1
|
Ma B, Barathan M, Ng MH, Law JX. Oxidative Stress, Gut Microbiota, and Extracellular Vesicles: Interconnected Pathways and Therapeutic Potentials. Int J Mol Sci 2025; 26:3148. [PMID: 40243936 PMCID: PMC11989138 DOI: 10.3390/ijms26073148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Oxidative stress (OS) and gut microbiota are crucial factors influencing human health, each playing a significant role in the development and progression of chronic diseases. This review provides a comprehensive analysis of the complex interplay between these two factors, focusing on how an imbalance between reactive oxygen species (ROS) and antioxidants leads to OS, disrupting cellular homeostasis and contributing to a range of conditions, including metabolic disorders, cardiovascular diseases, neurological diseases, and cancer. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, is essential for regulating immune responses, metabolic pathways, and overall health. Dysbiosis, an imbalance in the gut microbiota composition, is closely associated with chronic inflammation, metabolic dysfunction, and various diseases. This review highlights how the gut microbiota influences and is influenced by OS, complicating the pathophysiology of many conditions. Furthermore, emerging evidence has identified extracellular vesicles (EVs) as critical facilitators of cellular crosstalk between the OS and gut microbiota. EVs also play a crucial role in signaling between the gut microbiota and host tissues, modulating immune responses, inflammation, and metabolic processes. The signaling function of EVs holds promise for the development of targeted therapies aimed at restoring microbial balance and mitigating OS. Personalized therapeutic approaches, including probiotics, antioxidants, and fecal microbiota transplantation-based strategies, can be used to address OS-related diseases and improve health outcomes. Nonetheless, further research is needed to study the molecular mechanisms underlying these interactions and the potential of innovative interventions to offer novel strategies for managing OS-related diseases and enhancing overall human health.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (B.M.); (M.B.); (M.H.N.)
| |
Collapse
|
2
|
Nappi F. Myocarditis and Inflammatory Cardiomyopathy in Dilated Heart Failure. Viruses 2025; 17:484. [PMID: 40284927 PMCID: PMC12031395 DOI: 10.3390/v17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory cardiomyopathy is a condition that is characterised by the presence of inflammatory cells in the myocardium, which can lead to a significant deterioration in cardiac function. The etiology of this condition involves multiple factors, both infectious and non-infectious causes. While it is primarily associated with viral infections, other potential causes include bacterial, protozoal, or fungal infections, as well as a wide variety of toxic substances and drugs, and systemic immune-mediated pathological conditions. In spite of comprehensive investigation, the presence of inflammatory cardiomyopathy accompanied by left ventricular dysfunction, heart failure or arrhythmia is indicative of an unfavourable outcome. The reasons for the occurrence of either favourable outcomes, characterised by the absence of residual myocardial injury, or unfavourable outcomes, marked by the development of dilated cardiomyopathy, in patients afflicted by the condition remain to be elucidated. The relative contributions of pathogenic agents, genomic profiles of the host, and environmental factors in disease progression and resolution remain subjects of ongoing discourse. This includes the determination of which viruses function as active inducers and which merely play a bystander role. It remains unknown which changes in the host immune profile are critical in determining the outcome of myocarditis caused by various viruses, including coxsackievirus B3 (CVB3), adenoviruses, parvoviruses B19 and SARS-CoV-2. The objective of this review is unambiguous: to provide a concise summary and comprehensive assessment of the extant evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy. Its focus is exclusively on virus-induced and virus-associated myocarditis. In addition, the extant lacunae of knowledge in this field are identified and the extant experimental models are evaluated, with the aim of proposing future directions for the research domain. This includes differential gene expression that regulates iron and lipid and metabolic remodelling. Furthermore, the current state of knowledge regarding the cardiovascular implications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is also discussed, along with the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
3
|
Yin Z, Fu L, Wang Y, Tai S. Impact of gut microbiota on cardiac aging. Arch Gerontol Geriatr 2025; 128:105639. [PMID: 39312851 DOI: 10.1016/j.archger.2024.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Recent research has suggested imbalances in gut microbiota composition as contributors to cardiac aging. An individual's physical condition, along with lifestyle-associated factors, including diet and medication, are significant determinants of gut microbiota composition. This review discusses evidence of bidirectional associations between aging and gut microbiota, identifying gut microbiota-derived metabolites as potential regulators of cardiac aging. It summarizes the effects of gut microbiota on cardiac aging diseases, including cardiac hypertrophy and fibrosis, heart failure, and atrial fibrillation. Furthermore, this review discusses the potential anti-aging effects of modifying gut microbiota composition through dietary and pharmacological interventions. Lastly, it underscores critical knowledge gaps and outlines future research directions. Given the current limited understanding of the direct relationship between gut microbiota and cardiac aging, there is an urgent need for preclinical and clinical investigations into the mechanistic interactions between gut microbiota and cardiac aging. Such endeavors hold promise for shedding light on the pathophysiology of cardiac aging and uncovering new therapeutic targets for cardiac aging diseases.
Collapse
Affiliation(s)
- Zhiyi Yin
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Liyao Fu
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Yongjun Wang
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Shi Tai
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
4
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
5
|
Tang H, Huang Y, Yuan D, Liu J. Atherosclerosis, gut microbiome, and exercise in a meta-omics perspective: a literature review. PeerJ 2024; 12:e17185. [PMID: 38584937 PMCID: PMC10999153 DOI: 10.7717/peerj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cardiovascular diseases are the leading cause of death worldwide, significantly impacting public health. Atherosclerotic cardiovascular diseases account for the majority of these deaths, with atherosclerosis marking the initial and most critical phase of their pathophysiological progression. There is a complex relationship between atherosclerosis, the gut microbiome's composition and function, and the potential mediating role of exercise. The adaptability of the gut microbiome and the feasibility of exercise interventions present novel opportunities for therapeutic and preventative approaches. Methodology We conducted a comprehensive literature review using professional databases such as PubMed and Web of Science. This review focuses on the application of meta-omics techniques, particularly metagenomics and metabolomics, in studying the effects of exercise interventions on the gut microbiome and atherosclerosis. Results Meta-omics technologies offer unparalleled capabilities to explore the intricate connections between exercise, the microbiome, the metabolome, and cardiometabolic health. This review highlights the advancements in metagenomics and metabolomics, their applications in research, and examines how exercise influences the gut microbiome. We delve into the mechanisms connecting these elements from a metabolic perspective. Metagenomics provides insight into changes in microbial strains post-exercise, while metabolomics sheds light on the shifts in metabolites. Together, these approaches offer a comprehensive understanding of how exercise impacts atherosclerosis through specific mechanisms. Conclusions Exercise significantly influences atherosclerosis, with the gut microbiome serving as a critical intermediary. Meta-omics technology holds substantial promise for investigating the gut microbiome; however, its methodologies require further refinement. Additionally, there is a pressing need for more extensive cohort studies to enhance our comprehension of the connection among these element.
Collapse
Affiliation(s)
- Haotian Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Didi Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Koufou EE, Assimakopoulos SF, Bosgana P, de Lastic AL, Grypari IM, Georgopoulou GA, Antonopoulou S, Mouzaki A, Kourea HP, Thomopoulos K, Davlouros P. Altered Expression of Intestinal Tight Junction Proteins in Heart Failure Patients with Reduced or Preserved Ejection Fraction: A Pathogenetic Mechanism of Intestinal Hyperpermeability. Biomedicines 2024; 12:160. [PMID: 38255265 PMCID: PMC10813326 DOI: 10.3390/biomedicines12010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Although intestinal microbiota alterations (dysbiosis) have been described in heart failure (HF) patients, the possible mechanisms of intestinal barrier dysfunction leading to endotoxemia and systemic inflammation are not fully understood. In this study, we investigated the expression of the intestinal tight junction (TJ) proteins occludin and claudin-1 in patients with HF with reduced (HFrEF) or preserved ejection fraction (HFpEF) and their possible association with systemic endotoxemia and inflammation. Ten healthy controls and twenty-eight patients with HF (HFrEF (n = 14), HFpEF (n = 14)) underwent duodenal biopsy. Histological parameters were recorded, intraepithelial CD3+ T-cells and the expression of occludin and claudin-1 in enterocytes were examined using immunohistochemistry, circulating endotoxin concentrations were determined using ELISA, and concentrations of cytokines were determined using flow cytometry. Patients with HFrEF or HFpEF had significantly higher serum endotoxin concentrations (p < 0.001), a significantly decreased intestinal occludin and claudin-1 expression (in HfrEF p < 0.01 for occludin, p < 0.05 for claudin-1, in HfpEF p < 0.01 occludin and claudin-1), and significantly increased serum concentrations of IL-6, IL-8, and IL-10 (for IL-6 and IL-10, p < 0.05 for HFrEF and p < 0.001 for HFpEF; and for IL-8, p < 0.05 for both groups) compared to controls. Occludin and claudin-1 expression inversely correlated with systemic endotoxemia (p < 0.05 and p < 0.01, respectively). Heart failure, regardless of the type of ejection fraction, results in a significant decrease in enterocytic occludin and claudin-1 expression, which may represent an important cellular mechanism for the intestinal barrier dysfunction causing systemic endotoxemia and inflammatory response.
Collapse
Affiliation(s)
| | - Stelios F. Assimakopoulos
- Department of Internal Medicine and Division of Infectious Diseases, University of Patras Medical School, 26504 Patras, Greece;
| | - Pinelopi Bosgana
- Department of Pathology, Medical School of Patras, 26504 Patras, Greece; (P.B.); (H.P.K.)
| | - Anne-Lise de Lastic
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (A.-L.d.L.); (A.M.)
| | - Ioanna-Maria Grypari
- Cytology Department, Aretaieion University Hospital, National Kapodistrian University of Athens, 11528 Athens, Greece;
| | | | | | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (A.-L.d.L.); (A.M.)
| | - Helen P. Kourea
- Department of Pathology, Medical School of Patras, 26504 Patras, Greece; (P.B.); (H.P.K.)
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece;
| | - Periklis Davlouros
- Department of Cardiology, Patras University Hospital, 26504 Patras, Greece;
| |
Collapse
|
7
|
Jain H, Marsool MDM, Goyal A, Sulaiman SA, Fatima L, Idrees M, Sharma B, Borra V, Gupta P, Nadeem A, Jain J, Ali H, Sohail AH. Unveiling the relationship between gut microbiota and heart failure: Recent understandings and insights. Curr Probl Cardiol 2024; 49:102179. [PMID: 37923029 DOI: 10.1016/j.cpcardiol.2023.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Gut microbiota, which comprises a broad range of bacteria inhabiting the human intestines, plays a crucial role in establishing a mutually beneficial relationship with the host body. Dysbiosis refers to the perturbations in the composition or functioning of the microbial community, which can result in a shift from a balanced microbiota to an impaired state. This alteration has the potential to contribute to the development of chronic systemic inflammation. Heart failure (HF) is a largely prevalent clinical condition that has been demonstrated to have variations in the gut microbiome, indicating a potential active involvement in the pathogenesis and advancement of the disease. The exploration of the complex interplay between the gut microbiome and HF presents a potential avenue for the discovery of innovative biomarkers, preventive measures, and therapeutic targets. This review aims to investigate the impact of gut bacteria on HF.
Collapse
Affiliation(s)
- Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India.
| | | | - Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India
| | | | | | | | - Bhavya Sharma
- Department of Internal Medicine, Baroda Medical College and SSG Hospital, Vadodara, India
| | - Vamsikalyan Borra
- Department of Internal Medicine, University of Texas Rio Grande Valley, TX, United States
| | - Prakash Gupta
- Virgen Milagrosa University Foundation College of Medicine, San Carlos City, Philippines
| | - Abdullah Nadeem
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Jyoti Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Hassam Ali
- Department of Gastroenterology, East Carolina University, North Carolina, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
8
|
Hosseini A, Barlow GM, Leite G, Rashid M, Parodi G, Wang J, Morales W, Weitsman S, Rezaie A, Pimentel M, Mathur R. Consuming artificial sweeteners may alter the structure and function of duodenal microbial communities. iScience 2023; 26:108530. [PMID: 38125028 PMCID: PMC10730370 DOI: 10.1016/j.isci.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Studies using stool samples suggest that non-sugar sweetener (NSS) consumption affects gut microbiome composition. However, stool does not represent the entire gut. We analyzed the duodenal luminal microbiome in subjects consuming non-aspartame non-sugar sweeteners (NANS, N = 35), aspartame only (ASP, N = 9), and controls (CON, N = 55) and the stool microbiome in a subset (N = 40). Duodenal alpha diversity was decreased in NANS vs. CON. Duodenal relative abundance (RA) of Escherichia, Klebsiella, and Salmonella (all phylum Proteobacteria) was lower in both NANS and ASP vs. CON, whereas stool RA of Escherichia, Klebsiella, and Salmonella was increased in both NANS and ASP vs. CON. Predicted duodenal microbial metabolic pathways altered in NANS vs. CON included polysaccharides biosynthesis and D-galactose degradation, whereas cylindrospermopsin biosynthesis was significantly enriched in ASP vs. CON. These findings suggest that consuming non-sugar sweeteners may significantly alter microbiome composition and function in the metabolically active small bowel, with different alterations seen in stool.
Collapse
Affiliation(s)
- Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gillian M. Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Mohamad Rashid
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Jiajing Wang
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| |
Collapse
|
9
|
Caldarelli M, Franza L, Rio P, Gasbarrini A, Gambassi G, Cianci R. Gut-Kidney-Heart: A Novel Trilogy. Biomedicines 2023; 11:3063. [PMID: 38002063 PMCID: PMC10669427 DOI: 10.3390/biomedicines11113063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The microbiota represents a key factor in determining health and disease. Its role in inflammation and immunological disorders is well known, but it is also involved in several complex conditions, ranging from neurological to psychiatric, from gastrointestinal to cardiovascular diseases. It has recently been hypothesized that the gut microbiota may act as an intermediary in the close interaction between kidneys and the cardiovascular system, leading to the conceptualization of the "gut-kidney-heart" axis. In this narrative review, we will discuss the impact of the gut microbiota on each system while also reviewing the available data regarding the axis itself. We will also describe the role of gut metabolites in this complex interplay, as well as potential therapeutical perspectives.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Laura Franza
- Emergency Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| |
Collapse
|
10
|
Shi M, Wei J, Yuan H, Li Y, Guo Z. The role of the gut microbiota and bile acids in heart failure: A review. Medicine (Baltimore) 2023; 102:e35795. [PMID: 37960774 PMCID: PMC10637566 DOI: 10.1097/md.0000000000035795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
Heart failure (HF) is the terminal manifestation of various cardiovascular diseases. Recently, accumulating evidence has demonstrated that gut microbiota are involved in the development of various cardiovascular diseases. Gut microbiota and their metabolites might play a pivotal role in the development of HF. However, previous studies have rarely described the complex role of gut microbiota and their metabolites in HF. In this review, we mainly discussed bile acids (BAs), the metabolites of gut microbiota. We explained the mechanisms by which BAs are involved in the pathogenesis of HF. We also discussed the use of gut microbiota and BAs for treating HF in Chinese medicine, highlighting the advantages of Chinese medicine in treating HF.
Collapse
Affiliation(s)
- Min Shi
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan, Changsha, China
| | - Jiaming Wei
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan, Changsha, China
| | - Hui Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Ya Li
- Hunan University of Chinese Medicine, Changsha, China
| | - Zhihua Guo
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan, Changsha, China
| |
Collapse
|
11
|
Morón-Ros S, Blasco-Roset A, Navarro-Gascon A, Rupérez C, Zamora M, Crispi F, Uriarte I, Fernández-Barrena MG, Avila M, Ferrer-Curriu G, Lupón J, Bayés-Genis A, Villarroya F, Gavaldà-Navarro A, Planavila A. A new FGF15/19-mediated gut-to-heart axis controls cardiac hypertrophy. J Pathol 2023; 261:335-348. [PMID: 37650293 DOI: 10.1002/path.6193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy. Studies in a cohort of humans suffering from heart failure showed increased circulating levels of FGF19 compared with control individuals. We found that mice lacking FGF15 did not develop cardiac hypertrophy in response to three different pathophysiological stimuli (high-fat diet, isoproterenol, or cold exposure). The heart weight/tibia length ratio and the cardiomyocyte area (as measures of cardiac hypertrophy development) under hypertrophy-inducing conditions were lower in Fgf15-null mice than in wild-type mice, whereas the levels of the cardiac damage marker atrial natriuretic factor (Nppa) were up-regulated. Echocardiographic measurements showed similar results. Moreover, the genes involved in fatty acid metabolism were down-regulated in Fgf15-null mice. Conversely, experimental increases in FGF15 induced cardiac hypertrophy in vivo, without changes in Nppa and up-regulation of metabolic genes. Finally, in vitro studies using cardiomyocytes showed that FGF19 had a direct effect on these cells promoting hypertrophy. We have identified herein an inter-organ signaling pathway that runs from the gut to the heart, acts through the enterokine FGF15/19, and is involved in cardiac hypertrophy development and regulation of fatty acid metabolism in the myocardium. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Samantha Morón-Ros
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Artur Navarro-Gascon
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Celia Rupérez
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Monica Zamora
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias Avila
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Gemma Ferrer-Curriu
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Josep Lupón
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Antoni Bayés-Genis
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
12
|
Guiducci L, Nicolini G, Forini F. Dietary Patterns, Gut Microbiota Remodeling, and Cardiometabolic Disease. Metabolites 2023; 13:760. [PMID: 37367916 DOI: 10.3390/metabo13060760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
The cardiovascular and metabolic disorders, collectively known as cardiometabolic disease (CMD), are high morbidity and mortality pathologies associated with lower quality of life and increasing health-care costs. The influence of the gut microbiota (GM) in dictating the interpersonal variability in CMD susceptibility, progression and treatment response is beginning to be deciphered, as is the mutualistic relation established between the GM and diet. In particular, dietary factors emerge as pivotal determinants shaping the architecture and function of resident microorganisms in the human gut. In turn, intestinal microbes influence the absorption, metabolism, and storage of ingested nutrients, with potentially profound effects on host physiology. Herein, we present an updated overview on major effects of dietary components on the GM, highlighting the beneficial and detrimental consequences of diet-microbiota crosstalk in the setting of CMD. We also discuss the promises and challenges of integrating microbiome data in dietary planning aimed at restraining CMD onset and progression with a more personalized nutritional approach.
Collapse
Affiliation(s)
- Letizia Guiducci
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| | | | - Francesca Forini
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
13
|
Li L, Jiang J, Yao Z, Zhu B. Recent advances in the production, properties and applications of alginate oligosaccharides - a mini review. World J Microbiol Biotechnol 2023; 39:207. [PMID: 37221433 DOI: 10.1007/s11274-023-03658-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
Alginate oligosaccharides (AOS) made from the degradation of alginate, to some extent, makes up for the poor solubility and bioavailability of alginate as a macromolecular substance and possess several beneficial biological activities that are absent in alginate. These properties include prebiotic, glycolipid regulatory, immunomodulatory, antimicrobial, antioxidant, anti-tumor, promoting plant growth and other activities. Consequently, AOS has significant potential for use in the agricultural, biomedical, and food industries, and has been the focus of research in the field of marine biological resources. This review comprehensively covers methods (physical, chemical, and enzymatic methods) for the production of AOS from alginate. More importantly, this paper reviews recent advances in the biological activity and potentially industrial and therapeutic applications of AOS, providing a reference for future research and applications of AOS.
Collapse
Affiliation(s)
- Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, 266400, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
14
|
Kilic O, Kaya HI, Secme M, Ki Li Nc M, Sevgican CI, Buber I, Dodurga Y, Si Msek O, Ergin C, Kilic ID. The effect of heart failure on gut microbial richness and diversity. Rev Port Cardiol 2023:S0870-2551(23)00120-8. [PMID: 36893840 DOI: 10.1016/j.repc.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION With recent advances in genome sequencing technology, a large body of evidence has accumulated over the last few years linking alterations in microbiota with cardiovascular disease. In this study, we aimed to compare gut microbial composition using 16S ribosomal DNA (rDNA) sequencing techniques in patients with coronary artery disease (CAD) and stable heart failure (HF) with reduced ejection fraction and patients with CAD but with normal ejection fraction. We also studied the relationship between systemic inflammatory markers and microbial richness and diversity. METHODS A total of 40 patients (19 with HF and CAD, 21 with CAD but without HF) were included in the study. HF was defined as left ventricular ejection fraction <40%. Only stable ambulatory patients were included in the study. Gut microbiota were assessed from the participants' fecal samples. The diversity and richness of microbial populations in each sample were assessed by the Chao1-estimated OTU number and the Shannon index. RESULTS The Chao1-estimated OTU number and Shannon index were similar between HF and control groups. There was no statistically significant relationship between inflammatory marker levels (tumor necrosis factor-alpha, interleukin 1-beta, endotoxin, C-reactive protein, galectin-3, interleukin 6, and lipopolysaccharide-binding protein) and microbial richness and diversity when analyzed at the phylum level. CONCLUSION In the current study, compared to patients with CAD but without HF, stable HF patients with CAD did not show changes in gut microbial richness and diversity. At the genus level Enterococcus sp. was more commonly identified in HF patients, in addition to certain changes in species levels, including increased Lactobacillus letivazi.
Collapse
Affiliation(s)
- Oguz Kilic
- Department of Cardiology, Karaman Training and Research Hospital, Karaman, Turkey; Department of Cardiology, Pamukkale University Hospitals, Denizli, Turkey.
| | - Halil Ibrahim Kaya
- Department of Food Engineering, University of Bayburt University, Bayburt, Turkey
| | - Mucahit Secme
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Mehmet Ki Li Nc
- Department of Cardiology, Konya City Hospital, Konya, Turkey; Department of Cardiology, Pamukkale University Hospitals, Denizli, Turkey
| | | | - Ipek Buber
- Department of Cardiology, Pamukkale University Hospitals, Denizli, Turkey
| | - Yavuz Dodurga
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Omer Si Msek
- Department of Food Engineering, University of Pamukkale University, Denizli, Turkey
| | - Cagrı Ergin
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ismail Dogu Kilic
- Department of Cardiology, Pamukkale University Hospitals, Denizli, Turkey
| |
Collapse
|
15
|
Reis F. Gut microbiota dysbiosis and cardiovascular disease - The chicken and the egg. Rev Port Cardiol 2023:S0870-2551(23)00129-4. [PMID: 36893843 DOI: 10.1016/j.repc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Affiliation(s)
- Flávio Reis
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
16
|
Berezin AA, Obradovic Z, Berezina TA, Boxhammer E, Lichtenauer M, Berezin AE. Cardiac Hepatopathy: New Perspectives on Old Problems through a Prism of Endogenous Metabolic Regulations by Hepatokines. Antioxidants (Basel) 2023; 12:516. [PMID: 36830074 PMCID: PMC9951884 DOI: 10.3390/antiox12020516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiac hepatopathy refers to acute or chronic liver damage caused by cardiac dysfunction in the absence of any other possible causative reasons of liver injury. There is a large number of evidence of the fact that cardiac hepatopathy is associated with poor clinical outcomes in patients with acute or actually decompensated heart failure (HF). However, the currently dominated pathophysiological background does not explain a role of metabolic regulative proteins secreted by hepatocytes in progression of HF, including adverse cardiac remodeling, kidney injury, skeletal muscle dysfunction, osteopenia, sarcopenia and cardiac cachexia. The aim of this narrative review was to accumulate knowledge of hepatokines (adropin; fetuin-A, selenoprotein P, fibroblast growth factor-21, and alpha-1-microglobulin) as adaptive regulators of metabolic homeostasis in patients with HF. It is suggested that hepatokines play a crucial, causative role in inter-organ interactions and mediate tissue protective effects counteracting oxidative stress, inflammation, mitochondrial dysfunction, apoptosis and necrosis. The discriminative potencies of hepatokines for HF and damage of target organs in patients with known HF is under on-going scientific discussion and requires more investigations in the future.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, 69000 Zaporozhye, Ukraine
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Tetiana A. Berezina
- Department of Internal Medicine & Nephrology, VitaCenter, 69000 Zaporozhye, Ukraine
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
| |
Collapse
|
17
|
Yu W, Jiang Y, Xu H, Zhou Y. The Interaction of Gut Microbiota and Heart Failure with Preserved Ejection Fraction: From Mechanism to Potential Therapies. Biomedicines 2023; 11:biomedicines11020442. [PMID: 36830978 PMCID: PMC9953339 DOI: 10.3390/biomedicines11020442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a disease for which there is no definite and effective treatment, and the number of patients is more than 50% of heart failure (HF) patients. Gut microbiota (GMB) is a general term for a group of microbiota living in humans' intestinal tracts, which has been proved to be related to cardiovascular diseases, including HFpEF. In HFpEF patients, the composition of GMB is significantly changed, and there has been a tendency toward dysbacteriosis. Metabolites of GMB, such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs) and bile acids (BAs) mediate various pathophysiological mechanisms of HFpEF. GMB is a crucial influential factor in inflammation, which is considered to be one of the main causes of HFpEF. The role of GMB in its important comorbidity-metabolic syndrome-also mediates HFpEF. Moreover, HF would aggravate intestinal barrier impairment and microbial translocation, further promoting the disease progression. In view of these mechanisms, drugs targeting GMB may be one of the effective ways to treat HFpEF. This review focuses on the interaction of GMB and HFpEF and analyzes potential therapies.
Collapse
Affiliation(s)
- Wei Yu
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Yufeng Jiang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Hui Xu
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Yafeng Zhou
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
- Correspondence: ; Tel./Fax: 86-512-65955057
| |
Collapse
|
18
|
Peng J, Gong H, Lyu X, Liu Y, Li S, Tan S, Dong L, Zhang X. Characteristics of the fecal microbiome and metabolome in older patients with heart failure and sarcopenia. Front Cell Infect Microbiol 2023; 13:1127041. [PMID: 36909727 PMCID: PMC9998919 DOI: 10.3389/fcimb.2023.1127041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Background Increasing evidence supports that gut microbiota plays an important role in the development of cardiovascular diseases. The prevalence of sarcopenia is increasing in patients with heart failure. Muscle wasting is an independent predictor of death in heart failure patients. Aims In this study, we aimed to explore the characteristics of gut microbiota and metabolites in heart failure patients with or without sarcopenia. Methods Fecal samples of 33 heart failure patients without sarcopenia, 29 heart failure patients with sarcopenia, and 15 controls were collected. The intestinal microbiota was analyzed using 16S rRNA sequencing and the metabolites were detected using the gas chromatography-mass spectrometry method. Results There were significant differences in the overall microbial community structure and diversity between control and heart failure patients with or without sarcopenia. However, no clear clustering of samples was observed in heart failure with and without sarcopenia patients. Several bacterial, particularly Nocardiaceae, Pseudonocardiaceae, Alphaproteobacteria, and Slackia were significantly enriched in the heart failure patients without sarcopenia, while Synergistetes was more abundant in the heart failure patients with sarcopenia. Isobutyric acid, isovaleric acid, and valeric acid were lower in heart failure patients with sarcopenia than that without sarcopenia but lacked significance. Conclusions This study demonstrates that there are differences in the gut microbiota between control individuals and heart failure patients with or without sarcopenia. Modulating the gut microbiota may be a new target for the prevention and treatment of sarcopenia in heart failure patients.
Collapse
Affiliation(s)
- Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shizhen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shengyu Tan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Xiangyu Zhang,
| |
Collapse
|
19
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
20
|
Sharma D, Prashar A. Associations between the gut microbiome, gut microbiology and heart failure: Current understanding and future directions. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 17:100150. [PMID: 38559891 PMCID: PMC10978367 DOI: 10.1016/j.ahjo.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 04/04/2024]
Abstract
The role of the gut microbiome in pathophysiology, prognostication and clinical management of heart failure (HF) patients is of great clinical and research interest. Both preclinical and clinical studies have shown promising results, and the gut microbiome has been implicated in other cardiovascular conditions that are risk factors for HF. There is an increasing interest in the use of biological compounds produced as biomarkers for prognostication as well as exploration of therapeutic options targeting the various markers and pathways from the gut microbiome that are implicated in HF. However, study variations exist, and targeted research for individual putative biomarkers is necessary. There is also limited evidence pertaining to decompensated HF in particular. In this review, we synthesize current understandings around pathophysiology, prognostication and clinical management of heart failure (HF) patients, and also provide an outline of potential areas of future research and scientific advances.
Collapse
Affiliation(s)
| | - Abhisheik Prashar
- University of New South Wales, Sydney, NSW 2052, Australia
- Department of Cardiology, St George Hospital, Sydney, NSW 2217, Australia
| |
Collapse
|
21
|
Zhao Z, Liu J, Hu Y, Zhang X, Cao L, Dong Z, Li L, Hu Z. Bacterial diversity in the intestinal mucosa of heart failure rats treated with Sini Decoction. BMC Complement Med Ther 2022; 22:93. [PMID: 35354453 PMCID: PMC8969309 DOI: 10.1186/s12906-022-03575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sini Decoction (SND), a classic Chinese medicine prescription, has been proved to have a good effect on heart failure (HF), whereas its underlying mechanism is still unclear. In order to explore the therapeutic mechanism of SND, we combined with 16S rRNA gene sequencing to analyze the composition of gut microflora in rats with HF. Material and methods Twenty Sprague–Dawley (SD) rats were divided into four groups (n = 5): normal group, model group, SND treatment group (SNT group), and metoprolol (Met) treatment group (Meto group). All the rats except the normal group were intraperitoneally injected with doxorubicin (concentration 2 mg/mL, dose 0.15 mL/100 g) once a week to induce HF. After successfully modeling, SND and Met were gavaged to rats, respectively. After the treatment period, blood was collected for hematological analyses, myocardial tissue and colon tissues were collected for Hematoxylin–Eosin (H&E) staining, and mucosal scrapings were collected for Illumina Miseq high-throughput sequencing. Results Echocardiographic results suggested that both left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) in Model rats decreased compared with normal rats. The results of H&E staining showed that compared with the model group, the structures of myocardial tissue and colon tissue in the SNT group and Meto group showed a recovery trend. Alpha results showed that the model group had higher species diversity and richness compared with the normal group. After treatment, the richness and diversity of intestinal bacteria in the SNT group were significantly restored, and Met also showed the effect of adjusting bacterial diversity, but its effect on bacterial richness was not ideal. At the Family level, we found that the number of several bacteria associated with HF in the model group increased significantly. Excitingly, SND and Met had shown positive effects in restoring these HF-associated bacteria. Similarly, the results of Linear discriminant analysis (LDA) showed that both SND and Met could reduce the accumulation of bacteria in the model group caused by HF. Conclusion Collectively, SND can improve HF by regulating the intestinal flora. This will provide new ideas for the clinical treatment of patients with HF. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03575-4.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiahao Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yanzhi Hu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xining Zhang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqin Cao
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhenhua Dong
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lin Li
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China. .,The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Zhixi Hu
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China. .,The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
22
|
Gut Microbiome-Targeted Modulations Regulate Metabolic Profiles and Alleviate Altitude-Related Cardiac Hypertrophy in Rats. Microbiol Spectr 2022; 10:e0105321. [PMID: 35138162 PMCID: PMC8826942 DOI: 10.1128/spectrum.01053-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is well known that humans physiologically or pathologically respond to high altitude, with these responses accompanied by alterations in the gut microbiome. To investigate whether gut microbiota modulation can alleviate high-altitude-related diseases, we administered probiotics, prebiotics, and synbiotics in rat model with altitude-related cardiac impairment after hypobaric hypoxia challenge and observed that all three treatments alleviated cardiac hypertrophy as measured by heart weight-to-body weight ratio and gene expression levels of biomarkers in heart tissue. The disruption of gut microbiota induced by hypobaric hypoxia was also ameliorated, especially for microbes of Ruminococcaceae and Lachnospiraceae families. Metabolome revealed that hypobaric hypoxia significantly altered the plasma short-chain fatty acids (SCFAs), bile acids (BAs), amino acids, neurotransmitters, and free fatty acids, but not the overall fecal SCFAs and BAs. The treatments were able to restore homeostasis of plasma amino acids and neurotransmitters to a certain degree, but not for the other measured metabolites. This study paves the way to further investigate the underlying mechanisms of gut microbiome in high-altitude related diseases and opens opportunity to target gut microbiome for therapeutic purpose. IMPORTANCE Evidence suggests that gut microbiome changes upon hypobaric hypoxia exposure; however, it remains elusive whether this microbiome change is a merely derivational reflection of host physiological alteration, or it synergizes to exacerbate high-altitude diseases. We intervened gut microbiome in the rat model of prolonged hypobaric hypoxia challenge and found that the intervention could alleviate the symptoms of pathological cardiac hypertrophy, gut microbial dysbiosis, and metabolic disruptions of certain metabolites in gut and plasma induced by hypobaric hypoxia. Our study suggests that gut microbiome may be a causative factor for high-altitude-related pathogenesis and a target for therapeutic intervention.
Collapse
|
23
|
Gallo A, Macerola N, Favuzzi AM, Nicolazzi MA, Gasbarrini A, Montalto M. The Gut in Heart Failure: Current Knowledge and Novel Frontiers. Med Princ Pract 2022; 31:203-214. [PMID: 35093952 PMCID: PMC9275003 DOI: 10.1159/000522284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/23/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure (HF) represents a major health problem affecting millions of people worldwide. In the latest years, many efforts have been made to search for more effective strategies to prevent and modify the course of this disease, but results are still not satisfying. HF represents a complex clinical syndrome involving many other systems, including the gastrointestinal system. Although the relationship between the gut and HF is far from being fully understood, based on recent evidence highlighting the putative role of the gastrointestinal system in different cardiovascular diseases, it is conceivable that the gut-heart link may represent the basis for novel therapeutic approaches in the HF context as well. This intricate interplay involving typical hemodynamic changes and their consequences on gut morphology, permeability, and function, sets the stage for alterations in microbiota composition and is able to impact mechanisms of HF through different routes such as bacterial translocation and metabolic pathways. Thus, the modulation of the gut microbiota through diet, probiotics, and fecal transplantation has been suggested as a potential therapeutic approach. More interestingly, another effect of alteration in microbiota composition reflects in the upregulation of cotransporters (NHE3) with consequent salt and fluid overload and worsening visceral congestion. Therefore, the inhibitors of this cotransporter may also represent a novel therapeutic frontier. By review of recent data on this topic, we describe the current state of the complex interplay between the gastrointestinal and cardiac systems in HF, and the relevance of this knowledge in seeking new therapeutic strategies.
Collapse
Affiliation(s)
- Antonella Gallo
- Department of Medical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- *Antonella Gallo,
| | - Noemi Macerola
- Department of Medical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angela Maria Favuzzi
- Department of Medical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Anna Nicolazzi
- Department of Medical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Montalto
- Department of Medical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
24
|
Alnuwaysir RIS, Hoes MF, van Veldhuisen DJ, van der Meer P, Beverborg NG. Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J Clin Med 2021; 11:125. [PMID: 35011874 PMCID: PMC8745653 DOI: 10.3390/jcm11010125] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for a myriad of physiological processes in the body beyond erythropoiesis. Iron deficiency (ID) is a common comorbidity in patients with heart failure (HF), with a prevalence reaching up to 59% even in non-anaemic patients. ID impairs exercise capacity, reduces the quality of life, increases hospitalisation rate and mortality risk regardless of anaemia. Intravenously correcting ID has emerged as a promising treatment in HF as it has been shown to alleviate symptoms, improve quality of life and exercise capacity and reduce hospitalisations. However, the pathophysiology of ID in HF remains poorly characterised. Recognition of ID in HF triggered more research with the aim to explain how correcting ID improves HF status as well as the underlying causes of ID in the first place. In the past few years, significant progress has been made in understanding iron homeostasis by characterising the role of the iron-regulating hormone hepcidin, the effects of ID on skeletal and cardiac myocytes, kidneys and the immune system. In this review, we summarise the current knowledge and recent advances in the pathophysiology of ID in heart failure, the deleterious systemic and cellular consequences of ID.
Collapse
Affiliation(s)
| | | | | | | | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (R.I.S.A.); (M.F.H.); (D.J.v.V.); (P.v.d.M.)
| |
Collapse
|
25
|
Tuerhongjiang G, Guo M, Qiao X, Lou B, Wang C, Wu H, Wu Y, Yuan Z, She J. Interplay Between Gut Microbiota and Amino Acid Metabolism in Heart Failure. Front Cardiovasc Med 2021; 8:752241. [PMID: 34746265 PMCID: PMC8566708 DOI: 10.3389/fcvm.2021.752241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 11/14/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome of which the incidence is on the rise worldwide. Cardiometabolic disorders are associated with the deterioration of cardiac function and progression of HF. Recently, there has been renewed interest in gut microbiota (GM) and its metabolites in the cardiovascular disease. HF-caused hypoperfusion could increase intestinal permeability, and a “leaky” bowel leads to bacterial translocation and make its metabolites more easily enter the circulation. Considerable evidence shows that the composition of microbiota and amino acids (AAs) has been altered in HF patients, and AAs could serve as a diagnostic and prognostic biomarker in HF. The findings indicate that the gut–amino acid–HF axis may play a key role in the progression of HF. In this paper, we focus on the interrelationship between the AA metabolism and GM alterations during the development of heart failure. We also discuss the potential prognostic and therapeutic value of the gut–amino acid–HF axis in the cortex of HF.
Collapse
Affiliation(s)
- Gulinigaer Tuerhongjiang
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Manyun Guo
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Xiangrui Qiao
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Bowen Lou
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Chen Wang
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Haoyu Wu
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Yue Wu
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Zuyi Yuan
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Jianqing She
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
26
|
Tsai HJ, Tsai WC, Hung WC, Hung WW, Chang CC, Dai CY, Tsai YC. Gut Microbiota and Subclinical Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus. Nutrients 2021; 13:nu13082679. [PMID: 34444839 PMCID: PMC8397936 DOI: 10.3390/nu13082679] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease (CVD). The gut microbiota may contribute to the onset and progression of T2D and CVD. The aim of this study was to evaluate the relationship between the gut microbiota and subclinical CVD in T2D patients. This cross-sectional study used echocardiographic data to evaluate the cardiac structure and function in T2D patients. We used a quantitative polymerase chain reaction to measure the abundances of targeted fecal bacterial species that have been associated with T2D, including Bacteroidetes, Firmicutes, Clostridium leptum group, Faecalibacterium prausnitzii, Bacteroides, Bifidobacterium, Akkermansia muciniphila, and Escherichia coli. A total of 155 subjects were enrolled (mean age 62.9 ± 10.1 years; 57.4% male and 42.6% female). Phyla Bacteroidetes and Firmicutes and genera Bacteroides were positively correlated with the left ventricular ejection fraction. Low levels of phylum Firmicutes were associated with an increased risk of left ventricular hypertrophy. High levels of both phylum Bacteroidetes and genera Bacteroides were negatively associated with diastolic dysfunction. A high phylum Firmicutes/Bacteroidetes (F/B) ratio and low level of genera Bacteroides were correlated with an increased left atrial diameter. Phyla Firmicutes and Bacteroidetes, the F/B ratio, and the genera Bacteroides were associated with variations in the cardiac structure and systolic and diastolic dysfunction in T2D patients. These findings suggest that changes in the gut microbiome may be the potential marker of the development of subclinical CVD in T2D patients.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan;
- Department of Family Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-C.H.); (C.-C.C.)
| | - Wei-Wen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chen-Chia Chang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-C.H.); (C.-C.C.)
| | - Chia-Yen Dai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chun Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of General Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Liquid Biopsy and Cohort Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-5029; Fax: +886-7-3122810
| |
Collapse
|
27
|
Changes of gut microbiome composition and metabolites associated with hypertensive heart failure rats. BMC Microbiol 2021; 21:141. [PMID: 33952214 PMCID: PMC8097775 DOI: 10.1186/s12866-021-02202-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background The potential role of the gut microbiome (GM) in heart failure (HF) had recently been revealed. However, the underlying mechanisms of the GM and fecal metabolome in HF have not been characterized. The Dahl salt-sensitive rat model of hypertensive heart failure (H-HF) was used to study the clinical symptoms and characteristics. To elucidate the pathogenesis of HF, we combined 16S rRNA gene sequencing and metabolomics to analyze gut microbial compositions and fecal metabolomic profiles of rats with H-HF. Results PCoA of beta diversity shown that the gut microbiome composition profiles among the three groups were separated. Gut microbial composition was significantly altered in H-HF rats, the ratio of Firmicutes to Bacteroidetes(F/B) increased and the abundance of Muribaculaceae, Lachnospiraceae, and Lactobacillaceae decreased. Significantly altered levels of 17 genera and 35 metabolites were identified as the potential biomarker of H-HF. Correlation analysis revealed that specific altered genera were strongly correlated with changed fecal metabolites. The reduction in short-chain fatty acids (SCFA)-producing bacteria and trimethylamine N-oxide (TMAO) might be a notable characteristic for H-HF. Conclusions This is the first study to characterize the fecal microbiome of hypertensive heart failure by integrating 16S rRNA gene sequencing and LC–MS-based metabolomics approaches. Collectively, the results suggesting changes of gut microbiome composition and metabolites are associated with hypertensive heart failure rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02202-5.
Collapse
|
28
|
Mollar A, Marrachelli VG, Núñez E, Monleon D, Bodí V, Sanchis J, Navarro D, Núñez J. Bacterial metabolites trimethylamine N-oxide and butyrate as surrogates of small intestinal bacterial overgrowth in patients with a recent decompensated heart failure. Sci Rep 2021; 11:6110. [PMID: 33731747 PMCID: PMC7969616 DOI: 10.1038/s41598-021-85527-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
In patients with heart failure (HF), the exhaled concentrations of hydrogen after a breath test-a non-invasive assessment of small intestinal overgrowth- has been related to HF severity and higher risk of adverse outcomes. Indeed, two intestinal bacterial metabolites-blood Trimethylamine N-Oxide (TMAO) and butyrate-have been related to a worse prognosis in HF. However, the relationship between the exhaled concentrations of hydrogen after a breath test and these two metabolites remains unknown. Thus, in this post-hoc analysis, we sought to evaluate whether these two metabolites are associated with the exhaled concentrations of hydrogen after a breath test in patients with a recent admission for HF. We included 60 patients with a recent hospitalization for HF. Cumulative hydrogen over time was integrated into a single measurement by the area under the concentration curve (AUC-H2). A linear regression multivariable analysis was used to evaluate the associations. A 2-sided p-value < 0.05 was considered to be statistically significant. The median (p25-p75) amino-terminal pro-brain natriuretic peptide, AUC-H2, TMAO, and Butyrate were 4789 pg/ml (1956-11149), 1615 (700-2585), 0.68 (0.42-1.12), and 0.22 ± 13, respectively. After multivariate adjustment, TMAO and butyrate were significantly associated with AUC-H2 (p = 0.027 and p = 0.009, respectively). For TMAO, this association was positive and for butyrate, negative. Bacterial-origin metabolites TMAO and Butyrate were independently related to AUC-H2 in patients with a recent hospitalization for acute HF.
Collapse
Affiliation(s)
- Anna Mollar
- Cardiology Department, Hospital Clínico Universitario, INCLIVA. Universitat de València, Avda. Blasco Ibáñez 17, 46010, Valencia, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Vannina G Marrachelli
- Metabolomic and Molecular Image Lab, Health Research Institute, INCLIVA, Valencia, Spain.,Physiology Department, Universitat de Valencia, Valencia, Spain
| | - Eduardo Núñez
- Cardiology Department, Hospital Clínico Universitario, INCLIVA. Universitat de València, Avda. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Daniel Monleon
- Metabolomic and Molecular Image Lab, Health Research Institute, INCLIVA, Valencia, Spain.,Physiology Department, Universitat de Valencia, Valencia, Spain
| | - Vicent Bodí
- Cardiology Department, Hospital Clínico Universitario, INCLIVA. Universitat de València, Avda. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Juan Sanchis
- Cardiology Department, Hospital Clínico Universitario, INCLIVA. Universitat de València, Avda. Blasco Ibáñez 17, 46010, Valencia, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - David Navarro
- Microbiology Department. Hospital Clínico Universitario, INCLIVA, Universitat de València, Valencia, Spain
| | - Julio Núñez
- Cardiology Department, Hospital Clínico Universitario, INCLIVA. Universitat de València, Avda. Blasco Ibáñez 17, 46010, Valencia, Spain. .,CIBER Cardiovascular, Madrid, Spain.
| |
Collapse
|
29
|
Rüb AM, Tsakmaklis A, Gräfe SK, Simon MC, Vehreschild MJ, Wuethrich I. Biomarkers of human gut microbiota diversity and dysbiosis. Biomark Med 2021; 15:137-148. [PMID: 33442994 DOI: 10.2217/bmm-2020-0353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
The association of gut microbiota dysbiosis with various human diseases is being substantiated with increasing evidence. Metabolites derived from both, microbiota and the human host play a central role in disease susceptibility and disease progression by extensively modulating host physiology and metabolism. Several of these metabolites have the potential to serve as diagnostic biomarkers for monitoring disease states in conjunction with intestinal microbiota dysbiosis. In this narrative review we evaluate the potential of trimethylamine-N-oxide, short-chain fatty acids, 3-indoxyl sulfate, p-cresyl sulfate, secondary bile acids, hippurate, human β-defensin-2, chromogranin A, secreted immunoglobulins and zonulin to serve as biomarkers for metabolite profiling and diagnostic suitability for dysbiosis and disease.
Collapse
Affiliation(s)
- Alina M Rüb
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Anastasia Tsakmaklis
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Stefanie K Gräfe
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Marie-Christine Simon
- Department of Nutrition & Food Sciences, Nutrition & Microbiota, University of Bonn, Bonn, Germany
| | - Maria Jgt Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Irene Wuethrich
- Department of Biosystems Science & Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
30
|
Yu Q, Wu L, Ji J, Feng J, Dai W, Li J, Wu J, Guo C. Gut Microbiota, Peroxisome Proliferator-Activated Receptors, and Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:271-288. [PMID: 33150145 PMCID: PMC7605923 DOI: 10.2147/jhc.s277870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. HCC incidence rate is sixth and mortality is fourth worldwide. However, HCC pathogenesis and molecular mechanisms remain unclear. The incidence of HCC is associated with genetic, environmental, and metabolic factors. The role of gut microbiota in the pathogenesis of HCC has attracted researchers' attention because of anatomical and functional interactions between liver and intestine. Studies have demonstrated the involvement of gut microbiota in the development of HCC and chronic liver diseases, such as alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs) are a group of receptors with diverse biological functions. Natural and synthetic PPAR agonists show potential for treatment of NAFLD, liver fibrosis, and HCC. Recent studies have demonstrated that PPARs take part in gut microbiota inhabitation and adaptation. This manuscript reviews the role of gut microbiota in the development of HCC and precancerous diseases, the role of PPARs in modulation of gut microbiota and HCC, and potential of gut microbiota for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200336, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| |
Collapse
|
31
|
Abstract
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.
Collapse
|
32
|
Groot HE, van de Vegte YJ, Verweij N, Lipsic E, Karper JC, van der Harst P. Human genetic determinants of the gut microbiome and their associations with health and disease: a phenome-wide association study. Sci Rep 2020; 10:14771. [PMID: 32901066 PMCID: PMC7479141 DOI: 10.1038/s41598-020-70724-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Small-scale studies have suggested a link between the human gut microbiome and highly prevalent diseases. However, the extent to which the human gut microbiome can be considered a determinant of disease and healthy aging remains unknown. We aimed to determine the spectrum of diseases that are linked to the human gut microbiome through the utilization of its genetic determinants as a proxy for its composition. 180 single nucleotide polymorphisms (SNPs) known to influence the human gut microbiome were used to assess the association with health and disease outcomes in 422,417 UK Biobank participants. Potential causal estimates were obtained using a Mendelian randomization (MR) approach. From the total sample analysed (mean age was 57 ± 8 years), 194,567 (46%) subjects were male. Median exposure was 66-person years (interquartile range 59-72). Eleven SNPs were significantly associated with 28 outcomes (Bonferroni corrected P value < 4.63·10-6) including food intake, hypertension, atopy, COPD, BMI, and lipids. Multiple SNP MR pointed to a possible causal link between Ruminococcus flavefaciens and hypertension, and Clostridium and platelet count. Microbiota and their metabolites might be of importance in the interplay between overlapping pathophysiological processes, although challenges remain in establishing causal relationships.
Collapse
Affiliation(s)
- Hilde E Groot
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Yordi J van de Vegte
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Erik Lipsic
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Jacco C Karper
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Baragetti A, Catapano AL, Magni P. Multifactorial Activation of NLRP3 Inflammasome: Relevance for a Precision Approach to Atherosclerotic Cardiovascular Risk and Disease. Int J Mol Sci 2020; 21:E4459. [PMID: 32585928 PMCID: PMC7352274 DOI: 10.3390/ijms21124459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic low-grade inflammation, through the specific activation of the NACHT leucine-rich repeat- and PYD-containing (NLRP)3 inflammasome-interleukin (IL)-1β pathway, is an important contributor to the development of atherosclerotic cardiovascular disease (ASCVD), being triggered by intracellular cholesterol accumulation within cells. Within this pathological context, this complex pathway is activated by a number of factors, such as unhealthy nutrition, altered gut and oral microbiota, and elevated cholesterol itself. Moreover, evidence from autoinflammatory diseases, like psoriasis and others, which are also associated with higher cardiovascular disease (CVD) risk, suggests that variants of NLRP3 pathway-related genes (like NLRP3 itself, caspase recruitment domain-containing protein (CARD)8, caspase-1 and IL-1β) may carry gain-of-function mutations leading, in some individuals, to a constitutive pro-inflammatory pattern. Indeed, some reports have recently associated the presence of specific single nucleotide polymorphisms (SNPs) on such genes with greater ASCVD prevalence. Based on these observations, a potential effective strategy in this context may be the identification of carriers of these NLRP3-related SNPs, to generate a genomic score, potentially useful for a better CVD risk prediction, and, possibly, for personalized therapeutic approaches targeted to the NLRP3-IL-1β pathway.
Collapse
Affiliation(s)
- Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (A.B.); (A.L.C.)
- SISA, Center for the Study of Atherosclerosis, Bassini Hospital, 20092 Cinisello Balsamo, Italy
| | - Alberico Luigi Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (A.B.); (A.L.C.)
- IRCCS Multimedica Hospital, 20099 Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (A.B.); (A.L.C.)
- IRCCS Multimedica Hospital, 20099 Milan, Italy
| |
Collapse
|
34
|
Ameri P, Schiattarella GG, Crotti L, Torchio M, Bertero E, Rodolico D, Forte M, Di Mauro V, Paolillo R, Chimenti C, Torella D, Catalucci D, Sciarretta S, Basso C, Indolfi C, Perrino C. Novel Basic Science Insights to Improve the Management of Heart Failure: Review of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. Int J Mol Sci 2020; 21:E1192. [PMID: 32054029 PMCID: PMC7072832 DOI: 10.3390/ijms21041192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Despite important advances in diagnosis and treatment, heart failure (HF) remains a syndrome with substantial morbidity and dismal prognosis. Although implementation and optimization of existing technologies and drugs may lead to better management of HF, new or alternative strategies are desirable. In this regard, basic science is expected to give fundamental inputs, by expanding the knowledge of the pathways underlying HF development and progression, identifying approaches that may improve HF detection and prognostic stratification, and finding novel treatments. Here, we discuss recent basic science insights that encompass major areas of translational research in HF and have high potential clinical impact.
Collapse
Affiliation(s)
- Pietro Ameri
- IRCCS Ospedale Policlinico San Martino—IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16132 Genova, Italy;
| | | | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, 20149 Milan, Italy;
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Margherita Torchio
- Istituto Auxologico Italiano, IRCCS, Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin, and Laboratory of Cardiovascular Genetics, 20095 Milan, Italy;
| | - Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany;
| | - Daniele Rodolico
- Agostino Gemelli Medical School, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzili, Italy; (M.F.); (S.S.)
| | - Vittoria Di Mauro
- National Research Council (CNR) Institute of Genetics & Biomedical Research, Milan Unit, 20138 Milan, Italy; (V.D.M.); (D.C.)
- Humanitas Clinical and Research Hospital, 20090 Rozzano (MI), Italy
| | - Roberta Paolillo
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy;
| | - Cristina Chimenti
- Department of Cardiovascular, Respiratory, Nephrologic, and Geriatric Sciences, Sapienza University of Rome, 00100 Rome, Italy;
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Daniele Catalucci
- National Research Council (CNR) Institute of Genetics & Biomedical Research, Milan Unit, 20138 Milan, Italy; (V.D.M.); (D.C.)
- Humanitas Clinical and Research Hospital, 20090 Rozzano (MI), Italy
| | - Sebastiano Sciarretta
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzili, Italy; (M.F.); (S.S.)
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Cristina Basso
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy;
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences & Center of Cardiovascular Research, Magna Graecia University, 88100 Catanzaro, Italy;
- URT-CNR, Magna Graecia University, 88100 Catanzaro, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy;
| |
Collapse
|
35
|
Fernández-Real JM, Federici M, Burcelin R. Consider the microbiome in the equation! They were here before us...and hosted us! Rev Endocr Metab Disord 2019; 20:383-385. [PMID: 31865508 DOI: 10.1007/s11154-019-09538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- José-Manuel Fernández-Real
- Department of Medical Sciences, CIBERobn Pathophysiology of Obesity and Nutrition, University Hospital of Girona, University of Girona, Girona, Spain.
| | | | | |
Collapse
|