) by which proteins are modified via light-dependent disulfide/dithiol (S-S/2SH) transitions. RECENT ADVANCES Discovered in the reductive activation of enzymes of the Calvin-Benson cycle in illuminated chloroplast preparations, recent studies have extended the role of the FTS far beyond its original boundaries to include a spectrum of cellular processes. Together with the NADP-linked thioredoxin reductase C-type (NTRC) and glutathione/glutaredoxin systems, the FTS also plays a central role in the response of chloroplasts to different types of stress. CRITICAL ISSUES The comparisons of redox regulatory networks functional in chloroplasts of land plants with those of cyanobacteria-prokaryotes considered to be the ancestors of chloroplasts-and different types of algae summarized in this review have provided new insight into the evolutionary development of redox regulation, starting with the simplest O2-evolving organisms. FUTURE DIRECTIONS The evolutionary appearance, mode of action, and specificity of the redox regulatory systems functional in chloroplasts, as well as the types of redox modification operating under diverse environmental conditions stand out as areas for future study.
Collapse
Affiliation(s)
- Monica Balsera
- 1 Instituto de Recursos Naturales y Agrobiología de Salamanca , Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | | | | | | |
Collapse
|
34
|
Morisse S, Michelet L, Bedhomme M, Marchand CH, Calvaresi M, Trost P, Fermani S, Zaffagnini M, Lemaire SD. Thioredoxin-dependent redox regulation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii. J Biol Chem 2014; 289:30012-24. [PMID: 25202015 DOI: 10.1074/jbc.m114.597997] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In photosynthetic organisms, thioredoxin-dependent redox regulation is a well established mechanism involved in the control of a large number of cellular processes, including the Calvin-Benson cycle. Indeed, 4 of 11 enzymes of this cycle are activated in the light through dithiol/disulfide interchanges controlled by chloroplastic thioredoxin. Recently, several proteomics-based approaches suggested that not only four but all enzymes of the Calvin-Benson cycle may withstand redox regulation. Here, we characterized the redox features of the Calvin-Benson enzyme phosphoglycerate kinase (PGK1) from the eukaryotic green alga Chlamydomonas reinhardtii, and we show that C. reinhardtii PGK1 (CrPGK1) activity is inhibited by the formation of a single regulatory disulfide bond with a low midpoint redox potential (-335 mV at pH 7.9). CrPGK1 oxidation was found to affect the turnover number without altering the affinity for substrates, whereas the enzyme activation appeared to be specifically controlled by f-type thioredoxin. Using a combination of site-directed mutagenesis, thiol titration, mass spectrometry analyses, and three-dimensional modeling, the regulatory disulfide bond was shown to involve the not strictly conserved Cys(227) and Cys(361). Based on molecular mechanics calculation, the formation of the disulfide is proposed to impose structural constraints in the C-terminal domain of the enzyme that may lower its catalytic efficiency. It is therefore concluded that CrPGK1 might constitute an additional light-modulated Calvin-Benson cycle enzyme with a low activity in the dark and a TRX-dependent activation in the light. These results are also discussed from an evolutionary point of view.
Collapse
Affiliation(s)
- Samuel Morisse
- From CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France, the Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Universit́ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Laure Michelet
- From CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France, the Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Universit́ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Mariette Bedhomme
- From CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France, the Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Universit́ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Christophe H Marchand
- From CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France, the Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Universit́ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Matteo Calvaresi
- the Department of Chemistry "G. Ciamician," University of Bologna, 40126 Bologna, Italy
| | - Paolo Trost
- the Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy, and
| | - Simona Fermani
- the Department of Chemistry "G. Ciamician," University of Bologna, 40126 Bologna, Italy
| | - Mirko Zaffagnini
- the Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy, and
| | - Stéphane D Lemaire
- From CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France, the Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Universit́ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France,
| |
Collapse
|
35
|
Moparthi SB, Thieulin-Pardo G, Mansuelle P, Rigneault H, Gontero B, Wenger J. Conformational modulation and hydrodynamic radii of CP12 protein and its complexes probed by fluorescence correlation spectroscopy. FEBS J 2014; 281:3206-17. [DOI: 10.1111/febs.12854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Affiliation(s)
| | - Gabriel Thieulin-Pardo
- Laboratoire de Bioénergétique et Ingénierie des Protéines; Aix Marseille Université; France
| | - Pascal Mansuelle
- Plate-forme Protéomique; Marseille Protéomique; Institut de Microbiologie de la Méditerranée; France
| | - Hervé Rigneault
- Centrale Marseille; Institut Fresnel; Aix Marseille Université; France
| | - Brigitte Gontero
- Laboratoire de Bioénergétique et Ingénierie des Protéines; Aix Marseille Université; France
| | - Jérôme Wenger
- Centrale Marseille; Institut Fresnel; Aix Marseille Université; France
| |
Collapse
|
36
|
Mekhalfi M, Puppo C, Avilan L, Lebrun R, Mansuelle P, Maberly SC, Gontero B. Glyceraldehyde-3-phosphate dehydrogenase is regulated by ferredoxin-NADP reductase in the diatom Asterionella formosa. THE NEW PHYTOLOGIST 2014; 203:414-423. [PMID: 24799178 DOI: 10.1111/nph.12820] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/22/2014] [Indexed: 05/24/2023]
Abstract
Diatoms are a widespread and ecologically important group of heterokont algae that contribute c. 20% to global productivity. Previous work has shown that regulation of their key Calvin cycle enzymes differs from that of the Plantae, and that in crude extracts, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) can be inhibited by nicotinamide adenine dinucleotide phosphate reduced (NADPH) under oxidizing conditions. The freshwater diatom, Asterionella formosa, was studied using enzyme kinetics, chromatography, surface plasmon resonance, mass spectrometry and sequence analysis to determine the mechanism behind this GAPDH inhibition. GAPDH interacted with ferredoxin-nicotinamide adenine dinucleotide phosphate (NADP) reductase (FNR) from the primary phase of photosynthesis, and the small chloroplast protein, CP12. Sequences of copurified GAPDH and FNR were highly homologous with published sequences. However, the widespread ternary complex among GAPDH, phosphoribulokinase and CP12 was absent. Activity measurements under oxidizing conditions showed that NADPH can inhibit GAPDH-CP12 in the presence of FNR, explaining the earlier observed inhibition within crude extracts. Diatom plastids have a distinctive metabolism, including the lack of the oxidative pentose phosphate pathway, and so cannot produce NADPH in the dark. The observed down-regulation of GAPDH in the dark may allow NADPH to be rerouted towards other reductive processes contributing to their ecological success.
Collapse
Affiliation(s)
- Malika Mekhalfi
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Carine Puppo
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Luisana Avilan
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Régine Lebrun
- Plate-forme Protéomique, FR3479, IBiSA Marseille-Protéomique IMM-CNRS, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Pascal Mansuelle
- Plate-forme Protéomique, FR3479, IBiSA Marseille-Protéomique IMM-CNRS, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Stephen C Maberly
- Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Brigitte Gontero
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| |
Collapse
|
37
|
Marri L, Thieulin-Pardo G, Lebrun R, Puppo R, Zaffagnini M, Trost P, Gontero B, Sparla F. CP12-mediated protection of Calvin–Benson cycle enzymes from oxidative stress. Biochimie 2014; 97:228-37. [DOI: 10.1016/j.biochi.2013.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/23/2013] [Indexed: 11/28/2022]
|
38
|
López-Calcagno PE, Howard TP, Raines CA. The CP12 protein family: a thioredoxin-mediated metabolic switch? FRONTIERS IN PLANT SCIENCE 2014; 5:9. [PMID: 24523724 PMCID: PMC3906501 DOI: 10.3389/fpls.2014.00009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/07/2014] [Indexed: 05/08/2023]
Abstract
CP12 is a small, redox-sensitive protein, representatives of which are found in most photosynthetic organisms, including cyanobacteria, diatoms, red and green algae, and higher plants. The only clearly defined function for CP12 in any organism is in the thioredoxin-mediated regulation of the Calvin-Benson cycle. CP12 mediates the formation of a complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in response to changes in light intensity. Under low light, the formation of the GAPDH/PRK/CP12 complex results in a reduction in the activity of both PRK and GAPDH and, under high light conditions, thioredoxin mediates the disassociation of the complex resulting in an increase in both GAPDH and PRK activity. Although the role of CP12 in the redox-mediated formation of the GAPDH/PRK/CP12 multiprotein complex has been clearly demonstrated, a number of studies now provide evidence that the CP12 proteins may play a wider role. In Arabidopsis thaliana CP12 is expressed in a range of tissue including roots, flowers, and seeds and antisense suppression of tobacco CP12 disrupts metabolism and impacts on growth and development. Furthermore, in addition to the higher plant genomes which encode up to three forms of CP12, analysis of cyanobacterial genomes has revealed that, not only are there multiple forms of the CP12 protein, but that in these organisms CP12 is also found fused to cystathionine-β-synthase domain containing proteins. In this review we present the latest information on the CP12 protein family and explore the possibility that CP12 proteins form part of a redox-mediated metabolic switch, allowing organisms to respond to rapid changes in the external environment.
Collapse
Affiliation(s)
| | - Thomas P. Howard
- Biosciences, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | | |
Collapse
|
39
|
Lin DG, Chou SY, Wang AZ, Wang YW, Kuo SM, Lai CC, Chen LJ, Wang CS. A proteomic study of rice cultivar TNG67 and its high aroma mutant SA0420. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:20-8. [PMID: 24268160 DOI: 10.1016/j.plantsci.2013.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 09/19/2013] [Accepted: 09/21/2013] [Indexed: 05/21/2023]
Abstract
Fragrance is a very important economic trait for rice cultivars. To identify the aroma genes in rice, we performed a proteomics analysis of aroma-related proteins between Tainung 67 (TNG67) and its high aroma mutant SA0420. Seventeen of the differentially identified proteins were close related with the aroma phenotype of SA0420. Among them, 9 were found in leaves and 8 were found in grains. One protein (L3) was identified as the chloroplastic glyceraldehyde-3-phosphate dehydrogenase B (OsGAPDHB) which was less abundant in SA0420 than TNG67. Sequence analysis demonstrated that this protein in SA0420 carries a P425S mutation in the C-terminal extension domain, which might hinder the formation of holoenzyme, thereby changing the profile of aroma compounds. The protein profile of OsGAPDHB showed only a weak correlation to its transcription profile. This result indicated that the reduction of OsGAPDHB in SA0420 is regulated by post-translational processes and can only be analyzed by proteomics approach. Transgenic lines suppressing OsGAPDHB through RNAi harbored more fragrance than TNG67 but less than SA0420. With betaine-aldehyde dehydrogenase as the only fragrance gene identified in rice to date, OsGAPDHB may serve as the second protein known to contribute to the aroma phenotype.
Collapse
Affiliation(s)
- Da-Gin Lin
- Department of Agronomy, National Chung Hsing University, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zaffagnini M, Michelet L, Sciabolini C, Di Giacinto N, Morisse S, Marchand CH, Trost P, Fermani S, Lemaire SD. High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii. MOLECULAR PLANT 2014; 7:101-20. [PMID: 24157611 DOI: 10.1093/mp/sst139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Triosephosphate isomerase (TPI) catalyzes the interconversion of glyceraldehyde-3-phosphate to dihydroxyacetone phosphate. Photosynthetic organisms generally contain two isoforms of TPI located in both cytoplasm and chloroplasts. While the cytoplasmic TPI is involved in the glycolysis, the chloroplastic isoform participates in the Calvin-Benson cycle, a key photosynthetic process responsible for carbon fixation. Compared with its cytoplasmic counterpart, the functional features of chloroplastic TPI have been poorly investigated and its three-dimensional structure has not been solved. Recently, several studies proposed TPI as a potential target of different redox modifications including dithiol/disulfide interchanges, glutathionylation, and nitrosylation. However, neither the effects on protein activity nor the molecular mechanisms underlying these redox modifications have been investigated. Here, we have produced recombinantly and purified TPI from the unicellular green alga Chlamydomonas reinhardtii (Cr). The biochemical properties of the enzyme were delineated and its crystallographic structure was determined at a resolution of 1.1 Å. CrTPI is a homodimer with subunits containing the typical (β/α)8-barrel fold. Although no evidence for TRX regulation was obtained, CrTPI was found to undergo glutathionylation by oxidized glutathione and trans-nitrosylation by nitrosoglutathione, confirming its sensitivity to multiple redox modifications.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD. Redox regulation of the Calvin-Benson cycle: something old, something new. FRONTIERS IN PLANT SCIENCE 2013; 4:470. [PMID: 24324475 PMCID: PMC3838966 DOI: 10.3389/fpls.2013.00470] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/30/2013] [Indexed: 05/18/2023]
Abstract
Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin-Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin-Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin-Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Laure Michelet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Mirko Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Samuel Morisse
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesca Sparla
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - María Esther Pérez-Pérez
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesco Francia
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Antoine Danon
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Simona Fermani
- Department of Chemistry “G. Ciamician”, University of BolognaBologna, Italy
| | - Paolo Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| |
Collapse
|
42
|
Gaston D, Roger AJ. Functional divergence and convergent evolution in the plastid-targeted glyceraldehyde-3-phosphate dehydrogenases of diverse eukaryotic algae. PLoS One 2013; 8:e70396. [PMID: 23936198 PMCID: PMC3728087 DOI: 10.1371/journal.pone.0070396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022] Open
Abstract
Background Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme of the glycolytic pathway, reversibly catalyzing the sixth step of glycolysis and concurrently reducing the coenzyme NAD+ to NADH. In photosynthetic organisms a GAPDH paralog (Gap2 in Cyanobacteria, GapA in most photosynthetic eukaryotes) functions in the Calvin cycle, performing the reverse of the glycolytic reaction and using the coenzyme NADPH preferentially. In a number of photosynthetic eukaryotes that acquired their plastid by the secondary endosymbiosis of a eukaryotic red alga (Alveolates, haptophytes, cryptomonads and stramenopiles) GapA has been apparently replaced with a paralog of the host’s own cytosolic GAPDH (GapC1). Plastid GapC1 and GapA therefore represent two independent cases of functional divergence and adaptations to the Calvin cycle entailing a shift in subcellular targeting and a shift in binding preference from NAD+ to NADPH. Methods We used the programs FunDi, GroupSim, and Difference Evolutionary-Trace to detect sites involved in the functional divergence of these two groups of GAPDH sequences and to identify potential cases of convergent evolution in the Calvin-cycle adapted GapA and GapC1 families. Sites identified as being functionally divergent by all or some of these programs were then investigated with respect to their possible roles in the structure and function of both glycolytic and plastid-targeted GAPDH isoforms. Conclusions In this work we found substantial evidence for convergent evolution in GapA/B and GapC1. In many cases sites in GAPDHs of these groups converged on identical amino acid residues in specific positions of the protein known to play a role in the function and regulation of plastid-functioning enzymes relative to their cytosolic counterparts. In addition, we demonstrate that bioinformatic software like FunDi are important tools for the generation of meaningful biological hypotheses that can then be tested with direct experimental techniques.
Collapse
Affiliation(s)
- Daniel Gaston
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
43
|
Carmo-Silva AE, Salvucci ME. The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions. PLANT PHYSIOLOGY 2013; 161:1645-55. [PMID: 23417088 PMCID: PMC3613445 DOI: 10.1104/pp.112.213348] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 02/14/2013] [Indexed: 05/04/2023]
Abstract
Rubisco's catalytic chaperone, Rubisco activase (Rca), uses the energy from ATP hydrolysis to restore catalytic competence to Rubisco. In Arabidopsis (Arabidopsis thaliana), inhibition of Rca activity by ADP is fine tuned by redox regulation of the α-isoform. To elucidate the mechanism for Rca regulation in species containing only the redox-insensitive β-isoform, the response of activity to ADP was characterized for different Rca forms. When assayed in leaf extracts, Rubisco activation was significantly inhibited by physiological ratios of ADP to ATP in species containing both α-Rca and β-Rca (Arabidopsis and camelina [Camelina sativa]) or just the β-Rca (tobacco [Nicotiana tabacum]). However, Rca activity was insensitive to ADP inhibition in an Arabidopsis transformant, rwt43, which expresses only Arabidopsis β-Rca, although not in a transformant of Arabidopsis that expresses a tobacco-like β-Rca. ATP hydrolysis by recombinant Arabidopsis β-Rca was much less sensitive to inhibition by ADP than recombinant tobacco β-Rca. Mutation of 17 amino acids in the tobacco β-Rca to the corresponding Arabidopsis residues reduced ADP sensitivity. In planta, Rubisco deactivated at low irradiance except in the Arabidopsis rwt43 transformant containing an ADP-insensitive Rca. Induction of CO2 assimilation after transition from low to high irradiance was much more rapid in the rwt43 transformant compared with plants containing ADP-sensitive Rca forms. The faster rate of photosynthetic induction and a greater enhancement of growth under a fluctuating light regime by the rwt43 transformant compared with wild-type Arabidopsis suggests that manipulation of Rca regulation might provide a strategy for enhancing photosynthetic performance in certain variable light environments.
Collapse
Affiliation(s)
| | - Michael E. Salvucci
- United States Department of Agriculture, Agricultural Research Service, Arid-Land Agricultural Research Center, Maricopa, Arizona 85138
| |
Collapse
|
44
|
An intrinsically disordered protein, CP12: jack of all trades and master of the Calvin cycle. Biochem Soc Trans 2013; 40:995-9. [PMID: 22988853 DOI: 10.1042/bst20120097] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many proteins contain disordered regions under physiological conditions and lack specific three-dimensional structure. These are referred to as IDPs (intrinsically disordered proteins). CP12 is a chloroplast protein of approximately 80 amino acids and has a molecular mass of approximately 8.2-8.5 kDa. It is enriched in charged amino acids and has a small number of hydrophobic residues. It has a high proportion of disorder-promoting residues, but has at least two (often four) cysteine residues forming one (or two) disulfide bridge(s) under oxidizing conditions that confers some order. However, CP12 behaves like an IDP. It appears to be universally distributed in oxygenic photosynthetic organisms and has recently been detected in a cyanophage. The best studied role of CP12 is its regulation of the Calvin cycle responsible for CO2 assimilation. Oxidized CP12 forms a supramolecular complex with two key Calvin cycle enzymes, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and PRK (phosphoribulokinase), down-regulating their activity. Association-dissociation of this complex, induced by the redox state of CP12, allows the Calvin cycle to be inactive in the dark and active in the light. CP12 is promiscuous and interacts with other enzymes such as aldolase and malate dehydrogenase. It also plays other roles in plant metabolism such as protecting GAPDH from inactivation and scavenging metal ions such as copper and nickel, and it is also linked to stress responses. Thus CP12 seems to be involved in many functions in photosynthetic cells and behaves like a jack of all trades as well as being a master of the Calvin cycle.
Collapse
|
45
|
Avilan L, Puppo C, Erales J, Woudstra M, Lebrun R, Gontero B. CP12 residues involved in the formation and regulation of the glyceraldehyde-3-phosphate dehydrogenase-CP12-phosphoribulokinase complex in Chlamydomonas reinhardtii. MOLECULAR BIOSYSTEMS 2013; 8:2994-3002. [PMID: 22955105 DOI: 10.1039/c2mb25244a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CP12, a member of the intrinsically disordered protein family, forms a stable complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK). To understand the function of conserved residues of CP12 in the formation of the GAPDH-CP12-PRK complex and in the regulation of the enzymes within this complex, we have produced mutants of CP12 by site-directed mutagenesis. The GAPDH, CP12 and PRK recombinant proteins are able to reconstitute spontaneously the ternary complex that has been described in Chlamydomonas reinhardtii. Our analysis reveals that the central part ((35)WXXVEE(47)) of CP12 is required to form the GAPDH-CP12-PRK complex. Using the same series of single amino acid replacements, we have identified individual residues, which seem to represent also contact points for GAPDH. Most notably, substitution of glutamate 74 prevents the binding of GAPDH to CP12. This is similar to the mutant C66S, with which the GAPDH-CP12-PRK complex is not formed. In contrast, replacement of the three last residues ((78)YED(80)) of CP12 has no effect on the formation of the ternary supra-molecular complex. However, our findings strongly suggest that Y78 and D80 are involved in the regulation of the GAPDH activity within the supra-molecular complex, since the mutants, D80K and Y78S, do not down-regulate the activity of GAPDH. The replacement of the amino acid E79 weakens the interaction between GAPDH and CP12 as no GAPDH-CP12 sub-complex is formed. In this case, nevertheless, the supra-molecular complex is formed when PRK is present indicating that PRK strengthens the interaction between GAPDH and CP12 within the supra-molecular complex.
Collapse
Affiliation(s)
- Luisana Avilan
- Laboratoire de Bioénergétique et Ingénierie des Protéines CNRS-UMR 7281-Aix-Marseille Université. Institut de Microbiologie de la Méditerranée, CNRS, 31 Chemin Joseph Aiguier, BP71, 13 402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
46
|
Stanley DN, Raines CA, Kerfeld CA. Comparative analysis of 126 cyanobacterial genomes reveals evidence of functional diversity among homologs of the redox-regulated CP12 protein. PLANT PHYSIOLOGY 2013; 161. [PMID: 23184231 PMCID: PMC3561022 DOI: 10.1104/pp.112.210542] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CP12 is found almost universally among photosynthetic organisms, where it plays a key role in regulation of the Calvin cycle by forming a ternary complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase. Newly available genomic sequence data for the phylum Cyanobacteria reveals a heretofore unobserved diversity in cyanobacterial CP12 proteins. Cyanobacterial CP12 proteins can be classified into eight different types based on primary structure features. Among these are CP12-CBS (for cystathionine-β-synthase) domain fusions. CBS domains are regulatory modules for a wide range of cellular activities; many of these bind adenine nucleotides through a conserved motif that is also present in the CBS domains fused to CP12. In addition, a survey of expression data sets shows that the CP12 paralogs are differentially regulated. Furthermore, modeling of the cyanobacterial CP12 protein variants based on the recently available three-dimensional structure of the canonical cyanobacterial CP12 in complex with GAPDH suggests that some of the newly identified cyanobacterial CP12 types are unlikely to bind to GAPDH. Collectively these data show that, as is becoming increasingly apparent for plant CP12 proteins, the role of CP12 in cyanobacteria is likely more complex than previously appreciated, possibly involving other signals in addition to light. Moreover, our findings substantiate the proposal that this small protein may have multiple roles in photosynthetic organisms.
Collapse
|
47
|
Seidler NW. Dynamic oligomeric properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 985:207-47. [PMID: 22851451 DOI: 10.1007/978-94-007-4716-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This chapter provides a foundation for further research into the relationship between dynamic oligomeric properties and functional diversity. The structural basis that underlies the conformational sub-states of the GAPDH oligomer is discussed. The issue of protein stability is given a thorough analysis, since it is well-established that the primary strategy for protein oligomerization is to stabilize conformation. Several factors that affect oligomerization are described, including chemical modification by synthetic reagents. The effects of native substrates and coenzymes are also discussed. The curious feature of chloride ions having a de-stabilizing effect on native GAPDH structure is described. Additionally, the role of adenine dinucleotides in tetramer-dimer equilibrium dynamics is suggested to be a major part of the physiological regulation of GAPDH structure and function. This chapter also contends that a vast amount of useful information can come from comparative analyses of diverse species, particularly regarding protein stability and subunit-subunit interaction. Lastly, the concept of domain exchange is introduced as a means of understanding the stabilization of dynamic oligomers, suggesting that inter-subunit contacts may also be a way of masking docking sites to other proteins.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
48
|
Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties. FRONTIERS IN PLANT SCIENCE 2013; 4:450. [PMID: 24282406 PMCID: PMC3824636 DOI: 10.3389/fpls.2013.00450] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/21/2013] [Indexed: 05/17/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme involved in glycolysis and shown, particularly in animal cells, to play additional roles in several unrelated non-metabolic processes such as control of gene expression and apoptosis. This functional versatility is regulated, in part at least, by redox post-translational modifications that alter GAPDH catalytic activity and influence the subcellular localization of the enzyme. In spite of the well established moonlighting (multifunctional) properties of animal GAPDH, little is known about non-metabolic roles of GAPDH in plants. Plant cells contain several GAPDH isoforms with different catalytic and regulatory properties, located both in the cytoplasm and in plastids, and participating in glycolysis and the Calvin-Benson cycle. A general feature of all GAPDH proteins is the presence of an acidic catalytic cysteine in the active site that is overly sensitive to oxidative modifications, including glutathionylation and S-nitrosylation. In Arabidopsis, oxidatively modified cytoplasmic GAPDH has been successfully used as a tool to investigate the role of reduced glutathione, thioredoxins and glutaredoxins in the control of different types of redox post-translational modifications. Oxidative modifications inhibit GAPDH activity, but might enable additional functions in plant cells. Mounting evidence support the concept that plant cytoplasmic GAPDH may fulfill alternative, non-metabolic functions that are triggered by redox post-translational modifications of the protein under stress conditions. The aim of this review is to detail the molecular mechanisms underlying the redox regulation of plant cytoplasmic GAPDH in the light of its crystal structure, and to provide a brief inventory of the well known redox-dependent multi-facetted properties of animal GAPDH, together with the emerging roles of oxidatively modified GAPDH in stress signaling pathways in plants.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
- *Correspondence: Mirko Zaffagnini and Paolo Trost, Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy e-mail: ;
| | - Simona Fermani
- Department of Chemistry “G. Ciamician”, University of BolognaBologna, Italy
| | - Alex Costa
- Department of Biosciences, University of MilanoMilano, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Université Pierre et Marie CurieParis, France
| | - Paolo Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
- *Correspondence: Mirko Zaffagnini and Paolo Trost, Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy e-mail: ;
| |
Collapse
|
49
|
Abstract
There is increasing evidence to support a gene economy model that is fully based on the principles of evolution in which a limited number of proteins does not necessarily reflect a finite number of biochemical processes. The concept of 'gene sharing' proposes that a single protein can have alternate functions that are typically attributed to other proteins. GAPDH appears to play this role quite well in that it exhibits more than one function. GAPDH represents the prototype for this new paradigm of protein multi-functionality. The chapter discusses the diverse functions of GAPDH among three broad categories: cell structure, gene expression and signal transduction. Protein function is curiously re-specified given the cell's unique needs. GAPDH provides the cell with the means of linking metabolic activity to various cellular processes. While interpretations may often lead to GAPDH's role in meeting focal energy demands, this chapter discusses several other very distinct GAPDH functions (i.e. membrane fusogenic properties) that are quite different from its ability to catalyze oxidative phosphorylation of the triose, glyceraldehyde 3-phosphate. It is suggested that a single protein participates in multiple processes in the structural organization of the cell, controls the transmission of genetic information (i.e. GAPDH's involvement may not be finite) and mediates intracellular signaling.
Collapse
|
50
|
Taniguchi M, Miyake H. Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:252-60. [PMID: 22336038 DOI: 10.1016/j.pbi.2012.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 05/02/2023]
Abstract
Reducing equivalents produced in the chloroplast are essential for many key cellular metabolic enzyme reactions. Two redox shuttle systems transfer reductant out of the chloroplast; these systems consist of metabolite transporters, coupled with stromal and cytosolic dehydrogenase isozymes. The transporters function in the redox shuttle and also operate as key enzymes in carbon/nitrogen metabolism. To maintain adequate levels of reductant and proper metabolic balance, the shuttle systems are finely controlled. Also, in the leaves of C(4) plants, cell-specific division of carbon and nitrogen assimilation includes cell-specific localization of the redox shuttle systems. The redox shuttle systems are tightly linked to cellular metabolic pathways and are essential for maintaining metabolic balance between energy and reducing equivalents.
Collapse
Affiliation(s)
- Mitsutaka Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan.
| | | |
Collapse
|