1
|
Wu T, Wei W, Gao C, Wu J, Gao C, Chen X, Liu L, Song W. Synthesis of C-N bonds by nicotinamide-dependent oxidoreductase: an overview. Crit Rev Biotechnol 2025; 45:702-726. [PMID: 39229892 DOI: 10.1080/07388551.2024.2390082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 09/05/2024]
Abstract
Compounds containing chiral C-N bonds play a vital role in the composition of biologically active natural products and small pharmaceutical molecules. Therefore, the development of efficient and convenient methods for synthesizing compounds containing chiral C-N bonds is a crucial area of research. Nicotinamide-dependent oxidoreductases (NDOs) emerge as promising biocatalysts for asymmetric synthesis of chiral C-N bonds due to their mild reaction conditions, exceptional stereoselectivity, high atom economy, and environmentally friendly nature. This review aims to present the structural characteristics and catalytic mechanisms of various NDOs, including imine reductases/ketimine reductases, reductive aminases, EneIRED, and amino acid dehydrogenases. Additionally, the review highlights protein engineering strategies employed to modify the stereoselectivity, substrate specificity, and cofactor preference of NDOs. Furthermore, the applications of NDOs in synthesizing essential medicinal chemicals, such as noncanonical amino acids and chiral amine compounds, are extensively examined. Finally, the review outlines future perspectives by addressing challenges and discussing the potential of utilizing NDOs to establish efficient biosynthesis platforms for C-N bond synthesis. In conclusion, NDOs provide an economical, efficient, and environmentally friendly toolbox for asymmetric synthesis of C-N bonds, thus contributing significantly to the field of pharmaceutical chemical development.
Collapse
Affiliation(s)
- Tianfu Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Meersseman Arango H, Bachus N, Nguyen XDL, Bredun B, Luis P, Leyssens T, Roura Padrosa D, Paradisi F, Debecker DP. Crystallization-Assisted Asymmetric Synthesis of Enantiopure Amines Using Membrane-Immobilized Transaminase. CHEM & BIO ENGINEERING 2025; 2:272-282. [PMID: 40302874 PMCID: PMC12035565 DOI: 10.1021/cbe.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 05/02/2025]
Abstract
The production of active pharmaceutical ingredients (APIs) requires enantiopure chiral amines, for which greener synthesis processes are needed. Transaminases (TAs) are enzymes that catalyze the enantioselective production of chiral amines from prochiral ketones through transamination under mild conditions. Yet, industrial applications of biocatalytic transamination remain currently hindered by the limited stability of soluble enzymes and by the unfavorable thermodynamic equilibrium of targeted asymmetric reactions. Enzyme immobilization can be applied to address stability, recoverability, and reusability issues. In the perspective of process intensification, we chose to immobilize TAs on polymeric (polypropylene) membranes. In the asymmetric synthesis of (R)-2-fluoro-α-methylbenzylamine ((R)-FMBA), such membrane-immobilized TAs exhibited superior specific activity and stability compared with soluble TAs; they also outperformed TAs immobilized on resins. The reaction yield remained, however, limited by thermodynamics. To further enhance the synthesis yield, the reaction was coupled with the in situ crystallization of (R)-FMBA with 3,3-diphenylpropionic acid (DPPA). By doing so, the theoretical equilibrium conversion was pushed from ∼44% to ∼83%. In fact, a 72% overall recovery yield of crystallized (R)-FMBA was demonstrated. The enantioselectivity of the reaction mixture was preserved. Importantly, purification was greatly facilitated since the target enantiopure amine was readily recovered as high-purity (R)-FMBA:DPPA crystals. The biocatalytic membranes were found to be fully reusable, performing successive high-yield asymmetric syntheses with only minor deactivation. Overall, the crystallization-assisted strategy proposed herein offers a greener path for the biocatalytic production of valuable chiral targets.
Collapse
Affiliation(s)
- Hippolyte Meersseman Arango
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Neal Bachus
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Xuan Dieu Linh Nguyen
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Basile Bredun
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - Patricia Luis
- Materials
& Process Engineering (iMMC-IMAP), Université
Catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| | - Tom Leyssens
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| | - David Roura Padrosa
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Francesca Paradisi
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Damien P. Debecker
- Institute
of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|
3
|
Sun Q, Feng X, Wang X, Shi H, Su J, Wang M, Luo G, Xu X. Enantioselective ortho-C-H Addition of Aromatic Amines to Alkenes by Bulky Chiral Anilido-Oxazoline Scandium Complexes. J Am Chem Soc 2025; 147:13658-13666. [PMID: 40199727 DOI: 10.1021/jacs.5c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The enantioselective C-H addition of anilines to alkenes represents an ideal protocol for the synthesis of chiral aromatic amines in terms of step- and atom-economy. However, this field remains predominantly unexplored. Herein, a series of newly designed bulky chiral anilido-oxazoline ligand precursors were synthesized, and the corresponding rare-earth metal alkyl complexes were obtained successfully. The resultant scandium complexes exhibit high regioselectivity for the ortho-C-H addition of tertiary anilines to unactivated alkenes, providing a wide range of chiral alkylated anilines in high yields (up to 98% yield) with excellent enantioselectivity (up to 98% ee). Moreover, the addition products can be easily converted into biorelevant derivatives and pharmacophore-containing skeletons.
Collapse
Affiliation(s)
- Qianlin Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiangli Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xintong Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Haowen Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jianhong Su
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Mingxuan Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Ali T, Rahman T, Perveen S, Wang L, Khan A. Asymmetric Amination of 1,2-Diol through Borrowing Hydrogen: Synthesis of Vicinal Amino α-Tertiary Alcohol. Chemistry 2025; 31:e202404152. [PMID: 40011211 DOI: 10.1002/chem.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Methods to prepare vicinal amino alcohols are important because of their presence in biologically active compounds. Despite the development of various methods for vicinal amino alcohol synthesis, C(sp3)-rich oxygen-containing β-amine compounds continue to pose great challenge. While ring-opening reaction of epoxides with amine nucleophile is the prime method for vicinal amino alcohol preparation, epoxides are highly reactive and sometimes difficult to make, resulting in drawbacks regarding selectivity of this approach. Here, we report a catalytic enantio-convergent amination of α-tertiary 1,2-diols for the efficient access to vicinal amino α-tertiary alcohols. The racemic α-tertiary 1,2-diol substrates of different alkyl/aryl or alkyl/alkyl backbone, can be converted to chiral vicinal amino α-tertiary alcohols through diphenyl phosphate-mediated RuCl3 catalysed asymmetric borrowing hydrogen (ABH) pathway. This simple ABH reaction can be scaled up to the synthesis of chiral ligands, synthetic intermediates, and other medicinally-relevant compounds. Overall, this catalytic redox-neutral procedure broadens the scope of Ru-catalysed amination of alcohols and discloses an underexplored step- and atom-economical synthetic strategy for the synthesis of vicinal amino α-tertiary alcohols and provides a practicable alternative to the present benchmark procedures.
Collapse
Affiliation(s)
- Tariq Ali
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Yao Q, Hu Y, Liu Z, Liu JZ, Jiao QC. Evolution and Impact of Imine Reductases (IREDs) Research: A Knowledge Mapping Approach. Mol Biotechnol 2025:10.1007/s12033-025-01421-9. [PMID: 40172741 DOI: 10.1007/s12033-025-01421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/22/2025] [Indexed: 04/04/2025]
Abstract
Nitrogen-containing compounds, particularly those with chiral amine structures, play a crucial role in the development of organic active pharmaceutical ingredients. Imine reductases (IREDs), NAD(P)H-dependent enzymes that catalyze the reduction of cyclic imines and the reductive amination of prochiral ketones, offer significant industrial potential for the synthesis of chiral amines. However, despite the growing body of research, a comprehensive and unbiased assessment of IRED research remains lacking. This study aims to explore the research landscape and evolution of IREDs using bibliometric and knowledge mapping methods. A total of 239 research articles and reviews on IREDs, published between 2010 and 2024, were retrieved from the Web of Science Core Collection and analyzed using tools such as CiteSpace, VOSviewer, Pajek, and Scimago Graphica. Results showed a consistent increase in both publications and citations, with a sharp rise since 2014. Collaboration network analysis revealed that the United Kingdom leads the field in terms of publications and influential institutions, while ChemCatChem was identified as the journal with the highest number of articles. Nicholas J. Turner emerged as a key researcher, having published the most papers and achieving the second-highest citation frequency. Research trends and keyword analysis highlighted areas of focus such as IRED crystal structure resolution, protein engineering modifications, and expanded industrial applications, including multi-enzyme cascade reactions. Ongoing advancements in synthetic biology, protein modifications, and enzyme engineering are expected to drive further studies on highly active IREDs for asymmetric synthesis of pharmaceutical compounds, positioning this research at the forefront of the field. By employing bibliometric analysis, this study provides the first visual representation of IRED research, offering valuable insights into current trends and emerging topics that will aid scholars in identifying key research areas and potential collaborators.
Collapse
Affiliation(s)
- Qilong Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yujun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ziwei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jun-Zhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Xu J, Wei Q, Hu C, Su Z. DFT study on Rh(II)/guanidine-catalyzed asymmetric N-H bond insertion of benzophenone imines. Org Biomol Chem 2025; 23:2896-2903. [PMID: 39989308 DOI: 10.1039/d5ob00001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The enantioselective carbene insertion into the N-H bond of N-sp2-hybridized imines has proven to be an efficient method for synthesizing optically active N-unprotected amino acids. In this work, the mechanism of Rh2(esp)2/chiral guanidine-catalyzed asymmetric N-H bond insertion of benzophenone imine with α-diazoester was explored using DFT calculations with the B3LYP-D3(BJ) functional. The reaction proceeded through the formation of a C-N bond, followed by an enantioselective H-shift. Due to the high activation barriers in the generation of carbene species and C-H bond construction as well, the noncatalytic reaction could not occur under mild conditions. In Rh(II)/guanidine co-catalysis, the Rh(II) catalyst promoted the denitrification of α-diazoester and the generation of an enol/ylide intermediate via a highly active Rh-carbene species. The in situ-formed guanidinium acted as a chiral proton shuttle, creating a hydrogen bonding network that enabled stereo-determinant protonation. In the chiral-controlling H-shift process, the CHPh2 group, Cy group, and chiral skeleton were identified as key structural elements governing the chiral induction of the guanidine catalyst. Moreover, the difference in energy (ΔΔE) was mainly caused by the difference in activation strain (ΔΔEstrain) during the formation of TSs along the two competing pathways. The observed "enantiodivergent phenomenon" in the experiment was attributed to the steric repulsion between the Cy group and the amide moiety in the guanidine catalyst, along with the substituent group at the prochiral carbon of the enolate ion, leading to stereoinversion of the product.
Collapse
Affiliation(s)
- Jiaying Xu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, National and Local Joint Engineering Laboratory of Energy Plant Biofuel Preparation and Utilization, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Qi Wei
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, National and Local Joint Engineering Laboratory of Energy Plant Biofuel Preparation and Utilization, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, National and Local Joint Engineering Laboratory of Energy Plant Biofuel Preparation and Utilization, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, National and Local Joint Engineering Laboratory of Energy Plant Biofuel Preparation and Utilization, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| |
Collapse
|
7
|
Tseliou V, Damian M, Mendoza-Avila J, Rabuffetti M, Mutti FG. Reductive amination: Methods for cell-free and whole-cell biocatalysis. Methods Enzymol 2025; 714:269-295. [PMID: 40288842 DOI: 10.1016/bs.mie.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Enzymatic reductive amination is now a green and selective method for the efficient conversion of ketones into chiral amines with high optical purity. Transaminases (TAs) have been widely employed at both laboratory and industrial scale for the synthesis of primary amines. Additionally, amine dehydrogenases (AmDHs), imine reductases (IREDs) and reductive aminases (RedAms) enable the stereoselective synthesis of primary, secondary and tertiary amines. Recent advancements in protein engineering have expanded the substrate scope and improved the stability of these biocatalysts, enabling broader applications. The use of immobilized enzymes and whole-cell systems further enhances the efficiency and sustainability of these methods. This chapter provides detailed protocols for enzymatic reductive amination for the synthesis of primary, secondary, and tertiary chiral amines using isolated or immobilized enzymes, or whole-cell biocatalysts.
Collapse
Affiliation(s)
- Vasilis Tseliou
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Matteo Damian
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Josemarco Mendoza-Avila
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Marco Rabuffetti
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Department of Chemistry, University of Milan, Via Golgi 19, Milan, Italy
| | - Francesco G Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands.
| |
Collapse
|
8
|
Movilla F, Rey JM, López Borda MDR, Di Salvo F. Conformational versatility among crystalline solids of L-phenylalanine derivatives. Acta Crystallogr C Struct Chem 2025; 81:64-76. [PMID: 39853159 DOI: 10.1107/s2053229625000269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
In this study, we present a new N-derivative of L-phenylalanine with 2-naphthaldehyde (PN), obtained by the Schiff base formation procedure and its subsequent reduction. This compound was crystallized as a zwitterion {2-[(naphthalen-2-ylmethyl)azaniumyl]-3-phenylpropanoate, C20H19NO2}, as an anion in a sodium salt (catena-poly[[diaquasodium(I)-di-μ-aqua] 2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoate monohydrate], {[Na(H2O)4](C20H18NO2)·H2O}n), as a cation in a chloride salt [(1-carboxy-2-phenylethyl)(naphthalen-2-ylmethyl)azanium chloride acetic acid monosolvate, C20H20NO2+·Cl-·CH3COOH], and additionally acting as a ligand in the pentacoordinated zinc compound aquabis{2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoato-κO}zinc(II), [Zn(C20H18NO2)2(H2O)] or [Zn(PN)2(H2O)], denoted (PN-Zn), with the amino acid derivative in its carboxylate form. Interestingly, both enantiomers of the zinc complex co-exist within the crystalline structure, one constructed by the ligands with the L (or S) configuration and the other with the ligands having the D (or R) configuration, represented as L,L-PN-Zn and D,D-PN-Zn, respectively. Also, in the structure of the zwitterion, the racemate L,D is observed. These results imply that chirality inversion of the amino acid derivative synthesized from enantiomerically pure L-phenylalanine is taking place, a phenomenon known as oscillatory transenantiomerization. The analysis of these crystal structures reveals that they are primarily stabilized through electrostatic interactions assisted by hydrogen bonds. An interesting finding is that the conformation of PN varies along this family: it is unfolded in the zwitterionic and cationic forms, and folded in the anionic form. To evaluate such conformational differences, we propose the use of a dimensionless Shape Factor quantity defined as the Structural Aspect Ratio (SAR), computed from the geometrical features of the parallelepiped that tightly encloses a conformer constructed by rigid spheres. This parameter provides a simple but useful tool to distinguish conformational differences, providing insights that complement traditional structural analyses. The study of the structural features, conformational diversity, chirality and supramolecular properties of these compounds is also supported by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Federico Movilla
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Juan Manuel Rey
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Del Rosario López Borda
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Florencia Di Salvo
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
9
|
Zhu Q, Dong P, Yu J, Wang Z, Wang T, Qiao S, Liu J, Geng S, Zheng Y, Cheng P, Zaworotko MJ, Zhang Z, Chen Y. COFcap2, a recyclable tandem catalysis reactor for nitrogen fixation and conversion to chiral amines. Nat Commun 2025; 16:992. [PMID: 39856039 PMCID: PMC11759672 DOI: 10.1038/s41467-025-56214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Two or more catalysts conducting multistep reactions in the same reactor, concurrent tandem catalysis, could enable (bio)pharmaceutical and fine chemical manufacturing to become much more sustainable. Herein we report that co-immobilization of metal nanoparticles and a biocatalytic system within a synthetic covalent organic framework capsule, COFcap-2, functions like an artificial cell in that, whereas the catalysts are trapped within 300-400 nm cavities, substrates/products can ingress/egress through ca. 2 nm windows. The COFcap-2 reactor is first coated onto an electrode surface and then used to prepare eleven homochiral amines using dinitrogen as a feedstock. The amines, including drug product intermediates and active pharmaceutical ingredient, are prepared in >99% enantiomeric excess under ambient conditions in water. Importantly, the COFcap-2 system is recycled 15 times with retention of performance, addressing the relative instability and poor recyclability of enzymes that has hindered their broad implementation for energy-efficient, low waste production of chemicals and (bio)pharmaceuticals.
Collapse
Affiliation(s)
- Qianqian Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Peijie Dong
- College of Pharmacy, Nankai University, Tianjin, 300071, P.R. China
| | - Jiangyue Yu
- College of Pharmacy, Nankai University, Tianjin, 300071, P.R. China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Ting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Shan Qiao
- College of Pharmacy, Nankai University, Tianjin, 300071, P.R. China
| | - Jinjin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Shubo Geng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yunlong Zheng
- College of Pharmacy, Nankai University, Tianjin, 300071, P.R. China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Limerick, V94T9PX, Republic of Ireland.
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.
- College of Pharmacy, Nankai University, Tianjin, 300071, P.R. China.
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P.R. China.
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.
- College of Pharmacy, Nankai University, Tianjin, 300071, P.R. China.
| |
Collapse
|
10
|
Jongkind EJ, Domenech J, Govers A, van den Broek M, Daran JM, Grogan G, Paul CE. Discovery and Synthetic Applications of a NAD(P)H-Dependent Reductive Aminase from Rhodococcus erythropolis. ACS Catal 2025; 15:211-219. [PMID: 39781332 PMCID: PMC11705230 DOI: 10.1021/acscatal.4c04935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
Reductive amination is one of the most synthetically direct routes to access chiral amines. Several Imine Reductases (IREDs) have been discovered to catalyze reductive amination (Reductive Aminases or RedAms), yet they are dependent on the expensive phosphorylated nicotinamide adenine dinucleotide cofactor NADPH and usually more active at basic pH. Here, we describe the discovery and synthetic potential of an IRED from Rhodococcus erythropolis (RytRedAm) that catalyzes reductive amination between a series of medium to large carbonyl and amine compounds with conversions of up to >99% and 99% enantiomeric excess at neutral pH. RytRedAm catalyzes the formation of a substituted γ-lactam and N-methyl-1-phenylethanamine with stereochemistry opposite to that of fungal RedAms, giving the (S)-enantiomer. This enzyme remarkably uses both NADPH and NADH cofactors with K M values of 15 and 247 μM and turnover numbers k cat of 3.6 and 9.0 s-1, respectively, for the reductive amination of hexanal with allylamine. The crystal structure obtained provides insights into the flexibility to also accept NADH, with residues R35 and I69 diverging from that of other IREDs/RedAms in the otherwise conserved Rossmann fold. RytRedAm thus represents a subfamily of enzymes that enable synthetic applications using NADH-dependent reductive amination to access complementary chiral amine products.
Collapse
Affiliation(s)
- Ewald
P. J. Jongkind
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack Domenech
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Arthur Govers
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marcel van den Broek
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Gideon Grogan
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Caroline E. Paul
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
11
|
Kopar M, Senyurt Tuzun N. A Quantum Mechanical Approach to The Mechanism of Asymmetric Synthesis of Chiral Amine by Imine Reductase from Stackebrandtia Nassauensis. Chempluschem 2025; 90:e202400606. [PMID: 39434680 PMCID: PMC11734578 DOI: 10.1002/cplu.202400606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
The asymmetric synthesis of tetrahydroisoquinolines (THIQs) has gained importance in recent years due to their significant potential in drug development studies. In this study, the conversion of 1-methyl-3,4-dihydroisoquinoline substrate to a chiral amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline, under the catalysis of the stereoselective imine reductase enzyme from Stackebrandtia nassauensis (SnIR) was investigated in detail to elucidate the mechanism and explain the experimental enantioselectivity. The results were found to be in agreement with the experimental data. To elucidate the reaction mechanism, quantum mechanical calculations were performed by considering a large cluster of the active site of the enzyme. In this regard, possible reaction pathways leading to both R- and S-products with the corresponding intermediates and the transition states for the hydride transfer from the cofactor to the substrate were considered by density functional theory (DFT) calculations, and the factors contributing to the observed stereoselectivity were sought. The calculations supported a stepwise mechanism rather than the concerted protonation and the hydride transfer steps. The stereoselectivity in the hydride transfer was found to be due not only to the stability of the enzyme-subtrate complex but also to the corresponding reaction barriers. The calculations were performed at the wB97XD/6-311+G(2df,2p)//B3LYP/6-31G(d,p) level of theory using the PCM approach.
Collapse
Affiliation(s)
- Merve Kopar
- Department of ChemistryFaculty of Science and LettersIstanbul Technical UniversityMaslakİstanbul34469Turkey
| | - Nurcan Senyurt Tuzun
- Department of ChemistryFaculty of Science and LettersIstanbul Technical UniversityMaslakİstanbul34469Turkey
| |
Collapse
|
12
|
Liu H, Gao Q, Zhang K, Xu M, Wang H, Wei D. Combining binding pocket mutagenesis and substrate tunnel engineering to improve an (R)-selective transaminase for the efficient synthesis of (R)-3-aminobutanol. Biochem Biophys Res Commun 2024; 731:150383. [PMID: 39024977 DOI: 10.1016/j.bbrc.2024.150383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
(R)-selective transaminases have the potential to act as efficient biocatalysts for the synthesis of important pharmaceutical intermediates. However, their low catalytic efficiency and unfavorable equilibrium limit their industrial application. Seven (R)-selective transaminases were identified using homologous sequence mining. Beginning with the optimal candidate from Mycolicibacterium hippocampi, virtual mutagenesis and substrate tunnel engineering were performed to improve catalytic efficiency. The obtained variant, T282S/Q137E, exhibited 3.68-fold greater catalytic efficiency (kcat/Km) than the wild-type enzyme. Using substrate fed-batch and air sweeping processes, effective conversion of 100 mM 4-hydroxy-2-butanone was achieved with a conversion rate of 93 % and an ee value > 99.9 %. This study provides a basis for mutation of (R)-selective transaminases and offers an efficient biocatalytic process for the asymmetric synthesis of (R)-3-aminobutanol.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Qian Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Kaiyue Zhang
- Ludong University Laishan Experimental Middle School, 264000, China
| | - Meng Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
13
|
Cananà S, De Nardi F, Blangetti M, Parisotto S, Prandi C. Biocatalysis in Non-Conventional Media: Unlocking the Potential for Sustainable Chiral Amine Synthesis. Chemistry 2024; 30:e202304364. [PMID: 38965045 DOI: 10.1002/chem.202304364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The application of biocatalysis has become essential in both academic and industrial domains for the asymmetric synthesis of chiral amines, and it serves as an alternative tool to transition-metal catalysis and complements traditional chemical methods. It relies on the swift expansion of available processes, primarily as a result of advanced tools for enzyme discovery, combined with high-throughput laboratory evolution techniques for optimizing biocatalysts. This concept paper explores the utilization of non-conventional media such as ether-type solvents, deep eutectic solvents, and micellar catalysis to enhance biocatalytic reactions for chiral amine synthesis. Each section focuses on the unique properties of these media, including their ability to stabilize enzymes, alter substrate solubility, and modulate enzyme selectivity. The paper aims to provide insights into how these innovative media can overcome traditional limitations, offering new avenues for sustainable and efficient chiral amine production through biocatalytic processes.
Collapse
Affiliation(s)
- Stefania Cananà
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
- Scuola Universitaria Superiore I.U.S.S. Pavia, Piazza Vittoria 15, 27100, Pavia, Italy
| | - Federica De Nardi
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Marco Blangetti
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Stefano Parisotto
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Cristina Prandi
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| |
Collapse
|
14
|
Kong W, Huang C, Zhou L, Gao J, Ma L, Liu Y, Jiang Y. Modularization of Immobilized Multienzyme Cascades for Continuous-Flow Enantioselective C-H Amination. Angew Chem Int Ed Engl 2024; 63:e202407778. [PMID: 38871651 DOI: 10.1002/anie.202407778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Multienzyme cascades (MECs) have gained much attention in synthetic chemistry but remain far from being a reliable synthetic tool. Here we report a four-enzyme cascade comprising a cofactor-independent and a cofactor self-sustaining bienzymatic modules for the enantioselective benzylic C-H amination of arylalkanes, a challenging transformation from bulk chemicals to high value-added chiral amines. The two modules were subsequently optimized by enzyme co-immobilization with microenvironmental tuning, and finally integrated in a gas-liquid segmented flow system, resulting in simultaneous improvements in enzyme performance, mass transfer, system compatibility, and productivity. The flow system enabled continuous C-H amination of arylalkanes (up to 100 mM) utilizing the sole cofactor NADH (0.5 mM) in >90 % conversion, achieving a high space-time yield (STY) of 3.6 g ⋅ L-1 ⋅ h-1, which is a 90-fold increase over the highest value previously reported.
Collapse
Affiliation(s)
- Weixi Kong
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Chen Huang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| |
Collapse
|
15
|
Duan ZW, Wang YW, Shen DD, Sun XQ, Wang P. Engineered the Active Site of ω-Transaminase for Enhanced Asymmetric Synthesis Towards (S)-1-[4-(Trifluoromethyl)phenyl]ethylamine. Appl Biochem Biotechnol 2024; 196:6409-6423. [PMID: 38381312 DOI: 10.1007/s12010-024-04886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
ω-Transaminase (ω-TA) is a promising biocatalyst for the synthesis of chiral amines. In this study, a ω-TA derived from Vitreoscilla stercoraria DSM 513 (VsTA) was heterologous expressed in recombinant E. coli cells and applied to reduce 4'-(trifluoromethyl)acetophenone (TAP) to (S)-1-[4-(trifluoromethyl)phenyl]ethylamine ((S)-TPE), a pharmaceutical intermediate of chiral amine. Aimed to a more efficient synthesis of (S)-TPE, VsTA was further engineered via a semi-rational strategy. Compared to wild-type VsTA, the obtained R411A variant exhibited 2.39 times higher activity towards TAP and enhanced catalytic activities towards other prochiral aromatic ketones. Additionally, better thermal stability for R411A variant was observed with 25.4% and 16.3% increase in half-life at 30 °C and 40 °C, respectively. Structure-guided analysis revealed that the activity improvement of R411A variant was attributed to the introduction of residue A411, which is responsible for the increase in the hydrophobicity of substrate tunnel and the alleviation of steric hindrance, thereby facilitating the accessibility of hydrophobic substrate TAP to the active center of VsTA. This study provides an efficient strategy for the engineering of ω-TA based on semi-rational approach and has the potential for the molecular modification of other biocatalysts.
Collapse
Affiliation(s)
- Zhi-Wen Duan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yao-Wu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Da-Dong Shen
- Research & Development Center, Zhejiang Medicine Co. Ltd., Shaoxing, 312500, People's Republic of China
| | - Xin-Qiang Sun
- Research & Development Center, Zhejiang Medicine Co. Ltd., Shaoxing, 312500, People's Republic of China
| | - Pu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
16
|
Belov F, Gazizova A, Bork H, Gröger H, von Langermann J. Crystallization Assisted Dynamic Kinetic Resolution for the Synthesis of (R)-β-Methylphenethylamine. Chembiochem 2024; 25:e202400203. [PMID: 38602845 DOI: 10.1002/cbic.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
This study explores a combination of the concept of enantioselective enzymatic synthesis of β-chiral amines through transamination with in situ product crystallization (ISPC) to overcome product inhibition. Using 2-phenylpropanal as a readily available and easily racemizing substrate of choice, (R)-β-methylphenethylamine ((R)-2-phenylpropan-1-amine) concentrations of up to 250 mM and enantiomeric excesses of up to 99 % are achieved when using a commercially available transaminase from Ruegeria pomeroyi in a fed-batch based dynamic kinetic resolution reaction on preparative scale. The source of substrate decomposition during the reaction is also investigated and the resulting unwanted byproduct formation is successfully reduced to insignificant levels.
Collapse
Affiliation(s)
- Feodor Belov
- Institute of Chemistry, Biocatalytic Synthesis Group, Otto von Guericke University of Magdeburg, Building 28, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Alina Gazizova
- Institute of Chemistry, Department of Technical Chemistry, University of Rostock, Albert-Einstein-Str. 3A, 18059, Rostock, Germany
| | - Hannah Bork
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Harald Gröger
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Jan von Langermann
- Institute of Chemistry, Biocatalytic Synthesis Group, Otto von Guericke University of Magdeburg, Building 28, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
17
|
Huang A, Zhang X, Yang Y, Shi C, Zhang B, Tuo X, Shen P, Jiao X, Zhang N. Biocatalytic Synthesis of Ruxolitinib Intermediate via Engineered Imine Reductase. J Org Chem 2024; 89:11446-11454. [PMID: 39113180 DOI: 10.1021/acs.joc.4c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
An enzyme catalyzed strategy for the synthesis of a chiral hydrazine from 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 is presented. An imine reductase (IRED) from Streptosporangium roseum was identified to catalyze the reaction between 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 to produce trace amounts of (R)-3-cyclopentyl-3-hydrazineylpropanenitrile 4. We employed a 2-fold approach to optimize the catalytic performance of this enzyme. First, a transition state analogue (TSA) model was constructed to illuminate the enzyme-substrate interactions. Subsequently, the Enzyme_design and Funclib methods were utilized to predict mutants for experimental evaluation. Through three rounds of site-directed mutagenesis, site saturation mutagenesis, and combinatorial mutagenesis, we obtained mutant M6 with a yield of 98% and an enantiomeric excess (ee) of 99%. This study presents an effective method for constructing a hydrazine derivative via IRED-catalyzed reductive amination of ketone and hydrazine. Furthermore, it provides a general approach for constructing suitable enzymes, starting from nonreactive enzymes and gradually enhancing their catalytic activity through active site modifications.
Collapse
Affiliation(s)
- Aiping Huang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Xuewen Zhang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Yiming Yang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Chengcheng Shi
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Bifei Zhang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Xinkun Tuo
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Peili Shen
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Xuecheng Jiao
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Na Zhang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| |
Collapse
|
18
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
19
|
Qiu S, Ju CL, Wang T, Chen J, Cui YT, Wang LQ, Fan FF, Huang J. Evolving ω-amine transaminase AtATA guided by substrate-enzyme binding free energy for enhancing activity and stability against non-natural substrates. Appl Environ Microbiol 2024; 90:e0054324. [PMID: 38864627 PMCID: PMC11267935 DOI: 10.1128/aem.00543-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
In the field of chiral amine synthesis, ω-amine transaminase (ω-ATA) is one of the most established enzymes capable of asymmetric amination under optimal conditions. However, the applicability of ω-ATA toward more non-natural complex molecules remains limited due to its low transamination activity, thermostability, and narrow substrate scope. Here, by employing a combined approach of computational virtual screening strategy and combinatorial active-site saturation test/iterative saturation mutagenesis strategy, we have constructed the best variant M14C3-V5 (M14C3-V62A-V116S-E117I-L118I-V147F) with improved ω-ATA from Aspergillus terreus (AtATA) activity and thermostability toward non-natural substrate 1-acetylnaphthalene, which is the ketone precursor for producing the intermediate (R)-(+)-1-(1-naphthyl)ethylamine [(R)-NEA] of cinacalcet hydrochloride, showing activity enhancement of up to 3.4-fold compared to parent enzyme M14C3 (AtATA-F115L-M150C-H210N-M280C-V149A-L182F-L187F). The computational tools YASARA, Discovery Studio, Amber, and FoldX were applied for predicting mutation hotspots based on substrate-enzyme binding free energies and to show the possible mechanism with features related to AtATA structure, catalytic activity, and stability in silico analyses. M14C3-V5 achieved 71.8% conversion toward 50 mM 1-acetylnaphthalene in a 50 mL preparative-scale reaction for preparing (R)-NEA. Moreover, M14C3-V5 expanded the substrate scope toward aromatic ketone compounds. The generated virtual screening strategy based on the changes in binding free energies has successfully predicted the AtATA activity toward 1-acetylnaphthalene and related substrates. Together with experimental data, these approaches can serve as a gateway to explore desirable performances, expand enzyme-substrate scope, and accelerate biocatalysis.IMPORTANCEChiral amine is a crucial compound with many valuable applications. Their asymmetric synthesis employing ω-amine transaminases (ω-ATAs) is considered an attractive method. However, most ω-ATAs exhibit low activity and stability toward various non-natural substrates, which limits their industrial application. In this work, protein engineering strategy and computer-aided design are performed to evolve the activity and stability of ω-ATA from Aspergillus terreus toward non-natural substrates. After five rounds of mutations, the best variant, M14C3-V5, is obtained, showing better catalytic efficiency toward 1-acetylnaphthalene and higher thermostability than the original enzyme, M14C3. The robust combinational variant acquired displayed significant application value for pushing the asymmetric synthesis of aromatic chiral amines to a higher level.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Cong-Lin Ju
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Tong Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jie Chen
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yu-Tong Cui
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lin-Quan Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fang-Fang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
20
|
Xu Z, Xu J, Zhang T, Wang Z, Wu J, Yang L. Sequence-Guided Redesign of an Omega-Transaminase from Bacillus megaterium for the Asymmetric Synthesis of Chiral Amines. Chembiochem 2024; 25:e202400285. [PMID: 38752893 DOI: 10.1002/cbic.202400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
ω-Transaminases (ω-TAs) are attractive biocatalysts asymmetrically catalyzing ketones to chiral amines. However, poor non-native catalytic activity and substrate promiscuity severely hamper its wide application in industrial production. Protein engineering efforts have generally focused on reshaping the substrate-binding pockets of ω-TAs. However, hotspots around the substrate tunnel as well as distant sites outside the pockets may also affect its activity. In this study, the ω-TA from Bacillus megaterium (BmeTA) was selected for engineering. The tunnel mutation Y164F synergy with distant mutation A245T which was acquired through a multiple sequence alignment showed improved soluble expression, a 3.7-fold higher specific activity and a 19.9-fold longer half-life at 45 °C. Molecule Dynamics simulation explains the mechanism of improved catalytic activity, enhanced thermostability and improved soluble expression of BmeTAY164F/A245T(2 M). Finally, the resting cells of 2 M were used for biocatalytic processes. 450 mM of S-methoxyisopropylamine (S-MOIPA) was obtained with an ee value of 97.3 % and a conversion rate of 90 %, laying the foundation for its industrial production. Mutant 2 M was also found to be more advantageous in catalyzing the transamination of various ketones. These results demonstrated that sites that are far away from the active center also play an important role in the redesign of ω-TAs.
Collapse
Affiliation(s)
- Zhexian Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Tao Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ziyuan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
21
|
Vikhrankar SS, Satbhai S, Kulkarni P, Ranbhor R, Ramakrishnan V, Kodgire P. Enzymatic Routes for Chiral Amine Synthesis: Protein Engineering and Process Optimization. Biologics 2024; 18:165-179. [PMID: 38948006 PMCID: PMC11214570 DOI: 10.2147/btt.s446712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Chiral amines are essential motifs in pharmaceuticals, agrochemicals, and specialty chemicals. While traditional chemical routes to chiral amines often lack stereoselectivity and require harsh conditions, biocatalytic methods using engineered enzymes can offer high efficiency and selectivity under sustainable conditions. This review discusses recent advances in protein engineering of transaminases, oxidases, and other enzymes to improve catalytic performance. Strategies such as directed evolution, immobilization, and computational redesign have expanded substrate scope and enhanced efficiency. Furthermore, process optimization guided by techno-economic assessments has been crucial for establishing viable biomanufacturing routes. Combining state-of-the-art enzyme engineering with multifaceted process development will enable scalable, economical enzymatic synthesis of diverse chiral amine targets.
Collapse
Affiliation(s)
| | | | | | | | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Prashant Kodgire
- Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India
| |
Collapse
|
22
|
Branson Y, Schnell B, Zurr C, Bayer T, Badenhorst CPS, Wei R, Bornscheuer UT. An Extremely Sensitive Ultra-High Throughput Growth Selection Assay for the Identification of Amidase Activity. Appl Microbiol Biotechnol 2024; 108:392. [PMID: 38910173 PMCID: PMC11194204 DOI: 10.1007/s00253-024-13233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
In the last decades, biocatalysis has offered new perspectives for the synthesis of (chiral) amines, which are essential building blocks for pharmaceuticals, fine and bulk chemicals. In this regard, amidases have been employed due to their broad substrate scope and their independence from expensive cofactors. To expand the repertoire of amidases, tools for their rapid identification and characterization are greatly demanded. In this work an ultra-high throughput growth selection assay based on the production of the folate precursor p-aminobenzoic acid (PABA) is introduced to identify amidase activity. PABA-derived amides structurally mimic the broad class of commonly used chromogenic substrates derived from p-nitroaniline. This suggests that the assay should be broadly applicable for the identification of amidases. Unlike conventional growth selection assays that rely on substrates as nitrogen or carbon source, our approach requires PABA in sub-nanomolar concentrations, making it exceptionally sensitive and ideal for engineering campaigns that aim at enhancing amidase activities from minimally active starting points, for example. The presented assay offers flexibility in the adjustment of sensitivity to suit project-specific needs using different expression systems and fine-tuning with the antimetabolite sulfathiazole. Application of this PABA-based assay facilitates the screening of millions of enzyme variants on a single agar plate within two days, without the need for laborious sample preparation or expensive instruments, with transformation efficiency being the only limiting factor. KEY POINTS: • Ultra-high throughput assay (tens of millions on one agar plate) for amidase screening • High sensitivity by coupling selection to folate instead of carbon or nitrogen source • Highly adjustable in terms of sensitivity and expression of the engineering target.
Collapse
Affiliation(s)
- Yannick Branson
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Bjarne Schnell
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Celine Zurr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Christoffel P S Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Ren Wei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany.
| |
Collapse
|
23
|
Ndochinwa OG, Wang QY, Amadi OC, Nwagu TN, Nnamchi CI, Okeke ES, Moneke AN. Current status and emerging frontiers in enzyme engineering: An industrial perspective. Heliyon 2024; 10:e32673. [PMID: 38912509 PMCID: PMC11193041 DOI: 10.1016/j.heliyon.2024.e32673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024] Open
Abstract
Protein engineering mechanisms can be an efficient approach to enhance the biochemical properties of various biocatalysts. Immobilization of biocatalysts and the introduction of new-to-nature chemical reactivities are also possible through the same mechanism. Discovering new protocols that enhance the catalytic active protein that possesses novelty in terms of being stable, active, and, stereoselectivity with functions could be identified as essential areas in terms of concurrent bioorganic chemistry (synergistic relationship between organic chemistry and biochemistry in the context of enzyme engineering). However, with our current level of knowledge about protein folding and its correlation with protein conformation and activities, it is almost impossible to design proteins with specific biological and physical properties. Hence, contemporary protein engineering typically involves reprogramming existing enzymes by mutagenesis to generate new phenotypes with desired properties. These processes ensure that limitations of naturally occurring enzymes are not encountered. For example, researchers have engineered cellulases and hemicellulases to withstand harsh conditions encountered during biomass pretreatment, such as high temperatures and acidic environments. By enhancing the activity and robustness of these enzymes, biofuel production becomes more economically viable and environmentally sustainable. Recent trends in enzyme engineering have enabled the development of tailored biocatalysts for pharmaceutical applications. For instance, researchers have engineered enzymes such as cytochrome P450s and amine oxidases to catalyze challenging reactions involved in drug synthesis. In addition to conventional methods, there has been an increasing application of machine learning techniques to identify patterns in data. These patterns are then used to predict protein structures, enhance enzyme solubility, stability, and function, forecast substrate specificity, and assist in rational protein design. In this review, we discussed recent trends in enzyme engineering to optimize the biochemical properties of various biocatalysts. Using examples relevant to biotechnology in engineering enzymes, we try to expatiate the significance of enzyme engineering with how these methods could be applied to optimize the biochemical properties of a naturally occurring enzyme.
Collapse
Affiliation(s)
- Obinna Giles Ndochinwa
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | - Qing-Yan Wang
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Oyetugo Chioma Amadi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | - Tochukwu Nwamaka Nwagu
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Anene Nwabu Moneke
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
24
|
Mu Q, Tian W, Zhang J, Li R, Ji Y. Nanocrystalline Porous Materials for Chiral Separation: Synthesis, Mechanisms, and Applications. Anal Chem 2024; 96:7864-7879. [PMID: 38320090 DOI: 10.1021/acs.analchem.3c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Affiliation(s)
- Qixuan Mu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Wanting Tian
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jiale Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
25
|
Templ J, Schnürch M. A Guide for Mono-Selective N-Methylation, N-Ethylation, and N-n-Propylation of Primary Amines, Amides, and Sulfonamides and Their Applicability in Late-Stage Modification. Chemistry 2024; 30:e202304205. [PMID: 38353032 DOI: 10.1002/chem.202304205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 03/06/2024]
Abstract
This review provides a comprehensive overview of mono-alkylation methodologies targeting crucial nitrogen moieties - amines, amides, and sulfonamides - found in organic building blocks and pharmaceuticals. Emphasizing the intersection of chemical precision with drug discovery, the central challenge addressed is achieving one-pot mono-selective short-chain N-alkylations (methylations, ethylations, and n-propylations), preventing undesired overalkylation. Additionally, sustainable, safe, and benign alternatives to traditional alkylating agents, including alcohols, carbon dioxide, carboxylic acids, nitriles, alkyl phosphates, quaternary ammonium salts, and alkyl carbonates, are explored. This review, categorized by the nature of the alkylating agent, aids researchers in selecting suitable methods for mono-selective N-alkylation.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| |
Collapse
|
26
|
Liu H, Wang S, Xu M, Zhang K, Gao Q, Wang H, Wei D. Engineering an (R)-selective transaminase for asymmetric synthesis of (R)-3-aminobutanol. Bioorg Chem 2024; 146:107264. [PMID: 38492494 DOI: 10.1016/j.bioorg.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
(R)-selective transaminases show promise as catalysts for the asymmetric synthesis of chiral amines, which are building blocks of various small molecule drugs. However, their application is limited by poor substrate acceptance and low catalytic efficiency. Here, a potential (R)-selective transaminase from Fodinicurvata sediminis (FsTA) was identified through a substrate truncating strategy, and used as starting point for enzyme engineering toward catalysis of 4-hydroxy-2-butanone, a substrate that poses challenges in catalysis. Molecular docking and dynamics simulations revealed Y90 as the key residue responsible for poor substrate binding. Starting from the variant (Y90F, mut1) with initial activity, FsTA was systematically modified to improve substrate-binding through active site reshaping and consensus sequence strategy, yielding three variants (H30R, V152K, and Y156F) with improved activity. A quadruple mutation variant H30R/Y90F/V152K/Y156F (mut4) was also found to show a 7.95-fold greater catalytic efficiency (kcat/KM) than the initial variant mut1. Furthermore, mut4 also enhanced the thermostability of enzyme significantly, with the Tm value increasing by 10 °C. This variant also exhibited significantly improved activity toward a series of ketones that are either not accepted or poorly accepted by the wild-type. This study provides a basis for the rational design of an active to creating variants that can accommodate novel substrates.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shixi Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyue Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Leone M, Milton JP, Gryko D, Neuville L, Masson G. TBADT-Mediated Photocatalytic Stereoselective Radical Alkylation of Chiral N-Sulfinyl Imines: Towards Efficient Synthesis of Diverse Chiral Amines. Chemistry 2024; 30:e202400363. [PMID: 38376252 DOI: 10.1002/chem.202400363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
Herein we describe a sustainable and efficient photocatalytic method for the stereoselective radical alkylation of chiral sulfinyl imines. By employing readily available non-prefunctionalized radical precursors and the cost-effective TBADT as a direct HAT photocatalyst, we successfully obtain diverse chiral amines with high yields and excellent diastereoselectivity under mild conditions. This method provides an efficient approach for accessing a diverse array of medicinally relevant compounds, including both natural and synthetic α-amino acids, aryl ethyl amines, and other structural motifs commonly found in approved pharmaceuticals and natural product.
Collapse
Affiliation(s)
- Matteo Leone
- Institut de Chimie des Substances Naturelles (ICSN) CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Joseph P Milton
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN) CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'Lab, 8 Rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN) CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'Lab, 8 Rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
28
|
Farkas E, Sátorhelyi P, Szakács Z, Dékány M, Vaskó D, Hornyánszky G, Poppe L, Éles J. Transaminase-catalysis to produce trans-4-substituted cyclohexane-1-amines including a key intermediate towards cariprazine. Commun Chem 2024; 7:86. [PMID: 38637664 PMCID: PMC11026398 DOI: 10.1038/s42004-024-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Cariprazine-the only single antipsychotic drug in the market which can handle all symptoms of bipolar I disorder-involves trans-4-substituted cyclohexane-1-amine as a key structural element. In this work, production of trans-4-substituted cyclohexane-1-amines was investigated applying transaminases either in diastereotope selective amination starting from the corresponding ketone or in diastereomer selective deamination of their diasteromeric mixtures. Transaminases were identified enabling the conversion of the cis-diastereomer of four selected cis/trans-amines with different 4-substituents to the corresponding ketones. In the continuous-flow experiments aiming the cis diastereomer conversion to ketone, highly diastereopure trans-amine could be produced (de > 99%). The yield of pure trans-isomers exceeding their original amount in the starting mixture could be explained by dynamic isomerization through ketone intermediates. The single transaminase-catalyzed process-exploiting the cis-diastereomer selectivity of the deamination and thermodynamic control favoring the trans-amines due to reversibility of the steps-allows enhancement of the productivity of industrial cariprazine synthesis.
Collapse
Affiliation(s)
- Emese Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
| | - Péter Sátorhelyi
- Fermentia Microbiological Ltd., Berlini út 47-49, 1405, Budapest, Hungary
| | | | - Miklós Dékány
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary
| | - Dorottya Vaskó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University of Cluj-Napoca, Arany János str. 11., 400028, Cluj-Napoca, Romania.
| | - János Éles
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
| |
Collapse
|
29
|
Li X, Hu Y, Bailey JD, Lipshutz BH. Impact of Nonionic Surfactants on Reactions of IREDs. Applications to Tandem Chemoenzymatic Sequences in Water. Org Lett 2024; 26:2778-2783. [PMID: 37883080 DOI: 10.1021/acs.orglett.3c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The influence of added surfactant to aqueous reaction mixtures containing various IREDs has been determined. Just the presence of a nonionic surfactant tends to increase both rates and extent of conversion to the targeted amines. The latter can be as much as >40% relative to buffer alone. Several tandem sequences featuring several steps that combine use of an IRED together with various types of chemocatalysis are also presented, highlighting the opportunities for utilizing chemoenzymatic catalysis, all in water.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yuting Hu
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - J Daniel Bailey
- Process Chemistry Development, Takeda Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
30
|
Aloiau A, Bobek BM, Caddell Haatveit K, Pearson KE, Watkins AH, Jones B, Smith CR, Ketcham JM, Marx MA, Harwood SJ. Stereoselective Amine Synthesis Mediated by a Zirconocene Hydride to Accelerate a Drug Discovery Program. J Org Chem 2024; 89:3875-3882. [PMID: 38422508 PMCID: PMC10949245 DOI: 10.1021/acs.joc.3c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Chiral amine synthesis remains a significant challenge in accelerating the design cycle of drug discovery programs. A zirconium hydride, due to its high oxophilicity and lower reactivity, gave highly chemo- and stereoselective reductions of sulfinyl ketimines. The development of this zirconocene-mediated reduction helped to accelerate our drug discovery efforts and is applicable to several motifs commonly used in medicinal chemistry. Computational investigation supported a cyclic half-chair transition state to rationalize the high selectivity in benzyl systems.
Collapse
Affiliation(s)
- Athenea
N. Aloiau
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| | - Briana M. Bobek
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| | | | - Kelly E. Pearson
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| | - Ashlee H. Watkins
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| | - Benjamin Jones
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| | - Christopher R. Smith
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| | - John M. Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| | - Matthew A. Marx
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| | - Stephen J. Harwood
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| |
Collapse
|
31
|
Nosovska O, Liebing P, Vilotijevic I. Synthesis of β-Amino Acid Derivatives via Enantioselective Lewis Base Catalyzed N-Allylation of Halogenated Amides with Morita-Baylis-Hillman Carbonates. Chemistry 2024; 30:e202304014. [PMID: 38116835 DOI: 10.1002/chem.202304014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Trifluoro- and trichloroacetamides serving as pronucleophiles undergo enantioselective Lewis base catalyzed N-allylation with Morita-Baylis-Hillman carbonates to produce enantioenriched β-amino acid derivatives. The reactions proceed as a kinetic resolution to give the allylation products and the remaining carbonates in good yields and high enantioselectivity. The obtained products are amenable to diastereoselective derivatization to produce a library of spiro-isoxazoline lactams.
Collapse
Affiliation(s)
- Olena Nosovska
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Phil Liebing
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743, Jena, Germany
| | - Ivan Vilotijevic
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| |
Collapse
|
32
|
Qiu S, Cui YT, Wang TT, Fan FF, Lyu CJ, Huang J. Stereoselective synthesis of (R)-(+)-1-(1-naphthyl)ethylamine by ω-amine transaminase immobilized on amino modified multi-walled carbon nanotubes and biocatalyst recycling. Enzyme Microb Technol 2024; 174:110378. [PMID: 38134735 DOI: 10.1016/j.enzmictec.2023.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Immobilized enzymes exhibit favorable advantages in biocatalysis, such as high operation stability, feasible reusability, and improved organic solvents tolerance. Herein, an immobilized ω-amine transaminase AtATA@MWCNTs-NH2 is successfully prepared using amino modified multi-walled carbon nanotubes as carrier and glutaraldehyde as crosslinker. Under the optimum immobilization conditions, the activity recovery is 78.7%. Compared with purified enzyme AtATA, AtATA@MWCNTs-NH2 possesses superior stability, even in harsh conditions (e.g., high temperature, acidic or alkali environment, and different kind of organic solvents). To simplify the separation and extraction of products, we choose methanol (10%, v/v) as the cosolvent, replacing DMSO (20%, v/v) in our previous work, for the catalytic reaction of AtATA@MWCNTs-NH2. AtATA@MWCNTs-NH2 can be used for stereoselective synthesis (R)-(+)- 1(1-naphthyl)ethylamine ((R)-NEA) for 15 cycles, with the e.e.p (enantiomeric excess) > 99.5%. The catalytic process of AtATA@MWCNTs-NH2 achieves cycle production of (R)-NEA using methanol as cosolvent.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yu-Tong Cui
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tong-Tong Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Fang-Fang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chang-Jiang Lyu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
33
|
Martins LO. The quest for new robust bacterial monoamine oxidases. FEBS J 2024; 291:846-848. [PMID: 38013404 DOI: 10.1111/febs.17002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Microbial enzymes are versatile, cost-effective, and sustainable tools, making them a preferred choice for enzymatic processes. Santema et al. harnessed AlphaFold, a cutting-edge structure prediction tool, to discover new thermophilic monoamine oxidases (MAO) that could be relevant for drug development and use in biotechnology fields. The new enzyme displays thermal robustness, offering a unique structure-to-function profile compared to known MAOs. This bacterial enzyme, paired with recent advancements in enzyme engineering, has the potential to meet the biotech sector's need for customized enzymes.
Collapse
Affiliation(s)
- Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
34
|
Arnodo D, De Nardi F, Parisotto S, De Nardo E, Cananà S, Salvatico F, De Marchi E, Scarpi D, Blangetti M, Occhiato EG, Prandi C. Asymmetric Reduction of Cyclic Imines by Imine Reductase Enzymes in Non-Conventional Solvents. CHEMSUSCHEM 2024; 17:e202301243. [PMID: 37751248 DOI: 10.1002/cssc.202301243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
The first enantioselective reduction of 2-substituted cyclic imines to the corresponding amines (pyrrolidines, piperidines, and azepines) by imine reductases (IREDs) in non-conventional solvents is reported. The best results were obtained in a glycerol/phosphate buffer 1 : 1 mixture, in which heterocyclic amines were produced with full conversions (>99 %), moderate to good yields (22-84 %) and excellent S-enantioselectivities (up to >99 % ee). Remarkably, the process can be performed at a 100 mM substrate loading, which, for the model compound, means a concentration of 14.5 g L-1 . A fed-batch protocol was also developed for a convenient scale-up transformation, and one millimole of substrate 1 a was readily converted into 120 mg of enantiopure amine (S)-2 a with a remarkable 80 % overall yield. This aspect strongly contributes to making the process potentially attractive for large-scale applications in terms of economic and environmental sustainability for a good number of substrates used to produce enantiopure cyclic amines of high pharmaceutical interest.
Collapse
Affiliation(s)
- Davide Arnodo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Federica De Nardi
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Stefano Parisotto
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Eugenio De Nardo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Stefania Cananà
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
- Scuola Universitaria Superiore I.U.S.S. Pavia, Piazza Vittoria 15, 2700, Pavia, Italy
| | - Federica Salvatico
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Elisa De Marchi
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Dina Scarpi
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Marco Blangetti
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Ernesto G Occhiato
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Cristina Prandi
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| |
Collapse
|
35
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
36
|
Han SW, Jang Y, Kook J, Jang J, Shin JS. Reprogramming biocatalytic futile cycles through computational engineering of stereochemical promiscuity to create an amine racemase. Nat Commun 2024; 15:49. [PMID: 38169460 PMCID: PMC10761954 DOI: 10.1038/s41467-023-44218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Repurposing the intrinsic properties of natural enzymes can offer a viable solution to current synthetic challenges through the development of novel biocatalytic processes. Although amino acid racemases are ubiquitous in living organisms, an amine racemase (AR) has not yet been discovered despite its synthetic potential for producing chiral amines. Here, we report the creation of an AR based on the serendipitous discovery that amine transaminases (ATAs) can perform stereoinversion of 2-aminobutane. Kinetic modeling revealed that the unexpected off-pathway activity results from stereochemically promiscuous futile cycles due to incomplete stereoselectivity for 2-aminobutane. This finding motivated us to engineer an S-selective ATA through in silico alanine scanning and empirical combinatorial mutations, creating an AR with broad substrate specificity. The resulting AR, carrying double point mutations, enables the racemization of both enantiomers of diverse chiral amines in the presence of a cognate ketone. This strategy may be generally applicable to a wide range of transaminases, paving the way for the development of new-to-nature racemases.
Collapse
Affiliation(s)
- Sang-Woo Han
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Department of Biotechnology, Konkuk University, Chungju, South Korea
| | - Youngho Jang
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jihyun Kook
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jeesu Jang
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jong-Shik Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
37
|
Yuan B, Yang D, Qu G, Turner NJ, Sun Z. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications. Chem Soc Rev 2024; 53:227-262. [PMID: 38059509 DOI: 10.1039/d3cs00391d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.
Collapse
Affiliation(s)
- Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
38
|
Caner J, Matsumoto A, Maruoka K. Facile synthesis of 1,2-aminoalcohols via α-C-H aminoalkylation of alcohols by photoinduced hydrogen-atom transfer catalysis. Chem Sci 2023; 14:13879-13884. [PMID: 38075653 PMCID: PMC10699573 DOI: 10.1039/d3sc05305a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2025] Open
Abstract
1,2-Aminoalcohols are common motifs found in a wide range of natural products and pharmaceutical compounds. Here we report a photocatalytic method for the direct conversion of readily available aliphatic alcohols into synthetically valuable 1,2-aminoalcohols. A dual catalytic system consisting of an acridinium photoredox catalyst and a cationic hydrogen-atom transfer (HAT) catalyst based on 1,4-diazabicyclo[2.2.2]octane (DABCO) enables an efficient and site-selective HAT from the α-C-H bonds of unprotected primary and secondary alcohols. The subsequent radical addition to a newly designed chiral N-sulfinyl α-iminoester afforded various 1,2-aminoalcohols, including enantiomerically enriched ones, under mild photochemical conditions with high atom and step economy.
Collapse
Affiliation(s)
- Joaquim Caner
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
39
|
Villamil V, Vairoletti F, Tijman A, López G, Peixoto de Abreu Lima A, Saiz C, Iglesias C, Mahler G. Novel Kinetic Resolution of Thiazolo-Benzimidazolines Using MAO Enzymes. ACS OMEGA 2023; 8:42114-42125. [PMID: 38024698 PMCID: PMC10652373 DOI: 10.1021/acsomega.3c03223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
The kinetic resolution of racemic 1H,3H-thiazolo[3,4-a]benzimidazoline (TBIM) heterocycles was achieved using E. coli whole cells expressing the MAO-N D11 enzyme. Several cosolvents were screened using TBIM 2a as the substrate. DMF was the best cosolvent, affording the pure enantiomer (+)-2a in 44% yield, 94% ee. The stereochemistry of TBIM was predicted by means of ab initio calculations of optical rotation and circular dichroism spectra. The reaction scope was investigated for 11 substituted (±) TBIM using an optimized protocol. The best yield and % ee were obtained for the nonsubstituted 2a. Among the substituted compounds, the 5-substituted-TBIM showed better % ee than the 4-substituted one. The small electron donor group (Me) led to better % ee than the electron-withdrawing groups (-NO2 and -CO2Et), and the bulky naphthyl group was detrimental for the kinetic resolution. Docking experiments and molecular dynamics (MD) simulations were employed to further understand the interactions between MAO-N D11 and the thiazolo-benzimidazoline substrates. For 2a, the MD showed favorable positioning and binding energy for both enantiomers, thus suggesting that this kinetic resolution is influenced not only by the active site but also by the entry tunnel. This work constitutes the first report of the enzymatic kinetic resolution applied to TBIM heterocycles.
Collapse
Affiliation(s)
- Valentina Villamil
- Departamento
de Química Orgánica, Laboratorio de Quimica Farmaceutica,
Facultad de Quimica, Universidad de la República, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
| | - Franco Vairoletti
- Departamento
de Química Orgánica, Laboratorio de Quimica Farmaceutica,
Facultad de Quimica, Universidad de la República, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
- Programa
de Posgrado en Quimica, Universidad de la
República Uruguay, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
| | - Ariel Tijman
- Programa
de Posgrado en Quimica, Universidad de la
República Uruguay, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
- Departamento
de Biociencias, Laboratorio de Microbiología Molecular, Facultad
de Quimica, Universidad de la Republica, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
- Departamento
de Biociencias y Departamento de Quimica Organica, Laboratorio de
Biocatalisis y Biotransformaciones, Facultad de Quimica, Universidad de la Republica, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
| | - Gonzalo López
- Programa
de Posgrado en Quimica, Universidad de la
República Uruguay, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
- Departamento
de Biociencias, Laboratorio de Microbiología Molecular, Facultad
de Quimica, Universidad de la Republica, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
- Departamento
de Biociencias y Departamento de Quimica Organica, Laboratorio de
Biocatalisis y Biotransformaciones, Facultad de Quimica, Universidad de la Republica, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
| | - Alejandro Peixoto de Abreu Lima
- Departamento
de Química Orgánica, Laboratorio de Síntesis
Orgánica, Facultad de Quimica, Universidad
de la Republica, Gral
Flores 2124, Montevideo, Montevideo 11800, Uruguay
| | - Cecilia Saiz
- Departamento
de Química Orgánica, Laboratorio de Quimica Farmaceutica,
Facultad de Quimica, Universidad de la República, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
| | - César Iglesias
- Departamento
de Biociencias, Laboratorio de Microbiología Molecular, Facultad
de Quimica, Universidad de la Republica, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
- Departamento
de Biociencias y Departamento de Quimica Organica, Laboratorio de
Biocatalisis y Biotransformaciones, Facultad de Quimica, Universidad de la Republica, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
| | - Graciela Mahler
- Departamento
de Química Orgánica, Laboratorio de Quimica Farmaceutica,
Facultad de Quimica, Universidad de la República, Gral Flores 2124, Montevideo, Montevideo 11800, Uruguay
| |
Collapse
|
40
|
Zhu HJ, Pan J, Li CX, Chen FF, Xu JH. Construction and optimization of a biocatalytic route for the synthesis of neomenthylamine from menthone. BIORESOUR BIOPROCESS 2023; 10:75. [PMID: 38647910 PMCID: PMC10992614 DOI: 10.1186/s40643-023-00693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/09/2023] [Indexed: 04/25/2024] Open
Abstract
(+)-Neomenthylamine is an important industrial precursor used to synthesize high value-added chemicals. Here, we report a novel biocatalytic route to synthesize (+)-neomenthylamine by amination of readily available (-)-menthone substrate using ω-transaminase. By screening a panel of ω-transaminases, an ω-transaminase from Vibrio fluvialis JS17 was identified with considerable amination activity to (-)-menthone, and then characterization of enzymatic properties was conducted for the enzyme. Under optimized conditions, 10 mM (-)-menthone was transformed in a mild aqueous phase with 4.7 mM product yielded in 24 h. The biocatalytic route using inexpensive starting materials (ketone substrate and amino donor) and mild reaction conditions represents an easy and green approach for (+)-neomenthylamine synthesis. This method underscores the potential of biocatalysts in the synthesis of unnatural terpenoid amine derivatives.
Collapse
Affiliation(s)
- Hui-Jue Zhu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Fei-Fei Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
41
|
Yamakawa K, Sakamoto K, Nishimura T. Iridium-catalyzed asymmetric addition of imides to alkenes. Chem Commun (Camb) 2023; 59:12871-12874. [PMID: 37817678 DOI: 10.1039/d3cc04406h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Enantioselective addition of an imide N-H bond to alkenes was realized by use of a cationic iridium catalyst. Bulky diphosphine ligands such as DTBM-segphos, DTBM-MeO-biphep, and DTBM-binap were indispensable for the reaction. A variety of styrene derivatives, allylsilanes, and norbornene were good substrates to give the corresponding chiral adducts with high enantioselectivity.
Collapse
Affiliation(s)
- Kentaro Yamakawa
- Department of Chemistry, Graduate School of Science, Osaka MetropolitanUniversity, Sumiyoshi, Osaka 558-8585, Japan.
| | - Kana Sakamoto
- Department of Chemistry, Graduate School of Science, Osaka MetropolitanUniversity, Sumiyoshi, Osaka 558-8585, Japan.
| | - Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka MetropolitanUniversity, Sumiyoshi, Osaka 558-8585, Japan.
| |
Collapse
|
42
|
Yu Y, Rué Casamajo A, Finnigan W, Schnepel C, Barker R, Morrill C, Heath RS, De Maria L, Turner NJ, Scrutton NS. Structure-Based Design of Small Imine Reductase Panels for Target Substrates. ACS Catal 2023; 13:12310-12321. [PMID: 37736118 PMCID: PMC10510103 DOI: 10.1021/acscatal.3c02278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/20/2023] [Indexed: 09/23/2023]
Abstract
Biocatalysis is important in the discovery, development, and manufacture of pharmaceuticals. However, the identification of enzymes for target transformations of interest requires major screening efforts. Here, we report a structure-based computational workflow to prioritize protein sequences by a score based on predicted activities on substrates, thereby reducing a resource-intensive laboratory-based biocatalyst screening. We selected imine reductases (IREDs) as a class of biocatalysts to illustrate the application of the computational workflow termed IREDFisher. Validation by using published data showed that IREDFisher can retrieve the best enzymes and increase the hit rate by identifying the top 20 ranked sequences. The power of IREDFisher is confirmed by computationally screening 1400 sequences for chosen reductive amination reactions with different levels of complexity. Highly active IREDs were identified by only testing 20 samples in vitro. Our speed test shows that it only takes 90 min to rank 85 sequences from user input and 30 min for the established IREDFisher database containing 591 IRED sequences. IREDFisher is available as a user-friendly web interface (https://enzymeevolver.com/IREDFisher). IREDFisher enables the rapid discovery of IREDs for applications in synthesis and directed evolution studies, with minimal time and resource expenditure. Future use of the workflow with other enzyme families could be implemented following the modification of the workflow scoring function.
Collapse
Affiliation(s)
- Yuqi Yu
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
- Augmented
Biologics Discovery & Design, Department of Biologics Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Arnau Rué Casamajo
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - William Finnigan
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Christian Schnepel
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rhys Barker
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Charlotte Morrill
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rachel S. Heath
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Leonardo De Maria
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology
(RI), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Nicholas J. Turner
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Nigel S. Scrutton
- Department
of Chemistry, The University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
43
|
Calvó-Tusell C, Liu Z, Chen K, Arnold FH, Garcia-Borràs M. Reversing the Enantioselectivity of Enzymatic Carbene N-H Insertion Through Mechanism-Guided Protein Engineering. Angew Chem Int Ed Engl 2023; 62:e202303879. [PMID: 37260412 DOI: 10.1002/anie.202303879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
We report a computationally driven approach to access enantiodivergent enzymatic carbene N-H insertions catalyzed by P411 enzymes. Computational modeling was employed to rationally guide engineering efforts to control the accessible conformations of a key lactone-carbene (LAC) intermediate in the enzyme active site by installing a new H-bond anchoring point. This H-bonding interaction controls the relative orientation of the reactive carbene intermediate, orienting it for an enantioselective N-nucleophilic attack by the amine substrate. By combining MD simulations and site-saturation mutagenesis and screening targeted to only two key residues, we were able to reverse the stereoselectivity of previously engineered S-selective P411 enzymes. The resulting variant, L5_FL-B3, accepts a broad scope of amine substrates for N-H insertion with excellent yields (up to >99 %), high efficiency (up to 12 300 TTN), and good enantiocontrol (up to 7 : 93 er).
Collapse
Affiliation(s)
- Carla Calvó-Tusell
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| | - Zhen Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Kai Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| |
Collapse
|
44
|
Spinello BJ, Strong ZH, Ortiz E, Evarts MM, Krische MJ. Intermolecular Metal-Catalyzed C‒C Coupling of Unactivated Alcohols or Aldehydes for Convergent Ketone Construction beyond Premetalated Reagents. ACS Catal 2023; 13:10976-10987. [PMID: 38464997 PMCID: PMC10923551 DOI: 10.1021/acscatal.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Intermolecular metal-catalyzed C‒C couplings of unactivated primary alcohols or aldehydes to form ketones are catalogued. Reactions are classified on the basis of pronucleophile. Protocols involving premetalated reagents or reactants that incorporate directing groups are not covered. These methods represent an emerging alternative to classical multi-step protocols for ketone construction that exploit premetalated reagents, and/or steps devoted to redox manipulations and carboxylic acid derivatization.
Collapse
Affiliation(s)
- Brian J Spinello
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Zachary H Strong
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Maddie M Evarts
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
45
|
Silva FMWG, Szemes J, Mustashev A, Takács O, Imarah AO, Poppe L. Immobilization of Lipase B from Candida antarctica on Magnetic Nanoparticles Enhances Its Selectivity in Kinetic Resolutions of Chiral Amines with Several Acylating Agents. Life (Basel) 2023; 13:1560. [PMID: 37511935 PMCID: PMC10381355 DOI: 10.3390/life13071560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In lipase-catalyzed kinetic resolutions (KRs), the choice of immobilization support and acylating agents (AAs) is crucial. Lipase B from Candida antarctica immobilized onto magnetic nanoparticles (CaLB-MNPs) has been successfully used for diverse KRs of racemic compounds, but there is a lack of studies of the utilization of this potent biocatalyst in the KR of chiral amines, important pharmaceutical building blocks. Therefore, in this work, several racemic amines (heptane-2-amine, 1-methoxypropan-2-amine, 1-phenylethan-1-amine, and 4-phenylbutan-2-amine, (±)-1a-d, respectively) were studied in batch and continuous-flow mode utilizing different AAs, such as diisopropyl malonate 2A, isopropyl 2-cyanoacetate 2B, and isopropyl 2-ethoxyacetate 2C. The reactions performed with CaLB-MNPs were compared with Novozym 435 (N435) and the results in the literature. CaLB-MNPs were less active than N435, leading to lower conversion, but demonstrated a higher enantiomer selectivity, proving to be a good alternative to the commercial form. Compound 2C resulted in the best balance between conversion and enantiomer selectivity among the acylating agents. CaLB-MNPs proved to be efficient in the KR of chiral amines, having comparable or superior properties to other CaLB forms utilizing porous matrices for immobilization. An additional advantage of using CaLB-MNPs is that the purification and reuse processes are facilitated via magnetic retention/separation. In the continuous-flow mode, the usability and operational stability of CaLB-MNPs were reaffirmed, corroborating with previous studies, and the results overall improve our understanding of this potent biocatalyst and the convenient U-shape reactor used.
Collapse
Affiliation(s)
- Fausto M W G Silva
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - József Szemes
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Akan Mustashev
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Orsolya Takács
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Ali O Imarah
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Chemical Engineering Department, College of Engineering, University of Babylon, Hilla Babylon 5100, Iraq
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, Arany János Str. 11, RO-400028 Cluj-Napoca, Romania
- SynBiocat Ltd., Szilasliget u 3, H-1172 Budapest, Hungary
| |
Collapse
|
46
|
Jia ZH, Chen LY, Zheng H, Li ZR, Song QC, Li Y. Enantioselective Synthesis of Diarylmethylamines through the Aza-Friedel-Crafts Reaction of 1,3,5-Trialkoxy Benzenes and N-Sulfonyl Aldimines Catalyzed by BINOL-Derived Disulfonimides. J Org Chem 2023. [PMID: 37384900 DOI: 10.1021/acs.joc.3c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
A 1,1'-bi-2-naphthol (BINOL)-derived disulfonimide (DSI)-catalyzed enantioselective aza-Friedel-Crafts reaction between 1,3,5-trialkoxy benzenes and N-sulfonyl aldimines gives direct access to a series of chiral diarylmethylamines in good yields and good to excellent enantioselectivities (up to 97% ee). This reaction provides a useful protocol for the direct synthesis of diarylmethylamine derivatives.
Collapse
Affiliation(s)
- Zi-Hao Jia
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Ling-Yan Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), East China University of Science and Technology, Shanghai 200237, China
| | - Hao Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Zhang-Rui Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Qing-Chun Song
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Ya Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| |
Collapse
|
47
|
Heckmann CM, Paul CE. Enantio-Complementary Synthesis of 2-Substituted Pyrrolidines and Piperidines via Transaminase-Triggered Cyclizations. JACS AU 2023; 3:1642-1649. [PMID: 37388678 PMCID: PMC10301811 DOI: 10.1021/jacsau.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 07/01/2023]
Abstract
Chiral N-heterocycles are a common motif in many active pharmaceutical ingredients; however, their synthesis often relies on the use of heavy metals. In recent years, several biocatalytic approaches have emerged to reach enantiopurity. Here, we describe the asymmetric synthesis of 2-substituted pyrrolidines and piperidines, starting from commercially available ω-chloroketones by using transaminases, which has not yet been comprehensively studied. Analytical yields of up to 90% and enantiomeric excesses of up to >99.5% for each enantiomer were achieved, which has not previously been shown for bulky substituents. This biocatalytic approach was applied to synthesize (R)-2-(p-chlorophenyl)pyrrolidine on a 300 mg scale, affording 84% isolated yield, with >99.5% ee.
Collapse
|
48
|
Rocha RA, Esquirol L, Rolland V, Hands P, Speight RE, Scott C. Non-covalent binding tags for batch and flow biocatalysis. Enzyme Microb Technol 2023; 169:110268. [PMID: 37300919 DOI: 10.1016/j.enzmictec.2023.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Enzyme immobilization offers considerable advantage for biocatalysis in batch and continuous flow reactions. However, many currently available immobilization methods require that the surface of the carrier is chemically modified to allow site specific interactions with their cognate enzymes, which requires specific processing steps and incurs associated costs. Two carriers (cellulose and silica) were investigated here, initially using fluorescent proteins as models to study binding, followed by assessment of industrially relevant enzyme performance (transaminases and an imine reductase/glucose oxidoreductase fusion). Two previously described binding tags, the 17 amino acid long silica-binding peptide from the Bacillus cereus CotB protein and the cellulose binding domain from the Clostridium thermocellum, were fused to a range of proteins without impairing their heterologous expression. When fused to a fluorescent protein both tags conferred high avidity specific binding with their respective carriers (low nanomolar Kd values). The CotB peptide (CotB1p) induced protein aggregation in the transaminase and imine reductase/glucose oxidoreductase fusions when incubated with the silica carrier. The Clostridium thermocellum cellulose binding domain (CBDclos) allowed immobilization of all the proteins tested, but immobilization led to loss of enzymatic activity in the transaminases (< 2-fold) and imine reductase/glucose oxidoreductase fusion (> 80%). A transaminase-CBDclos fusion was then successfully used to demonstrate the application of the binding tag in repetitive batch and a continuous-flow reactor.
Collapse
Affiliation(s)
- Raquel A Rocha
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Qld 4000, Australia; CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Lygie Esquirol
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Vivien Rolland
- CSIRO Agriculture and Food, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Philip Hands
- CSIRO Agriculture and Food, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Robert E Speight
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Qld 4000, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, Qld 4000, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia.
| |
Collapse
|
49
|
Wang H, Masuku MV, Tao Y, Yang J, Kuang Y, Lyu C, Huang J, Yang S. Improved Stability and Catalytic Efficiency of ω-Transaminase in Aqueous Mixture of Deep Eutectic Solvents. Molecules 2023; 28:molecules28093895. [PMID: 37175305 PMCID: PMC10180074 DOI: 10.3390/molecules28093895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The efficient biosynthesis of chiral amines at an industrial scale to meet the high demand from industries that require chiral amines as precursors is challenging due to the poor stability and low catalytic efficiency of ω-transaminases (ω-TAs). Herein, this study adopted a green and efficient solvent engineering method to explore the effects of various aqueous solutions of deep eutectic solvents (DESs) as cosolvents on the catalytic efficiency and stability of ω-TA. Binary- and ternary-based DESs were used as cosolvents in enhancing the catalytic activity and stability of a ω-TA variant from Aspergillus terreus (E133A). The enzyme exhibited a higher catalytic activity in a ternary-based DES that was 2.4-fold higher than in conventional buffer. Moreover, the thermal stability was enhanced by a magnitude of 2.7, with an improvement in storage stability. Molecular docking studies illustrated that the most potent DES established strong hydrogen bond interactions with the enzyme's amino acid, which enhanced the catalytic efficiency and improved the stability of the ω-TA. Molecular docking is essential in designing DESs for a specific enzyme.
Collapse
Affiliation(s)
- Hongpeng Wang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Mercy Vimbai Masuku
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yachen Tao
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiayao Yang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yi Kuang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Changjiang Lyu
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengxiang Yang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
50
|
Zhang L, Wang X, Pu M, Chen C, Yang P, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation and Heteroarylation of Aldimines via an Elementary 1,4-Addition. J Am Chem Soc 2023. [PMID: 37023358 DOI: 10.1021/jacs.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nickel catalysts of chiral pyrox ligands promoted enantioselective reductive arylation and heteroarylation of aldimines, using directly (hetero)aryl halides and sulfonates. The catalytic arylation can also be conducted with crude aldimines generated from condensation of aldehydes and azaaryl amines. Mechanistically, density functional theory (DFT) calculations and experiments pointed to an elementary step of 1,4-addition of aryl nickel(I) complexes to N-azaaryl aldimines.
Collapse
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xiuhua Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|