1
|
Scalia A, Coquay M, Kindt N, Duez P, Aro R, Journé F, Fabjanczyk M, Trelcat A, Carlier S. In Vitro Modulation of Human Foam Cell Formation and Adhesion Molecules Expression by Ginger Extracts Points to Potential Cardiovascular Preventive Agents. Int J Mol Sci 2024; 25:9487. [PMID: 39273434 PMCID: PMC11394959 DOI: 10.3390/ijms25179487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Recent findings from the World Heart Federation (WHF) reported a significant increase in cardiovascular disease (CVD)-related deaths, highlighting the urgent need for effective prevention strategies. Atherosclerosis, a key precursor to CVD, involves the accumulation of low-density lipoprotein (LDL) and its oxidation within the endothelium, leading to inflammation and foam cell formation. Ginger extracts, known for their antioxidative and anti-inflammatory properties, show promise in preventing CVD initiation by inhibiting LDL oxidation and reducing foam cell formation. Our results revealed that the active fractions in ginger extracts had antioxidative effects, particularly fractions D and E. Further research is needed to identify the active compounds in these fractions and understand their mechanisms of action. In this context, microfluidic models could offer insights into the effects of ginger on monocyte recruitment in a more physiologically relevant context. Overall, ginger extracts represent a potential novel treatment for preventing CVD initiation, but additional studies are necessary to identify the active molecules in these fractions.
Collapse
Affiliation(s)
- Alessandro Scalia
- Department of Cardiology, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
| | - Maxime Coquay
- Department of Cardiology, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
- Department of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Nadège Kindt
- Department of Cardiology, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
- Department of Clinical and Experimental Oncology, Institute Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Pierre Duez
- Department of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Rania Aro
- Department of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Fabrice Journé
- Department of Clinical and Experimental Oncology, Institute Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Department of Human Biology and Toxicology, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
| | - Mathilde Fabjanczyk
- Department of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Anne Trelcat
- Department of Cardiology, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
- Department of Human Anatomy and Experimental Oncology, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
| | - Stéphane Carlier
- Department of Cardiology, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
| |
Collapse
|
2
|
Soto Y, Hernández A, Sarduy R, Brito V, Marleau S, Vine DF, Vázquez AM, Proctor SD. Monoclonal Antibody chP3R99 Reduces Subendothelial Retention of Atherogenic Lipoproteins in Insulin-Resistant Rats: Acute Treatment Versus Long-Term Protection as an Idiotypic Vaccine for Atherosclerosis. J Am Heart Assoc 2024; 13:e032419. [PMID: 38934863 PMCID: PMC11255714 DOI: 10.1161/jaha.123.032419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Atherosclerosis is triggered by the retention of apolipoprotein B-containing lipoproteins by proteoglycans. In addition to low-density lipoprotein, remnant lipoproteins have emerged as pivotal contributors to this pathology, particularly in the context of insulin resistance and diabetes. We have previously reported antiatherogenic properties of a monoclonal antibody (chP3R99) that recognizes sulfated glycosaminoglycans on arterial proteoglycans. METHODS AND RESULTS Solid-phase assays demonstrated that chP3R99 effectively blocked >50% lipoprotein binding to chondroitin sulfate and vascular extracellular matrix in vitro. The preperfusion of chP3R99 (competitive effect) resulted in specific antibody-arterial accumulation and reduced fluorescent lipoprotein retention by ~60% in insulin resistant JCR:LA-cp rats. This competitive reduction was dose dependent (25-250 μg/mL), effectively decreasing deposition of cholesterol associated with lipoproteins. In a 5-week vaccination study in insulin resistant rats with (200 μg subcutaneously, once a week), chP3R99 reduced arterial lipoprotein retention, and was associated with the production of antichondroitin sulfate antibodies (Ab3) able to accumulate in the arteries (dot-blot). Neither the intravenous inoculation of chP3R99 (4.5 mg/kg), nor the immunization with this antibody displayed adverse effects on lipid or glucose metabolism, insulin resistance, liver function, blood cell indices, or inflammation pathways in JCR:LA-cp rats. CONCLUSIONS Both acute (passive) and long-term administration (idiotypic cascade) of chP3R99 antibody reduced low-density lipoprotein and remnant lipoprotein interaction with proteoglycans in an insulin-resistant setting. These findings support the innovative approach of targeting proatherogenic lipoprotein retention by chP3R99 as a passive therapy or as an idiotypic vaccine for atherosclerosis.
Collapse
Affiliation(s)
- Yosdel Soto
- Department of ImmunobiologyDirection of Immunology and ImmunotherapyCentre for Molecular ImmunologyHavanaCuba
- Metabolic and Cardiovascular Disease LaboratoryGroup on Molecular and Cell Biology of LipidsAlberta Diabetes and Mazankowski Heart InstitutesUniversity of AlbertaEdmontonABCanada
| | - Arletty Hernández
- Department of ImmunobiologyDirection of Immunology and ImmunotherapyCentre for Molecular ImmunologyHavanaCuba
| | - Roger Sarduy
- Department of ImmunobiologyDirection of Immunology and ImmunotherapyCentre for Molecular ImmunologyHavanaCuba
| | - Victor Brito
- Department of ImmunobiologyDirection of Immunology and ImmunotherapyCentre for Molecular ImmunologyHavanaCuba
| | - Sylvie Marleau
- Faculté de PharmacieUniversité de MontréalMontréalQCCanada
| | - Donna F. Vine
- Metabolic and Cardiovascular Disease LaboratoryGroup on Molecular and Cell Biology of LipidsAlberta Diabetes and Mazankowski Heart InstitutesUniversity of AlbertaEdmontonABCanada
| | - Ana M. Vázquez
- Innovation and Managing DirectionCenter for Molecular ImmunologyHavanaCuba
| | - Spencer D. Proctor
- Metabolic and Cardiovascular Disease LaboratoryGroup on Molecular and Cell Biology of LipidsAlberta Diabetes and Mazankowski Heart InstitutesUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
3
|
Luciani L, Pedrelli M, Parini P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024; 394:117545. [PMID: 38688749 DOI: 10.1016/j.atherosclerosis.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lorenzo Luciani
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Interdisciplinary Center for Health Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Getz GS, Reardon CA. Insights from Murine Studies on the Site Specificity of Atherosclerosis. Int J Mol Sci 2024; 25:6375. [PMID: 38928086 PMCID: PMC11204064 DOI: 10.3390/ijms25126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis. But how this accounts for lesion development at various locations along the vascular tree across differing time frames still requires additional study. Currently, murine models are favored for the experimental study of atherogenesis and provide the most insight into the mechanisms that may contribute to the development of atherosclerosis. Based largely on these studies, in this review, we discuss the role of hemodynamic shear stress, SR-B1, and other factors that may contribute to the site-specific development of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | | |
Collapse
|
5
|
Geh EN, Swertfeger DK, Sexmith H, Heink A, Tarapore P, Melchior JT, Davidson WS, Shah AS. A novel assay to measure low-density lipoproteins binding to proteoglycans. PLoS One 2024; 19:e0291632. [PMID: 38295021 PMCID: PMC10830033 DOI: 10.1371/journal.pone.0291632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/04/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The binding of low-density lipoprotein (LDL) to proteoglycans (PGs) in the extracellular matrix (ECM) of the arterial intima is a key initial step in the development of atherosclerosis. Although many techniques have been developed to assess this binding, most of the methods are labor-intensive and technically challenging to standardize across research laboratories. Thus, sensitive, and reproducible assay to detect LDL binding to PGs is needed to screen clinical populations for atherosclerosis risk. OBJECTIVES The aim of this study was to develop a quantitative, and reproducible assay to evaluate the affinity of LDL towards PGs and to replicate previously published results on LDL-PG binding. METHODS Immunofluorescence microscopy was performed to visualize the binding of LDL to PGs using mouse vascular smooth muscle (MOVAS) cells. An in-cell ELISA (ICE) was also developed and optimized to quantitatively measure LDL-PG binding using fixed MOVAS cells cultured in a 96-well format. RESULTS We used the ICE assay to show that, despite equal APOB concentrations, LDL isolated from adults with cardiovascular disease bound to PG to a greater extent than LDL isolated from adults without cardiovascular disease (p<0.05). CONCLUSION We have developed an LDL-PG binding assay that is capable of detecting differences in PG binding affinities despite equal APOB concentrations. Future work will focus on candidate apolipoproteins that enhance or diminish this interaction.
Collapse
Affiliation(s)
- Esmond N. Geh
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Debi K. Swertfeger
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Hannah Sexmith
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Anna Heink
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Pheruza Tarapore
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - John T. Melchior
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - W. Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Amy Sanghavi Shah
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
6
|
Urschel K, Hug KP, Zuo H, Büttner M, Furtmair R, Kuehn C, Stumpfe FM, Botos B, Achenbach S, Yuan Y, Dietel B, Tauchi M. The Shear Stress-Regulated Expression of Glypican-4 in Endothelial Dysfunction In Vitro and Its Clinical Significance in Atherosclerosis. Int J Mol Sci 2023; 24:11595. [PMID: 37511353 PMCID: PMC10380765 DOI: 10.3390/ijms241411595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Retention of circulating lipoproteins by their interaction with extracellular matrix molecules has been suggested as an underlying mechanism for atherosclerosis. We investigated the role of glypican-4 (GPC4), a heparan sulfate (HS) proteoglycan, in the development of endothelial dysfunction and plaque progression; Expression of GPC4 and HS was investigated in human umbilical vein/artery endothelial cells (HUVECs/HUAECs) using flow cytometry, qPCR, and immunofluorescent staining. Leukocyte adhesion was determined in HUVECs in bifurcation chamber slides under dynamic flow. The association between the degree of inflammation and GPC4, HS, and syndecan-4 expressions was analyzed in human carotid plaques; GPC4 was expressed in HUVECs/HUAECs. In HUVECs, GPC4 protein expression was higher in laminar than in non-uniform shear stress regions after a 1-day or 10-day flow (p < 0.01 each). The HS expression was higher under laminar flow after a 1 day (p < 0.001). Monocytic THP-1 cell adhesion to HUVECs was facilitated by GPC4 knock-down (p < 0.001) without affecting adhesion molecule expression. GPC4 and HS expression was lower in more-inflamed than in less-inflamed plaque shoulders (p < 0.05, each), especially in vulnerable plaque sections; Reduced expression of GPC4 was associated with atherogenic conditions, suggesting the involvement of GPC4 in both early and advanced stages of atherosclerosis.
Collapse
Affiliation(s)
- Katharina Urschel
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Karsten P. Hug
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Hanxiao Zuo
- School of Public Health, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada; (H.Z.); (Y.Y.)
| | - Michael Büttner
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Roman Furtmair
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Constanze Kuehn
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Florian M. Stumpfe
- Department of Obstetrics and Gynaecology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstraße 21-23, 91054 Erlangen, Germany;
| | - Balaz Botos
- Department of Vascular and Endovascular Surgery, General Hospital Nuremberg, Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany;
| | - Stephan Achenbach
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Yan Yuan
- School of Public Health, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada; (H.Z.); (Y.Y.)
| | - Barbara Dietel
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Miyuki Tauchi
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| |
Collapse
|
7
|
Hayes AJ, Farrugia BL, Biose IJ, Bix GJ, Melrose J. Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Front Cell Dev Biol 2022; 10:856261. [PMID: 35433700 PMCID: PMC9010944 DOI: 10.3389/fcell.2022.856261] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Brooke L. Farrugia
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Ifechukwude J. Biose
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
8
|
Sobenin IA, Markin AM, Glanz VY, Markina YV, Wu WK, Myasoedova VA, Orekhov AN. Prospects for the Use of Sialidase Inhibitors in Anti-atherosclerotic Therapy. Curr Med Chem 2021; 28:2438-2450. [PMID: 32867633 DOI: 10.2174/0929867327666200831133912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022]
Abstract
The most typical feature of atherogenesis in humans at its early stage is the formation of foam cells in subendothelial arterial intima, which occurs as the consequence of intracellular cholesterol deposition. The main source of lipids accumulating in the arterial wall is circulating low-density lipoprotein (LDL). However, LDL particles should undergo proatherogenic modification to acquire atherogenic properties. One of the known types of atherogenic modification of LDL is enzymatic deglycosilation, namely, desialylation, which is the earliest change in the cascade of following multiple LDL modifications. The accumulating data make sialidases an intriguing and plausible therapeutic target, since pharmacological modulation of activity of these enzymes may have beneficial effects in several pathologies, including atherosclerosis. The hypothesis exists that decreasing LDL enzymatic desialylation may result in the prevention of lipid accumulation in arterial wall, thus breaking down one of the key players in atherogenesis at the cellular level. Several drugs acting as glycomimetics and inhibiting sialidase enzymatic activity already exist, but the concept of sialidase inhibition as an anti-atherosclerosis strategy remains unexplored to date. This review is focused on the potential possibilities of the repurposing of sialidase inhibitors for pathogenetic anti-atherosclerotic therapy.
Collapse
Affiliation(s)
- Igor A Sobenin
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Alexander M Markin
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Victor Y Glanz
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Yuliya V Markina
- Laboratory of Infection Pathology and Molecular Microecology & Central Laboratory of Pathology, Institute of Human Morphology, Moscow, Russian Federation
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei- Hu Branch, Taipei, Taiwan
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
9
|
The miR-378c-Samd1 circuit promotes phenotypic modulation of vascular smooth muscle cells and foam cells formation in atherosclerosis lesions. Sci Rep 2021; 11:10548. [PMID: 34006929 PMCID: PMC8131603 DOI: 10.1038/s41598-021-89981-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs have emerged as key regulators in vascular diseases and are involved in the formation of atherosclerotic lesions. However, the atherosclerotic-specific MicroRNAs and their functional roles in atherosclerosis are unclear. Here, we report that miR-378c protects against atherosclerosis by directly targeting Sterile Alpha Motif Domain Containing 1 (Samd1), a predicted transcriptional repressor. miR-378c was strikingly reduced in atherosclerotic plaques and blood of acute coronary syndrome (ACS) patients relative to healthy controls. Suppression of miR-378c promoted vascular smooth muscle cells (VSMCs) phenotypic transition during atherosclerosis. We also reported for the first time that Samd1 prolonged immobilization of LDL on the VSMCs, thus facilitated LDL oxidation and subsequently foam cell formation. Further, we found that Samd1 contains predicted DNA binding domain and directly binds to DNA regions as a transcriptional repressor. Together, we uncovered a novel mechanism whereby miR-378c-Samd1 circuit participates in two key elements of atherosclerosis, VSMCs phenotypic transition and LDL oxidation. Our results provided a better understanding of atherosclerosis pathophysiology and potential therapeutic management by targeting miR-378c-Samd1 circuit.
Collapse
|
10
|
Jayaraman S, Chavez OR, Pérez A, Miñambres I, Sánchez-Quesada JL, Gursky O. Binding to heparin triggers deleterious structural and biochemical changes in human low-density lipoprotein, which are amplified in hyperglycemia. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158712. [PMID: 32289504 DOI: 10.1016/j.bbalip.2020.158712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Low-density lipoprotein (LDL) binding to arterial proteoglycans initiates LDL retention and modification in the arterial wall, triggering atherosclerosis. The details of this binding, its effectors, and its ramifications are incompletely understood. We combined heparin affinity chromatography with biochemical, spectroscopic and electron microscopic techniques to show that brief binding to heparin initiates irreversible pro-atherogenic remodeling of human LDL. This involved decreased structural stability of LDL and increased susceptibility to hydrolysis, oxidation and fusion. Furthermore, phospholipid hydrolysis, mild oxidation and/or glycation of LDL in vitro increase the proteolytic susceptibility of apoB and its heparin binding affinity, perhaps by unmasking additional heparin-binding sites. For LDL from hyperglycemic type-2 diabetic patients, heparin binding was particularly destabilizing and caused apoB fragmentation and LDL fusion. However, for similar patients whose glycemic control was restored upon therapy, LDL-heparin binding affinity was rectified and LDL structural stability was partially restored. These results complement previous studies of LDL binding to arterial proteoglycans and suggest that such interactions may produce a particularly pro-atherogenic subclass of electronegative LDL. In summary, binding to heparin alters apoB conformation, perhaps by partially peeling it off the lipid, and triggers pro-atherogenic LDL modifications including hydrolysis, oxidation, and destabilization. Furthermore, phospholipid lipolysis, mild oxidation and glycation of LDL in vitro strengthen its binding to heparin, which helps explain stronger binding observed in hyperglycemic LDL. Combined effects of hyperglycemia and heparin binding are especially deleterious but are largely rectified upon diabetes therapy. These findings help establish a mechanistic link between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Olivia R Chavez
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Antonio Pérez
- Endocrinology Department of the Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Spain
| | - Inka Miñambres
- Endocrinology Department of the Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Spain; Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau, CIBERDEM, Barcelona, Spain
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA; Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston MA, USA
| |
Collapse
|
11
|
Adhikara IM, Yagi K, Mayasari DS, Ikeda K, Kitagawa H, Miyata O, Igarashi M, Hatakeyama K, Asada Y, Hirata KI, Emoto N. Chondroitin sulfate N-acetylgalactosaminyltransferase-2 deletion alleviates lipoprotein retention in early atherosclerosis and attenuates aortic smooth muscle cell migration. Biochem Biophys Res Commun 2019; 509:89-95. [DOI: 10.1016/j.bbrc.2018.12.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 11/24/2022]
|
12
|
Lord MS, Tang F, Rnjak-Kovacina J, Smith JGW, Melrose J, Whitelock JM. The multifaceted roles of perlecan in fibrosis. Matrix Biol 2018; 68-69:150-166. [PMID: 29475023 DOI: 10.1016/j.matbio.2018.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Perlecan, or heparan sulfate proteoglycan 2 (HSPG2), is a ubiquitous heparan sulfate proteoglycan that has major roles in tissue and organ development and wound healing by orchestrating the binding and signaling of mitogens and morphogens to cells in a temporal and dynamic fashion. In this review, its roles in fibrosis are reviewed by drawing upon evidence from tissue and organ systems that undergo fibrosis as a result of an uncontrolled response to either inflammation or traumatic cellular injury leading to an over production of a collagen-rich extracellular matrix. This review focuses on examples of fibrosis that occurs in lung, liver, kidney, skin, kidney, neural tissues and blood vessels and its link to the expression of perlecan in that particular organ system.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Fengying Tang
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | | | - James G W Smith
- University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia; Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Bornfeldt KE. Uncomplicating the Macrovascular Complications of Diabetes: The 2014 Edwin Bierman Award Lecture. Diabetes 2015; 64:2689-97. [PMID: 26207031 PMCID: PMC4512224 DOI: 10.2337/db14-1963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/08/2015] [Indexed: 12/18/2022]
Abstract
The risk of cardiovascular events in humans increases in the presence of type 1 or type 2 diabetes mellitus, in large part due to exacerbated atherosclerosis. Genetically engineered mouse models have begun to elucidate cellular and molecular mechanisms responsible for diabetes-exacerbated atherosclerosis. Research on these mouse models has revealed that diabetes independently accelerates initiation and progression of lesions of atherosclerosis and also impairs the regression of lesions following aggressive lipid lowering. Myeloid cell activation in combination with proatherogenic changes allowing for increased monocyte recruitment into arteries of diabetic mice has emerged as an important mediator of the effects of diabetes on the three stages of atherosclerosis. The effects of diabetes on atherosclerosis appear to be dependent on an interplay between glucose and lipids, as well as other factors, and result in increased recruitment of monocytes into both progressing and regressing lesions of atherosclerosis. Importantly, some of the mechanisms revealed by mouse models are now being studied in human subjects. This Perspective highlights new mechanistic findings based on mouse models of diabetes-exacerbated atherosclerosis and discusses the relevance to humans and areas in which more research is urgently needed in order to lessen the burden of macrovascular complications of type 1 and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition and Department of Pathology, Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
14
|
Du J, Wang Y, Jia L. ECM and Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Xu YX, Ashline D, Liu L, Tassa C, Shaw SY, Ravid K, Layne MD, Reinhold V, Robbins PW. The glycosylation-dependent interaction of perlecan core protein with LDL: implications for atherosclerosis. J Lipid Res 2014; 56:266-76. [PMID: 25528754 PMCID: PMC4306681 DOI: 10.1194/jlr.m053017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Perlecan is a major heparan sulfate (HS) proteoglycan in the arterial wall. Previous studies have linked it to atherosclerosis. Perlecan contains a core protein and three HS side chains. Its core protein has five domains (DI–DV) with disparate structures and DII is highly homologous to the ligand-binding portion of LDL receptor (LDLR). The functional significance of this domain has been unknown. Here, we show that perlecan DII interacts with LDL. Importantly, the interaction largely relies on O-linked glycans that are only present in the secreted DII. Among the five repeat units of DII, most of the glycosylation sites are from the second unit, which is highly divergent and rich in serine and threonine, but has no cysteine residues. Interestingly, most of the glycans are capped by the negatively charged sialic acids, which are critical for LDL binding. We further demonstrate an additive effect of HS and DII on LDL binding. Unlike LDLR, which directs LDL uptake through endocytosis, this study uncovers a novel feature of the perlecan LDLR-like DII in receptor-mediated lipoprotein retention, which depends on its glycosylation. Thus, perlecan glycosylation may play a role in the early LDL retention during the development of atherosclerosis.
Collapse
Affiliation(s)
- Yu-Xin Xu
- Center for Human Genetic Research and Cardiovascular Research CenterMassachusetts General Hospital, Boston, MA 02114
| | - David Ashline
- The Glycomics Center, University of New Hampshire, Durham, NH 03824
| | - Li Liu
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| | - Carlos Tassa
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Stanley Y Shaw
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Katya Ravid
- Departments of Medicine Boston University School of Medicine, Boston, MA 02118 Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Matthew D Layne
- Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Vernon Reinhold
- The Glycomics Center, University of New Hampshire, Durham, NH 03824
| | - Phillips W Robbins
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| |
Collapse
|
16
|
Sider KL, Zhu C, Kwong AV, Mirzaei Z, de Langé CFM, Simmons CA. Evaluation of a porcine model of early aortic valve sclerosis. Cardiovasc Pathol 2014; 23:289-97. [PMID: 24998316 DOI: 10.1016/j.carpath.2014.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is associated with significant cardiovascular morbidity. While late-stage CAVD is well-described, early pathobiological processes are poorly understood due to the lack of animal models that faithfully replicate early human disease. Here we evaluated a hypercholesterolemic porcine model of early diet-induced aortic valve sclerosis. METHODS Yorkshire swine were fed either a standard or high-fat/high-cholesterol diet for 2 or 5 months. Right coronary aortic valve leaflets were excised and analyzed (immuno)histochemically. RESULTS Early human-like proteoglycan-rich onlays formed between the endothelial layer and elastic lamina in the fibrosa layer of valve leaflets, with accelerated formation associated with hypercholesterolemia (P<.05). Lipid deposition was more abundant in hypercholesterolemic swine (P<.001), but was present in a minority (28%) of onlays. No myofibroblasts, MAC387-positive macrophages, or fascin-positive dendritic cells were detected in 2-month onlays, with only scarce myofibroblasts present at 5 months. Cells that expressed osteochondral markers Sox9 and Msx2 were preferentially found in dense proteoglycan-rich onlays (P<.05) and with hypercholesterolemia (P<.05). Features of more advanced human CAVD, including calcification, were not observed in this necessarily short study. CONCLUSIONS Early aortic valve sclerosis in hypercholesterolemic swine is characterized by the formation of proteoglycan-rich onlays in the fibrosa, which can occur prior to significant lipid accumulation, inflammatory cell infiltration, or myofibroblast activation. These characteristics mimic those of early human aortic valve disease, and thus the porcine model has utility for the study of early valve sclerosis.
Collapse
Affiliation(s)
- Krista L Sider
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Cuilan Zhu
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Building #70, Guelph, Ontario, Canada, N1G 2W1
| | - Andrea V Kwong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Zahra Mirzaei
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Cornelius F M de Langé
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Building #70, Guelph, Ontario, Canada, N1G 2W1
| | - Craig A Simmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8.
| |
Collapse
|
17
|
Adhikari N, Billaud M, Carlson M, Lake SP, Montaniel KRC, Staggs R, Guan W, Walek D, Desir S, Isakson BE, Barocas VH, Hall JL. Vascular biomechanical properties in mice with smooth muscle specific deletion of Ndst1. Mol Cell Biochem 2014; 385:225-38. [PMID: 24101444 PMCID: PMC4853023 DOI: 10.1007/s11010-013-1831-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/26/2013] [Indexed: 12/19/2022]
Abstract
Heparan sulfate proteoglycans act as co-receptors for many chemokines and growth factors. The sulfation pattern of the heparan sulfate chains is a critical regulatory step affecting the binding of chemokines and growth factors. N-deacetylase-N-sulfotransferase1 (Ndst1) is one of the first enzymes to catalyze sulfation. Previously published work has shown that HSPGs alter tangent moduli and stiffness of tissues and cells. We hypothesized that loss of Ndst1 in smooth muscle would lead to significant changes in heparan sulfate modification and the elastic properties of arteries. In line with this hypothesis, the axial tangent modulus was significantly decreased in aorta from mice lacking Ndst1 in smooth muscle (SM22αcre(+)Ndst1(-/-), p < 0.05, n = 5). The decrease in axial tangent modulus was associated with a significant switch in myosin and actin types and isoforms expressed in aorta and isolated aortic vascular smooth muscle cells. In contrast, no changes were found in the compliance of smaller thoracodorsal arteries of SM22αcre(+)Ndst1(-/-) mice. In summary, the major findings of this study were that targeted ablation of Ndst1 in smooth muscle cells results in altered biomechanical properties of aorta and differential expression of myosin and actin types and isoforms.
Collapse
Affiliation(s)
- Neeta Adhikari
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Marie Billaud
- Robert M Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Marjorie Carlson
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Spencer P. Lake
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, MN 55455
| | - Kim Ramil C. Montaniel
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Rod Staggs
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455
| | - Dinesha Walek
- Biomedical Genomics Center, University of Minnesota, Minneapolis, MN 55455
| | - Snider Desir
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Brant E. Isakson
- Robert M Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, MN 55455
| | - Jennifer L. Hall
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
18
|
Gaudreault N, Kumar N, Olivas VR, Eberlé D, Stephens K, Raffai RL. Hyperglycemia impairs atherosclerosis regression in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1981-1992. [PMID: 24113453 DOI: 10.1016/j.ajpath.2013.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/23/2013] [Accepted: 08/12/2013] [Indexed: 02/01/2023]
Abstract
Diabetic patients are known to be more susceptible to atherosclerosis and its associated cardiovascular complications. However, the effects of hyperglycemia on atherosclerosis regression remain unclear. We hypothesized that hyperglycemia impairs atherosclerosis regression by modulating the biological function of lesional macrophages. HypoE (Apoe(h/h)Mx1-Cre) mice express low levels of apolipoprotein E (apoE) and develop atherosclerosis when fed a high-fat diet. Atherosclerosis regression occurs in these mice upon plasma lipid lowering induced by a change in diet and the restoration of apoE expression. We examined the morphological characteristics of regressed lesions and assessed the biological function of lesional macrophages isolated with laser-capture microdissection in euglycemic and hyperglycemic HypoE mice. Hyperglycemia induced by streptozotocin treatment impaired lesion size reduction (36% versus 14%) and lipid loss (38% versus 26%) after the reversal of hyperlipidemia. However, decreases in lesional macrophage content and remodeling in both groups of mice were similar. Gene expression analysis revealed that hyperglycemia impaired cholesterol transport by modulating ATP-binding cassette A1, ATP-binding cassette G1, scavenger receptor class B family member (CD36), scavenger receptor class B1, and wound healing pathways in lesional macrophages during atherosclerosis regression. Hyperglycemia impairs both reduction in size and loss of lipids from atherosclerotic lesions upon plasma lipid lowering without significantly affecting the remodeling of the vascular wall.
Collapse
Affiliation(s)
- Nathalie Gaudreault
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Nikit Kumar
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Victor R Olivas
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Delphine Eberlé
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Kyle Stephens
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Robert L Raffai
- Surgical Service, VA Medical Center San Francisco, San Francisco, California; Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The interstitium represents the fluid, proteins, solutes, and extracellular matrix comprising the microenvironment of tissues. We here review attempts to characterize the levels and composition of lipoproteins in human interstitial fluid, and identify potentially important questions for future research. RECENT FINDINGS Despite the high relevance of understanding how lipoproteins enter and exit the interstitial compartment, and how they interact with extracellular and cellular molecules, scientific progress in this field has been rather slow. This is partly due to methodological difficulties, both regarding how to obtain representative samples and how to perform appropriate measurements to compare patient cohorts and to evaluate responses to treatment. Predominant techniques include peripheral lymph cannulation and suction blister creation, both of which have inherent advantages and disadvantages. Detailed studies comparing the effects of long-term incubation of serum and lymph lipoproteins are compatible with the view that HDL in interstitial fluid takes up free cholesterol from cells and transfers it into the circulation. SUMMARY Studies of the concentration, composition, functionality, and turnover of interstitial fluid lipoproteins will be of great future interest for understanding how tissue cholesterol metabolism is regulated, and how different diseases link to increased risk for development of atherosclerosis.
Collapse
Affiliation(s)
- Johanna Lundberg
- Department of Medicine, Metabolism Unit, Center for Endocrinology, Metabolism and Diabetes, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
20
|
Tang T, Wilson PG, Thompson JC, Nelson C, Yoder MH, Tannock LR. Prevention of TGFβ induction attenuates angII-stimulated vascular biglycan and atherosclerosis in Ldlr-/- mice. J Lipid Res 2013; 54:2255-2264. [PMID: 23749984 PMCID: PMC3708375 DOI: 10.1194/jlr.p040139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (angII) accelerates atherosclerosis, but the mechanisms are not fully understood. The aim of this study was to determine whether TGFβ is required for angII-induced atherosclerosis. Ldlr-null mice fed a normal chow diet were infused with angII or saline for 28 days. A single injection of TGFβ neutralizing antibody 1D11 (2 mg/kg) prevented angII-induction of TGFβ1 levels, and strikingly attenuated angII-induced accumulation of aortic biglycan content. To study atherosclerosis, mice were infused with angII or saline for 4 weeks, and then fed Western diet for a further 6 weeks. 1D11 had no effect on systolic blood pressure or plasma cholesterol; however, angII-infused mice that received 1D11 had reduced atherosclerotic lesion area by 30% (P < 0.05). Immunohistochemical analyses demonstrated that angII induced both lipid retention and accumulation of biglycan and perlecan which colocalized with apoB. 1D11 strikingly reduced the effect of angII on biglycan but not perlecan. 1D11 decreased total collagen content (P < 0.05) in the lesion area without changing plaque inflammation markers (CD68 and CD45). Thus, this study demonstrates that neutralization of TGFβ attenuated angII stimulation of biglycan accumulation and atherogenesis in mice, suggesting that TGFβ-mediated biglycan induction is one of the mechanisms underlying angII-promoted atherosclerosis.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biglycan/biosynthesis
- Disease Models, Animal
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Receptors, LDL/deficiency
- Receptors, LDL/metabolism
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Tao Tang
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and
| | - Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and
| | - Joel C Thompson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and
| | - Christina Nelson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Meghan H Yoder
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Lisa R Tannock
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and; Department of Veterans Affairs, Lexington, KY.
| |
Collapse
|
21
|
Abstract
Current findings from the literature on the multifactorial genesis of macroangiopathy of diabetes mellitus (DM) were compiled using the PubMed database. The primary aim was to find an explanation for the morphological, immunohistochemical and molecular characteristics of this form of atherosclerosis. The roles of advanced glycation end products (AGE), defective signal transduction and imbalance of matrix metalloproteinases in the increased progression of atherosclerosis in coronary and cerebral arteries as well as peripheral vascular disease are discussed. The restricted formation of collateral arteries (arteriogenesis) in diabetic patients with postischemic lesions is also a focus of attention. The increased level of prothrombotic factors and the role of diabetic neuropathy in DM are also taken into account. Therapeutic influences of AGE-RAGE (receptor of AGE) interactions on the vascular wall and the effects of endothelial progenitor cells in the repair of diabetic vascular lesions are additionally highlighted.
Collapse
Affiliation(s)
- J Kunz
- Lilienthalstr. 19, 14612, Falkensee, Deutschland.
| |
Collapse
|
22
|
Mangat R, Warnakula S, Borthwick F, Hassanali Z, Uwiera RRE, Russell JC, Cheeseman CI, Vine DF, Proctor SD. Arterial retention of remnant lipoproteins ex vivo is increased in insulin resistance because of increased arterial biglycan and production of cholesterol-rich atherogenic particles that can be improved by ezetimibe in the JCR:LA-cp rat. J Am Heart Assoc 2012; 1:e003434. [PMID: 23316299 PMCID: PMC3541624 DOI: 10.1161/jaha.112.003434] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Literature supports the "response-to-retention" hypothesis-that during insulin resistance, impaired metabolism of remnant lipoproteins can contribute to accelerated cardiovascular disease progression. We used the JCR:LA-cp rat model of metabolic syndrome (MetS) to determine the extent of arterial accumulation of intestinal-derived remnants ex vivo and potential mechanisms that contribute to exacerbated cholesterol deposition in insulin resistance. METHODS AND RESULTS Arteries from control and MetS (insulin-resistant) JCR:LA-cp rats were perfused ex vivo with Cy5-labeled remnant lipoproteins, and their arterial retention was quantified by confocal microscopy. Arterial proteoglycans were isolated from control and MetS rats at 6, 12, and 32 weeks of age. There was a significant increase in the arterial retention of remnants and in associated cholesterol accumulation in MetS rats as compared to control rats. Mechanistic studies reveal that increased cholesterol deposition is a result of greater arterial biglycan content; longer glycosaminoglycans and increased production of cholesterol-rich intestinal-derived remnants, as compared to controls. Additionally, perfusion of vessels treated with ezetimibe, alone or in combination with simvastatin, with remnants isolated from the respective treatment group reduced ex vivo arterial retention of remnant-derived cholesterol ex vivo as compared to untreated controls. CONCLUSIONS Increased progression of atherosclerotic cardiovascular disease in MetS and type 2 diabetes mellitus might be explained in part by an increase in the arterial retention of cholesterol-rich remnants. Furthermore, ezetimibe alone or in combination treatment with simvastatin could be beneficial in ameliorating atherosclerotic cardiovascular disease in insulin resistance and MetS.
Collapse
Affiliation(s)
- Rabban Mangat
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yeager ME, Colvin KL, Everett AD, Stenmark KR, Ivy DD. Plasma proteomics of differential outcome to long-term therapy in children with idiopathic pulmonary arterial hypertension. Proteomics Clin Appl 2012; 6:257-67. [PMID: 22653875 DOI: 10.1002/prca.201100078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE The prognosis for children with IPAH unresponsive to therapy is poor. We investigated the plasma proteome for a molecular basis of good versus poor outcome to long-term vasodilator therapy. EXPERIMENTAL DESIGN Plasma was collected at baseline or shortly after therapy initiation and following chronic vasodilator therapy, then divided into those with good outcome (n = 8), and those with a poor outcome (n = 7). To identify proteins unique to either outcome, we used differential gel electrophoresis and mass spectrometry. Results were confirmed by commercial enzyme-linked immunosorbent assay. RESULTS Before and after therapy, SAA-4 was 4-fold lower in those with good outcome compared to those with poor outcome, while serum paraoxonase/arylesterase-1 was increased 2-fold in those with good outcome versus poor outcome. After therapy, haptoglobin and hemopexin were 1.45- and 1.8-fold lower, respectively, in those with a good versus poor outcome. Among those with a good outcome, SAP was 1.3-fold lower prior to therapy. CONCLUSIONS AND CLINICAL RELEVANCE SAP and SAA-4 regulate circulating mononuclear phagocytes. As such, they may contribute to the differential response to chronic vasodilator therapy in the context of inflammation in IPAH.
Collapse
Affiliation(s)
- Michael E Yeager
- Department of Pediatric Critical Care, University of Colorado Denver, Denver, CO 80045, USA.
| | | | | | | | | |
Collapse
|
24
|
Kristo AS, Malavaki CJ, Lamari FN, Karamanos NK, Klimis-Zacas D. Wild blueberry (V. angustifolium)-enriched diets alter aortic glycosaminoglycan profile in the spontaneously hypertensive rat. J Nutr Biochem 2012; 23:961-5. [DOI: 10.1016/j.jnutbio.2011.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 01/19/2023]
|
25
|
Pompei LM, Steiner ML, Theodoro TR, Souza PZ, Romanini ACA, Coulson-Thomas V, Pinhal MAS, Fernandes CE. Effect of estrogen therapy on vascular perlecan and metalloproteinases 2 and 9 in castrated rats. Climacteric 2012; 16:147-53. [DOI: 10.3109/13697137.2012.667173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- L. M. Pompei
- Department of Gynecology and Obstetrics, Faculdade de Medicina do ABC, Santo André
| | - M. L. Steiner
- Department of Gynecology and Obstetrics, Faculdade de Medicina do ABC, Santo André
| | - T. R. Theodoro
- Department of Biochemistry, Faculdade de Medicina do ABC, Santo André
| | - P. Z. Souza
- Graduate Student, Faculdade de Medicina do ABC, Santo André
| | | | - V. Coulson-Thomas
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M. A. S. Pinhal
- Department of Biochemistry, Faculdade de Medicina do ABC, Santo André
| | - C. E. Fernandes
- Department of Gynecology and Obstetrics, Faculdade de Medicina do ABC, Santo André
| |
Collapse
|
26
|
Soto Y, Acosta E, Delgado L, Pérez A, Falcón V, Bécquer MA, Fraga Á, Brito V, Álvarez I, Griñán T, Fernández-Marrero Y, López-Requena A, Noa M, Fernández E, Vázquez AM. Antiatherosclerotic Effect of an Antibody That Binds to Extracellular Matrix Glycosaminoglycans. Arterioscler Thromb Vasc Biol 2012; 32:595-604. [DOI: 10.1161/atvbaha.111.238659] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Subendothelial retention of proatherogenic lipoproteins by proteoglycans is critical in atherosclerosis. The aim of this study was to characterize the recognition and antiatherogenic properties of a chimeric monoclonal antibody (mAb) that reacts with sulfated molecules.
Methods and Results—
chP3R99 mAb recognized sulfated glycosaminoglycans, mainly chondroitin sulfate (CS), by ELISA. This mAb blocked ≈70% of low-density lipoprotein (LDL)–CS association and ≈80% of LDL oxidation in vitro, and when intravenously injected to Sprague-Dawley rats (n=6, 1 mg/animal), it inhibited LDL (4 mg/kg intraperitoneally, 1 hour later) retention and oxidation in the artery wall. Moreover, subcutaneous immunization of New Zealand White rabbits (n=19) with chP3R99 mAb (100 μg, 3 doses at weekly intervals) prevented Lipofundin-induced atherosclerosis (2 mL/kg, 8 days) with a 22-fold reduction in the intima-media ratio (
P
<0.01). Histopathologic and ultrastructural studies showed no intimal alterations or slight thickening, with preserved junctions between endothelial cells and scarce collagen fibers and glycosaminoglycans. In addition, immunization with chP3R99 mAb suppressed macrophage infiltration in aorta and preserved redox status. The atheroprotective effect was associated with the induction of anti-CS antibodies in chP3R99-immunized rabbits, capable of blocking CS-LDL binding and LDL oxidation.
Conclusion—
These results support the use of anti-sulfated glycosaminoglycan antibody–based immunotherapy as a potential tool to prevent atherosclerosis.
Collapse
Affiliation(s)
- Yosdel Soto
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Emilio Acosta
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Livan Delgado
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Arlenis Pérez
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Viviana Falcón
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - María A. Bécquer
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Ángela Fraga
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Víctor Brito
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Irene Álvarez
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Tania Griñán
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Yuniel Fernández-Marrero
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Alejandro López-Requena
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Miriam Noa
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Eduardo Fernández
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Ana María Vázquez
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| |
Collapse
|
27
|
Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasc Med 2012; 2012:569654. [PMID: 22489274 PMCID: PMC3303762 DOI: 10.1155/2012/569654] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/27/2011] [Indexed: 12/18/2022] Open
Abstract
A clear relationship between diabetes and cardiovascular disease has been established for decades. Despite this, the mechanisms by which diabetes contributes to plaque formation remain in question. Some of this confusion derives from studies in type 2 diabetics where multiple components of metabolic syndrome show proatherosclerotic effects independent of underlying diabetes. However, the hyperglycemia that defines the diabetic condition independently affects atherogenesis in cell culture systems, animal models, and human patients. Endothelial cell biology plays a central role in atherosclerotic plaque formation regulating vessel permeability, inflammation, and thrombosis. The current paper highlights the mechanisms by which hyperglycemia affects endothelial cell biology to promote plaque formation.
Collapse
|
28
|
Azorín-Ortuño M, Yáñez-Gascón MJ, González-Sarrías A, Larrosa M, Vallejo F, Pallarés FJ, Lucas R, Morales JC, Tomás-Barberán FA, García-Conesa MT, Espín JC. Effects of long-term consumption of low doses of resveratrol on diet-induced mild hypercholesterolemia in pigs: a transcriptomic approach to disease prevention. J Nutr Biochem 2011; 23:829-37. [PMID: 21852083 DOI: 10.1016/j.jnutbio.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 12/26/2022]
Abstract
Metabolic and cardiovascular diseases (CVDs) have risen to alarming proportions, and there is a need for therapeutic and preventive measures. The polyphenol resveratrol (RES) protects against CVDs, but in vivo molecular mechanisms responsible for protection are not yet understood. Peripheral blood mononuclear cells (PBMNCs) are involved in the development of atherosclerosis and metabolic disorders. The identification of PBMNCs genes responding to dietary compounds might help to understand the mechanisms underlying the effects of polyphenols. We determined gene expression differences between PBMNCs from pigs fed a high-fat diet manifesting a mild increase of cholesterol and pigs fed a high-fat diet containing low doses of RES. Although the consumption of RES did not modify the levels of cholesterol, microarray analyses indicated that some of the differentially expressed genes, collagens (COL1A, COL3A), lipoprotein lipase (LPL) and fatty-acid binding proteins (FABPs) involved in CVDs and lipid metabolism were up-regulated by the high-fat diet and down-regulated by RES. Reverse transcriptase polymerase chain reaction confirmed that RES and RES-containing grape extract prevented the induction of FABP4 in PBMNCs in female pigs fed a high-fat diet. Low micromolar concentrations of RES and its metabolite dihydroresveratrol exerted a minor but significant reducing effect on the induction of FABP4 expression in human macrophages treated with oxidized low-density lipoprotein. Our results show that the consumption of low doses of RES modulates the expression of genes related to lipid metabolism and metabolic disorders that are affected by a high-fat diet and suggest that some of the circulating RES metabolites may contribute to these effects.
Collapse
Affiliation(s)
- María Azorín-Ortuño
- Department Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Serum amyloid A (SAA) is a family of acute-phase proteins which are shown to correlate with cardiovascular disease, but whether this SAA contributes causally to atherosclerosis development or reflects underlying disease or risk factors remains unclear. RECENT FINDINGS SAA has been detected within atherosclerotic lesions and within adipose tissue where it is hypothesized that it may play a contributory role in disease development. In the acute-phase response SAA is synthesized by the liver and transported primarily in association with HDL. However, there is a growing literature suggesting that localized synthesis of SAA within the vasculature, or adipose tissue, may play a distinct role in disease development. Furthermore, SAA can be found in association with apoB-containing lipoproteins, in which its biological activity may be different. SUMMARY This review will discuss recent experimental evidence supporting a causal role of SAA with atherosclerosis.
Collapse
Affiliation(s)
- Victoria L King
- Division of Cardiovascular Medicine, Lexington, Kentucky, USA.
| | | | | |
Collapse
|
30
|
Thompson J, Wilson P, Brandewie K, Taneja D, Schaefer L, Mitchell B, Tannock LR. Renal accumulation of biglycan and lipid retention accelerates diabetic nephropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1179-87. [PMID: 21723246 DOI: 10.1016/j.ajpath.2011.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 04/27/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022]
Abstract
Hyperlipidemia worsens diabetic nephropathy, although the mechanism by which renal lipids accumulate is unknown. We previously demonstrated that renal proteoglycans have high low-density lipoprotein (LDL) binding affinity, suggesting that proteoglycan-mediated LDL retention may contribute to renal lipid accumulation. The aim of this study was to determine the relative effect of diabetes and hyperlipidemia on renal proteoglycan content. Diabetic and non-diabetic LDL receptor-deficient mice were fed diets containing 0% or 0.12% cholesterol for 26 weeks, and then kidneys were analyzed for renal lipid and proteoglycan content. Diabetic mice on the high-cholesterol diet had accelerated development of diabetic nephropathy with elevations in urine albumin excretion, glomerular and renal hypertrophy, and mesangial matrix expansion. Renal lipid accumulation was significantly increased by consumption of the 0.12% cholesterol diet, diabetes, and especially by both. The renal proteoglycans biglycan and decorin were detectable in glomeruli, with a significant increase in renal biglycan content in diabetic mice on the high-cholesterol diet. Renal biglycan and renal apolipoprotein B were colocalized, and regression analyses showed a significant relation between renal biglycan and renal apolipoprotein B content. The increased renal biglycan content in diabetic nephropathy probably contributes to renal lipid accumulation and the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Joel Thompson
- Department of Veterans Affairs, Lexington, Kentucky, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Anggraeni VY, Emoto N, Yagi K, Mayasari DS, Nakayama K, Izumikawa T, Kitagawa H, Hirata KI. Correlation of C4ST-1 and ChGn-2 expression with chondroitin sulfate chain elongation in atherosclerosis. Biochem Biophys Res Commun 2011; 406:36-41. [DOI: 10.1016/j.bbrc.2011.01.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
|
32
|
Asplund A, Fridén V, Stillemark-Billton P, Camejo G, Bondjers G. Macrophages exposed to hypoxia secrete proteoglycans for which LDL has higher affinity. Atherosclerosis 2011; 215:77-81. [DOI: 10.1016/j.atherosclerosis.2010.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/29/2010] [Accepted: 12/14/2010] [Indexed: 01/13/2023]
|
33
|
Lam V, Takechi R, Pallebage-Gamarallage MMS, Galloway S, Mamo JCL. Colocalisation of plasma derived apo B lipoproteins with cerebral proteoglycans in a transgenic-amyloid model of Alzheimer's disease. Neurosci Lett 2011; 492:160-4. [PMID: 21310214 DOI: 10.1016/j.neulet.2011.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is characterized by cerebral proteinaceous deposits comprised of amyloid beta (Aβ). Evidence suggests that enhanced blood-to-brain delivery of Aβ occurs when plasma concentration is increased, exacerbating amyloidosis. In blood, significant Aβ is associated with apolipoprotein (apo) B lipoproteins. In this study, immunofluorescent microscopy was utilised to explore if there is an association between apo B lipoproteins and proteoglycan expression within Aβ-rich plaques in transgenic-amyloid mice. Focal accumulation of apo B was found with Aβ-plaque in APP/PS1 mice. There was enrichment in the proteoglycans, agrin, perlecan, biglycan and decorin within the core of dense Aβ-plaque. Perlecan, biglycan and decorin were positively associated with apo B lipoprotein abundance within amyloid plaque consistent with a cause-for-retention effect. These findings show that proteoglycans are an integral component of Aβ deposits in APP/PS1 mice. This study suggests that some proteoglycans contribute to Aβ retention, whilst other proteoglycans have different functions in the aetiology of AD.
Collapse
Affiliation(s)
- Virginie Lam
- Curtin Health Innovation Research Institute, and The Australian Technology Network Centre for Metabolic Fitness, Curtin University, Bentley Campus, Kent Street, Perth 6102, Australia
| | | | | | | | | |
Collapse
|
34
|
Hageman J, Herrema H, Groen AK, Kuipers F. A role of the bile salt receptor FXR in atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30:1519-28. [PMID: 20631352 DOI: 10.1161/atvbaha.109.197897] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study reviews current insights into the role of bile salts and bile salt receptors on the progression and regression of atherosclerosis. Bile salts have emerged as important modifiers of lipid and energy metabolism. At the molecular level, bile salts regulate lipid and energy homeostasis mainly via the bile salt receptors FXR and TGR5. Activation of FXR has been shown to improve plasma lipid profiles, whereas Fxr(-/-) mice have increased plasma triglyceride and very-low-density lipoprotein levels. Nevertheless, high-density lipoprotein cholesterol levels are increased in these mice, suggesting that FXR has both anti- and proatherosclerotic properties. Interestingly, there is increasing evidence for a role of FXR in "nonclassical" bile salt target tissues, eg, vasculature and macrophages. In these tissues, FXR has been shown to influence vascular tension and regulate the unloading of cholesterol from foam cells, respectively. Recent publications have provided insight into the antiinflammatory properties of FXR in atherosclerosis. Bile salt signaling via TGR5 might regulate energy homeostasis, which could serve as an attractive target to increase energy expenditure and weight loss. Interventions aiming to increase cholesterol turnover (eg, by bile salt sequestration) significantly improve plasma lipid profiles and diminish atherosclerosis in animal models. Bile salt metabolism and bile salt signaling pathways represent attractive therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jurre Hageman
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, Hanzeplein 1, 9713 EZ Groningen, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Mangat R, Warnakula S, Wang Y, Russell J, Uwiera R, Vine D, Proctor S. Model of intestinal chylomicron over-production and Ezetimibe treatment: Impact on the retention of cholesterol in arterial vessels. ATHEROSCLEROSIS SUPP 2010; 11:17-24. [DOI: 10.1016/j.atherosclerosissup.2010.04.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 04/12/2010] [Accepted: 04/18/2010] [Indexed: 01/28/2023]
|
36
|
Ajmo JM, Bailey LA, Howell MD, Cortez LK, Pennypacker KR, Mehta HN, Morgan D, Gordon MN, Gottschall PE. Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw. J Neurochem 2010; 113:784-95. [PMID: 20180882 DOI: 10.1111/j.1471-4159.2010.06647.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aggregation of amyloid-beta (Abeta) in the forebrain of Alzheimer's disease (AD) subjects may disturb the molecular organization of the extracellular microenvironment that modulates neural and synaptic plasticity. Proteoglycans are major components of this extracellular environment. To test the hypothesis that Abeta, or another amyloid precursor protein (APP) dependent mechanism modifies the accumulation and/or turnover of extracellular proteoglycans, we examined whether the expression and processing of brevican, an abundant extracellular, chondroitin sulfate (CS)-bearing proteoglycan, were altered in brains of Abeta-depositing transgenic mice (APPsw - APP gene bearing the Swedish mutation) as a model of AD. The molecular size of CS chains attached to brevican was smaller in hippocampal tissue from APPsw mice bearing Abeta deposits compared to non-transgenic mice, likely because of changes in the CS chains. Also, the abundance of the major proteolytic fragment of brevican was markedly diminished in extracts from several telencephalic regions of APPsw mice compared to non-transgenic mice, yet these immunoreactive fragments appeared to accumulate adjacent to the plaque edge. These results suggest that Abeta or APP exert inhibitory effects on proteolytic cleavage mechanisms responsible for synthesis and turnover of proteoglycans. As proteoglycans stabilize synaptic structure and inhibit molecular plasticity, defective brevican processing observed in Abeta-bearing mice and potentially end-stage human AD, may contribute to deficient neural plasticity.
Collapse
Affiliation(s)
- Joanne M Ajmo
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
King VL, Hatch NW, Chan HW, de Beer MC, de Beer FC, Tannock LR. A murine model of obesity with accelerated atherosclerosis. Obesity (Silver Spring) 2010; 18:35-41. [PMID: 19498343 PMCID: PMC2811527 DOI: 10.1038/oby.2009.176] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The epidemic of obesity sweeping developed nations is accompanied by an increase in atherosclerotic cardiovascular diseases. Dyslipidemia, diabetes, hypertension, and obesity are risk factors for cardiovascular disease. However, delineating the mechanism of obesity-accelerated atherosclerosis has been hampered by a paucity of animal models. Similar to humans, apolipoprotein E-deficient (apoE(-/-)) mice spontaneously develop atherosclerosis over their lifetime. To determine whether apoE(-/-) mice would develop obesity with accelerated atherosclerosis, we fed mice diets containing 10 (low fat (LF)) or 60 (high fat (HF)) kcal % from fat for 17 weeks. Mice fed the HF diet had a marked increase in body weight and atherosclerotic lesion formation compared to mice fed the LF diet. There were no significant differences between groups in serum total cholesterol, triglycerides, or leptin concentrations. Plasma concentrations of the acute-phase reactant serum amyloid A (SAA) are elevated in both obesity and cardiovascular disease. Accordingly, plasma SAA concentrations were increased fourfold (P < 0.01) in mice fed the HF diet. SAA was associated with both pro- and antiatherogenic lipoproteins in mice fed the HF diet compared to those fed the LF diet, in which SAA was primarily associated with the antiatherogenic lipoprotein high-density lipoprotein (HDL). Moreover, SAA was localized with apoB-containing lipoproteins and biglycan in the vascular wall. Taken together, these data suggest male apoE-deficient mice are a model of metabolic syndrome and that chronic low level inflammation associated with increased SAA concentrations may mediate atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Victoria L King
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | | | | | | | | | | |
Collapse
|