1
|
Dąbrowski P, Jełowicki Ł, Jaszczuk Z, Maihoub S, Wróbel J, Kalaji H. Relationship between photosynthetic performance and yield loss in winter oilseed rape ( Brassica napus L.) under frost conditions. PHOTOSYNTHETICA 2024; 62:240-251. [PMID: 39649356 PMCID: PMC11622556 DOI: 10.32615/ps.2024.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/25/2024] [Indexed: 12/10/2024]
Abstract
Winter oilseed rape (Brassica napus L.), the principal oilseed crop in Europe, is notably vulnerable to spring frosts that can drastically reduce yields in ways that are challenging to predict with standard techniques. Our research focused on evaluating the efficacy of photosynthetic efficiency analysis in this crop and identifying specific chlorophyll fluorescence parameters severely impacted by frost, which could serve as noninvasive biomarkers for yield decline. The experiments were carried out in semi-controlled conditions with several treatments: a control, one day at -3°C, three days at -3°C, one day at -6°C, and three days at -6°C. We employed continuous-excitation and pulse-amplitude-modulation chlorophyll fluorescence measurements to assess plant sensitivity to frost. Also, plant gas exchange and chlorophyll content index measurements were performed. Certain parameters strongly correlated with final yield losses, thereby establishing a basis for developing new agricultural protocols to predict and mitigate frost damage in rapeseed crops accurately.
Collapse
Affiliation(s)
- P. Dąbrowski
- Department of Environmental Management, Institute of Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| | - Ł. Jełowicki
- OPEGIEKA Sp. z o.o., Aleja Tysiąclecia 11, 82-300 Elbląg, Poland
| | - Z.M. Jaszczuk
- Faculty of Agriculture and Ecology, Warsaw University of Life Sciences – SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| | - S. Maihoub
- Faculty of Civil Engineering Warsaw University of Life Sciences SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| | - J. Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, al. Piastów 17, 70-310 Szczecin, Poland
| | - H.M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| |
Collapse
|
2
|
Takagi D, Tani S. Impact of growth light environment on oxygen sensitivity in rice: Pseudo-first-order response of photosystem I photoinhibition to O 2 partial pressure. PHYSIOLOGIA PLANTARUM 2023; 175:e14009. [PMID: 37882280 DOI: 10.1111/ppl.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 10/27/2023]
Abstract
Photosynthetic organisms generate reactive oxygen species (ROS) during photosynthetic electron transport reactions on the thylakoid membranes within both photosystems (PSI and PSII), leading to the impairment of photosynthetic activity, known as photoinhibition. In PSI, ROS production has been suggested to follow Michaelis-Menten- or second-order reaction-dependent kinetics in response to changes in the partial pressure of O2 . However, it remains unclear whether ROS-mediated PSI photoinhibition follows the kinetics mentioned above. In this study, we aimed to elucidate the ROS production kinetics from the aspect of PSI photoinhibition in vivo. For this research objective, we investigated the O2 dependence of PSI photoinhibition by examining intact rice leaves grown under varying photon flux densities. Subsequently, we found that the degree of O2 -dependent PSI photoinhibition linearly increased in response to the increase in O2 partial pressure. Furthermore, we observed that the higher photon flux density on plant growth reduced the O2 sensitivity of PSI photoinhibition. Based on the obtained data, we investigated the O2 -dependent kinetics of PSI photoinhibition by model fitting analysis to elucidate the mechanism of PSI photoinhibition in leaves grown under various photon flux densities. Remarkably, we found that the pseudo-first-order reaction formula successfully replicated the O2 -dependent PSI photoinhibition kinetics in intact leaves. These results suggest that ROS production, which triggers PSI photoinhibition, occurs by an electron-leakage reaction from electron carriers within PSI, consistent with previous in vitro studies.
Collapse
Affiliation(s)
- Daisuke Takagi
- Department of Agricultural Science and Technology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
- Department of Agricultural Science, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Japan
| | - Saya Tani
- Department of Agricultural Science and Technology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| |
Collapse
|
3
|
Durand M, Stangl ZR, Salmon Y, Burgess AJ, Murchie EH, Robson TM. Sunflecks in the upper canopy: dynamics of light-use efficiency in sun and shade leaves of Fagus sylvatica. THE NEW PHYTOLOGIST 2022; 235:1365-1378. [PMID: 35569099 PMCID: PMC9543657 DOI: 10.1111/nph.18222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 05/12/2023]
Abstract
Sunflecks are transient patches of direct radiation that provide a substantial proportion of the daily irradiance to leaves in the lower canopy. In this position, faster photosynthetic induction would allow for higher sunfleck-use efficiency, as is commonly reported in the literature. Yet, when sunflecks are too few and far between, it may be more beneficial for shade leaves to prioritize efficient photosynthesis under shade. We investigated the temporal dynamics of photosynthetic induction, recovery under shade, and stomatal movement during a sunfleck, in sun and shade leaves of Fagus sylvatica from three provenances of contrasting origin. We found that shade leaves complete full induction in a shorter time than sun leaves, but that sun leaves respond faster than shade leaves due to their much larger amplitude of induction. The core-range provenance achieved faster stomatal opening in shade leaves, which may allow for better sunfleck-use efficiency in denser canopies and lower canopy positions. Our findings represent a paradigm shift for future research into light fluctuations in canopies, drawing attention to the ubiquitous importance of sunflecks for photosynthesis, not only in lower-canopy leaves where shade is prevalent, but particularly in the upper canopy where longer sunflecks are more common due to canopy openness.
Collapse
Affiliation(s)
- Maxime Durand
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
| | - Zsofia R. Stangl
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences901 83UmeåSweden
| | - Yann Salmon
- Faculty of Science, Institute for Atmospheric and Earth System Research/PhysicsUniversity of HelsinkiPO Box 68, Gustaf Hällströminkatu 2bHelsinki00014Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest SciencesUniversity of HelsinkiPO Box 27Helsinki00014Finland
| | - Alexandra J. Burgess
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - Erik H. Murchie
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - T. Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
| |
Collapse
|
4
|
Inoue T, Yamada Y, Noguchi K. Growth temperature affects O 2 consumption rates and plasticity of respiratory flux to support shoot growth at various growth temperatures. PLANT, CELL & ENVIRONMENT 2022; 45:133-146. [PMID: 34719799 DOI: 10.1111/pce.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The temperature dependence of respiration rates and their acclimation to growth temperature vary among species/ecotypes, but the details remain unclear. Here, we compared the temperature dependence of shoot O2 consumption rates among Arabidopsis thaliana ecotypes to clarify how the temperature dependence and their acclimation to temperature differ among ecotypes, and how these differences relate to shoot growth. We examined growth analysis, temperature dependence of O2 consumption rates, and protein amounts of the respiratory chain components in shoots of twelve ecotypes of A. thaliana grown at three different temperatures. The temperature dependence of the O2 consumption rates were fitted to the modified Arrhenius model. The dynamic response of activation energy to measurement temperature was different among growth temperatures, suggesting that the plasticity of respiratory flux to temperatures differs among growth temperatures. The similar values of activation energy at growth temperature among ecotypes suggest that a similar process may determine the O2 consumption rates at the growth temperature in any ecotype. These results suggest that the growth temperature affects not only the absolute rate of O2 consumption but also the plasticity of respiratory flux in response to temperature, supporting the acclimation of shoot growth to various temperatures.
Collapse
Affiliation(s)
- Tomomi Inoue
- National Institute for Environmental Studies, Ibaraki, Japan
| | - Yusuke Yamada
- School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ko Noguchi
- School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
5
|
He J, Jawahir NKB, Qin L. Quantity of supplementary LED lightings regulates photosynthetic apparatus, improves photosynthetic capacity and enhances productivity of Cos lettuce grown in a tropical greenhouse. PHOTOSYNTHESIS RESEARCH 2021; 149:187-199. [PMID: 33475915 DOI: 10.1007/s11120-020-00816-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Although cooling their rootzone allows year-round (temperate) vegetable production in Singapore's warm climate, these crops have frequently experienced increasingly unpredictable cloudy and hazy weather. Supplementary lighting with light-emitting diodes (LEDs) could be used to reduce the impacts of low light intensity. This study investigated the responses of temperate Cos lettuce (Lactuca sativa L.) to different quantities (photosynthetic photon flux density, PPFD of 0, 150, 300 µmol m-2 s-1) of supplementary LED lightings in the tropical greenhouse. Increasing light intensity significantly increased total leaf area, shoot and root fresh weight (FW) and dry weight (DW), total chlorophyll (Chl) and carotenoids (Car) contents, light-saturated photosynthetic CO2 assimilation rate (Asat) and transpiration rate (Tr). There were no significant differences in Fv/Fm ratio, total reduced nitrogen, specific leaf area (SLA) and PSII concentration among the three light treatments. However, there was an increasing trend with increasing light intensity for Chl a/b ratio, net photosynthetic O2 evolution rate (PN), cytochrome b6f (Cyt b6f), leaf total soluble protein and Rubisco concentrations. This study provides the basic understanding of photosynthetic apparatus and capacity of temperate crops grown under different supplementary LED lightings in the tropical greenhouse.
Collapse
Affiliation(s)
- Jie He
- Natural Sciences & Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore.
| | - Nur Khairunnisa Bte Jawahir
- Natural Sciences & Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Lin Qin
- Natural Sciences & Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| |
Collapse
|
6
|
Kitashova A, Schneider K, Fürtauer L, Schröder L, Scheibenbogen T, Fürtauer S, Nägele T. Impaired chloroplast positioning affects photosynthetic capacity and regulation of the central carbohydrate metabolism during cold acclimation. PHOTOSYNTHESIS RESEARCH 2021; 147:49-60. [PMID: 33211260 PMCID: PMC7728637 DOI: 10.1007/s11120-020-00795-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/06/2020] [Indexed: 05/02/2023]
Abstract
Photosynthesis and carbohydrate metabolism of higher plants need to be tightly regulated to prevent tissue damage during environmental changes. The intracellular position of chloroplasts changes due to a changing light regime. Chloroplast avoidance and accumulation response under high and low light, respectively, are well known phenomena, and deficiency of chloroplast movement has been shown to result in photodamage and reduced biomass accumulation. Yet, effects of chloroplast positioning on underlying metabolic regulation are less well understood. Here, we analysed photosynthesis together with metabolites and enzyme activities of the central carbohydrate metabolism during cold acclimation of the chloroplast unusual positioning 1 (chup1) mutant of Arabidopsis thaliana. We compared cold acclimation under ambient and low light and found that maximum quantum yield of PSII was significantly lower in chup1 than in Col-0 under both conditions. Our findings indicated that net CO2 assimilation in chup1 is rather limited by biochemistry than by photochemistry. Further, cold-induced dynamics of sucrose phosphate synthase differed significantly between both genotypes. Together with a reduced rate of sucrose cycling derived from kinetic model simulations our study provides evidence for a central role of chloroplast positioning for photosynthetic and metabolic acclimation to low temperature.
Collapse
Affiliation(s)
- Anastasia Kitashova
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany
| | - Katja Schneider
- Department Biology I, Plant Development, LMU München, 82152, Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany
| | - Laura Schröder
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany
| | - Tim Scheibenbogen
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany
| | - Siegfried Fürtauer
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354, Freising, Germany
| | - Thomas Nägele
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
Howard MM, Bae A, Pirani Z, Van N, Königer M. Impairment of chloroplast movement reduces growth and delays reproduction of Arabidopsis thaliana in natural and controlled conditions. AMERICAN JOURNAL OF BOTANY 2020; 107:1309-1318. [PMID: 32965027 DOI: 10.1002/ajb2.1537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The importance of chloroplast movement for plant growth in constant, controlled light and of nonphotochemical quenching (NPQ) in variable, natural light are known. Here we concurrently investigated growth and reproduction of several Arabidopsis thaliana mutants to assess the relative importance of photoprotection via chloroplast movement and NPQ. METHODS Plants were grown outdoors (natural conditions) or in a growth chamber with variable light and chilling temperatures (controlled conditions). Phenotypic growth and reproductive variables were determined at set times before maturity in wild-type (WT) and phot1, phot2, phot1phot2 (e.g., impaired chloroplast movement, stomatal conductance, leaf flattening), chup1 (impaired chloroplast movement), and npq1 (reduced NPQ) plants. RESULTS Mutants were most adversely affected in natural conditions, with phot1phot2 and chup1 most severely impacted. These mutants bolted later and produced fewer leaves and siliques, less leaf biomass, and fewer secondary inflorescences than WT. In controlled conditions, leaf traits of these mutants were unaffected, but phot1phot2 bolted later and produced fewer secondary inflorescences and siliques than WT. For most variables, there were significant interactions between growth conditions and plant genotype. Many variables were correlated, but those relationships changed with growth conditions and genotype. CONCLUSIONS Phenotypic variables at the time of the harvest were strongly affected by growth conditions and genotype. In natural conditions, phot1phot2 and chup1 mutants were most adversely affected, demonstrating the importance of chloroplast movement. In controlled conditions, only phot1phot2 was consistently affected, also emphasizing the important, pleiotropic effects of phototropins. In both conditions, NPQ was less important.
Collapse
Affiliation(s)
- Mia M Howard
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea Bae
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Zahra Pirani
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Nhi Van
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
- Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Martina Königer
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
| |
Collapse
|
8
|
Kumarathunge DP, Medlyn BE, Drake JE, Rogers A, Tjoelker MG. No evidence for triose phosphate limitation of light-saturated leaf photosynthesis under current atmospheric CO 2 concentration. PLANT, CELL & ENVIRONMENT 2019; 42:3241-3252. [PMID: 31378950 DOI: 10.1111/pce.13639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 05/23/2023]
Abstract
The triose phosphate utilization (TPU) rate has been identified as one of the processes that can limit terrestrial plant photosynthesis. However, we lack a robust quantitative assessment of TPU limitation of photosynthesis at the global scale. As a result, TPU, and its potential limitation of photosynthesis, is poorly represented in terrestrial biosphere models (TBMs). In this study, we utilized a global data set of photosynthetic CO2 response curves representing 141 species from tropical rainforests to Arctic tundra. We quantified TPU by fitting the standard biochemical model of C3 photosynthesis to measured photosynthetic CO2 response curves and characterized its instantaneous temperature response. Our results demonstrate that TPU does not limit leaf photosynthesis at the current ambient atmospheric CO2 concentration. Furthermore, our results showed that the light-saturated photosynthetic rates of plants growing in cold environments are not more often limited by TPU than those of plants growing in warmer environments. In addition, our study showed that the instantaneous temperature response of TPU is distinct from temperature response of the maximum rate of Rubisco carboxylation. The new formulations of the temperature response of TPU derived in this study may prove useful in quantifying the biochemical limits to terrestrial plant photosynthesis and improve the representation of plant photosynthesis in TBMs.
Collapse
Affiliation(s)
- Dushan P Kumarathunge
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Plant Physiology Division, Coconut Research Institute of Sri Lanka, Lunuwila, 61150, Sri Lanka
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
9
|
Poorter H, Niinemets Ü, Ntagkas N, Siebenkäs A, Mäenpää M, Matsubara S, Pons T. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. THE NEW PHYTOLOGIST 2019; 223:1073-1105. [PMID: 30802971 DOI: 10.1111/nph.15754] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/04/2019] [Indexed: 05/19/2023]
Abstract
By means of meta-analyses we determined how 70 traits related to plant anatomy, morphology, chemistry, physiology, growth and reproduction are affected by daily light integral (DLI; mol photons m-2 d-1 ). A large database including 500 experiments with 760 plant species enabled us to determine generalized dose-response curves. Many traits increase with DLI in a saturating fashion. Some showed a more than 10-fold increase over the DLI range of 1-50 mol m-2 d-1 , such as the number of seeds produced per plant and the actual rate of photosynthesis. Strong decreases with DLI (up to three-fold) were observed for leaf area ratio and leaf payback time. Plasticity differences among species groups were generally small compared with the overall responses to DLI. However, for a number of traits, including photosynthetic capacity and realized growth, we found woody and shade-tolerant species to have lower plasticity. We further conclude that the direction and degree of trait changes adheres with responses to plant density and to vertical light gradients within plant canopies. This synthesis provides a strong quantitative basis for understanding plant acclimation to light, from molecular to whole plant responses, but also identifies the variables that currently form weak spots in our knowledge, such as respiration and reproductive characteristics.
Collapse
Affiliation(s)
- Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia
| | - Nikolaos Ntagkas
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Alrun Siebenkäs
- Department for Nature Conservation and Landscape Planning, Anhalt University of Applied Sciences, Strenzfelder Allee 28, 06406, Bernburg, Germany
| | - Maarit Mäenpää
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-80101, Joensuu, Finland
| | - Shizue Matsubara
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - ThijsL Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3512 PN, Utrecht, the Netherlands
| |
Collapse
|
10
|
Greer DH. Short-term temperature dependency of the photosynthetic and PSII photochemical responses to photon flux density of leaves of Vitis vinifera cv. Shiraz vines grown in field conditions with and without fruit. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:634-648. [PMID: 30967170 DOI: 10.1071/fp18324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Shiraz vines grown outdoors with and without a crop load were used to determine photosynthetic and chlorophyll fluorescence responses to light across a range of leaf temperatures to evaluate the impact of presence/absence of a sink on these responses. Results indicate maximum rates of photosynthesis and light saturation in fruiting vines were biased towards higher temperatures whereas these processes in vegetative vines were biased towards lower temperatures. The maximum efficiency of PSII photochemistry was similarly biased, with higher efficiency for the vegetative vines below 30°C and a higher efficiency for the fruiting vines above. The quantum efficiency of PSII electron transport was generally higher across all temperatures in the fruiting compared with vegetative vines. Photochemical quenching was not sensitive to temperature in fruiting vines but strongly so in vegetative vines, with an optimum at 30°C and marked increases in photochemical quenching at other temperatures. Non-photochemical quenching was not strongly temperature dependent, but there were marked increases in both treatments at 45°C, consistent with marked decreases in assimilation. These results suggest demand for assimilates in fruiting vines induced an acclimation response to high summer temperatures to enhance assimilate supply and this was underpinned by comparable shifts in PSII photochemistry.
Collapse
Affiliation(s)
- Dennis H Greer
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
11
|
Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration. THE NEW PHYTOLOGIST 2019; 221:32-49. [PMID: 29983005 DOI: 10.1111/nph.15283] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/11/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 32 I. The importance of plant carbon metabolism for climate change 32 II. Rising atmospheric CO2 and carbon metabolism 33 III. Rising temperatures and carbon metabolism 37 IV. Thermal acclimation responses of carbon metabolic processes can be best understood when studied together 38 V. Will elevated CO2 offset warming-induced changes in carbon metabolism? 40 VI. No plant is an island: water and nutrient limitations define plant responses to climate drivers 41 VII. Conclusions 42 Acknowledgements 42 References 42 Appendix A1 48 SUMMARY: Plant carbon metabolism is impacted by rising CO2 concentrations and temperatures, but also feeds back onto the climate system to help determine the trajectory of future climate change. Here we review how photosynthesis, photorespiration and respiration are affected by increasing atmospheric CO2 concentrations and climate warming, both separately and in combination. We also compile data from the literature on plants grown at multiple temperatures, focusing on net CO2 assimilation rates and leaf dark respiration rates measured at the growth temperature (Agrowth and Rgrowth , respectively). Our analyses show that the ratio of Agrowth to Rgrowth is generally homeostatic across a wide range of species and growth temperatures, and that species that have reduced Agrowth at higher growth temperatures also tend to have reduced Rgrowth , while species that show stimulations in Agrowth under warming tend to have higher Rgrowth in the hotter environment. These results highlight the need to study these physiological processes together to better predict how vegetation carbon metabolism will respond to climate change.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - André Galvao Duarte
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
12
|
Pfündel EE, Latouche G, Meister A, Cerovic ZG. Linking chloroplast relocation to different responses of photosynthesis to blue and red radiation in low and high light-acclimated leaves of Arabidopsis thaliana (L.). PHOTOSYNTHESIS RESEARCH 2018; 137:105-128. [PMID: 29374806 DOI: 10.1007/s11120-018-0482-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/09/2018] [Indexed: 05/16/2023]
Abstract
Low light (LL) and high light (HL)-acclimated plants of A. thaliana were exposed to blue (BB) or red (RR) light or to a mixture of blue and red light (BR) of incrementally increasing intensities. The light response of photosystem II was measured by pulse amplitude-modulated chlorophyll fluorescence and that of photosystem I by near infrared difference spectroscopy. The LL but not HL leaves exhibited blue light-specific responses which were assigned to relocation of chloroplasts from the dark to the light-avoidance arrangement. Blue light (BB and BR) decreased the minimum fluorescence ([Formula: see text]) more than RR light. This extra reduction of the [Formula: see text] was stronger than theoretically predicted for [Formula: see text] quenching by energy dissipation but actual measurement and theory agreed in RR treatments. The extra [Formula: see text] reduction was assigned to decreased light absorption of chloroplasts in the avoidance position. A maximum reduction of 30% was calculated. Increasing intensities of blue light affected the fluorescence parameters NPQ and qP to a lesser degree than red light. After correcting for the optical effects of chloroplast relocation, the NPQ responded similarly to blue and red light. The same correction method diminished the color-specific variations in qP but did not abolish it; thus strongly indicating the presence of another blue light effect which also moderates excitation pressure in PSII but cannot be ascribed to absorption variations. Only after RR exposure, a post-illumination overshoot of [Formula: see text] and fast oxidation of PSI electron acceptors occurred, thus, suggesting an electron flow from stromal reductants to the plastoquinone pool.
Collapse
Affiliation(s)
- Erhard E Pfündel
- Lehrstuhl für Botanik II der Universität Würzburg, Julius-von-Sachs Institut für Biowissenschaften, 97082, Würzburg, Germany.
- Heinz Walz GmbH, Eichenring 6, 91090, Effeltrich, Germany.
| | - Gwendal Latouche
- Université Paris-Saclay, Université Paris-Sud, Laboratoire Écologie Systématique et Évolution, UMR8079, Bât. 362, 91405, Orsay, France
- CNRS, 91405, Orsay, France
- AgroParisTech, 75231, Paris, France
| | - Armin Meister
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, 06466, Gatersleben, Germany
| | - Zoran G Cerovic
- Université Paris-Saclay, Université Paris-Sud, Laboratoire Écologie Systématique et Évolution, UMR8079, Bât. 362, 91405, Orsay, France
- CNRS, 91405, Orsay, France
- AgroParisTech, 75231, Paris, France
| |
Collapse
|
13
|
Stewart JJ, Polutchko SK, Adams WW, Demmig-Adams B. Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity. PHOTOSYNTHESIS RESEARCH 2017; 134:215-229. [PMID: 28861679 DOI: 10.1007/s11120-017-0436-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/22/2017] [Indexed: 05/22/2023]
Abstract
This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO2 uptake under growth conditions with light- and CO2-saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature's role in plant photosynthetic acclimation and adaptation.
Collapse
Affiliation(s)
- Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Stephanie K Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA.
| |
Collapse
|
14
|
Stewart JJ, Demmig-Adams B, Cohu CM, Wenzl CA, Muller O, Adams WW. Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe. PLANT, CELL & ENVIRONMENT 2016; 39:1549-58. [PMID: 26832121 DOI: 10.1111/pce.12720] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 05/25/2023]
Abstract
The plasticity of leaf form and function in European lines of Arabidopsis thaliana was evaluated in ecotypes from Sweden and Italy grown under contrasting (cool versus hot) temperature regimes. Although both ecotypes exhibited acclimatory adjustments, the Swedish ecotype exhibited more pronounced responses to the two contrasting temperature regimes in several characterized features. These responses included thicker leaves with higher capacities for photosynthesis, likely facilitated by a greater number of phloem cells per minor vein for the active loading and export of sugars, when grown under cool temperature as opposed to leaves with a higher vein density and a greater number of tracheary elements per minor vein, likely facilitating higher rates of transpirational water loss (and thus evaporative cooling), when grown under hot temperature with high water availability. In addition, only the Swedish ecotype exhibited reduced rosette growth and greater levels of foliar tocopherols under the hot growth temperature. These responses, and the greater responsiveness of the Swedish ecotype compared with the Italian ecotype, are discussed in the context of redox signalling networks and transcription factors, and the greater range of environmental conditions experienced by the Swedish versus the Italian ecotype during the growing season in their native habitats.
Collapse
Affiliation(s)
- Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Christopher M Cohu
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Coleman A Wenzl
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| |
Collapse
|
15
|
Ho QT, Berghuijs HNC, Watté R, Verboven P, Herremans E, Yin X, Retta MA, Aernouts B, Saeys W, Helfen L, Farquhar GD, Struik PC, Nicolaï BM. Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis. PLANT, CELL & ENVIRONMENT 2016; 39:50-61. [PMID: 26082079 DOI: 10.1111/pce.12590] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 05/24/2023]
Abstract
We present a combined three-dimensional (3-D) model of light propagation, CO2 diffusion and photosynthesis in tomato (Solanum lycopersicum L.) leaves. The model incorporates a geometrical representation of the actual leaf microstructure that we obtained with synchrotron radiation X-ray laminography, and was evaluated using measurements of gas exchange and leaf optical properties. The combination of the 3-D microstructure of leaf tissue and chloroplast movement induced by changes in light intensity affects the simulated CO2 transport within the leaf. The model predicts extensive reassimilation of CO2 produced by respiration and photorespiration. Simulations also suggest that carbonic anhydrase could enhance photosynthesis at low CO2 levels but had little impact on photosynthesis at high CO2 levels. The model confirms that scaling of photosynthetic capacity with absorbed light would improve efficiency of CO2 fixation in the leaf, especially at low light intensity.
Collapse
Affiliation(s)
- Quang Tri Ho
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Herman N C Berghuijs
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
- BioSolar Cells, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Rodrigo Watté
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Pieter Verboven
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Els Herremans
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
- BioSolar Cells, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Moges A Retta
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
| | - Ben Aernouts
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Wouter Saeys
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Lukas Helfen
- Laboratory for Application of Synchrotron Radiation/ANKA, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021, Karlsruhe, Germany
- ESRF - The European Synchrotron, CS40220, F-38043, Grenoble Cedex 9, France
| | - Graham D Farquhar
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
- BioSolar Cells, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Bart M Nicolaï
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| |
Collapse
|
16
|
Regulation of Leaf Traits in Canopy Gradients. CANOPY PHOTOSYNTHESIS: FROM BASICS TO APPLICATIONS 2016. [DOI: 10.1007/978-94-017-7291-4_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Nagler M, Nukarinen E, Weckwerth W, Nägele T. Integrative molecular profiling indicates a central role of transitory starch breakdown in establishing a stable C/N homeostasis during cold acclimation in two natural accessions of Arabidopsis thaliana. BMC PLANT BIOLOGY 2015; 15:284. [PMID: 26628055 PMCID: PMC4667452 DOI: 10.1186/s12870-015-0668-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/23/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND The variation of growth and cold tolerance of two natural Arabidopsis accessions, Cvi (cold sensitive) and Rschew (cold tolerant), was analysed on a proteomic, phosphoproteomic and metabolomic level to derive characteristic information about genotypically distinct strategies of metabolic reprogramming and growth maintenance during cold acclimation. RESULTS Growth regulation before and after a cold acclimation period was monitored by recording fresh weight of leaf rosettes. Significant differences in the shoot fresh weight of Cvi and Rschew were detected both before and after acclimation to low temperature. During cold acclimation, starch levels were found to accumulate to a significantly higher level in Cvi compared to Rschew. Concomitantly, statistical analysis revealed a cold-induced decrease of beta-amylase 3 (BAM3; AT4G17090) in Cvi but not in Rschew. Further, only in Rschew we observed an increase of the protein level of the debranching enzyme isoamylase 3 (ISA3; AT4G09020). Additionally, the cold response of both accessions was observed to severely affect ribosomal complexes, but only Rschew showed a pronounced accumulation of carbon and nitrogen compounds. The abundance of the Cold Regulated (COR) protein COR78 (AT5G52310) as well as its phosphorylation was observed to be positively correlated with the acclimation state of both accessions. In addition, transcription factors being involved in growth and developmental regulation were found to characteristically separate the cold sensitive from the cold tolerant accession. Predicted protein-protein interaction networks (PPIN) of significantly changed proteins during cold acclimation allowed for a differentiation between both accessions. The PPIN revealed the central role of carbon/nitrogen allocation and ribosomal complex formation to establish a new cold-induced metabolic homeostasis as also observed on the level of the metabolome and proteome. CONCLUSION Our results provide evidence for a comprehensive multi-functional molecular interaction network orchestrating growth regulation and cold acclimation in two natural accessions of Arabidopsis thaliana. The differential abundance of beta-amylase 3 and isoamylase 3 indicates a central role of transitory starch degradation in the coordination of growth regulation and the development of stress tolerance. Finally, our study indicates naturally occurring differential patterns of C/N balance and protein synthesis during cold acclimation.
Collapse
Affiliation(s)
- Matthias Nagler
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| | - Ella Nukarinen
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| | - Thomas Nägele
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Atkinson LJ, Sherlock DJ, Atkin OK. Source of nitrogen associated with recovery of relative growth rate in Arabidopsis thaliana acclimated to sustained cold treatment. PLANT, CELL & ENVIRONMENT 2015; 38:1023-34. [PMID: 25291970 DOI: 10.1111/pce.12460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 05/11/2023]
Abstract
To determine (1) whether acclimation of carbon metabolism to low temperatures results in recovery of the relative growth rate (RGR) of plants in the cold and (2) the source of N underpinning cold acclimation in Arabidopsis thaliana, we supplied plants with a nutrient solution labelled with (15) N and subjected them to a temperature shift (from 23 to 5 °C). Whole-plant RGR of cold-treated plants was initially less than 30% of that of warm-maintained control plants. After 14 d, new leaves with a cold-acclimated phenotype emerged, with the RGR of cold-treated plants increasing by 50%; there was an associated recovery of root RGR and doubling of the net assimilation rate (NAR). The development of new tissues in the cold was supported initially by re-allocation of internal sources of N. In the longer term, the majority (80%) of N in the new leaves was derived from the external solution. Hence, both the nutrient status of the plant and the current availability of N from external sources are important in determining recovery of growth at low temperature. Collectively, our results reveal that both increased N use efficiency and increases in nitrogen content per se play a role in the recovery of carbon metabolism in the cold.
Collapse
Affiliation(s)
- Lindsey J Atkinson
- Department of Geography, Environment and Earth Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | | | | |
Collapse
|
19
|
Retkute R, Smith-Unna SE, Smith RW, Burgess AJ, Jensen OE, Johnson GN, Preston SP, Murchie EH. Exploiting heterogeneous environments: does photosynthetic acclimation optimize carbon gain in fluctuating light? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2437-47. [PMID: 25788730 PMCID: PMC4629418 DOI: 10.1093/jxb/erv055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have evolved complex mechanisms to balance the efficient use of absorbed light energy in photosynthesis with the capacity to use that energy in assimilation, so avoiding potential damage from excess light. This is particularly important under natural light, which can vary according to weather, solar movement and canopy movement. Photosynthetic acclimation is the means by which plants alter their leaf composition and structure over time to enhance photosynthetic efficiency and productivity. However there is no empirical or theoretical basis for understanding how leaves track historic light levels to determine acclimation status, or whether they do this accurately. We hypothesized that in fluctuating light (varying in both intensity and frequency), the light-response characteristics of a leaf should adjust (dynamically acclimate) to maximize daily carbon gain. Using a framework of mathematical modelling based on light-response curves, we have analysed carbon-gain dynamics under various light patterns. The objective was to develop new tools to quantify the precision with which photosynthesis acclimates according to the environment in which plants exist and to test this tool on existing data. We found an inverse relationship between the optimal maximum photosynthetic capacity and the frequency of low to high light transitions. Using experimental data from the literature we were able to show that the observed patterns for acclimation were consistent with a strategy towards maximizing daily carbon gain. Refinement of the model will further determine the precision of acclimation.
Collapse
Affiliation(s)
- Renata Retkute
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Stephanie E Smith-Unna
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Robert W Smith
- Systems and Synthetic Biology, Wageningen UR, Building 316, Dreijenplein 10, 6703HB Wageningen, Netherlands
| | - Alexandra J Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Giles N Johnson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon P Preston
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| |
Collapse
|
20
|
Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, de Reffye P, Stitt M, Williams M, Muetzelfeldt R, Halliday KJ, Millar AJ. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc Natl Acad Sci U S A 2014; 111:E4127-36. [PMID: 25197087 PMCID: PMC4191812 DOI: 10.1073/pnas.1410238111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.
Collapse
Affiliation(s)
- Yin Hoon Chew
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Bénédicte Wenden
- Institut National de la Recherche Agronomique and Université Bordeaux, Unité Mixte de Recherche 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Anna Flis
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Christopher L Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2FG, United Kingdom
| | - Christopher Tindal
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Howard Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2FG, United Kingdom
| | - Helen J Ougham
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2FG, United Kingdom
| | - Philippe de Reffye
- Cirad-Amis, Unité Mixte de Recherche, Association pour le Maintien d'une Agriculture Paysanne, F-34398 Montpellier Cedex 5, France; and
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mathew Williams
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JN, United Kingdom
| | | | - Karen J Halliday
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom;
| |
Collapse
|
21
|
Easlon HM, Nemali KS, Richards JH, Hanson DT, Juenger TE, McKay JK. The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2014; 119:119-29. [PMID: 23893317 PMCID: PMC3889294 DOI: 10.1007/s11120-013-9891-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 07/10/2013] [Indexed: 05/03/2023]
Abstract
Ecologists and physiologists have documented extensive variation in water use efficiency (WUE) in Arabidopsis thaliana, as well as association of WUE with climatic variation. Here, we demonstrate correlations of whole-plant transpiration efficiency and carbon isotope composition (δ(13)C) among life history classes of A. thaliana. We also use a whole-plant cuvette to examine patterns of co-variation in component traits of WUE and δ(13)C. We find that stomatal conductance (g s) explains more variation in WUE than does A. Overall, there was a strong genetic correlation between A and g s, consistent with selection acting on the ratio of these traits. At a more detailed level, genetic variation in A was due to underlying variation in both maximal rate of carboxylation (V cmax) and maximum electron transport rate (Jmax). We also found strong effects of leaf anatomy, where lines with lower WUE had higher leaf water content (LWC) and specific leaf area (SLA), suggesting a role for mesophyll conductance (g m) in variation of WUE. We hypothesize that this is due to an effect through g m, and test this hypothesis using the abi4 mutant. We show that mutants of ABI4 have higher SLA, LWC, and g m than wild-type, consistent with variation in leaf anatomy causing variation in g m and δ(13)C. These functional data also add further support to the central, integrative role of ABI4 in simultaneously altering ABA sensitivity, sugar signaling, and CO2 assimilation. Together our results highlight the need for a more holistic approach in functional studies, both for more accurate annotation of gene function and to understand co-limitations to plant growth and productivity.
Collapse
Affiliation(s)
- Hsien Ming Easlon
- Department of Land, Air & Water Resources, University of California, Davis, CA 95616 USA
- Present Address: Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Krishna S. Nemali
- Department of Land, Air & Water Resources, University of California, Davis, CA 95616 USA
- Present Address: Monsanto Company, Jerseyville, IL 62052 USA
| | - James H. Richards
- Department of Land, Air & Water Resources, University of California, Davis, CA 95616 USA
| | - David T. Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Thomas E. Juenger
- Section of Integrative Biology, University of Texas, Austin, TX 78712 USA
| | - John K. McKay
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
22
|
Way DA, Yamori W. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. PHOTOSYNTHESIS RESEARCH 2014; 119:89-100. [PMID: 23812760 DOI: 10.1007/s11120-013-9873-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 06/12/2013] [Indexed: 05/05/2023]
Abstract
While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (T opt) and photosynthetic rates at the growth temperature (A growth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of T opt and A growth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.
Collapse
Affiliation(s)
- Danielle A Way
- Department of Biology, Western University, London, ON, Canada,
| | | |
Collapse
|
23
|
Urban MO, Klíma M, Vítámvás P, Vašek J, Hilgert-Delgado AA, Kučera V. Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1600-1608. [PMID: 24054752 DOI: 10.1016/j.jplph.2013.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
Five winter oilseed rape cultivars (Benefit, Californium, Cortes, Ladoga, Navajo) were subjected to 30 days of cold treatment (4 °C) to examine the effect of cold on acquired frost tolerance (FT), dehydrin (DHN) content, and photosynthesis-related parameters. The main aim of this study was to determine whether there are relationships between FT (expressed as LT50 values) and the other parameters measured in the cultivars. While the cultivar Benefit accumulated two types of DHNs (D45 and D35), the other cultivars accumulated three additional DHNs (D97, D47, and D37). The similar-sized DHNs (D45 and D47) were the most abundant; the others exhibited significantly lower accumulations. The highest correlations were detected between LT50 and DHN accumulation (r=-0.815), intrinsic water use efficiency (WUEi; r=-0.643), net photosynthetic rate (r=-0.628), stomatal conductance (r=0.511), and intracellular/intercellular CO2 concentration (r=0.505). Those cultivars that exhibited higher Pn rate in cold (and further a significant increase in WUEi) had higher levels of DHNs and also higher FT. No significant correlation was observed between LT50 and E, PRI, or NDVI. Overall, we have shown the selected physiological parameters to be able to distinguish different FT cultivars of winter oilseed rape.
Collapse
|
24
|
Galmés J, Aranjuelo I, Medrano H, Flexas J. Variation in Rubisco content and activity under variable climatic factors. PHOTOSYNTHESIS RESEARCH 2013; 117:73-90. [PMID: 23748840 DOI: 10.1007/s11120-013-9861-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/25/2013] [Indexed: 05/05/2023]
Abstract
The main objective of the present review is to provide a compilation of published data of the effects of several climatic conditions on Rubisco, particularly its activity, state of activation, and concentration, and its influence on leaf gas exchange and photosynthesis. The environmental conditions analyzed include drought, salinity, heavy metals, growth temperature, and elevated [O3], [CO2], and ultraviolet-B irradiance. The results show conclusive evidence for a major negative effect on activity of Rubisco with increasing intensity of a range of abiotic stress factors. This decrease in the activity of Rubisco is associated with down-regulation of the activation state of the enzyme (e.g., by de-carbamylation and/or binding of inhibitory sugar phosphates) in response to drought or high temperature. On the contrary, the negative effects of low temperature, heavy metal stress (cadmium), ozone, and UV-B stress on Rubisco activity are associated with changes in the concentration of Rubisco. Notably, in response to all environmental factors, the regulation of in vivo CO2 assimilation rate was related to Rubisco in vitro parameters, either concentration and/or carboxylation, depending on the particular stress. The importance of the loss of Rubisco activity and its repercussion on plant photosynthesis are discussed in the context of climate change. It is suggested that decreased Rubisco activity will be a major effect induced by climate change, which will need to be considered in any prediction model on plant productivity in the near future.
Collapse
Affiliation(s)
- Jeroni Galmés
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, Ctra. de Valldemossa Km. 7.5, 07122, Palma, Spain,
| | | | | | | |
Collapse
|