1
|
Wang X, Fan B, Li Y, Xiong Y, Fei C, Tong L, Huang Y, Wang F. Effects of germination on the digestibility of instant soybean powders based on an in vitro digestion model of the aged static gastrointestinal tract. Food Chem 2025; 474:143247. [PMID: 39933352 DOI: 10.1016/j.foodchem.2025.143247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Germination and heat processing can improve the digestibility of soybean protein, so for the elderly and people with gastrointestinal dysfunction, instant soybean powder is an ideal source for protein intake. In this study, the changes in protein and anti-nutritional factors in the instant germinating soybean powders were investigated systematically, and the aged gastrointestinal digestion model analyzed the digestive characteristics of instant germinating soybean powders. The results showed that during processing, particle size, disulfide bond, and β-sheets decreased, free sulfhydryl and α-helix increased. The change resulted in the decrease of proteolysis degree and particle size of gastrointestinal digestive products, and the increase of surface hydrophobic index. At the same time, anti-nutritional factors decreased by about 30 % to 60 %. The above reasons are combined with the protein digestibility of S72 5.88 % higher than Y0. This study proved that instant soybean powder is more conducive to the digestion and absorption of the elderly.
Collapse
Affiliation(s)
- Xinrui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Chengxin Fei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China.
| |
Collapse
|
2
|
Manzanilla-Valdez ML, Boesch C, Orfila C, Montaño S, Hernández-Álvarez AJ. Unveiling the nutritional spectrum: A comprehensive analysis of protein quality and antinutritional factors in three varieties of quinoa ( Chenopodium quinoa Wild). Food Chem X 2024; 24:101814. [PMID: 39310886 PMCID: PMC11415592 DOI: 10.1016/j.fochx.2024.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Quinoa (Chenopodium quinoa) is renowned for its high protein content and balanced amino acid profile. Despite promising protein characteristics, plant-based sources usually possess antinutritional factors (ANFs). This study aimed to analyze the nutritional and ANFs composition of three quinoa varieties (Black, Yellow, and Red), and assessed the protein quality. Among these varieties, Black quinoa showed the highest protein content (20.90 g/100 g) and total dietary fiber (TDF) (22.97 g/100 g). In contrast, Red quinoa exhibited the highest concentration of phenolic compounds (338.9 mg/100 g). The predominant ANFs identified included oxalates (ranging from 396.9 to 715.2 mg/100 g), saponins (83.27-96.82 g/100 g), and trypsin inhibitors (0.35-0.46 TUI/100 g). All three varieties showed similar in vitro protein digestibility (IVPD) (> 76.9 %), while Black quinoa exhibited the highest protein quality. In conclusion to ensure reduction of ANFs, processing methods are necessary in order to fully benefit from the high protein and nutritional value of quinoa.
Collapse
Affiliation(s)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, UK
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa CP 80030, Mexico
| | | |
Collapse
|
3
|
de Paiva Gouvêa L, Caldeira RF, Azevedo TDL, Antoniassi R, Galdeano MC, Felberg I, Lima JR, Mellinger CG. Nutritional properties of common bean protein concentrate compared to commercial legume ingredients for the plant-based market. Curr Res Food Sci 2024; 9:100937. [PMID: 39697468 PMCID: PMC11652883 DOI: 10.1016/j.crfs.2024.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
There is an enormous demand to develop new sources of proteins, mainly to supply the growing plant-based food market worldwide, with the push for more sustainable and healthier products. The objective of this study was to evaluate the composition and the nutritional properties of commercial soybean, pea, and fava bean protein ingredients and compare them with an in-house ingredient (flour and protein concentrate), obtained from the main Brazilian cultivar of common bean (Phaseolus vulgaris, Pinto bean). The protein content of the common bean concentrate (79.75%) was as high as other commercial proteins isolated from the pea and higher than the others concentrates. All the ingredients presented the minimum amounts of indispensable amino acids as required by FAO and all ingredients were rich in lysine and leucine, with the highest amounts found for pea (78.06 mg/g) and common bean (86.70 mg/g) concentrates. A diverse mineral composition was reported for all the ingredients and the common bean concentrate presented the highest iron content (342.6 mg/kg). In terms of antinutritional factors, the common bean flour and concentrate showed the highest values for trypsin inhibitor (18 and 27 TIU/mg, respectively) but the lowest ones for phytic acid (9 and 2 mg/g, respectively) compared to the other ingredients. Low amounts of oligosaccharides were found in most of the samples. All proteins from the ingredients were highly digested when evaluated in vitro, but phaseolins fraction protein from common bean samples remained partially undigested. Despite compositional differences between ingredients, all samples should be suitable as protein sources for plant-based food innovation.
Collapse
Affiliation(s)
- Lucas de Paiva Gouvêa
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica-RJ, Brazil
| | - Rodrigo Fernandes Caldeira
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica-RJ, Brazil
| | | | - Rosemar Antoniassi
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro, RJ, 23020-470, Brazil
| | | | - Ilana Felberg
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro, RJ, 23020-470, Brazil
| | - Janice Ribeiro Lima
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro, RJ, 23020-470, Brazil
| | - Caroline Grassi Mellinger
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica-RJ, Brazil
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro, RJ, 23020-470, Brazil
| |
Collapse
|
4
|
Wang X, Fan B, Li Y, Fei C, Xiong Y, Li L, Liu Y, Tong L, Huang Y, Wang F. Effect of Germination on the Digestion of Legume Proteins. Foods 2024; 13:2655. [PMID: 39272421 PMCID: PMC11394037 DOI: 10.3390/foods13172655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
As one of the main sources of plant protein, it is important to improve the protein digestibility of legumes. Faced with population growth and increasing environmental pressures, it is essential to find a green approach. Germination meets this requirement, and in the process of natural growth, some enzymes are activated to make dynamic changes in the protein itself; at the same time, other substances (especially anti-nutrient factors) can also be degraded by enzymes or their properties (water solubility, etc.), thereby reducing the binding with protein, and finally improving the protein digestibility of beans under the combined influence of these factors The whole process is low-carbon, environmentally friendly and safe. Therefore, this paper summarizes this process to provide a reference for the subsequent development of soybean functional food, especially the germination of soybean functional food.
Collapse
Affiliation(s)
- Xinrui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Chengxin Fei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yanfang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
5
|
Amarowicz R, Pegg RB. Condensed tannins-Their content in plant foods, changes during processing, antioxidant and biological activities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:327-398. [PMID: 38906590 DOI: 10.1016/bs.afnr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Condensed tannins are considered nutritionally undesirable, because they precipitate proteins, inhibit digestive enzymes, and can affect the absorption of vitamins and minerals. From the consumer's point of view, they impart astringency to foods. Yet, they are viewed as a double-edged sword, since they possess antioxidant and anti-inflammatory activities. Intake of a small quantity of the right kind of tannins may in fact be beneficial to human health. This chapter reports on the chemical structure of condensed tannins, their content in plants and food of plant origin, how they are extracted, and methods for their determination. A description of the effects of processing on condensed tannins is discussed and includes soaking, dehulling, thermal processing (i.e., cooking, boiling, autoclaving, extrusion), and germination. The astringency of condensed tannins is described in relation to their interactions with proteins. Finally, details about the biological properties of condensed tannins, including their antimicrobial, anti-inflammatory, anticancer, anti-diabetic, and anti-obesity activities, are reviewed.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Microclimate and Genotype Impact on Nutritional and Antinutritional Quality of Locally Adapted Landraces of Common Bean (Phaseolus vulgaris L.). Foods 2023; 12:foods12061119. [PMID: 36981046 PMCID: PMC10048214 DOI: 10.3390/foods12061119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
This study aimed to assess the impact of genotype, location, and type of cultivation (organic) on the nutrient and anti-nutrient components of seven large-seeded bean (Phaseolus vulgaris L.) populations. All genotypes were cultivated during 2014 and 2015 in randomized complete block (RCB) experimental designs in three areas of the Prespa region (Pili, Patoulidio, Agios Germanos) in Greece. Particularly, total protein (18.79–23.93%), fiber (7.77–12%), starch (40.14–55.26%), and fat (1.84–2.58%) contents were analyzed and showed significant differences. In order to assess mineral content, firstly, the total ash percentage (4.31% to 5.20%) and secondly, trace elements and heavy metals were determined. The concentrations of identified inorganic metals showed large variations. The total phenolic content of the samples varied from 0.18 to 0.29 mg/g gallic acid equivalent (GAE). A major limitation of increasing the use of grain legumes as feed is the presence of diverse compounds in their grain, commonly referred to as antinutritional factors, and these are mainly trypsin inhibitors. Trypsin inhibitor levels were evaluated, with results varying from 21.8 to 138.5 TIU/g. Pili 2014 and 2015 were differently associated regarding the year of cultivation. Pili 2015 location was also very closely associated with the Patoulidio region, whereas Agios Germanos and Pili 2014 were the most different in terms of nutritional and antinutritional content.
Collapse
|
7
|
Wang J, Zhao J, Yu W, Wang S, Bu S, Shi X, Zhang X. Rapid Identification of Common Poisonous Plants in China Using DNA Barcodes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.698418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toxic plants have been a major threat to public health in China. However, identification and tracing of poisoned species with traditional methods are unreliable due to the destruction of plant morphology by cooking and chewing. DNA barcoding is independent of environmental factors and morphological limitations, making it a powerful tool to accurately identify species. In our study, a total of 83 materials from 26 genera and 31 species of 13 families were collected and 13 plant materials were subjected to simulated gastric fluid digestion. Four markers (rbcL, trnH-psbA, matK, and ITS) were amplified and sequenced for all untreated and mock-digested samples. The effectiveness of DNA barcoding for the identification of toxic plants was assessed using Basic Local Alignment Search Tool (BLAST) method, PWG-Distance method, and Tree-Building (NJ) method. Except for the matK region, the amplification success rate of the remaining three regions was high, but the sequencing of trnH-psbA and ITS was less satisfactory. Meanwhile, matK was prone to be more difficult to amplify and sequence because of simulated gastric fluid. Among the three methods applied, BLAST method showed lower recognition rates, while PWG-Distance and Tree-Building methods showed little difference in recognition rates. Overall, ITS had the highest recognition rate among individual loci. Among the combined loci, rbcL + ITS had the highest species recognition rate. However, the ITS region may not be suitable for DNA analysis of gastric contents and the combination of loci does not significantly improve species resolution. In addition, identification of species to the genus level is sufficient to aid in the clinical management of most poisoning events. Considering primer versatility, DNA sequence quality, species identification ability, experimental cost and speed of analysis, we recommend rbcL as the best single marker for clinical identification and also suggest the BLAST method for analysis. Our current results suggest that DNA barcoding can rapidly identify and trace toxic species and has great potential for clinical applications. In addition, we suggest the creation of a proprietary database containing morphological, toxicological and molecular information to better apply DNA barcoding technology in clinical diagnostics.
Collapse
|
8
|
Umeoguaju FU, Ephraim-Emmanuel BC, Patrick-Iwuanyanwu KC, Zelikoff JT, Orisakwe OE. Plant-Derived Food Grade Substances (PDFGS) Active Against Respiratory Viruses: A Systematic Review of Non-clinical Studies. Front Nutr 2021; 8:606782. [PMID: 33634160 PMCID: PMC7900554 DOI: 10.3389/fnut.2021.606782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Human diet comprises several classes of phytochemicals some of which are potentially active against human pathogenic viruses. This study examined available evidence that identifies existing food plants or constituents of edible foods that have been reported to inhibit viral pathogenesis of the human respiratory tract. SCOPUS and PUBMED databases were searched with keywords designed to retrieve articles that investigated the effect of plant-derived food grade substances (PDFGS) on the activities of human pathogenic viruses. Eligible studies for this review were those done on viruses that infect the human respiratory tract. Forty six (46) studies met the specified inclusion criteria from the initial 5,734 hits. The selected studies investigated the effects of different PDFGS on the infectivity, proliferation and cytotoxicity of different respiratory viruses including influenza A virus (IAV), influenza B virus (IBV), Respiratory syncytial virus (RSV), human parainfluenza virus (hPIV), Human coronavirus NL63 (HCoV-NL63), and rhinovirus (RV) in cell lines and mouse models. This review reveals that PDFGS inhibits different stages of the pathological pathways of respiratory viruses including cell entry, replication, viral release and viral-induced dysregulation of cellular homeostasis and functions. These alterations eventually lead to the reduction of virus titer, viral-induced cellular damages and improved survival of host cells. Major food constituents active against respiratory viruses include flavonoids, phenolic acids, tannins, lectins, vitamin D, curcumin, and plant glycosides such as glycyrrhizin, acteoside, geniposide, and iridoid glycosides. Herbal teas such as guava tea, green and black tea, adlay tea, cistanche tea, kuding tea, licorice extracts, and edible bird nest extracts were also effective against respiratory viruses in vitro. The authors of this review recommend an increased consumption of foods rich in these PDFGS including legumes, fruits (e.g berries, citrus), tea, fatty fish and curcumin amongst human populations with high prevalence of respiratory viral infections in order to prevent, manage and/or reduce the severity of respiratory virus infections.
Collapse
Affiliation(s)
- Francis U. Umeoguaju
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Benson C. Ephraim-Emmanuel
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
- Department of Dental Health Sciences, Ogbia, Bayelsa State College of Health Technology, Otakeme, Nigeria
| | - Kingsley C. Patrick-Iwuanyanwu
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Judith T. Zelikoff
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Orish Ebere Orisakwe
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
9
|
Petropoulos SA, Taofiq O, Fernandes Â, Tzortzakis N, Ciric A, Sokovic M, Barros L, Ferreira IC. Bioactive properties of greenhouse-cultivated green beans (Phaseolus vulgaris L.) under biostimulants and water-stress effect. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6049-6059. [PMID: 31342530 DOI: 10.1002/jsfa.9881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The scarcity of irrigation water is severely affecting global crop production. In this context, biostimulants are increasingly used as alternatives means against abiotic stress conditions. In this study, phenolic compounds composition and bioactive properties of common bean (Phaseolus vulgaris L.) plants grown under water stress conditions and biostimulants application were investigated. RESULTS Sixteen individual phenolic compounds were detected in both pods and seeds with a notable difference in their compositional profile. A significant effect on phenolic compounds content and composition was also observed for the biostimulants tested. Regarding the antibacterial activity, pods of the second harvest and seed extracts showed significant efficacy against Bacillus cereus, especially in water-stressed plants, where all biostimulant treatments were more effective than positive controls. Moreover, all biostimulant treatments for seed extracts of water-stressed plants were more effective against Staphylococcus aureus compared with ampicillin, whereas streptomycin showed the best results. Extracts from pods of the second harvest from normally irrigated plants showed the best results against the fungi tested, except for Penicillium verrucosum var. cyclopium. Finally, no significant cytotoxic effects were detected. CONCLUSION In conclusion, the biostimulants tested increased total phenolic compounds content compared with control treatment, especially in pods of the first harvest and seeds of water-stressed plants. Moreover, bioactive properties showed a varied response in regard to irrigation and biostimulant treatment. Therefore, biostimulants can be considered as a useful means towards increasing phenolic compounds content, and they may also affect the antimicrobial properties of pods and seeds extracts. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Spyridon A Petropoulos
- Department of Agriculture, University of Thessaly, Crop Production and Rural Environment, Magnissia, Greece
| | - Oludemi Taofiq
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Ana Ciric
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Marina Sokovic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Isabel Cfr Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
10
|
Cárdenas-Castro AP, Bianchi F, Tallarico-Adorno MA, Montalvo-González E, Sáyago-Ayerdi SG, Sivieri K. In vitro colonic fermentation of Mexican “taco” from corn-tortilla and black beans in a Simulator of Human Microbial Ecosystem (SHIME®) system. Food Res Int 2019; 118:81-88. [DOI: 10.1016/j.foodres.2018.05.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/27/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
|
11
|
Islam F, Gopalan V, Lam AKY, Kabir SR. Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines. Int J Biol Macromol 2018; 117:1050-1057. [DOI: 10.1016/j.ijbiomac.2018.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022]
|
12
|
Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Crit Rev Food Sci Nutr 2018; 59:1949-1975. [DOI: 10.1080/10408398.2018.1434480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Domancar Orona-Tamayo
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - María Elena Valverde
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| |
Collapse
|
13
|
Avilés-Gaxiola S, Chuck-Hernández C, Serna Saldívar SO. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. J Food Sci 2017; 83:17-29. [PMID: 29210451 DOI: 10.1111/1750-3841.13985] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 02/04/2023]
Abstract
Seed legumes have played a major role as a crop worldwide, being cultivated on about 12% to 15% of Earth's arable land; nevertheless, their use is limited by, among other things, the presence of several antinutritional factors (ANFs - naturally occurring metabolites that the plant produces to protect itself from pest attacks.) Trypsin inhibitors (TIs) are one of the most relevant ANFs because they reduce digestion and absorption of dietary proteins. Several methods have been developed in order to inactivate TIs, and of these, thermal treatments are the most commonly used. They cause loss of nutrients, affect functional properties, and require high amounts of energy. Given the above, new processes have emerged to improve the nutritional quality of legumes while trying to solve the problems caused by the use of thermal treatments. This review examines and discusses the methods developed by researchers to inactivate TI present in legumes and their effects over nutritional and functional properties.
Collapse
Affiliation(s)
- Sara Avilés-Gaxiola
- Center of Biotechnology FEMSA, School of Engineering and Sciences, Tecnológico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada 2501, 64849 Monterrey, N.L, Mexico
| | - Cristina Chuck-Hernández
- Center of Biotechnology FEMSA, School of Engineering and Sciences, Tecnológico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada 2501, 64849 Monterrey, N.L, Mexico
| | - Sergio O Serna Saldívar
- Center of Biotechnology FEMSA, School of Engineering and Sciences, Tecnológico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada 2501, 64849 Monterrey, N.L, Mexico
| |
Collapse
|
14
|
Rossi GB, Valentim-Neto PA, Blank M, Faria JCD, Arisi ACM. Comparison of Grain Proteome Profiles of Four Brazilian Common Bean (Phaseolus vulgaris L.) Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7588-7597. [PMID: 28777559 DOI: 10.1021/acs.jafc.7b03220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is a source of proteins for about one billion people worldwide. In Brazil, 'BRS Sublime', 'BRS Vereda', 'BRS Esteio', and 'BRS Estilo' cultivars were developed by Embrapa to offer high yield to farmers and excellent quality to final consumers. In this work, grain proteomes of these common bean cultivars were compared based on two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry (MS/MS). Principal component analysis (PCA) was applied to compare 349 matched spots in these cultivars proteomes, and all cultivars were clearly separated in PCA plot. Thirty-two differentially accumulated proteins were identified by MS. Storage proteins such as phaseolins, legumins, and lectins were the most abundant, and novel proteins were also identified. We have built a useful platform that could be used to analyze other Brazilian cultivars and genotypes of common beans.
Collapse
Affiliation(s)
| | | | | | - Josias Correa de Faria
- Embrapa Arroz e Feijão, Caixa Postal 179, 75375-000 Santo Antônio de Goiás, Goiás, Brazil
| | | |
Collapse
|
15
|
Espinoza-Moreno RJ, Reyes-Moreno C, Milán-Carrillo J, López-Valenzuela JA, Paredes-López O, Gutiérrez-Dorado R. Healthy Ready-to-Eat Expanded Snack with High Nutritional and Antioxidant Value Produced from Whole Amarantin Transgenic Maize and Black Common Bean. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:218-24. [PMID: 27170034 DOI: 10.1007/s11130-016-0551-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The snack foods market is currently demanding healthier products. A ready-to-eat expanded snack with high nutritional and antioxidant value was developed from a mixture (70:30) of whole amarantin transgenic maize (Zea mays L.) and black common bean (Phaseolus vulgaris L.) by optimizing the extrusion process. Extruder operation conditions were: feed moisture content (FMC, 15-25 %, wet basis), barrel temperature (BT, 120-170 °C), and screw speed (SS, 50-240). The desirability numeric method of the response surface methodology (RSM) was applied as the optimization technique over four response variables [expansion ratio (ER), bulk density (BD), hardness (H), antioxidant activity (AoxA)] to obtain maximum ER and AoxA, and minimum BD, and H values. The best combination of extrusion process variables for producing an optimized expanded snack (OES, healthy snack) were: FMC = 15 %/BT = 157 °C/SS = 238 rpm. The OES had ER = 2.86, BD = 0.119 g/cm (3) , H = 1.818 N, and AoxA = 13,681 μmol Trolox equivalent (TE)/100 g, dry weight. The extrusion conditions used to produce the OES increased the AoxA (ORAC: +18 %, ABTS:+20 %) respect to the unprocessed whole grains mixture. A 50 g portion of OES had higher protein content (7.23 vs 2.32 g), total dietary fiber (7.50 vs 1.97 g), total phenolic content (122 vs 47 mg GAE), and AoxA (6626 vs 763 μmol TE), and lower energy (169 vs 264 kcal) than an expanded commercial snack (ECS = Cheetos™). Because of its high content of quality protein, dietary fiber and phenolics, as well as high AoxA and low energy density, the OES could be used for health promotion and chronic disease prevention and as an alternative to the widely available commercial snacks with high caloric content and low nutritional/nutraceutical value.
Collapse
Affiliation(s)
- Ramona J Espinoza-Moreno
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Cuauhtémoc Reyes-Moreno
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB, UAS, Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Jorge Milán-Carrillo
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB, UAS, Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - José A López-Valenzuela
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB, UAS, Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Irapuato, km 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | - Roberto Gutiérrez-Dorado
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico.
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB, UAS, Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
16
|
Nciri N, Cho N, El Mhamdi F, Ben Ismail H, Ben Mansour A, Sassi FH, Ben Aissa-Fennira F. Toxicity Assessment of Common Beans (Phaseolus vulgaris L.) Widely Consumed by Tunisian Population. J Med Food 2015; 18:1049-64. [PMID: 26355953 DOI: 10.1089/jmf.2014.0120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This research aimed at assessing the content and the functional properties of phytohemagglutinin (PHA) in different varieties of beans widely consumed in Tunisia through soaking, cooking, autoclaving, germination, and their combinations. This study was carried out on three varieties of white beans grown in different localities of Tunisia, namely Twila, Coco, and Beldia, as well as on imported and local canned beans. All bean samples underwent biochemical and immunological evaluation by employing several techniques such as indirect competitive enzyme-linked immunosorbent assay (ELISA), hemagglutinating assay, Ouchterlony double immunodiffusion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Biochemical and immunological analyses indicated that raw dry beans contained a considerable amount of proteins and PHAs. ELISA demonstrated that soaking, either in plain water or in alkaline solution, caused an increase in the concentration of PHA. A slight increase of PHA was produced equally by germination during 4 days in all bean varieties. Cooking or autoclaving of presoaked beans resulted in a complete disappearance of PHA. ELISA test also proved that both imported and local canned beans contained fingerprints of PHA. Hemagglutination assays showed that not only cooked and autoclaved presoaked beans lacked the ability to agglutinate red blood cells but also autoclaved unsoaked beans did. In agar gel immunodiffusion using rabbit anti-PHA serum, raw, soaked, cooked unsoaked, and sprouted beans gave precipitin arc reactions, indicating that PHA existed in immunoreactive form in the tested seeds. SDS-PAGE electrophoretograms showed protein isolates of Twila and Beldia beans to have different profiles through soaking, cooking, and autoclaving processes. This work revealed that the combination of soaking and cooking/autoclaving was the best way in reducing PHA content and its activity in all bean varieties when compared with germination.
Collapse
Affiliation(s)
- Nader Nciri
- 1 Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saâdoun, Tunisia .,2 Department of Animal Resources, Fisheries, and Food Technology, National Institute of Agronomy of Tunisia, El Mahrajène, Tunisia .,3 School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, Cheonan, Korea
| | - Namjun Cho
- 3 School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, Cheonan, Korea
| | - Faiçal El Mhamdi
- 1 Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saâdoun, Tunisia
| | - Hanen Ben Ismail
- 2 Department of Animal Resources, Fisheries, and Food Technology, National Institute of Agronomy of Tunisia, El Mahrajène, Tunisia
| | - Abderraouf Ben Mansour
- 1 Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saâdoun, Tunisia
| | - Fayçal Haj Sassi
- 1 Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saâdoun, Tunisia
| | - Fatma Ben Aissa-Fennira
- 1 Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saâdoun, Tunisia
| |
Collapse
|
17
|
Ortiz-Martinez M, Winkler R, García-Lara S. Preventive and therapeutic potential of peptides from cereals against cancer. J Proteomics 2014; 111:165-83. [PMID: 24727098 DOI: 10.1016/j.jprot.2014.03.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/31/2014] [Indexed: 01/08/2023]
Abstract
Epidemiological studies have shown that regular consumption of food based on whole-grain cereals and their products is associated with reduced risks of various types of degenerative chronic diseases. Food proteins are considered an important source of nutraceutical peptides and amino acids that can exert biological functions to promote health and prevent disease, including cancer. There have been several reports on peptides with anti-tumour activity in recent years. Plant-derived peptides, such as rapeseed, amaranth and soybean lunasin have received main attention. In this review, we extend this vision to analyse the evidence of current advances in peptides in cereals such as wheat, maize, rice, barley, rye and pseudocereals compared with soybean. We also show evidence of several mechanisms through which bioactive peptide exerts anti-tumour activity. Finally, we report the current status of major strategies for the fractionation, isolation and characterisation of bioactive peptides in cereals. BIOLOGICAL SIGNIFICANCE In recent reports, it has been shown that peptides are an interesting alternative in the search for new treatments for cancer. One of the most studied sources of these peptides is food proteins; however, a review that includes more recent findings for cereals as a potential source of bioactive peptides in the treatment of cancer, the techniques for their isolation and characterisation and the assays used to prove their bioactivity is not available. This review can be used as a tool in the search for new sources of anti-cancer peptides. The authors have no conflicts of interest, financial or otherwise.
Collapse
Affiliation(s)
| | - Robert Winkler
- Dep. of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Irapuato Gto., Mexico
| | | |
Collapse
|
18
|
Valadez-Vega C, Morales-González JA, Sumaya-Martínez MT, Delgado-Olivares L, Cruz-Castañeda A, Bautista M, Sánchez-Gutiérrez M, Zuñiga-Pérez C. Cytotoxic and antiproliferative effect of tepary bean lectins on C33-A, MCF-7, SKNSH, and SW480 cell lines. Molecules 2014; 19:9610-9627. [PMID: 25004071 PMCID: PMC6271045 DOI: 10.3390/molecules19079610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
For many years, several studies have been employing lectin from vegetables in order to prove its toxic effect on various cell lines. In this work, we analyzed the cytotoxic, antiproliferative, and post-incubatory effect of pure tepary bean lectins on four lines of malignant cells: C33-A; MCF-7; SKNSH, and SW480. The tests were carried out employing MTT and 3[H]-thymidine assays. The results showed that after 24 h of lectin exposure, the cells lines showed a dose-dependent cytotoxic effect, the effect being higher on MCF-7, while C33-A showed the highest resistance. Cell proliferation studies showed that the toxic effect induced by lectins is higher even when lectins are removed, and in fact, the inhibition of proliferation continues after 48 h. Due to the use of two techniques to analyze the cytotoxic and antiproliferative effect, differences were observed in the results, which can be explained by the fact that one technique is based on metabolic reactions, while the other is based on the 3[H]-thymidine incorporated in DNA by cells under division. These results allow concluding that lectins exert a cytotoxic effect after 24 h of exposure, exhibiting a dose-dependent effect. In some cases, the cytotoxic effect is higher even when the lectins are eliminated, however, in other cases, the cells showed a proliferative effect.
Collapse
Affiliation(s)
- Carmen Valadez-Vega
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| | - José A Morales-González
- Laboratorio Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Unidad Casco de Santo Tomas, México D.F. 11340, Mexico.
| | - María Teresa Sumaya-Martínez
- Secretary of Research and Graduate Studies, Autonomous University of Nayarit, Ciudad de la Cultura "Amado Nervo", Boulevard Tepic-Xalisco S/N. Tepic, Nayarit, 63190 Mexico.
| | - Luis Delgado-Olivares
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| | - Areli Cruz-Castañeda
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| | - Mirandeli Bautista
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| | - Clara Zuñiga-Pérez
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| |
Collapse
|
19
|
Carrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C, Jacinto-Hernández C, Alaiz M, Girón-Calle J, Vioque J, Dávila-Ortiz G. Antioxidant and metal chelating activities of Phaseolus vulgaris L. var. Jamapa protein isolates, phaseolin and lectin hydrolysates. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.084] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Vandenborre G, Smagghe G, Van Damme EJM. Plant lectins as defense proteins against phytophagous insects. PHYTOCHEMISTRY 2011; 72:1538-50. [PMID: 21429537 DOI: 10.1016/j.phytochem.2011.02.024] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 05/19/2023]
Abstract
One of the most important direct defense responses in plants against the attack by phytophagous insects is the production of insecticidal peptides or proteins. One particular class of entomotoxic proteins present in many plant species is the group of carbohydrate-binding proteins or lectins. During the last decade a lot of progress was made in the study of a few lectins that are expressed in response to herbivory by phytophagous insects and the insecticidal properties of plant lectins in general. This review gives an overview of lectins with high potential for the use in pest control strategies based on their activity towards pest insects. In addition, potential target sites for lectins inside the insect and the mode of action are discussed. In addition, the effect of plant lectins on non-target organisms such as beneficial insects as well as on human/animal consumers is discussed. It can be concluded that some insecticidal lectins are useful tools that can contribute to the development of integrated pest management strategies with minimal effect(s) on non-target organisms.
Collapse
Affiliation(s)
- Gianni Vandenborre
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | |
Collapse
|
21
|
Nyombaire G, Siddiq M, Dolan K. Physico-chemical and sensory quality of extruded light red kidney bean (Phaseolus vulgaris L.) porridge. Lebensm Wiss Technol 2011. [DOI: 10.1016/j.lwt.2011.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
A new Phaseolus vulgaris lectin induces selective toxicity on human liver carcinoma Hep G2 cells. Arch Toxicol 2011; 85:1551-63. [PMID: 21445585 DOI: 10.1007/s00204-011-0698-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/14/2011] [Indexed: 01/10/2023]
Abstract
We describe here the purification and characterization of a new Phaseolus vulgaris lectin that exhibits selective toxicity to human hepatoma Hep G2 cells and lacks significant toxicity on normal liver WRL 68 cells. This polygalacturonic acid-specific lectin (termed BTKL) was purified from seeds of P. vulgaris cv. Blue tiger king by liquid chromatography techniques. The 60-kDa dimeric lectin showed strong and broad-spectrum hemagglutinating activity toward human, rabbit, rat, and mouse erythrocytes. Bioinformatic analysis unveils substantial N-terminal sequence similarity of BTKL to other Phaseolus lectins. Among a number of tumor cells tested, BTKL exhibits potent anti-Hep G2 activity which is associated with (1) induction of DNA fragmentation, (2) production of apoptotic bodies and chromatin condensation, (3) triggering of cell apoptosis and necrosis, and (4) depolarization of mitochondrial membrane (low ΔΨm). Furthermore, BTKL could induce inducible nitric oxide synthase (iNOS) expression and subsequent nitric oxide production in vitro in mouse macrophages, which may contribute to its antitumor activity. In addition, BTKL could bring about a significant dose-dependent increase in the production of mRNAs of proinflammatory cytokines including interleukin-1 beta, interleukin-2, tumor necrosis factor alpha, and interferon-gamma. In sum, the antitumor activity and mechanism of BTKL provided here suggest that it has potential therapeutic value for human liver cancer.
Collapse
|
23
|
Valadez-Vega C, Guzmán-Partida AM, Soto-Cordova FJ, Álvarez-Manilla G, Morales-González JA, Madrigal-Santillán E, Villagómez-Ibarra JR, Zúñiga-Pérez C, Gutiérrez-Salinas J, Becerril-Flores MA. Purification, biochemical characterization, and bioactive properties of a lectin purified from the seeds of white tepary bean (phaseolus acutifolius variety latifolius). Molecules 2011; 16:2561-2582. [PMID: 21441861 PMCID: PMC6259754 DOI: 10.3390/molecules16032561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 02/07/2023] Open
Abstract
The present work shows the characterization of Phaseolus acutifolius variety latifolius, on which little research has been published, and provides detailed information on the corresponding lectin. This protein was purified from a semi-domesticated line of white tepary beans from Sonora, Mexico, by precipitation of the aqueous extract with ammonium sulfate, followed by affinity chromatography on an immobilized fetuin matrix. MALDI TOF analysis of Phaseolus acutifolius agglutinin (PAA) showed that this lectin is composed of monomers with molecular weights ranging between 28 and 31 kDa. At high salt concentrations, PAA forms a dimer of 63 kDa, but at low salt concentrations, the subunits form a tetramer. Analysis of PAA on 2D-PAGE showed that there are mainly three types of subunits with isoelectric points of 4.2, 4.4, and 4.5. The partial sequence obtained by LC/MS/MS of tryptic fragments from the PAA subunits showed 90-100% identity with subunits from genus Phaseolus lectins in previous reports. The tepary bean lectin showed lower hemagglutination activity than Phaseolus vulgaris hemagglutinin (PHA-E) toward trypsinized human A and O type erythrocytes. The hemagglutination activity was inhibited by N-glycans from glycoproteins. Affinity chromatography with the immobilized PAA showed a high affinity to glycopeptides from thyroglobulin, which also has N-glycans with a high content of N-acetylglucosamine. PAA showed less mitogenic activity toward human lymphocytes than PHA-L and Con A. The cytotoxicity of PAA was determined by employing three clones of the 3T3 cell line, demonstrating variability among the clones as follows: T4 (DI₅₀ 51.5 µg/mL); J20 (DI₅₀ 275 µg/mL), and N5 (DI₅₀ 72.5 µg/mL).
Collapse
Affiliation(s)
- Carmen Valadez-Vega
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - Ana María Guzmán-Partida
- Center for Food Research and Development, A. C. Carretera a la Victoria Km 0.6 C.P. 83304. Hermosillo, Sonora, Mexico; E-Mails: (A.M.G.-P.); (F.J.S.-C.)
| | - Francisco Javier Soto-Cordova
- Center for Food Research and Development, A. C. Carretera a la Victoria Km 0.6 C.P. 83304. Hermosillo, Sonora, Mexico; E-Mails: (A.M.G.-P.); (F.J.S.-C.)
| | | | - José A. Morales-González
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - Eduardo Madrigal-Santillán
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - José Roberto Villagómez-Ibarra
- Basic Science and Engineering Institute, Universidad Autónoma del Estado de Hidalgo, Carr. A-Pachuca-Tulancingo Km 4.5 Cd Universitaria, CP 42184, Mineral de la Reforma, Hgo, Mexico; E-Mail: (J.R.V.-I.)
| | - Clara Zúñiga-Pérez
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - José Gutiérrez-Salinas
- Laboratory of Biochemistry and Experimental Medicine, Division of Biomedical Research, National Medical Center “20 de Noviembre”, ISSSTE, México D.F., Mexico; E-Mail: (J.G.-S.)
| | - Marco A. Becerril-Flores
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| |
Collapse
|
24
|
Dias DR, Abreu CMPD, Silvestre MPC, Schwan RF. In vitro protein digestibility of enzymatically pre-treated bean (Phaseolus vulgaris L.) flour using commercial protease and Bacillus sp. protease. FOOD SCIENCE AND TECHNOLOGY 2010. [DOI: 10.1590/s0101-20612010005000010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The common bean (Phaseolus vulgaris L.) is a staple food in the Brazilian diet and represents the major source of dietary protein and other micronutrients and minerals. Despite the considerable protein concentration in beans, the food is considered of low biological value when compared to animal proteins and other plant protein sources. To improve the availability of protein in beans, enzymatic treatments were performed in four cultivars (ON, OPNS, TAL and VC3). The approach was a completely randomized design with four replicates. We used a 4 × 3 factorial arrangement (four cultivars and three treatments: treatment 1-addition of commercial protease (Trypsin 250, Difco), treatment 2-addition of protease from Bacillus sp., and treatment 3:-control without enzyme addition). The enzyme: substrate ratio was 5% w/w (amount of enzyme per total protein in bean flour). The approach was a completely randomized design with four replicates. A 4 × 3 factorial arrangement (four cultivars and three treatments, the same as those mentioned above) was used. The concentration of total protein (g.100 g-1 of dry matter) in the samples ranged from 16.94 to 18.06%, while the concentration of total phenolics was between 0.78 and 1.12% (g Eq. tannic acid.100 g-1 dry matter). The in vitro protein digestibility of enzymatically untreated bean flour (control) ranged from 47.30 to 56.17% based on the digestibility of casein. Concentrations of P, K, Ca, Mg, and Zn observed in the four cultivars tested were within the average values available in the literature. Treatment 2 with protease from Bacillus sp. induced decreases in the levels of Cu and Mn. The average Fe content increased in all bean flour samples when treated with proteases, reaching a maximum increase of 102% in the TAL flour treated with protease from Bacillus sp. The digestibility of all beans tested was significantly increased (p < 0.05) after the enzyme treatment. The greatest change was observed in the OPNS cultivar treated with protease from Bacillus sp., which increased its digestibility from 54.4% (control treatment) to 81.6%.
Collapse
|
25
|
Perazzini R, Leonardi D, Ruggeri S, Alesiani D, D'Arcangelo G, Canini A. Characterization of Phaseolus vulgaris L. landraces cultivated in central Italy. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2008; 63:211-218. [PMID: 18958625 DOI: 10.1007/s11130-008-0095-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Eight Phaseolus vulgaris L. landraces cultivated on farm in marginal areas of Central Italy (Lazio region) were investigated in order to evaluate chemical composition of storage proteins and secondary metabolites fractions. The total protein content showed some differences among landraces; the maximum value was next to 30 g for 100 g of dry weight. The seed storage proteins were screened by polyacrylamide gel electrophoresis (SDS/PAGE): seven landraces exhibited phaseolin patterns type S, one landrace showed a phaseolin pattern type T. A morphological analysis of cotyledon parenchyma performed by scanning electron microscopy (SEM) revealed differences in size of starch granules. Moreover the polyphenolic composition was investigated using HPLC-APCI; from the methanol extracts a flavonoid, kaempferol, and a coumarin, 5,7-dimethoxycoumarin, were identified. To our knowledge, this is the first time that 5,7-dimethoxycoumarin has been reported in P. vulgaris seeds.
Collapse
Affiliation(s)
- Raffaella Perazzini
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Feregrino-Pérez AA, Berumen LC, García-Alcocer G, Guevara-Gonzalez RG, Ramos-Gomez M, Reynoso-Camacho R, Acosta-Gallegos JA, Loarca-Piña G. Composition and chemopreventive effect of polysaccharides from common beans (Phaseolus vulgaris L.) on azoxymethane-induced colon cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:8737-8744. [PMID: 18754663 DOI: 10.1021/jf8007162] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Common beans ( Phaseolus vulgaris L.) contain a high proportion of undigested carbohydrates (NDC) that can be fermented in the large intestine to produce short-chain fatty acids (SCFA) such as acetate, propionate, and butyrate. The objective of the present study was to evaluate the composition and chemopreventive effect of a polysaccharide extract (PE) from cooked common beans ( P. vulgaris L) cv. Negro 8025 on azoxymethane (AOM) induced colon cancer in rats. The PE induced SCFA production with the highest butyrate concentrated in the cecum zone: 6.7 +/- 0.06 mmol/g of sample for PE treatment and 5.29 +/- 0.24 mmol/g of sample for PE + AOM treatment. The number of aberrant crypt foci (ACF) and the transcriptional expression of bax and caspase-3 were increased, and rb expression was decreased. The data suggest that PE decreased ACF and had an influence on the expression of genes involved in colon cancer for the action of butyrate concentration.
Collapse
Affiliation(s)
- Ana A Feregrino-Pérez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro. 76010, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Plants have been used as a source of medicine throughout history and continue to serve as the basis for many pharmaceuticals used today. Although the modern pharmaceutical industry was born from botanical medicine, synthetic approaches to drug discovery have become standard. However, this modern approach has led to a decline in new drug development in recent years and a growing market for botanical therapeutics that are currently available as dietary supplements, drugs, or botanical drugs. Most botanical therapeutics are derived from medicinal plants that have been cultivated for increased yields of bioactive components. The phytochemical composition of many plants has changed over time, with domestication of agricultural crops resulting in the enhanced content of some bioactive compounds and diminished content of others. Plants continue to serve as a valuable source of therapeutic compounds because of their vast biosynthetic capacity. A primary advantage of botanicals is their complex composition consisting of collections of related compounds having multiple activities that interact for a greater total activity.
Collapse
Affiliation(s)
| | - David M. Ribnicky
- Corresponding author. Biotechnology Center for Agriculture and the Environment, Foran Hall, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, USA. Tel.: +1 732 932 8734x227; fax: +1 732 932 6535.
| | | | | | | | | |
Collapse
|
28
|
Aparicio-Fernández X, Reynoso-Camacho R, Castaño-Tostado E, García-Gasca T, González de Mejía E, Guzmán-Maldonado SH, Elizondo G, Yousef GG, Lila MA, Loarca-Pina G. Antiradical capacity and induction of apoptosis on HeLa cells by a Phaseolus vulgaris extract. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2008; 63:35-40. [PMID: 18095168 DOI: 10.1007/s11130-007-0066-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 11/16/2007] [Indexed: 05/25/2023]
Abstract
Jamapa bean is a black Phaseolus vulgaris variety rich in condensed tannins, anthocyanins and flavonols with interesting biological activities. The objective of this work was to evaluate the antiradical capacity (ARC) of a Jamapa bean methanolic extract (BME) and some of the proanthocyanidin-rich fractions derived from it, using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The effect of the BME on some proteins involved in apoptosis on HeLa cells was also evaluated. A strong correlation between proanthocyanidin concentration in BME and antiradical capacity was found, suggesting that these compounds contribute significantly to antiradical activity. BME was a better radical scavenger than butylated hydroxytoluene (45.6 and 33.9% ARC at 400 microM, respectively). Two proanthocyanidin-rich fractions obtained after a preliminary separation of the BME using Toyopearl (TP4 and TP6) exhibited a higher antiradical activity than the parent extract. The treatment of HeLa cells with 35 microg BME/ml/24 h increased the expression of Bax and Caspase-3, pro-apoptotic proteins (6.13 and 1.2 times for Caspase-3 and Bax, respectively). The mechanism of action of some proteins involved in apoptosis was also evaluated, and the results suggest that black Jamapa bean could be an important source of polyphenolic compounds with potential biological use as antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Xochitl Aparicio-Fernández
- Programa de Posgrado en Alimentos del Centro de la Republica (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Queretaro, Qro., 76010, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lectins, trypsin and α-amylase inhibitors in dietary supplements containing Phaseolus vulgaris. Eur Food Res Technol 2007. [DOI: 10.1007/s00217-007-0773-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Castillo-Villanueva A, Caballero-Ortega H, Abdullaev-Jafarova F, Garfias Y, del Carmen Jiménez-Martínez M, Bouquelet S, Martínez G, Mendoza-Hernández G, Zenteno E. Lectin from Phaseolus acutifolius var. escumite: chemical characterization, sugar specificity, and effect on human T-lymphocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5781-7. [PMID: 17567024 DOI: 10.1021/jf063644k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Purification of the lectin from Phaseolus acutifolius var. escumite was achieved by affinity chromatography on a column containing glutaraldehyzed membranes from blood group O erythrocytes. The lectin is a tetrameric glycoprotein of 121 kDa with 10% of sugar by weight composed by four subunits of 30 kDa as determined by SDS-PAGE. The lectin is composed of four isolectins as determined by ion-exchange chromatography on a mono-S column. The lectin and its isolectins showed identical NH2 terminal residues (ANDLSFNFQR FNETN) with homology to the PHA leucoagglutinin-precursor. Peptide mass fingerprint from each lectin isoform determined from tryptic peptides by MALDI-TOF (matrix assisted laser desorption ionization-time-of-flight) showed differences among subunits, thus suggesting microheterogeneity in their amino acid sequences or different glycosylation patterns. The lectin and its four isolectins agglutinated erythrocytes without serological specificity and showed mitogenic activity on human leukocytes; moreover, the main effect was rather toward CD8+ than to CD4+ human peripheral lymphocytes. The lectin from escumite was not inhibitable by simple sugars; however, the specificity of the lectin and its isoforms was mainly addressed toward galactose residues present in bi- or triantennary N-acetyllactosamine-type glycans.
Collapse
|
31
|
Siddiq M, Nyombaire G, Dolan K, Matella NJ, Harte J. Processing of Sugar-Coated Red Kidney Beans (Phaseolus vulgaris): Fate of Oligosaccharides and Phytohemagglutinin (PHA), and Evaluation of Sensory Quality. J Food Sci 2006. [DOI: 10.1111/j.1750-3841.2006.00176.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|