1
|
Liu S, Ma J, Zhang L, Yang Y, Han Z, Tian L. Circulating leptin levels in thyroid dysfunction: a systematic review and meta-analysis. BMC Endocr Disord 2025; 25:140. [PMID: 40481466 PMCID: PMC12142830 DOI: 10.1186/s12902-025-01943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/17/2025] [Indexed: 06/11/2025] Open
Abstract
PURPOSE Leptin is an important regulator of energy homeostasis, analogous to thyroid hormone (TH). The purpose of this study was to investigate circulating leptin levels in thyroid dysfunction (TD) patients and the role of TH levels. METHODS The electronic databases PubMed, Embase, Cochrane Library, and Web of Science were independently searched by two researchers, from inception until February 3, 2024, and updated on February 15, 2025. Pooled standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated by the random effects model. RESULTS Thirty-eight studies reported circulating leptin levels in TD and control with euthyroidism, 4295 subjects were included in total, of which 1277 were hypothyroidism, 540 were hyperthyroidism, and 2478 were control. Compared to euthyroidism, leptin levels were significantly higher in hypothyroidism, and not significantly altered in hyperthyroidism (SMD [95%CI] = 0.71 [0.38, 1.04] and -0.03 [-0.57, 0.51], respectively). The subgroup analysis indicated that, compared to euthyroidism, leptin levels were significantly higher in subjects regardless of overt and subclinical hypothyroidism (SMD [95%CI] = 0.76 [0.25, 1.26] and 0.41 [0.11, 0.70], respectively), and not significantly different in overt hyperthyroidism (SMD [95%CI] = -0.14 [-0.74, 0.45]). Furthermore, when compared to age-, gender-, and body mass index (BMI)-matched euthyroidism, leptin levels were significantly higher in hypothyroidism and had no significant difference in hyperthyroidism (SMD [95%CI] = 0.66 [0.24, 1.07] and -0.43 [-1.13, 0.27], respectively). A total of 16 studies analyzed the correlations between leptin levels and TH levels in TD, 488 were hypothyroidism and 206 were hyperthyroidism. Following correlation analysis, leptin levels displayed a positive correlation with thyroid-stimulating hormone (TSH) levels (r = 0.19) and a negative correlation with triiodothyronine (T3) levels (r = -0.40) in TD. CONCLUSION Compared to euthyroidism, circulating leptin levels were significantly higher in hypothyroidism, and not significantly altered in hyperthyroidism. Besides, leptin levels in TD may be directly regulated by TSH and T3 levels, independent of BMI. TRIAL REGISTRATION CRD42024561055.
Collapse
Affiliation(s)
- Shanshan Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, 730000, China
| | - Jun Ma
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, 730000, China
| | - Leyuan Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, 730000, China
| | - Yanlong Yang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, 730000, China
| | - Ziqi Han
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, 730000, China
| | - Limin Tian
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610000, China.
| |
Collapse
|
2
|
Zhang QJ, Luan JC, Gu Q, Song NH, Xia JD. Leptin action on ARC-PVN neural circuit regulates ejaculation behavior by altering sympathetic neuroplasticity. Andrology 2025. [PMID: 39748719 DOI: 10.1111/andr.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/08/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Although some studies have revealed the close relationship between leptin and premature ejaculation in clinical practice, whether and how leptin participates in the regulation of ejaculatory behaviors are still unknown. OBJECTIVE To explore the role of leptin on ejaculatory behaviors and its underlying mechanism. MATERIALS AND METHODS Copulation behavior tests were performed after acute and chronic leptin administration at peripheral and central levels. To compare changes in sympathetic nervous system activity, lumbar sympathetic nervous activity, serum noradrenaline levels, and the distribution of sympathetic fibers in vas deferens and seminal vesicles were analyzed. Construction of virus vector, immunohistochemistry, and optogenetics techniques were used to explore the neural circuit mechanism. The density of dendritic spines in parvocellular region of paraventricular nucleus was measured by Golgi staining. RESULTS Acute administration of leptin had no effect on ejaculation behavior in male mice. However, both mount latency and ejaculation latency were significantly shortened, even if serum leptin decreased to normal level, after chronic administration of leptin at peripheral or central level. Additionally, sympathetic fibers in vas deferens and seminal vesicles obviously increased, in which arcuate nucleus‒paraventricular nucleus circuit and glutamatergic neurons in paraventricular nucleus played an important role. Dendritic spine density in parvocellular region increased after chronic leptin administration. DISCUSSION AND CONCLUSION The role of leptin in regulating ejaculation behavior was chronic, not acute, in which leptin chronically modulated sympathetic neuroplasticity via arcuate nucleus‒paraventricular nucleus circuit and glutamatergic neurons in paraventricular nucleus and promoted ejaculatory behaviors. Increased dendritic spine density in parvocellular region of paraventricular nucleus may be involved as well.
Collapse
Affiliation(s)
- Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Jiao-Chen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Dong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Wang JH, Hwang SJ, Choi YJ, Woo TW, Son CG. Lactobacillus casei-fermented Amomum xanthioides ameliorates metabolic dysfunction in high-fat diet-induced obese mice. FASEB J 2024; 38:e23669. [PMID: 38747734 DOI: 10.1096/fj.202400552r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 01/11/2025]
Abstract
Amomum xanthioides (AX) has been used as an edible herbal medicine to treat digestive system disorders in Asia. Additionally, Lactobacillus casei is a well-known probiotic commonly used in fermentation processes as a starter. The current study aimed to investigate the potential of Lactobacillus casei-fermented Amomum xanthioides (LAX) in alleviating metabolic disorders induced by high-fat diet (HFD) in a mouse model. LAX significantly reduced the body and fat weight, outperforming AX, yet without suppressing appetite. LAX also markedly ameliorated excessive lipid accumulation and reduced inflammatory cytokine (IL-6) levels in serum superior to AX in association with UCP1 activation and adiponectin elevation. Furthermore, LAX noticeably improved the levels of fasting blood glucose, serum insulin, and HOMA-IR through positive regulation of glucose transporters (GLUT2, GLUT4), and insulin receptor gene expression. In conclusion, the fermentation of AX demonstrates a pronounced mitigation of overnutrition-induced metabolic dysfunction, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and obesity, compared to non-fermented AX. Consequently, we proposed that the fermentation of AX holds promise as a potential candidate for effectively ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Yu-Jin Choi
- Department of Internal Medicine, College of Korean Medicine, Se-Myung University, Jecheon-si, Republic of Korea
| | - Tae-Wook Woo
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Quaranta P, Scabia G, Storti B, Dattilo A, Quintino L, Perrera P, Di Primio C, Costa M, Pistello M, Bizzarri R, Maffei M. SARS-CoV-2 Infection Alters the Phenotype and Gene Expression of Adipocytes. Int J Mol Sci 2024; 25:2086. [PMID: 38396763 PMCID: PMC10889321 DOI: 10.3390/ijms25042086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Epidemiological evidence emphasizes that excess fat mass is associated with an increased risk of severe COVID-19 disease. Nevertheless, the intricate interplay between SARS-CoV-2 and adipocytes remains poorly understood. It is crucial to decipher the progression of COVID-19 both in the acute phase and on long-term outcomes. In this study, an in vitro model using the human SGBS cell line (Simpson-Golabi-Behmel syndrome) was developed to investigate the infectivity of SARS-CoV-2 in adipocytes, and the effects of virus exposure on adipocyte function. Our results show that SGBS adipocytes expressing ACE2 are susceptible to SARS-CoV-2 infection, as evidenced by the release of the viral genome into the medium, detection of the nucleocapsid in cell lysates, and positive immunostaining for the spike protein. Infected adipocytes show remarkable changes compared to uninfected controls: increased surface area of lipid droplets, upregulated expression of genes of inflammation (Haptoglobin, MCP-1, IL-6, PAI-1), increased oxidative stress (MnSOD), and a concomitant reduction of transcripts related to adipocyte function (leptin, fatty acid synthase, perilipin). Moreover, exogenous expression of spike protein in SGBS adipocytes also led to an increase in lipid droplet size. In conclusion using the human SGBS cell line, we detected SARS-CoV-2 infectivity in adipocytes, revealing substantial morphological and functional changes in infected cells.
Collapse
Affiliation(s)
- Paola Quaranta
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (P.Q.); (P.P.); (M.P.)
- National Research Council—Institute of Neuroscience, Via Moruzzi 1, 56124 Pisa, Italy; (C.D.P.); (M.C.)
| | - Gaia Scabia
- National Research Council—Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy; (G.S.); (L.Q.)
- Center for Obesity and Lipodystrophy, Pisa University-Hospital, Via Paradisa 2, 56124 Pisa, Italy;
| | - Barbara Storti
- National Enterprise for nanoScience and nanoTechnology, Scuola Normale Superiore, National Research Council—Institute of Nanoscience, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Alessia Dattilo
- Center for Obesity and Lipodystrophy, Pisa University-Hospital, Via Paradisa 2, 56124 Pisa, Italy;
| | - Lara Quintino
- National Research Council—Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy; (G.S.); (L.Q.)
| | - Paola Perrera
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (P.Q.); (P.P.); (M.P.)
| | - Cristina Di Primio
- National Research Council—Institute of Neuroscience, Via Moruzzi 1, 56124 Pisa, Italy; (C.D.P.); (M.C.)
| | - Mario Costa
- National Research Council—Institute of Neuroscience, Via Moruzzi 1, 56124 Pisa, Italy; (C.D.P.); (M.C.)
| | - Mauro Pistello
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (P.Q.); (P.P.); (M.P.)
- Virology Unit, Pisa University-Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Ranieri Bizzarri
- National Enterprise for nanoScience and nanoTechnology, Scuola Normale Superiore, National Research Council—Institute of Nanoscience, Piazza San Silvestro 12, 56127 Pisa, Italy;
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
| | - Margherita Maffei
- National Research Council—Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy; (G.S.); (L.Q.)
- Center for Obesity and Lipodystrophy, Pisa University-Hospital, Via Paradisa 2, 56124 Pisa, Italy;
- Italian National Institute for Nuclear Physics, Via Filippo Buonarroti 3, 56127 Pisa, Italy
| |
Collapse
|
5
|
Landgraaf RG, Bloem MN, Fumagalli M, Benninga MA, de Lorijn F, Nieuwdorp M. Acupuncture as multi-targeted therapy for the multifactorial disease obesity: a complex neuro-endocrine-immune interplay. Front Endocrinol (Lausanne) 2023; 14:1236370. [PMID: 37795371 PMCID: PMC10545882 DOI: 10.3389/fendo.2023.1236370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
The prevalence of obesity has reached pandemic dimensions. It is associated with multiple comorbidities and is becoming a clinical and public health threat. Obesity is a multifactorial disease with a complex pathophysiology and interplay of various systems. A strong interplay exists between the neuro-endocrine system, the immune system with systemic chronic low-grade inflammation, and microbiome dysbiosis that can lead to the development of obesity, which in turn can exacerbate each of these factors, hence creating a vicious cycle. The conventional treatment with lifestyle modifications such as diet, physical exercise, pharmacotherapy, and bariatric surgery does not always result in sufficient weight control thus paving the way for other strategies. As one such strategy, acupuncture is increasingly used worldwide to treat obesity. This narrative review outlines the evidence for this neuro-endocrine-immune interplay in the pathophysiology of obesity. Furthermore, the existing experimental and clinical evidence of acupuncture as a multi-targeted therapy for obesity is explained and future research perspectives are discussed.
Collapse
Affiliation(s)
- Raymond Guy Landgraaf
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
- Sinomedica Gui Sheng Tang, Scientific Department, Lugano, Switzerland
| | - Michelle Nicté Bloem
- Emma Children’s Hospital, Amsterdam University Medical Center (UMC), Pediatric Gastroenterology, University of Amsterdam, Amsterdam, Netherlands
| | - Massimo Fumagalli
- Sinomedica Gui Sheng Tang, Scientific Department, Lugano, Switzerland
| | - Marc Alexander Benninga
- Emma Children’s Hospital, Amsterdam University Medical Center (UMC), Pediatric Gastroenterology, University of Amsterdam, Amsterdam, Netherlands
| | - Fleur de Lorijn
- Emma Children’s Hospital, Amsterdam University Medical Center (UMC), Pediatric Gastroenterology, University of Amsterdam, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
6
|
Andersson MLE, Thorén E, Sylwander C, Bergman S. Associations between chronic widespread pain, pressure pain thresholds, leptin, and metabolic factors in individuals with knee pain. BMC Musculoskelet Disord 2023; 24:639. [PMID: 37559026 PMCID: PMC10410998 DOI: 10.1186/s12891-023-06773-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE The aim was to study associations between chronic widespread pain, widespread pain sensitivity, leptin, and metabolic factors in individuals with knee pain. A secondary aim was to study these associations in a subgroup of individuals with normal BMI. METHOD This cross-sectional study included 265 individuals. The participants were categorised into three different pain groups: Chronic widespread pain (CWP), chronic regional pain (ChRP), or no chronic pain (NCP). The pressure pain thresholds (PPTs) were assessed using computerised pressure algometry. Low PPTs were defined as having PPTs in the lowest third of all tender points. Leptin and metabolic factors such as BMI, visceral fat area (VFA), lipids, and glucose were also assessed. RESULT Sixteen per cent reported CWP, 15% had low PPTs, and 4% fulfilled both criteria. Those who fulfilled the criteria for CWP were more often women, more obese, and had increased leptin levels. In logistic regression, adjusted for age and gender, leptin was associated with fulfilling criteria for CWP, OR 1.015 (95% CI 1.004-1.027, p = 0.008). In logistic regression, adjusted for age and gender, leptin was associated with low PPTs, OR 1.016 (95% CI 1.004-1.029, p = 0.012). Leptin was also associated with fulfilling both criteria, adjusted for age, sex, and visceral fat area (VFA), OR 1.030 (95% CI 1.001-1.060), p = 0.040. CONCLUSION Leptin was associated with fulfilling the combined criteria for chronic widespread pain and low PPTs, even after adjusting for the visceral fat area (VFA). Longitudinal studies are needed to study the causal relationships between leptin and the development of widespread pain. TRIAL REGISTRATION clinicalTrials.gov Identifier: NCT04928170.
Collapse
Affiliation(s)
- Maria L E Andersson
- Spenshult Research and Development Centre, Halmstad, Sweden.
- Department of Clinical Sciences, Section of Rheumatology, Lund University, Lund, Sweden.
- School of Business, Engineering and Science, Halmstad University, Halmstad, Sweden.
| | - Emelie Thorén
- Spenshult Research and Development Centre, Halmstad, Sweden
| | - Charlotte Sylwander
- Spenshult Research and Development Centre, Halmstad, Sweden
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Stefan Bergman
- Spenshult Research and Development Centre, Halmstad, Sweden
- Primary Health Care Unit, Department of Public Health and Community Medicine, Department of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Cinti S. Obese Adipocytes Have Altered Redox Homeostasis with Metabolic Consequences. Antioxidants (Basel) 2023; 12:1449. [PMID: 37507987 PMCID: PMC10376822 DOI: 10.3390/antiox12071449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
White and brown adipose tissues are organized to form a real organ, the adipose organ, in mice and humans. White adipocytes of obese animals and humans are hypertrophic. This condition is accompanied by a series of organelle alterations and stress of the endoplasmic reticulum. This stress is mainly due to reactive oxygen species activity and accumulation, lending to NLRP3 inflammasome activation. This last causes death of adipocytes by pyroptosis and the formation of large cellular debris that must be removed by macrophages. During their chronic scavenging activity, macrophages produce several secretory products that have collateral consequences, including interference with insulin receptor activity, causing insulin resistance. The latter is accompanied by an increased noradrenergic inhibitory innervation of Langerhans islets with de-differentiation of beta cells and type 2 diabetes. The whitening of brown adipocytes could explain the different critical death size of visceral adipocytes and offer an explanation for the worse clinical consequence of visceral fat accumulation. White to brown transdifferentiation has been proven in mice and humans. Considering the energy-dispersing activity of brown adipose tissue, transdifferentiation opens new therapeutic perspectives for obesity and related disorders.
Collapse
Affiliation(s)
- Saverio Cinti
- Scientific Director Centre of Obesity, Marche Polytechnic University, Via Tronto 10a, 60126 Ancona, Italy
| |
Collapse
|
8
|
Nguyen NPK, Tran KN, Nguyen LTH, Shin HM, Yang IJ. Effects of Essential Oils and Fragrant Compounds on Appetite: A Systematic Review. Int J Mol Sci 2023; 24:ijms24097962. [PMID: 37175666 PMCID: PMC10178777 DOI: 10.3390/ijms24097962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Appetite dysregulation is one of the factors contributing to anorexia, bulimia nervosa, obesity, and diabetes. Essential oils or fragrant compounds have been proven to regulate food intake and energy expenditure; hence, this study aimed to summarize their effects on appetite and the underlying mechanisms. The PubMed and Web of Science databases were searched until July 2022. Only two of the 41 studies were performed clinically, and the remaining 39 used animal models. Oral administration was the most common route, and a dosage range of 100-2000 mg/kg for mice or 2-32 mg/kg for rats was applied, with a duration of 12 days to 4 weeks, followed by inhalation (10-6-10-3 mg/cage or 10-9-10-2 mg/cm3 within 1 h). Approximately 11 essential oil samples and 22 fragrant compounds were found to increase appetite, while 12 essential oils and seven compounds decreased appetite. These fragrant components can exert appetite-regulating effects via leptin resistance, the activity of sympathetic/parasympathetic nerves, or the mRNA expression of neuropeptide Y (NPY)/agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART)/proopiomelanocortin (POMC) in the hypothalamus. Fragrance memory and cognitive processes may also play roles in appetite regulation. The findings of this study accentuate the potential of essential oils and fragrant compounds to regulate appetite and eating disorders.
Collapse
Affiliation(s)
- Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
9
|
González-García I, García-Clavé E, Cebrian-Serrano A, Le Thuc O, Contreras RE, Xu Y, Gruber T, Schriever SC, Legutko B, Lintelmann J, Adamski J, Wurst W, Müller TD, Woods SC, Pfluger PT, Tschöp MH, Fisette A, García-Cáceres C. Estradiol regulates leptin sensitivity to control feeding via hypothalamic Cited1. Cell Metab 2023; 35:438-455.e7. [PMID: 36889283 PMCID: PMC10028007 DOI: 10.1016/j.cmet.2023.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clavé
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yanjun Xu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jutta Lintelmann
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive 8, Singapore 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, LudwigMaximilians Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, 80333 Munich, Germany
| | - Alexandre Fisette
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
10
|
Chen S, Xiao X, Song X, Qi Z, Li Y. Prediction of cord blood leptin on infant's neurodevelopment: A birth cohort in rural Yunnan, China. Psychoneuroendocrinology 2023; 148:105955. [PMID: 36442291 DOI: 10.1016/j.psyneuen.2022.105955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/17/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Leptin, one of the peptide hormones secreted by adipocytes, plays a vital part in metabolism, but its role in early-life neurodevelopment remains poorly understood. METHODS We performed leptin analysis on 323 cord blood samples collected from a birth cohort in Yunnan rural area, China, and assessed infants' neurodevelopment at one year of age by the Bayley Scales of Infant and Toddler Development-Third Edition (BSID-III). Multiple linear regression and binary logistic regression models were used to explore the associations between cord blood leptin (CBL) concentrations and infants' neurodevelopment and the ability of CBL to predict the probabilities of infants' neurodevelopment delay. RESULTS Overall, 323 infants were included in this study. The median concentration of CBL was 4.7 ng/ml. The proportion of 1-year-old infants identified as being neurodevelopmental delayed was 34.5%, and delays in cognitive, language, and motor domains were 11.1%, 26.6%, and 13.9%, respectively. Multiple linear regression analyses manifested that the CBL concentration (log10-transformed) was positively correlated with the cognitive, language, and motor composite scores in infants, respectively (β = 7.76, 95%CI: 3.81-11.71; β = 6.73, 95%CI: 3.41-10.06; and β = 6.88, 95%CI: 3.48-10.29, respectively). Binary logistic regression analysis showed that compared with the higher, lower CBL (< 4.7 ng/ml) yielded a 1.41-fold increase in the risk of language development delay (OR = 2.41,95%CI: 1.42-4.09), a 1.49-fold higher risk of motor development delay (OR = 2.49, 95%CI: 1.25-4.96), and a 1.71-fold higher risk of neurodevelopment delay (OR = 2.71, 95%CI: 1.64-4.48) among infants. The prediction models showed that the probabilities of development delay in infants' language, motor, and neurodevelopment increased with the decline of CBL concentrations [rs = -0.63 (95% CI: -0.71, -0.56), rs = -0.46 (95% CI: -0.55, -0.38), rs = -0.55 (95% CI: -0.63, -0.46), respectively]. CONCLUSION The decline of CBL was associated with the decrease in infants' neurodevelopment scores at one year of age. CBL below 4.7 ng/ml may increase the risk of infants' neurodevelopment delay. The probabilities of infants' neurodevelopment delay increased with the decrease of CBL concentrations. CBL may be a predictor of the probability of children's neurodevelopment delay.
Collapse
Affiliation(s)
- Shuqi Chen
- School of Public Health, Kunming Medical University, Kunming, China; Ministry of Child Health, Longgang District Maternity & Child Healthcare Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Xia Xiao
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xiaoxiao Song
- School of Public Health, Kunming Medical University, Kunming, China
| | - Zhiye Qi
- School of Public Health, Kunming Medical University, Kunming, China; Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Li
- School of Public Health, Kunming Medical University, Kunming, China.
| |
Collapse
|
11
|
Animali S, Steinwurzel C, Dardano A, Sancho-Bornez V, Del Prato S, Morrone MC, Daniele G, Binda P. Effect of fasting on short-term visual plasticity in adult humans. Eur J Neurosci 2023; 57:148-162. [PMID: 36437778 PMCID: PMC10108283 DOI: 10.1111/ejn.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Brain plasticity and function is impaired in conditions of metabolic dysregulation, such as obesity. Less is known on whether brain function is also affected by transient and physiological metabolic changes, such as the alternation between fasting and fed state. Here we asked whether these changes affect the transient shift of ocular dominance that follows short-term monocular deprivation, a form of homeostatic plasticity. We further asked whether variations in three of the main metabolic and hormonal pathways affected in obesity (glucose metabolism, leptin signalling and fatty acid metabolism) correlate with plasticity changes. We measured the effects of 2 h monocular deprivation in three conditions: post-absorptive state (fasting), after ingestion of a standardised meal and during infusion of glucagon-like peptide-1 (GLP-1), an incretin physiologically released upon meal ingestion that plays a key role in glucose metabolism. We found that short-term plasticity was less manifest in fasting than in fed state, whereas GLP-1 infusion did not elicit reliable changes compared to fasting. Although we confirmed a positive association between plasticity and supraphysiological GLP-1 levels, achieved by GLP-1 infusion, we found that none of the parameters linked to glucose metabolism could predict the plasticity reduction in the fasting versus fed state. Instead, this was selectively associated with the increase in plasma beta-hydroxybutyrate (B-OH) levels during fasting, which suggests a link between neural function and energy substrates alternative to glucose. These results reveal a previously unexplored link between homeostatic brain plasticity and the physiological changes associated with the daily fast-fed cycle.
Collapse
Affiliation(s)
- Silvia Animali
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Cecilia Steinwurzel
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.,Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giuseppe Daniele
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Liu J, Yuan Y, Peng X, Wang Y, Cao R, Zhang Y, Fu L. Mechanism of leptin-NPY on the onset of puberty in male offspring rats after androgen intervention during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1090552. [PMID: 37056673 PMCID: PMC10086166 DOI: 10.3389/fendo.2023.1090552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVES The time of onset of puberty has been increasingly earlier, but its mechanism is still unclear. This study aimed to reveal the mechanism of leptin and NPY in the onset of puberty in male offspring rats after androgen intervention during pregnancy. METHODS Eight-week-old specific pathogen-free (SPF) healthy male Sprague-Dawley (SD) rats and 16 female SD rats were selected and caged at 1:2. The pregnant rats were randomly divided into the olive oil control group (OOG) and testosterone intervention group (TG), with 8 rats in each group. Olive oil and testosterone were injected from the 15th day of pregnancy, for a total of 4 injections (15th, 17th, 19th, 21st day). After the onset of puberty, the male offspring rats were anesthetized with 2% pentobarbital sodium to collect blood by ventral aorta puncture and decapitated to peel off the hypothalamus and abdominal fat. Serum testosterone (T), free testosterone (FT), dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA), sex hormone binding globulin (SHBG), and leptin were detected by ELISA, and then the free androgen index (FAI) was calculated. The mRNA levels of androgen receptor (AR), estrogen receptor α (ERα), NPY, leptinR, and NPY2R in the hypothalamus and abdominal fat were detected by RT-PCR. Protein expression levels of AR, ERα, NPY, leptinR, and NPY2R in the arcuate nucleus (ARC) of the hypothalamus were detected by immunohistochemistry. RESULTS The time of onset of puberty was significantly earlier in the TG than in the OOG (P< 0.05) and was positively correlated with body weight, body length, abdominal fat, and leptinR mRNA levels in adipose tissue in the OOG (P< 0.05), while it was positively correlated with serum DHT and DHEA concentrations and FAI and AR mRNA levels in the hypothalamus in the TG (P< 0.05). The NPY2R mRNA level and protein expression levels of ERα, NPY2R, and leptinR in the TG were significantly higher than those in the OOG, while the protein expression levels of AR and NPY in the TG were significantly lower than those in the OOG (P< 0.05). CONCLUSIONS Testosterone intervention during pregnancy led to an earlier onset of puberty in male offspring rats, which may render the male offspring rats more sensitive to androgens, leptin, and NPY at the onset of puberty.
Collapse
|
13
|
Martinez-Sanchez N, Sweeney O, Sidarta-Oliveira D, Caron A, Stanley SA, Domingos AI. The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron 2022; 110:3597-3626. [PMID: 36327900 PMCID: PMC9986959 DOI: 10.1016/j.neuron.2022.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The sympathetic nervous system maintains metabolic homeostasis by orchestrating the activity of organs such as the pancreas, liver, and white and brown adipose tissues. From the first renderings by Thomas Willis to contemporary techniques for visualization, tracing, and functional probing of axonal arborizations within organs, our understanding of the sympathetic nervous system has started to grow beyond classical models. In the present review, we outline the evolution of these findings and provide updated neuroanatomical maps of sympathetic innervation. We offer an autonomic framework for the neuroendocrine loop of leptin action, and we discuss the role of immune cells in regulating sympathetic terminals and metabolism. We highlight potential anti-obesity therapeutic approaches that emerge from the modern appreciation of SNS as a neural network vis a vis the historical fear of sympathomimetic pharmacology, while shifting focus from post- to pre-synaptic targeting. Finally, we critically appraise the field and where it needs to go.
Collapse
Affiliation(s)
| | - Owen Sweeney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Davi Sidarta-Oliveira
- Physician-Scientist Graduate Program, Obesity and Comorbidities Research Center, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
14
|
Colleluori G, Galli C, Severi I, Perugini J, Giordano A. Early Life Stress, Brain Development, and Obesity Risk: Is Oxytocin the Missing Link? Cells 2022; 11:cells11040623. [PMID: 35203274 PMCID: PMC8870435 DOI: 10.3390/cells11040623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity disease results from a dysfunctional modulation of the energy balance whose master regulator is the central nervous system. The neural circuitries involved in such function complete their maturation during early postnatal periods, when the brain is highly plastic and profoundly influenced by the environment. This phenomenon is considered as an evolutionary strategy, whereby metabolic functions are adjusted to environmental cues, such as food availability and maternal care. In this timeframe, adverse stimuli may program the body metabolism to maximize energy storage abilities to cope with hostile conditions. Consistently, the prevalence of obesity is higher among individuals who experienced early life stress (ELS). Oxytocin, a hypothalamic neurohormone, regulates the energy balance and modulates social, emotional, and eating behaviors, exerting both central and peripheral actions. Oxytocin closely cooperates with leptin in regulating energy homeostasis. Both oxytocin and leptin impact the neurodevelopment during critical periods and are affected by ELS and obesity. In this review article, we report evidence from the literature describing the effect of postnatal ELS (specifically, disorganized/inconstant maternal care) on the vulnerability to obesity with a focus on the role of oxytocin. We emphasize the existing research gaps and highlight promising directions worthy of exploration. Based on the available data, alterations in the oxytocin system may in part mediate the ELS-induced susceptibility to obesity.
Collapse
Affiliation(s)
- Georgia Colleluori
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Chiara Galli
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
- Center of Obesity, Marche Polytechnic University-United Hospitals, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-071-220-6086; Fax: +39-071-220-6087
| |
Collapse
|
15
|
Abstract
Leptin is a hormone primarily produced by the adipose tissue in proportion to the size of fat stores, with a primary function in the control of lipid reserves. Besides adipose tissue, leptin is also produced by other tissues, such as the stomach, placenta, and mammary gland. Altogether, leptin exerts a broad spectrum of short, medium, and long-term regulatory actions at the central and peripheral levels, including metabolic programming effects that condition the proper development and function of the adipose organ, which are relevant for its main role in energy homeostasis. Comprehending how leptin regulates adipose tissue may provide important clues to understand the pathophysiology of obesity and related diseases, such as type 2 diabetes, as well as its prevention and treatment. This review focuses on the physiological and long-lasting regulatory effects of leptin on adipose tissue, the mechanisms and pathways involved, its main outcomes on whole-body physiological homeostasis, and its consequences on chronic diseases.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
16
|
Dattilo A, Ceccarini G, Scabia G, Magno S, Quintino L, Pelosini C, Salvetti G, Cusano R, Massidda M, Montanelli L, Gilio D, Gatti G, Giacomina A, Costa M, Santini F, Maffei M. Circulating Levels of MiRNAs From 320 Family in Subjects With Lipodystrophy: Disclosing Novel Signatures of the Disease. Front Endocrinol (Lausanne) 2022; 13:866679. [PMID: 35733784 PMCID: PMC9207177 DOI: 10.3389/fendo.2022.866679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Lipodystrophy (LD) indicates a group of rare disorders, with generalized or partial loss of white adipose tissue (WAT) often associated with metabolic derangements. Heterogeneity/wide spectrum of the disease and lack of biomarkers make diagnosis often difficult. MicroRNAs are important to maintain a correct WAT function and WAT is a source of circulating miRNAs (cmiRs). miRNAs from 320 family were previously detected in the WAT and variably associated to the metabolic syndrome. Our aim was then to investigate if LD can result in altered abundance of cmiRs-320. We collected samples from a cohort of LD subjects of various subtypes and from age matched controls. Use of quantitative PCR determined that cmiRs- 320a-3p, 320b, 320c, 320e are upregulated, while 320d is downregulated in LD. CmiRs-320 power as classifiers was more powerful in the most extreme and defined forms of LD, including the generalized and the Dunnigan subtypes. cmiR-320a-3p showed significant inverse relationships with plasma leptin (P < 0.0001), typically low in LD. The hepatic enzymes gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and the marker of inflammation C-reactive protein (CRP) were inversely related to cmiR 320d (P < 0.05, for CRP and GGT; P < 0.01, for AST and ALT). Gene ontology analysis revealed cell-cell adhesion as a process regulated by 320 miRNAs targets, thus disclosing a novel route to investigate origin of WAT loss/dysfunction. In conclusion, cmiRs-320 constitute novel biomarkers of LD, abundance of miR320a-3p is inversely associated to indicators related to WAT function, while downregulation of cmiR-320d predicts an altered hepatic profile and higher inflammation.
Collapse
Affiliation(s)
- Alessia Dattilo
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Gaia Scabia
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Lara Quintino
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Caterina Pelosini
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Guido Salvetti
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Roberto Cusano
- Center for Advanced Studies, Research and Development in Sardinia, Pula (CA), Italy
| | - Matteo Massidda
- Center for Advanced Studies, Research and Development in Sardinia, Pula (CA), Italy
| | - Lucia Montanelli
- Department of Clinical and Experimental Medicine, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Donatella Gilio
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Gianluca Gatti
- Plastic and Reconstructive Surgery Unit, Hospital of Pisa, Pisa, Italy
| | | | - Mario Costa
- National Research Council, Institute of Neuroscience, Pisa, Italy
- Centro Pisano Flash Radiotherapy, Center for Instrument Sharing of the University of Pisa (CPFR@CISUP), Pisa University Hospital, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Margherita Maffei
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
- *Correspondence: Margherita Maffei,
| |
Collapse
|
17
|
Ito T, Yamamoto Y, Yamagishi N, Kanai Y. Stomach secretes estrogen in response to the blood triglyceride levels. Commun Biol 2021; 4:1364. [PMID: 34876651 PMCID: PMC8651635 DOI: 10.1038/s42003-021-02901-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
Mammals receive body energy information to maintain energy homeostasis. Ghrelin, insulin, leptin and vagal afferents transmit the status of fasting, blood glucose, body fat, and food intake, respectively. Estrogen also inhibits feeding behavior and lipogenesis, but increases body fat mass. However, how blood triglyceride levels are monitored and the physiological roles of estrogen from the perspective of lipid homeostasis remain unsettled. Here, we show that stomach secretes estrogen in response to the blood triglyceride levels. Estrogen-secreting gastric parietal cells predominantly use fatty acids as an energy source. Blood estrogen levels increase as blood triglyceride levels rise in a stomach-dependent manner. Estrogen levels in stomach tissues increase as blood triglyceride levels rise, and isolated gastric gland epithelium produces estrogen in a fatty acid-dependent manner. We therefore propose that stomach monitors and controls blood triglyceride levels using estrogen, which inhibits feeding behavior and lipogenesis, and promotes triglyceride uptake by adipocytes.
Collapse
Affiliation(s)
- Takao Ito
- Cell Biology and Anatomy, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuta Yamamoto
- Cell Biology and Anatomy, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naoko Yamagishi
- Cell Biology and Anatomy, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yoshimitsu Kanai
- Cell Biology and Anatomy, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
18
|
High-Fat Diet Impairs Mouse Median Eminence: A Study by Transmission and Scanning Electron Microscopy Coupled with Raman Spectroscopy. Int J Mol Sci 2021; 22:ijms22158049. [PMID: 34360816 PMCID: PMC8347199 DOI: 10.3390/ijms22158049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Hypothalamic dysfunction is an initial event following diet-induced obesity, primarily involving areas regulating energy balance such as arcuate nucleus (Arc) and median eminence (ME). To gain insights into the early hypothalamic diet-induced alterations, adult CD1 mice fed a high-fat diet (HFD) for 6 weeks were studied and compared with normo-fed controls. Transmission and scanning electron microscopy and histological staining were employed for morphological studies of the ME, while Raman spectroscopy was applied for the biochemical analysis of the Arc-ME complex. In HFD mice, ME β2-tanycytes, glial cells dedicated to blood-liquor crosstalk, exhibited remarkable ultrastructural anomalies, including altered alignment, reduced junctions, degenerating organelles, and higher content of lipid droplets, lysosomes, and autophagosomes. Degenerating tanycytes also displayed an electron transparent cytoplasm filled with numerous vesicles, and they were surrounded by dilated extracellular spaces extending up to the subependymal layer. Consistently, Raman spectroscopy analysis of the Arc-ME complex revealed higher glycogen, collagen, and lipid bands in HFD mice compared with controls, and there was also a higher band corresponding to the cyanide group in the former compared to the last. Collectively, these data show that ME β2-tanycytes exhibit early structural and chemical alterations due to HFD and reveal for the first-time hypothalamic cyanide presence following high dietary lipids consumption, which is a novel aspect with potential implications in the field of obesity.
Collapse
|
19
|
Dessie G, Ayelign B, Akalu Y, Shibabaw T, Molla MD. Effect of Leptin on Chronic Inflammatory Disorders: Insights to Therapeutic Target to Prevent Further Cardiovascular Complication. Diabetes Metab Syndr Obes 2021; 14:3307-3322. [PMID: 34305402 PMCID: PMC8296717 DOI: 10.2147/dmso.s321311] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
In response to obesity-associated chronic inflammatory disorders, adipose tissue releases a biologically active peptide known as leptin. Leptin activates the secretion of chemical mediators, which contribute to the pathogenesis of chronic inflammatory disorders, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and psoriasis. Conversely, adiposity and obesity are the major aggravating risk factors in the pathogenesis of metabolic syndrome (MetS), including type II diabetes mellitus and obesity-associated hypertension. Elevated level of leptin in obesity-associated hypertension causes an increase in the production of aldosterone, which also results in elevation of arterial blood pressure. Hyperleptinemia is associated with the progress of the atherosclerosis through secretion of pro-inflammatory cytokines, like interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), IL-17, and other cytokines to promote inflammation. The release of those cytokines leads to chronic inflammatory disorders and obesity-associated MetS. Thus, the aberrant leptin level in both MetS and chronic inflammatory disorders also leads to the complication of cardiovascular diseases (CVD). Therapeutic target of leptin regarding its pro-inflammatory effect and dysregulated sympathetic nervous system activity may prevent further cardiovascular complication. This review mainly assesses the mechanism of leptin on the pathogenesis and further cardiovascular risk complication of chronic inflammatory disorders.
Collapse
Affiliation(s)
- Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Gashaw Dessie Tel +251 975152796 Email
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|