1
|
Ihalainen JA, Dogan B, Kurttila M, Zeng Y, van Elsas JD, Nissinen R. Multifaceted photoreceptor compositions in dual phototrophic systems - A genomic analysis. J Mol Biol 2024; 436:168412. [PMID: 38135178 DOI: 10.1016/j.jmb.2023.168412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
For microbes and their hosts, sensing of external cues is essential for their survival. For example, in the case of plant associated microbes, the light absorbing pigment composition of the plant as well as the ambient light conditions determine the well-being of the microbe. In addition to light sensing, some microbes can utilize xanthorhodopsin based proton pumps and bacterial photosynthetic complexes that work in parallel for energy production. They are called dual phototrophic systems. Light sensing requirements in these type of systems are obviously demanding. In nature, the photosensing machinery follows mainly the same composition in all organisms. However, the specific role of each photosensor in specific light conditions is elusive. In this study, we provide an overall picture of photosensors present in dual phototrophic systems. We compare the genomes of the photosensor proteins from dual phototrophs to those from similar microbes with "single" phototrophicity or microbes without phototrophicity. We find that the dual phototrophic bacteria obtain a larger variety of photosensors than their light inactive counterparts. Their rich domain composition and functional repertoire remains similar across all microbial photosensors. Our study calls further investigations of this particular group of bacteria. This includes protein specific biophysical characterization in vitro, microbiological studies, as well as clarification of the ecological meaning of their host microbial interactions.
Collapse
Affiliation(s)
- Janne A Ihalainen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Batuhan Dogan
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Moona Kurttila
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Yonghui Zeng
- University of Copenhagen, Department of Plant and Environmental Sciences, 2100 Copenhagen, Denmark
| | - Jan Dirk van Elsas
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, 9747 AG Groningen, the Netherlands
| | - Riitta Nissinen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland; University of Turku, Department of Biology, 20500 Turku, Finland
| |
Collapse
|
2
|
Torres Vera R, Bernabé García AJ, Carmona Álvarez FJ, Martínez Ruiz J, Fernández Martín F. Application and effectiveness of Methylobacterium symbioticum as a biological inoculant in maize and strawberry crops. Folia Microbiol (Praha) 2024; 69:121-131. [PMID: 37526803 PMCID: PMC10876812 DOI: 10.1007/s12223-023-01078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
The effectiveness of Methylobacterium symbioticum in maize and strawberry plants was measured under different doses of nitrogen fertilisation. The biostimulant effect of the bacteria was observed in maize and strawberry plants treated with the biological inoculant under different doses of nitrogen fertiliser compared to untreated plants (control). It was found that bacteria allowed a 50 and 25% decrease in the amount of nitrogen applied in maize and strawberry crops, respectively, and the photosynthetic capacity increased compared with the control plant under all nutritional conditions. A decrease in nitrate reductase activity in inoculated maize plants indicated that the bacteria affects the metabolism of the plant. In addition, inoculated strawberry plants grown with a 25% reduction in nitrogen had a higher concentration of nitrogen in leaves than control plants under optimal nutritional conditions. Again, this indicates that Methylobacterium symbioticum provide an additional supply of nitrogen.
Collapse
|
3
|
Caramello N, Royant A. From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons. Acta Crystallogr D Struct Biol 2024; 80:60-79. [PMID: 38265875 PMCID: PMC10836399 DOI: 10.1107/s2059798323011002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Over the last decade, the development of time-resolved serial crystallography (TR-SX) at X-ray free-electron lasers (XFELs) and synchrotrons has allowed researchers to study phenomena occurring in proteins on the femtosecond-to-minute timescale, taking advantage of many technical and methodological breakthroughs. Protein crystals of various sizes are presented to the X-ray beam in either a static or a moving medium. Photoactive proteins were naturally the initial systems to be studied in TR-SX experiments using pump-probe schemes, where the pump is a pulse of visible light. Other reaction initiations through small-molecule diffusion are gaining momentum. Here, selected examples of XFEL and synchrotron time-resolved crystallography studies will be used to highlight the specificities of the various instruments and methods with respect to time resolution, and are compared with cryo-trapping studies.
Collapse
Affiliation(s)
- Nicolas Caramello
- Structural Biology Group, European Synchrotron Radiation Facility, 1 Avenue des Martyrs, CS 40220, 38043 Grenoble CEDEX 9, France
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Antoine Royant
- Structural Biology Group, European Synchrotron Radiation Facility, 1 Avenue des Martyrs, CS 40220, 38043 Grenoble CEDEX 9, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, CS 10090, 38044 Grenoble CEDEX 9, France
| |
Collapse
|
4
|
Chenchiliyan M, Kübel J, Ooi SA, Salvadori G, Mennucci B, Westenhoff S, Maj M. Ground-state heterogeneity and vibrational energy redistribution in bacterial phytochrome observed with femtosecond 2D IR spectroscopy. J Chem Phys 2023; 158:085103. [PMID: 36859103 DOI: 10.1063/5.0135268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Phytochromes belong to a group of photoreceptor proteins containing a covalently bound biliverdin chromophore that inter-converts between two isomeric forms upon photoexcitation. The existence and stability of the photocycle products are largely determined by the protein sequence and the presence of conserved hydrogen-bonding interactions in the vicinity of the chromophore. The vibrational signatures of biliverdin, however, are often weak and obscured under more intense protein bands, limiting spectroscopic studies of its non-transient signals. In this study, we apply isotope-labeling techniques to isolate the vibrational bands from the protein-bound chromophore of the bacterial phytochrome from Deinococcus radiodurans. We elucidate the structure and ultrafast dynamics of the chromophore with 2D infra-red (IR) spectroscopy and molecular dynamics simulations. The carbonyl stretch vibrations of the pyrrole rings show the heterogeneous distribution of hydrogen-bonding structures, which exhibit distinct ultrafast relaxation dynamics. Moreover, we resolve a previously undetected 1678 cm-1 band that is strongly coupled to the A- and D-ring of biliverdin and demonstrate the presence of complex vibrational redistribution pathways between the biliverdin modes with relaxation-assisted measurements of 2D IR cross peaks. In summary, we expect 2D IR spectroscopy to be useful in explaining how point mutations in the protein sequence affect the hydrogen-bonding structure around the chromophore and consequently its ability to photoisomerize to the light-activated states.
Collapse
Affiliation(s)
- Manoop Chenchiliyan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56126 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56126 Pisa, Italy
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Michał Maj
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| |
Collapse
|
5
|
Liu G, Shan Y, Zheng R, Liu R, Sun C. Growth promotion of a deep-sea bacterium by sensing infrared light through a bacteriophytochrome photoreceptor. Environ Microbiol 2021; 23:4466-4477. [PMID: 34121298 DOI: 10.1111/1462-2920.15639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Photoreceptors are found in all kingdoms of life and bacteriophytochromes (Bphps) are the most abundant photo-sensing receptors in bacteria. Interestingly, BphPs have been linked to some bacterial physiological responses, yet most of the biological processes they regulate are still elusive, especially in non-photosynthetic bacteria. Here, we show that a bacteriophytochrome (CmoBphp) from a deep-sea bacterium Croceicoccus marinus OT19 perceives infrared light (wavelength at 940 nm) and transduces photo-sensing signals to a downstream intracellular transduction cascade for better growth. We discover that the infrared light-mediated growth promotion of C. marinus OT19 is attributed partly to the enhancement of pyruvate and propanoate metabolism. Further study suggests that CmoBphp plays a crucial role in integrating infrared light with intracellular signalling to control the bacterial growth and metabolism. This is the first report that deep-sea non-photosynthetic bacteria can sense infrared light to control growth through a bacteriophytochrome photoreceptor, thus providing new understandings towards light energy utilization by microorganisms.
Collapse
Affiliation(s)
- Ge Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
6
|
Consiglieri E, Xu QZ, Zhao KH, Gärtner W, Losi A. The first molecular characterisation of blue- and red-light photoreceptors from Methylobacterium radiotolerans. Phys Chem Chem Phys 2020; 22:12434-12446. [PMID: 32458860 DOI: 10.1039/d0cp02014a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methylobacteria are facultative methylotrophic phytosymbionts of great industrial and agronomical interest, and they are considered as opportunistic pathogens posing a health threat to humans. So far only a few reports mention photoreceptor coding sequences in Methylobacteria genomes, but no investigation at the molecular level has been performed yet. We here present comprehensive in silico research into potential photoreceptors in this bacterial phylum and report the photophysical and photochemical characterisation of two representatives of the most widespread photoreceptor classes, a blue-light sensing LOV (light, oxygen, voltage) protein and a red/far red light sensing BphP (biliverdin-binding bacterial phytochrome) from M. radiotolerans JCM 2831. Overall, both proteins undergo the expected light-triggered reactions, but peculiar features were also identified. The LOV protein Mr4511 has an extremely long photocycle and lacks a tryptophan conserved in ca. 75% of LOV domains. Mutation I37V accelerates the photocycle by one order of magnitude, while the Q112W change underscores the ability of tryptophan in this position to perform efficient energy transfer to the flavin chromophore. Time-resolved photoacoustic experiments showed that Mr4511 has a higher triplet quantum yield than other LOV domains and that the formation of the photoproduct results in a volume expansion, in sharp contrast to other LOV proteins. Mr4511 was found to be astonishingly resistant to denaturation by urea, still showing light-triggered reactions after incubation in urea for more than 20 h. The phytochrome MrBphP1 exhibits the so far most red-shifted absorption maxima for its Pr- and Pfr forms (λmax = 707 nm and 764 nm for the Pr and Pfr forms). The light-driven conversions in both directions occur with relatively high quantum yields of 0.2. Transient ns absorption spectroscopy (μs-ms time range) identifies the decay of the instantaneously formed lumi-intermediate, followed by only one additional intermediate before the formation of the respective final photoproducts for Pr-to-Pfr or Pfr-to-Pr photoconversion, in contrast to other BphPs. The relatively simple photoconversion patterns suggest the absence of the shunt pathways reported for other bacterial phytochromes.
Collapse
Affiliation(s)
- Eleonora Consiglieri
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| | - Qian-Zhao Xu
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany and State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| |
Collapse
|
7
|
Sum JS, Yamazaki Y, Yoshida K, Yonezawa K, Hayashi Y, Kataoka M, Kamikubo H. Spectroscopic and structural characteristics of a dual-light sensor protein, PYP-phytochrome related protein. Biophys Physicobiol 2020; 17:103-112. [PMID: 33194513 PMCID: PMC7610063 DOI: 10.2142/biophysico.bsj-2020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/01/2022] Open
Abstract
PYP-phytochrome related (Ppr) protein contains the two light sensor domains, photoactive yellow protein (PYP) and bacteriophytochrome (Bph), which mainly absorb blue and red light by the chromophores of p-coumaric acid (pCA) and biliverdin (BV), respectively. As a result, Ppr has the ability to photoactivate both domains together or separately. We investigated the photoreaction of each photosensor domain under different light irradiation conditions and clarified the inter-dependency between these domains. Within the first 10 s of blue light illumination, Ppr (Holo-Holo-Ppr) accompanied by both pCA and BV demonstrated spectrum changes reflecting PYPL accumulation, which can also be observed in Ppr containing only pCA (Holo-Apo-Ppr), and a fragment of Ppr lacking the C-terminal Bph domain. Although Holo-Apo-Ppr showed PYPL as a major photoproduct under blue light, as seen in the Bph-truncated Ppr, the equilibrium in the Holo-Holo-Ppr was shifted from PYPL to PYPM as the reaction progresses under blue light. Concomitantly, the spectrum of Bph exhibited subtle but distinguishable alteration. Together with the fact, it can be proposed that Bph with BV influences the photoreaction of PYP in Ppr, and vice versa. SAXS measurements revealed substantial tertiary structure changes in Holo-Holo-Ppr under continuous blue light irradiation within the first 5 min time domain. Interestingly, the changes in tertiary structure were partially suppressed by photoactivation of the Bph domain. These observations indicate that the photoreactions of the PYP and Bph domains are coupled with each other, and that the interplay realizes the structural switch, which might be involved in downstream signal transduction.
Collapse
Affiliation(s)
- Jia-Siang Sum
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yoichi Yamazaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Keito Yoshida
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kento Yonezawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Yugo Hayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hironari Kamikubo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
8
|
Matlashov ME, Shcherbakova DM, Alvelid J, Baloban M, Pennacchietti F, Shemetov AA, Testa I, Verkhusha VV. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat Commun 2020; 11:239. [PMID: 31932632 PMCID: PMC6957686 DOI: 10.1038/s41467-019-13897-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/03/2019] [Indexed: 11/09/2022] Open
Abstract
Bright monomeric near-infrared (NIR) fluorescent proteins (FPs) are in high demand as protein tags for multicolor microscopy and in vivo imaging. Here we apply rational design to engineer a complete set of monomeric NIR FPs, which are the brightest genetically encoded NIR probes. We demonstrate that the enhanced miRFP series of NIR FPs, which combine high effective brightness in mammalian cells and monomeric state, perform well in both nanometer-scale imaging with diffraction unlimited stimulated emission depletion (STED) microscopy and centimeter-scale imaging in mice. In STED we achieve ~40 nm resolution in live cells. In living mice we detect ~105 fluorescent cells in deep tissues. Using spectrally distinct monomeric NIR FP variants, we perform two-color live-cell STED microscopy and two-color imaging in vivo. Having emission peaks from 670 nm to 720 nm, the next generation of miRFPs should become versatile NIR probes for multiplexed imaging across spatial scales in different modalities.
Collapse
Affiliation(s)
- Mikhail E Matlashov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Jonatan Alvelid
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Francesca Pennacchietti
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anton A Shemetov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA. .,Medicum, Faculty of Medicine, University of Helsinki, 00029, Helsinki, Finland.
| |
Collapse
|
9
|
Abstract
The purple nonsulfur bacterium Rhodopseudomonas palustris is a model for understanding how a phototrophic organism adapts to changes in light intensity because it produces different light-harvesting (LH) complexes under high light (LH2) and low light intensities (LH3 and LH4). Outside of this change in the composition of the photosystem, little is understood about how R. palustris senses and responds to low light intensity. On the basis of the results of transcription analysis of 17 R. palustris strains grown in low light, we found that R. palustris strains downregulate many genes involved in iron transport and homeostasis. The only operon upregulated in the majority of R. palustris exposed to low light intensity was pucBAd, which encodes LH4. In previous work, pucBAd expression was shown to be modulated in response to light quality by bacteriophytochromes that are part of a low-light signal transduction system. Here we found that this signal transduction system also includes a redox-sensitive protein, LhfE, and that its redox sensitivity is required for LH4 synthesis in response to low light. Our results suggest that R. palustris upregulates its LH4 system when the cellular redox state is relatively oxidized. Consistent with this, we found that LH4 synthesis was upregulated under high light intensity when R. palustris was grown semiaerobically or under nitrogen-fixing conditions. Thus, changes in the LH4 system in R. palustris are not dependent on light intensity per se but rather on cellular redox changes that occur as a consequence of changes in light intensity.IMPORTANCE An essential aspect of the physiology of phototrophic bacteria is their ability to adjust the amount and composition of their light-harvesting apparatus in response to changing environmental conditions. The phototrophic purple bacterium R. palustris adapts its photosystem to a range of light intensities by altering the amount and composition of its peripheral LH complexes. Here we found that R. palustris regulates its LH4 complex in response to the cellular redox state rather than in response to light intensity per se Relatively oxidizing conditions, including low light, semiaerobic growth, and growth under nitrogen-fixing conditions, all stimulated a signal transduction system to activate LH4 expression. By understanding how LH composition is regulated in R. palustris, we will gain insight into how and why a photosynthetic organism senses and adapts its photosystem to multiple environmental cues.
Collapse
|
10
|
De Luca G, Fochesato S, Lavergne J, Forest KT, Barakat M, Ortet P, Achouak W, Heulin T, Verméglio A. Light on the cell cycle of the non-photosynthetic bacterium Ramlibacter tataouinensis. Sci Rep 2019; 9:16505. [PMID: 31712689 PMCID: PMC6848086 DOI: 10.1038/s41598-019-52927-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022] Open
Abstract
Ramlibacter tataouinensis TTB310, a non-photosynthetic betaproteobacterium isolated from a semi-arid region of southern Tunisia, forms both rods and cysts. Cysts are resistant to desiccation and divide when water and nutrients are available. Rods are motile and capable of dissemination. Due to the strong correlation between sunlight and desiccation, light is probably an important external signal for anticipating desiccating conditions. Six genes encoding potential light sensors were identified in strain TTB310. Two genes encode for bacteriophytochromes, while the four remaining genes encode for putative blue light receptors. We determined the spectral and photochemical properties of the two recombinant bacteriophytochromes RtBphP1 and RtBphP2. In both cases, they act as sensitive red light detectors. Cyst divisions and a complete cyst-rod-cyst cycle are the main processes in darkness, whereas rod divisions predominate in red or far-red light. Mutant phenotypes caused by the inactivation of genes encoding bacteriophytochromes or heme oxygenase clearly show that both bacteriophytochromes are involved in regulating the rod-rod division. This process could favor rapid rod divisions at sunrise, after dew formation but before the progressive onset of desiccation. Our study provides the first evidence of a light-based strategy evolved in a non-photosynthetic bacterium to exploit scarse water in a desert environment.
Collapse
Affiliation(s)
- Gilles De Luca
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Sylvain Fochesato
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Jérôme Lavergne
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Philippe Ortet
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France.
| | - André Verméglio
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| |
Collapse
|
11
|
Cook ZT, Brockway NL, Tobias ZJC, Pajarla J, Boardman IS, Ippolito H, Nkombo Nkoula S, Weissman TA. Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context. Mol Biol Cell 2019; 30:491-505. [PMID: 30586321 PMCID: PMC6594444 DOI: 10.1091/mbc.e18-06-0340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fluorescent proteins are a powerful experimental tool, allowing the visualization of gene expression and cellular behaviors in a variety of systems. Multicolor combinations of fluorescent proteins, such as Brainbow, have expanded the range of possible research questions and are useful for distinguishing and tracking cells. The addition of a separately driven color, however, would allow researchers to report expression of a manipulated gene within the multicolor context to investigate mechanistic effects. A far-red or near-infrared protein could be particularly suitable in this context, as these can be distinguished spectrally from Brainbow. We investigated five far-red/near-infrared proteins in zebrafish: TagRFP657, mCardinal, miRFP670, iRFP670, and mIFP. Our results show that both mCardinal and iRFP670 are useful fluorescent proteins for zebrafish expression. We also introduce a new transgenic zebrafish line that expresses Brainbow under the control of the neuroD promoter. We demonstrate that mCardinal can be used to track the expression of a manipulated bone morphogenetic protein receptor within the Brainbow context. The overlay of near-infrared fluorescence onto a Brainbow background defines a clear strategy for future research questions that aim to manipulate or track the effects of specific genes within a population of cells that are delineated using multicolor approaches.
Collapse
Affiliation(s)
- Zoe T. Cook
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | | - Joy Pajarla
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | - Helen Ippolito
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | |
Collapse
|
12
|
Serdyuk OP, Smolygina LD, Khristin MS. Membrane-Bound Bacteriophytochrome-Like Complex of Phototrophic Purple Non-Sulfur Bacterium Rhodopseudomonas palustris. DOKL BIOCHEM BIOPHYS 2018; 482:284-287. [PMID: 30397894 DOI: 10.1134/s1607672918050149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Indexed: 11/23/2022]
Abstract
A pigment-protein complex of yellow color with absorption maxima at 682 and 776 nm, characteristic for bacteriophytochromes, was isolated from the photosynthetic membranes of the purple bacterium Rhodopseudomonas palustris. Zinc-induced fluorescence of the complex indicated the presence of the biliverdin chromophore covalently bound to the protein. The parameters of low-temperature fluorescence (λ excitation at 680 nm, λ emission at 695 nm) indicated the ability of the complex to undergo photoconversion. These data, as well as the kinetics of accumulation of the red (Pr)-form on far red light, allowed the complex to be classified as a bacteriophytochrome-like complex with its localization in the photosynthetic membranes of Rps. palustris.
Collapse
Affiliation(s)
- O P Serdyuk
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia.
| | - L D Smolygina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | - M S Khristin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| |
Collapse
|
13
|
Leopold AV, Chernov KG, Verkhusha VV. Optogenetically controlled protein kinases for regulation of cellular signaling. Chem Soc Rev 2018; 47:2454-2484. [PMID: 29498733 DOI: 10.1039/c7cs00404d] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.
Collapse
Affiliation(s)
- Anna V Leopold
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | | | | |
Collapse
|
14
|
Abstract
Optogenetics is a technology wherein researchers combine light and genetically engineered photoreceptors to control biological processes with unrivaled precision. Near-infrared (NIR) wavelengths (>700 nm) are desirable optogenetic inputs due to their low phototoxicity and spectral isolation from most photoproteins. The bacteriophytochrome photoreceptor 1 (BphP1), found in several purple photosynthetic bacteria, senses NIR light and activates transcription of photosystem promoters by binding to and inhibiting the transcriptional repressor PpsR2. Here, we examine the response of a library of output promoters to increasing levels of Rhodopseudomonas palustris PpsR2 expression, and we identify that of Bradyrhizobium sp. BTAi1 crtE as the most strongly repressed in Escherichia coli. Next, we optimize Rps. palustris bphP1 and ppsR2 expression in a strain engineered to produce the required chromophore biliverdin IXα in order to demonstrate NIR-activated transcription. Unlike a previously engineered bacterial NIR photoreceptor, our system does not require production of a second messenger, and it exhibits rapid response dynamics. It is also the most red-shifted bacterial optogenetic tool yet reported by approximately 50 nm. Accordingly, our BphP1-PpsR2 system has numerous applications in bacterial optogenetics.
Collapse
Affiliation(s)
- Nicholas T. Ong
- Department of Bioengineering, ‡Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Evan J. Olson
- Department of Bioengineering, ‡Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Jeffrey J. Tabor
- Department of Bioengineering, ‡Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Oliinyk OS, Chernov KG, Verkhusha VV. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes. Int J Mol Sci 2017; 18:E1691. [PMID: 28771184 PMCID: PMC5578081 DOI: 10.3390/ijms18081691] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial photoreceptors absorb light energy and transform it into intracellular signals that regulate metabolism. Bacterial phytochrome photoreceptors (BphPs), some cyanobacteriochromes (CBCRs) and allophycocyanins (APCs) possess the near-infrared (NIR) absorbance spectra that make them promising molecular templates to design NIR fluorescent proteins (FPs) and biosensors for studies in mammalian cells and whole animals. Here, we review structures, photochemical properties and molecular functions of several families of bacterial photoreceptors. We next analyze molecular evolution approaches to develop NIR FPs and biosensors. We then discuss phenotypes of current BphP-based NIR FPs and compare them with FPs derived from CBCRs and APCs. Lastly, we overview imaging applications of NIR FPs in live cells and in vivo. Our review provides guidelines for selection of existing NIR FPs, as well as engineering approaches to develop NIR FPs from the novel natural templates such as CBCRs.
Collapse
Affiliation(s)
- Olena S Oliinyk
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Konstantin G Chernov
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Vladislav V Verkhusha
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
16
|
Baloban M, Shcherbakova DM, Pletnev S, Pletnev VZ, Lagarias JC, Verkhusha VV. Designing brighter near-infrared fluorescent proteins: insights from structural and biochemical studies. Chem Sci 2017; 8:4546-4557. [PMID: 28936332 PMCID: PMC5590093 DOI: 10.1039/c7sc00855d] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
Brighter near-infrared (NIR) fluorescent proteins (FPs) are required for multicolor microscopy and deep-tissue imaging. Here, we present structural and biochemical analyses of three monomeric, spectrally distinct phytochrome-based NIR FPs, termed miRFPs. The miRFPs are closely related and differ by only a few amino acids, which define their molecular brightness, brightness in mammalian cells, and spectral properties. We have identified the residues responsible for the spectral red-shift, revealed a new chromophore bound simultaneously to two cysteine residues in the PAS and GAF domains in blue-shifted NIR FPs, and uncovered the importance of amino acid residues in the N-terminus of NIR FPs for their molecular and cellular brightness. The novel chromophore covalently links the N-terminus of NIR FPs with their C-terminal GAF domain, forming a topologically closed knot in the structure, and also contributes to the increased brightness. Based on our studies, we suggest a strategy to develop spectrally distinct NIR FPs with enhanced brightness.
Collapse
Affiliation(s)
- Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , New York 10461 , USA .
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , New York 10461 , USA .
| | - Sergei Pletnev
- Macromolecular Crystallography Laboratory , National Cancer Institute , Leidos Biomedical Research Inc. , Basic Research Program , Argonne , Illinois 60439 , USA
| | - Vladimir Z Pletnev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow 117997 , Russian Federation
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology , University of California in Davis , California 95616 , USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , New York 10461 , USA .
- Department of Biochemistry and Developmental Biology , Faculty of Medicine , University of Helsinki , Helsinki 00029 , Finland
| |
Collapse
|
17
|
Velázquez Escobar F, Buhrke D, Michael N, Sauthof L, Wilkening S, Tavraz NN, Salewski J, Frankenberg-Dinkel N, Mroginski MA, Scheerer P, Friedrich T, Siebert F, Hildebrandt P. Common Structural Elements in the Chromophore Binding Pocket of the Pfr State of Bathy Phytochromes. Photochem Photobiol 2017; 93:724-732. [DOI: 10.1111/php.12742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Affiliation(s)
| | - David Buhrke
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | - Norbert Michael
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | - Luisa Sauthof
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
- Institute of Medical Physics and Biophysics (CCO); Group Protein X-ray Crystallography & Signal Transduction; Charité - University Medicine Berlin; Berlin Germany
| | - Svea Wilkening
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | | | | | - Nicole Frankenberg-Dinkel
- Fachbereich Biologie; Abt. Mikrobiologie; Technische Universität Kaiserslautern; Kaiserslautern Germany
| | | | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CCO); Group Protein X-ray Crystallography & Signal Transduction; Charité - University Medicine Berlin; Berlin Germany
| | - Thomas Friedrich
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | - Friedrich Siebert
- Institut für Molekulare Medizin und Zellforschung; Sektion Biophysik; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
| | | |
Collapse
|
18
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Shcherbakova DM, Verkhusha VV, Turoverov KK. Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome. Int J Mol Sci 2017; 18:E1009. [PMID: 28481303 PMCID: PMC5454922 DOI: 10.3390/ijms18051009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russian.
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park ave., Bronx, NY 10461, USA.
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park ave., Bronx, NY 10461, USA.
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 8 Haartmaninkatu st., Helsinki 00290, Finland.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russian.
| |
Collapse
|
19
|
Chernov KG, Redchuk TA, Omelina ES, Verkhusha VV. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes. Chem Rev 2017; 117:6423-6446. [DOI: 10.1021/acs.chemrev.6b00700] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Konstantin G. Chernov
- Department
of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Taras A. Redchuk
- Department
of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Evgeniya S. Omelina
- Department
of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Vladislav V. Verkhusha
- Department
of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Department
of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
20
|
Brutesco C, Prévéral S, Escoffier C, Descamps ECT, Prudent E, Cayron J, Dumas L, Ricquebourg M, Adryanczyk-Perrier G, de Groot A, Garcia D, Rodrigue A, Pignol D, Ginet N. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:52-65. [PMID: 27234828 DOI: 10.1007/s11356-016-6952-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible Pars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.
Collapse
Affiliation(s)
- Catherine Brutesco
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Sandra Prévéral
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Camille Escoffier
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Elodie C T Descamps
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Elsa Prudent
- Université de Lyon, Lyon, 69003, France
- INSA de Lyon, Villeurbanne, 69621, France
- CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Lyon 1, Villeurbanne, 69622, France
| | - Julien Cayron
- Université de Lyon, Lyon, 69003, France
- INSA de Lyon, Villeurbanne, 69621, France
- CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Lyon 1, Villeurbanne, 69622, France
| | - Louis Dumas
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Manon Ricquebourg
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Géraldine Adryanczyk-Perrier
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Arjan de Groot
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Daniel Garcia
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Agnès Rodrigue
- Université de Lyon, Lyon, 69003, France
- INSA de Lyon, Villeurbanne, 69621, France
- CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Lyon 1, Villeurbanne, 69622, France
| | - David Pignol
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Nicolas Ginet
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France.
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.
| |
Collapse
|
21
|
Hontani Y, Shcherbakova DM, Baloban M, Zhu J, Verkhusha VV, Kennis JTM. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics. Sci Rep 2016; 6:37362. [PMID: 27857208 PMCID: PMC5114657 DOI: 10.1038/srep37362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we report on fluorescence properties of NIR FPs with key alterations in their BV binding sites. BphP1-FP, iRFP670 and iRFP682 have Cys residues in both PAS and GAF domains, rather than in the PAS domain alone as in wild-type BphPs. We found that NIR FP variants with Cys in the GAF or with Cys in both PAS and GAF show blue-shifted emission with long fluorescence lifetimes. In contrast, mutants with Cys in the PAS only or no Cys residues at all exhibit red-shifted emission with shorter lifetimes. Combining these results with previous biochemical and BphP1-FP structural data, we conclude that BV adducts bound to Cys in the GAF are the origin of bright blue-shifted fluorescence. We propose that the long fluorescence lifetime follows from (i) a sterically more constrained thioether linkage, leaving less mobility for ring A than in canonical BphPs, and (ii) that π-electron conjugation does not extend on ring A, making excited-state deactivation less sensitive to ring A mobility.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jingyi Zhu
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - John T M Kennis
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
22
|
Ledermann B, Béjà O, Frankenberg-Dinkel N. New biosynthetic pathway for pink pigments from uncultured oceanic viruses. Environ Microbiol 2016; 18:4337-4347. [PMID: 26950653 DOI: 10.1111/1462-2920.13290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
The pink open-chain tetrapyrrole pigment phycoerythrobilin (PEB) is employed by marine cyanobacteria, red algae and cryptophytes as a light-harvesting chromophore in phycobiliproteins. Genes encoding biosynthesis proteins for PEB have also been discovered in cyanophages, viruses that infect cyanobacteria, and mimic host pigment biosynthesis with the exception of PebS which combines the enzymatic activities of two host enzymes. In this study, we have identified novel members of the PEB biosynthetic enzyme families, heme oxygenases and ferredoxin-dependent bilin reductases. Encoding genes were found in metagenomic datasets and could be traced back to bacteriophage but not cyanophage origin. While the heme oxygenase exhibited standard activity, a new bilin reductase with highest homology to the teal pigment producing enzyme PcyA revealed PEB biosynthetic activity. Although PcyX possesses PebS-like activity both enzymes share only 9% sequence identity and likely catalyze the reaction via two independent mechanisms. Our data point towards the presence of phycobilin biosynthetic genes in phages that probably infect alphaproteobacteria and, therefore, further support a role of phycobilins outside oxygenic phototrophs.
Collapse
Affiliation(s)
- Benjamin Ledermann
- Department of Biology, Microbiology, Technical University Kaiserslautern, Kaiserslautern, Germany
| | - Oded Béjà
- Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
23
|
Yu D, Dong Z, Gustafson WC, Ruiz‐González R, Signor L, Marzocca F, Borel F, Klassen MP, Makhijani K, Royant A, Jan Y, Weiss WA, Guo S, Shu X. Rational design of a monomeric and photostable far-red fluorescent protein for fluorescence imaging in vivo. Protein Sci 2016; 25:308-15. [PMID: 26549191 PMCID: PMC4815332 DOI: 10.1002/pro.2843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 11/08/2022]
Abstract
Fluorescent proteins (FPs) are powerful tools for cell and molecular biology. Here based on structural analysis, a blue-shifted mutant of a recently engineered monomeric infrared fluorescent protein (mIFP) has been rationally designed. This variant, named iBlueberry, bears a single mutation that shifts both excitation and emission spectra by approximately 40 nm. Furthermore, iBlueberry is four times more photostable than mIFP, rendering it more advantageous for imaging protein dynamics. By tagging iBlueberry to centrin, it has been demonstrated that the fusion protein labels the centrosome in the developing zebrafish embryo. Together with GFP-labeled nucleus and tdTomato-labeled plasma membrane, time-lapse imaging to visualize the dynamics of centrosomes in radial glia neural progenitors in the intact zebrafish brain has been demonstrated. It is further shown that iBlueberry can be used together with mIFP in two-color protein labeling in living cells and in two-color tumor labeling in mice.
Collapse
Affiliation(s)
- Dan Yu
- Department of Pharmaceutical ChemistryCardiovascular Research Institute, University of California – San FranciscoSan FranciscoCalifornia
| | - Zhiqiang Dong
- Department of Bioengineering and Therapeutic ScienceEli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Institute of Human Genetics, University of CaliforniaSan FranciscoCalifornia
- College of Life Sciences and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - William Clay Gustafson
- Department of Pediatrics, Departments of Neurology and Neurological SurgeryUniversity of California – San FranciscoSan FranciscoCalifornia
| | - Rubén Ruiz‐González
- Institut Químic De SarriàUniversitat Ramon Llullvia Augusta 390Barcelona08017Spain
| | - Luca Signor
- Institut De Biologie Structurale (IBS)University of Grenoble Alpes, CNRS, CEAGrenobleF‐38044France
| | - Fanny Marzocca
- Institut De Biologie Structurale (IBS)University of Grenoble Alpes, CNRS, CEAGrenobleF‐38044France
| | - Franck Borel
- Institut De Biologie Structurale (IBS)University of Grenoble Alpes, CNRS, CEAGrenobleF‐38044France
| | - Matthew P. Klassen
- Howard Hughes Medical Institute, Department of PhysiologyUniversity of California – San FranciscoSan FranciscoCalifornia
| | - Kalpana Makhijani
- Department of Pharmaceutical ChemistryCardiovascular Research Institute, University of California – San FranciscoSan FranciscoCalifornia
| | - Antoine Royant
- Institut De Biologie Structurale (IBS)University of Grenoble Alpes, CNRS, CEAGrenobleF‐38044France
- European Synchrotron Radiation FacilityGrenobleF‐38043France
| | - Yuh‐Nung Jan
- Howard Hughes Medical Institute, Department of PhysiologyUniversity of California – San FranciscoSan FranciscoCalifornia
| | - William A. Weiss
- Department of Pediatrics, Departments of Neurology and Neurological SurgeryUniversity of California – San FranciscoSan FranciscoCalifornia
- Helen Diller Family Comprehensive Cancer CenterUniversity of California – San FranciscoSan FranciscoCalifornia
| | - Su Guo
- Department of Bioengineering and Therapeutic ScienceEli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Institute of Human Genetics, University of CaliforniaSan FranciscoCalifornia
| | - Xiaokun Shu
- Department of Pharmaceutical ChemistryCardiovascular Research Institute, University of California – San FranciscoSan FranciscoCalifornia
| |
Collapse
|
24
|
Shcherbakova DM, Baloban M, Pletnev S, Malashkevich VN, Xiao H, Dauter Z, Verkhusha VV. Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins. CHEMISTRY & BIOLOGY 2015; 22:1540-1551. [PMID: 26590639 PMCID: PMC4667795 DOI: 10.1016/j.chembiol.2015.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022]
Abstract
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are the probes of choice for deep-tissue imaging. Detection of several processes requires spectrally distinct NIR FPs. We developed an NIR FP, BphP1-FP, which has the most blue-shifted spectra and the highest fluorescence quantum yield among BphP-derived FPs. We found that these properties result from the binding of the biliverdin chromophore to a cysteine residue in the GAF domain, unlike natural BphPs and other BphP-based FPs. To elucidate the molecular basis of the spectral shift, we applied biochemical, structural and mass spectrometry analyses and revealed the formation of unique chromophore species. Mutagenesis of NIR FPs of different origins indicated that the mechanism of the spectral shift is general and can be used to design multicolor NIR FPs from other BphPs. We applied pairs of spectrally distinct point cysteine mutants to multicolor cell labeling and demonstrated that they perform well in model deep-tissue imaging.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sergei Pletnev
- Macromolecular Crystallography Laboratory, Basic Research Program, National Cancer Institute and Leidos Biomedical Research Inc., Argonne, IL 60439, USA
| | | | - Hui Xiao
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zbigniew Dauter
- Macromolecular Crystallography Laboratory, Basic Research Program, National Cancer Institute and Leidos Biomedical Research Inc., Argonne, IL 60439, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00029, Finland.
| |
Collapse
|
25
|
Yao J, Kaberniuk AA, Li L, Shcherbakova DM, Zhang R, Wang L, Li G, Verkhusha VV, Wang LV. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat Methods 2015; 13:67-73. [PMID: 26550774 PMCID: PMC4697872 DOI: 10.1038/nmeth.3656] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/16/2015] [Indexed: 12/24/2022]
Abstract
Photoacoustic tomography (PAT) of genetically encoded probes allows imaging of targeted biological processes with high spatial resolution at depths. Here, we combined multi-scale photoacoustic imaging with, for the first time, a reversibly switchable non-fluorescent bacterial phytochrome BphP1. With a heme-derived biliverdin chromophore, BphP1 has the most red-shifted absorption among reported genetically encoded probes, and is reversibly photoconvertible between its red and near-infrared light absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, enabling differential imaging that substantially removed background signals, enhanced detection sensitivity, increased penetration depth, and improved spatial resolution. In doing so, we monitored tumor growth and metastasis with a ~100 µm resolution at depths approaching 10 mm using photoacoustic computed tomography, and imaged individual cancer cells with a sub-optical-diffraction resolution of ~140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at different length scales.
Collapse
Affiliation(s)
- Junjie Yao
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrii A Kaberniuk
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lei Li
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ruiying Zhang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lidai Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Guo Li
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lihong V Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
26
|
Fraikin GY, Strakhovskaya MG, Belenikina NS, Rubin AB. Bacterial photosensory proteins: Regulatory functions and optogenetic applications. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715040086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Shcherbakova DM, Baloban M, Verkhusha VV. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr Opin Chem Biol 2015; 27:52-63. [PMID: 26115447 DOI: 10.1016/j.cbpa.2015.06.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
Abstract
Near-infrared fluorescent proteins (NIR FPs), photoactivatable NIR FPs and NIR reporters of protein-protein interactions developed from bacterial phytochrome photoreceptors (BphPs) have advanced non-invasive deep-tissue imaging. Here we provide a brief guide to the BphP-derived NIR probes with an emphasis on their in vivo applications. We describe phenotypes of NIR FPs and their photochemical and intracellular properties. We discuss NIR FP applications for imaging of various cell types, tissues and animal models in basic and translational research. In this discussion, we focus on NIR FPs that efficiently incorporate endogenous biliverdin chromophore and therefore can be used as straightforward as GFP-like proteins. We also overview a usage of NIR FPs in different imaging platforms, from planar epifluorescence to tomographic and photoacoustic technologies.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
28
|
Yu D, Baird MA, Allen JR, Howe ES, Klassen MP, Reade A, Makhijani K, Song Y, Liu S, Murthy Z, Zhang SQ, Weiner OD, Kornberg TB, Jan YN, Davidson MW, Shu X. A naturally monomeric infrared fluorescent protein for protein labeling in vivo. Nat Methods 2015; 12:763-5. [PMID: 26098020 PMCID: PMC4521985 DOI: 10.1038/nmeth.3447] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/31/2015] [Indexed: 12/25/2022]
Abstract
Infrared fluorescent proteins (IFPs) provide an additional color to GFP and its red homologs in protein labeling. Based on structural analysis of the dimer interface, a monomeric bateriophytochrome is identified from a sequence database, and is engineered into a naturally-monomeric IFP (mIFP). We demonstrate that mIFP correctly labels proteins in live Drosophila and zebrafish requiring no exogenous cofactor, and will thus be useful in molecular, cell and developmental biology.
Collapse
Affiliation(s)
- Dan Yu
- 1] Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA. [2] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michelle A Baird
- 1] National High Magnetic Field Laboratory, The Florida State University, Tallahassee, Florida, USA. [2] Department of Biological Science, The Florida State University, Tallahassee, Florida, USA
| | - John R Allen
- 1] National High Magnetic Field Laboratory, The Florida State University, Tallahassee, Florida, USA. [2] Department of Biological Science, The Florida State University, Tallahassee, Florida, USA
| | - Elizabeth S Howe
- 1] National High Magnetic Field Laboratory, The Florida State University, Tallahassee, Florida, USA. [2] Department of Biological Science, The Florida State University, Tallahassee, Florida, USA
| | - Matthew P Klassen
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Anna Reade
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Kalpana Makhijani
- 1] Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA. [2] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Yuanquan Song
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Songmei Liu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Zehra Murthy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Shao-Qing Zhang
- 1] Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA. [2] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [3] Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Yuh-Nung Jan
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michael W Davidson
- 1] National High Magnetic Field Laboratory, The Florida State University, Tallahassee, Florida, USA. [2] Department of Biological Science, The Florida State University, Tallahassee, Florida, USA
| | - Xiaokun Shu
- 1] Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA. [2] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
29
|
Rationally designed fluorogenic protease reporter visualizes spatiotemporal dynamics of apoptosis in vivo. Proc Natl Acad Sci U S A 2015; 112:3338-43. [PMID: 25733847 DOI: 10.1073/pnas.1502857112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fluorescence resonance energy transfer-based reporters have been widely used in imaging cell signaling; however, their in vivo application has been handicapped because of poor signal. Although fluorogenic reporters overcome this problem, no such reporter of proteases has been demonstrated for in vivo imaging. Now we have redesigned an infrared fluorescent protein so that its chromophore incorporation is regulated by protease activity. Upon protease activation, the infrared fluorogenic protease reporter becomes fluorescent with no requirement of exogenous cofactor. To demonstrate biological applications, we have designed an infrared fluorogenic executioner-caspase reporter, which reveals spatiotemporal coordination between cell apoptosis and embryonic morphogenesis, as well as dynamics of apoptosis during tumorigenesis in Drosophila. The designed scaffold may be used to engineer reporters of other proteases with specific cleavage sequence.
Collapse
|
30
|
Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem 2015; 84:519-50. [PMID: 25706899 DOI: 10.1146/annurev-biochem-060614-034411] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetically encoded optical tools have revolutionized modern biology by allowing detection and control of biological processes with exceptional spatiotemporal precision and sensitivity. Natural photoreceptors provide researchers with a vast source of molecular templates for engineering of fluorescent proteins, biosensors, and optogenetic tools. Here, we give a brief overview of natural photoreceptors and their mechanisms of action. We then discuss fluorescent proteins and biosensors developed from light-oxygen-voltage-sensing (LOV) domains and phytochromes, as well as their properties and applications. These fluorescent tools possess unique characteristics not achievable with green fluorescent protein-like probes, including near-infrared fluorescence, independence of oxygen, small size, and photosensitizer activity. We next provide an overview of available optogenetic tools of various origins, such as LOV and BLUF (blue-light-utilizing flavin adenine dinucleotide) domains, cryptochromes, and phytochromes, enabling control of versatile cellular processes. We analyze the principles of their function and practical requirements for use. We focus mainly on optical tools with demonstrated use beyond bacteria, with a specific emphasis on their applications in mammalian cells.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461;
| | | | | | | |
Collapse
|
31
|
Ritchie RJ, Mekjinda N. Measurement of Photosynthesis Using PAM Technology in a Purple Sulfur BacteriumThermochromatium tepidum(Chromatiaceae). Photochem Photobiol 2015; 91:350-8. [DOI: 10.1111/php.12413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Raymond J. Ritchie
- Tropical Plant Biology Unit; Faculty of Technology and Environment; Prince of Songkla University-Phuket; Kathu Thailand
| | - Nutsara Mekjinda
- Tropical Plant Biology Unit; Faculty of Technology and Environment; Prince of Songkla University-Phuket; Kathu Thailand
| |
Collapse
|
32
|
Marine algae and land plants share conserved phytochrome signaling systems. Proc Natl Acad Sci U S A 2014; 111:15827-32. [PMID: 25267653 DOI: 10.1073/pnas.1416751111] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.
Collapse
|
33
|
Yu D, Gustafson WC, Han C, Lafaye C, Noirclerc-Savoye M, Ge WP, Thayer DA, Huang H, Kornberg TB, Royant A, Jan LY, Jan YN, Weiss WA, Shu X. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat Commun 2014; 5:3626. [PMID: 24832154 PMCID: PMC4077998 DOI: 10.1038/ncomms4626] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/12/2014] [Indexed: 02/04/2023] Open
Abstract
Infrared fluorescent proteins (IFPs) are ideal for in vivo imaging, and monomeric versions of these proteins can be advantageous as protein tags or for sensor development. In contrast to GFP, which requires only molecular oxygen for chromophore maturation, phytochrome-derived IFPs incorporate biliverdin (BV) as the chromophore. However, BV varies in concentration in different cells and organisms. Here we engineered cells to express the haeme oxygenase responsible for BV biosynthesis and a brighter monomeric IFP mutant (IFP2.0). Together, these tools improve the imaging capabilities of IFP2.0 compared with monomeric IFP1.4 and dimeric iRFP. By targeting IFP2.0 to the plasma membrane, we demonstrate robust labelling of neuronal processes in Drosophila larvae. We also show that this strategy improves the sensitivity when imaging brain tumours in whole mice. Our work shows promise in the application of IFPs for protein labelling and in vivo imaging.
Collapse
Affiliation(s)
- Dan Yu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - William Clay Gustafson
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Chun Han
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Biophysics and Biochemistry, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Céline Lafaye
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
- CNRS, IBS, F-38000 Grenoble, France
- CEA, DSV, IBS, F-38000 Grenoble, France
| | - Marjolaine Noirclerc-Savoye
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
- CNRS, IBS, F-38000 Grenoble, France
- CEA, DSV, IBS, F-38000 Grenoble, France
| | - Woo-Ping Ge
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Biophysics and Biochemistry, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Desiree A. Thayer
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Biophysics and Biochemistry, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Biophysics and Biochemistry, University of California, San Francisco, CA 94158
| | - Thomas B. Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Biophysics and Biochemistry, University of California, San Francisco, CA 94158
| | - Antoine Royant
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
- CNRS, IBS, F-38000 Grenoble, France
- CEA, DSV, IBS, F-38000 Grenoble, France
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - Lily Yeh Jan
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Biophysics and Biochemistry, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94158
| | - Yuh Nung Jan
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Biophysics and Biochemistry, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94158
| | - William A. Weiss
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
- Departments of Neurology and Neurosurgery, Brain Tumor Research Center, University of California, San Francisco, CA 94158
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| |
Collapse
|
34
|
Delmotte N, Mondy S, Alunni B, Fardoux J, Chaintreuil C, Vorholt JA, Giraud E, Gourion B. A proteomic approach of bradyrhizobium/aeschynomene root and stem symbioses reveals the importance of the fixA locus for symbiosis. Int J Mol Sci 2014; 15:3660-70. [PMID: 24590127 PMCID: PMC3975360 DOI: 10.3390/ijms15033660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/28/2022] Open
Abstract
Rhizobia are soil bacteria that are able to form symbiosis with plant hosts of the legume family. These associations result in the formation of organs, called nodules in which bacteria fix atmospheric nitrogen to the benefit of the plant. Most of our knowledge on the metabolism and the physiology of the bacteria during symbiosis derives from studying roots nodules of terrestrial plants. Here we used a proteomics approach to investigate the bacterial physiology of photosynthetic Bradyrhizobium sp. ORS278 during the symbiotic process with the semi aquatical plant Aeschynomene indica that forms root and stem nodules. We analyzed the proteomes of bacteria extracted from each type of nodule. First, we analyzed the bacteroid proteome at two different time points and found only minor variation between the bacterial proteomes of 2-week- and 3-week-old nodules. High conservation of the bacteroid proteome was also found when comparing stem nodules and root nodules. Among the stem nodule specific proteins were those related to the phototrophic ability of Bradyrhizobium sp. ORS278. Furthermore, we compared our data with those obtained during an extensive genetic screen previously published. The symbiotic role of four candidate genes which corresponding proteins were found massively produced in the nodules but not identified during this screening was examined. Mutant analysis suggested that in addition to the EtfAB system, the fixA locus is required for symbiotic efficiency.
Collapse
Affiliation(s)
- Nathanael Delmotte
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Samuel Mondy
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France.
| | - Benoit Alunni
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France.
| | - Joel Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR IRD/SupAgro/INRA/UM2/CIRAD, F-34398 Montpellier, France.
| | - Clémence Chaintreuil
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR IRD/SupAgro/INRA/UM2/CIRAD, F-34398 Montpellier, France.
| | - Julia A Vorholt
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR IRD/SupAgro/INRA/UM2/CIRAD, F-34398 Montpellier, France.
| | - Benjamin Gourion
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France.
| |
Collapse
|
35
|
Apo-bacteriophytochromes modulate bacterial photosynthesis in response to low light. Proc Natl Acad Sci U S A 2013; 111:E237-44. [PMID: 24379368 DOI: 10.1073/pnas.1322410111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophytochromes (BphPs) are light-sensing regulatory proteins encoded by photosynthetic and nonphotosynthetic bacteria. This protein class has been characterized structurally, but its biological activities remain relatively unexplored. Two BphPs in the anoxygenic photosynthetic bacterium Rhodopseudomonas palustris, designated regulatory proteins RpBphP2 and RpBphP3, are configured as light-regulated histidine kinases, which initiate a signal transduction system that controls expression of genes for the low light harvesting 4 (LH4) antenna complex. In vitro, RpBphP2 and RpBphP3 respond to light quality by reversible photoconversion, a property that requires the light-absorbing chromophore biliverdin. In vivo, RpBphP2 and RpBphP3 are both required for the expression of the LH4 antenna complex under anaerobic conditions, but biliverdin requires oxygen for its synthesis by heme oxygenase. On further investigation, we found that the apo-bacteriophytochrome forms of RpBphP2 and RpBphP3 are necessary and sufficient to control LH4 expression in response to light intensity in conjunction with other signal transduction proteins. One possibility is that the system senses a reduced quinone pool generated when light energy is absorbed by bacteriochlorophyll. The biliverdin-bound forms of the BphPs have the additional property of being able to fine-tune LH4 expression in response to light quality. These observations support the concept that some bacteriophytochromes can function with or without a chromophore and may be involved in regulating physiological processes not directly related to light sensing.
Collapse
|
36
|
Nieder JB, Stojković EA, Moffat K, Forest KT, Lamparter T, Bittl R, Kennis JTM. Pigment–Protein Interactions in Phytochromes Probed by Fluorescence Line Narrowing Spectroscopy. J Phys Chem B 2013; 117:14940-50. [DOI: 10.1021/jp409110q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jana B. Nieder
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Emina A. Stojković
- Department of Biochemistry and Molecular Biology, Center for Advanced
Radiation Sources, and Institute for Biophysical Dynamics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, United States
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology, Center for Advanced
Radiation Sources, and Institute for Biophysical Dynamics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, United States
| | - Katrina T. Forest
- Department of Bacteriology, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Tilman Lamparter
- Botany
1, KIT - Karlsruhe Institute of Technology, Kaiserstrasse 2, D 76131 Karlsruhe, Germany
| | - Robert Bittl
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - John T. M. Kennis
- Department of Physics and Astronomy, Biophysics Section, VU University Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
37
|
Serdyuk OP, Smolygina LD, Chekunova EM, Sannikova EP, Shirshikova GN, Khusnutdinova AN, Yartseva NV. Direct transition of pGA482:ipt plasmid bearing the cytokinin biosynthesis gene into the cells of phototrophic purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris by electroporation. DOKL BIOCHEM BIOPHYS 2013; 451:194-7. [PMID: 23975399 DOI: 10.1134/s1607672913040078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Indexed: 11/23/2022]
Affiliation(s)
- O P Serdyuk
- Institute of Basic Biological Problems, Russian Academy of Sciences, ul. Institutskaya 2, Pushchino, Moscow oblast, 142290, Russia
| | | | | | | | | | | | | |
Collapse
|
38
|
Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 2013; 10:751-4. [PMID: 23770755 PMCID: PMC3737237 DOI: 10.1038/nmeth.2521] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/22/2013] [Indexed: 12/24/2022]
Abstract
Near-infrared fluorescent proteins are in high demand for in vivo imaging. We developed four spectrally distinct fluorescent proteins, iRFP670, iRFP682, iRFP702, and iRFP720, from bacterial phytochromes. iRFPs exhibit high brightness in mammalian cells and tissues and are suitable for long-term studies. iRFP670 and iRFP720 enable two-color imaging in living cells and mice using standard approaches. Five iRFPs including previously engineered iRFP713 allow multicolor imaging in living mice with spectral unmixing.
Collapse
|
39
|
Piatkevich KD, Subach FV, Verkhusha VV. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem Soc Rev 2013; 42:3441-52. [PMID: 23361376 PMCID: PMC3618476 DOI: 10.1039/c3cs35458j] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Near-infrared light is favourable for imaging in mammalian tissues due to low absorbance of hemoglobin, melanin, and water. Therefore, fluorescent proteins, biosensors and optogenetic constructs for optimal imaging, optical readout and light manipulation in mammals should have fluorescence and action spectra within the near-infrared window. Interestingly, natural Bacterial Phytochrome Photoreceptors (BphPs) utilize the low molecular weight biliverdin, found in most mammalian tissues, as a photoreactive chromophore. Due to their near-infrared absorbance BphPs are preferred templates for designing optical molecular tools for applications in mammals. Moreover, BphPs spectrally complement existing genetically-encoded probes. Several BphPs were already developed into the near-infrared fluorescent variants. Based on the analysis of the photochemistry and structure of BphPs we suggest a variety of possible BphP-based fluorescent proteins, biosensors, and optogenetic tools. Putative design strategies and experimental considerations for such probes are discussed.
Collapse
Affiliation(s)
- Kiryl D. Piatkevich
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| | - Fedor V. Subach
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| | - Vladislav V. Verkhusha
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| |
Collapse
|
40
|
Masuda S. Light detection and signal transduction in the BLUF photoreceptors. PLANT & CELL PHYSIOLOGY 2013; 54:171-179. [PMID: 23243105 DOI: 10.1093/pcp/pcs173] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BLUF (sensor of blue light using FAD) domain-containing proteins are one of three types of flavin-binding, blue-light-sensing proteins found in many bacteria and some algae. The other types of blue-light-sensing proteins are the cryptochromes and the light, oxygen, voltage (LOV) domain-containing proteins. BLUF proteins control a wide variety of light-dependent physiological activities including photosystem synthesis, biofilm formation and the photoavoidance response. The BLUF domain photochemical reaction is unique in that only small chromophore structural changes are involved in the light activation process, because the rigid flavin moiety is involved, rather than an isomerizable chromophore (e.g. phytochromobilin in phytochromes and retinal in rhodopsins). Recent spectroscopic, biochemical and structural studies have begun to elucidate how BLUF domains transmit the light-induced signal and identify related, subsequent changes in the domain structures. Herein, I review progress made to date concerning the physiological functions and the phototransduction mechanism of BLUF proteins.
Collapse
Affiliation(s)
- Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
41
|
Shi F, Li N, Liu S, Qin S. Sequence analysis of the Microcystis aeruginosa FACHB-912 phytochrome gene supports positive selection in cyanobacteria. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Structure of a Bacteriophytochrome and Light-Stimulated Protomer Swapping with a Gene Repressor. Structure 2012; 20:1436-46. [DOI: 10.1016/j.str.2012.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/19/2012] [Accepted: 06/02/2012] [Indexed: 01/31/2023]
|
43
|
Bellini D, Papiz MZ. Dimerization properties of theRpBphP2 chromophore-binding domain crystallized by homologue-directed mutagenesis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1058-66. [DOI: 10.1107/s0907444912020537] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/07/2012] [Indexed: 11/10/2022]
|
44
|
Isolation and light-stimulated expression of canthaxanthin and spirilloxanthin biosynthesis genes from the photosynthetic bacterium Bradyrhizobium sp. strain ORS278. Methods Mol Biol 2012; 892:173-83. [PMID: 22623302 DOI: 10.1007/978-1-61779-879-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Some aerobic photosynthetic bacteria produce a cocktail of carotenoids, some of them being of a high economic value. A good example is the photosynthetic Bradyrhizobium sp. strain ORS278, which synthesizes, in addition to the photosynthetic carotenoid spirilloxanthin, large amounts of canthaxanthin. Here, we describe the procedures that have been successfully used to isolate the different crt genes involved in the synthesis of both carotenoids in this bacteria. The synthesis of these carotenoids is stimulated under far-red light by a bacteriophytochrome. The procedure we developed to study the effect of the light on carotenoids synthesis is also described. Finally, we describe a procedure to genetically transform photosynthetic Bradyrhizobium strain ORS278 for improvement of canthaxanthin production.
Collapse
|
45
|
Comparative and Functional Genomics of Anoxygenic Green Bacteria from the Taxa Chlorobi, Chloroflexi, and Acidobacteria. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
De Luca G, Barakat M, Ortet P, Fochesato S, Jourlin-Castelli C, Ansaldi M, Py B, Fichant G, Coutinho PM, Voulhoux R, Bastien O, Maréchal E, Henrissat B, Quentin Y, Noirot P, Filloux A, Méjean V, DuBow MS, Barras F, Barbe V, Weissenbach J, Mihalcescu I, Verméglio A, Achouak W, Heulin T. The cyst-dividing bacterium Ramlibacter tataouinensis TTB310 genome reveals a well-stocked toolbox for adaptation to a desert environment. PLoS One 2011; 6:e23784. [PMID: 21912644 PMCID: PMC3164672 DOI: 10.1371/journal.pone.0023784] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/25/2011] [Indexed: 11/22/2022] Open
Abstract
Ramlibacter tataouinensis TTB310(T) (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia (Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain TTB310 occurs by the binary fission of spherical "cyst-like" cells ("cyst-cyst" division). The rod-shaped cells formed at the periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot and dry desert environment. In order to gain insights into strain TTB310's underlying genetic repertoire and possible mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of 70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance, including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction pathways, are presented and discussed.
Collapse
Affiliation(s)
- Gilles De Luca
- CEA, Lab Ecol Microbienne Rhizosphere & Environm Extre, iBEB, DSV, Saint-Paul-lez-Durance, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
48
|
Zienicke B, Chen LY, Khawn H, Hammam MAS, Kinoshita H, Reichert J, Ulrich AS, Inomata K, Lamparter T. Fluorescence of phytochrome adducts with synthetic locked chromophores. J Biol Chem 2010; 286:1103-13. [PMID: 21071442 DOI: 10.1074/jbc.m110.155143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.
Collapse
Affiliation(s)
- Benjamin Zienicke
- Botanical Institute, Karlsruhe Institute of Technology, Campus South, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shang L, Rockwell NC, Martin SS, Lagarias JC. Biliverdin amides reveal roles for propionate side chains in bilin reductase recognition and in holophytochrome assembly and photoconversion. Biochemistry 2010; 49:6070-82. [PMID: 20565135 DOI: 10.1021/bi100756x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linear tetrapyrroles (bilins) perform important antioxidant and light-harvesting functions in cells from bacteria to humans. To explore the role of the propionate moieties in bilin metabolism, we report the semisynthesis of mono- and diamides of biliverdin IXalpha and those of its non-natural XIIIalpha isomer. Initially, these were examined as substrates of two types of NADPH-dependent biliverdin reductase, BVR and BvdR, and of the representative ferredoxin-dependent bilin reductase, phycocyanobilin:ferredoxin oxidoreductase (PcyA). Our studies indicate that the NADPH-dependent biliverdin reductases are less accommodating to amidation of the propionic acid side chains of biliverdin IXalpha than PcyA, which does not require free carboxylic acid side chains to yield its phytobilin product, phycocyanobilin. Bilin amides were also assembled with BV-type and phytobilin-type apophytochromes, demonstrating a role for the 8-propionate in the formation of the spectroscopically native P(r) dark states of these biliprotein photosensors. Neither ionizable propionate side chain proved to be essential to primary photoisomerization for both classes of phytochromes, but an unsubstituted 12-propionate was required for full photointerconversion of phytobilin-type phytochrome Cph1. Taken together, these studies provide insight into the roles of the ionizable propionate side chains in substrate discrimination by two bilin reductase families while further underscoring the mechanistic differences between the photoconversions of BV-type and phytobilin-type phytochromes.
Collapse
Affiliation(s)
- Lixia Shang
- Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Phytochromes are biliprotein photoreceptors that are found in plants, bacteria, and fungi. Prototypical phytochromes have a Pr ground state that absorbs in the red spectral range and is converted by light into the Pfr form, which absorbs longer-wavelength, far-red light. Recently, some bacterial phytochromes have been described that undergo dark conversion of Pr to Pfr and thus have a Pfr ground state. We show here that such so-called bathy phytochromes are widely distributed among bacteria that belong to the order Rhizobiales. We measured in vivo spectral properties and the direction of dark conversion for species which have either one or two phytochrome genes. Agrobacterium tumefaciens C58 contains one bathy phytochrome and a second phytochrome which undergoes dark conversion of Pfr to Pr in vivo. The related species Agrobacterium vitis S4 contains also one bathy phytochrome and another phytochrome with novel spectral properties. Rhizobium leguminosarum 3841, Rhizobium etli CIAT652, and Azorhizobium caulinodans ORS571 contain a single phytochrome of the bathy type, whereas Xanthobacter autotrophicus Py2 contains a single phytochrome with dark conversion of Pfr to Pr. We propose that bathy phytochromes are adaptations to the light regime in the soil. Most bacterial phytochromes are light-regulated histidine kinases, some of which have a C-terminal response regulator subunit on the same protein. According to our phylogenetic studies, the group of phytochromes with this domain arrangement has evolved from a bathy phytochrome progenitor.
Collapse
|