1
|
Abstract
Transgenic rabbits have contributed to the progress of biomedical science as human disease models because of their unique features, such as the lipid metabolism system similar to humans and medium body size that facilitates handling and experimental manipulation. In fact, many useful transgenic rabbits have been generated and used in research fields such as lipid metabolism and atherosclerosis, cardiac failure, immunology, and oncogenesis. However, there have been long-term problems, namely that the transgenic efficiency when using pronuclear microinjection is low compared with transgenic mice and production of knockout rabbits is impossible owing to the lack of embryonic stem cells for gene targeting in rabbits. Despite these limitations, the emergence of novel genome editing technology has changed the production of genetically modified animals including the rabbit. We are finally able to produce both transgenic and knockout rabbit models to analyze gain- and loss-of-functions of specific genes. It is expected that the use of genetically modified rabbits will extend to various research fields. In this review, we describe the unique features of rabbits as laboratory animals, the current status of their development and use, and future perspectives of transgenic rabbit models for human diseases.
Collapse
|
2
|
Ito A, Ohnuki Y, Suita K, Ishikawa M, Mototani Y, Shiozawa K, Kawamura N, Yagisawa Y, Nariyama M, Umeki D, Nakamura Y, Okumura S. Role of β-adrenergic signaling in masseter muscle. PLoS One 2019; 14:e0215539. [PMID: 30986276 PMCID: PMC6464212 DOI: 10.1371/journal.pone.0215539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
In skeletal muscle, the major isoform of β-adrenergic receptor (β-AR) is β2-AR and the minor isoform is β1-AR, which is opposite to the situation in cardiac muscle. Despite extensive studies in cardiac muscle, the physiological roles of the β-AR subtypes in skeletal muscle are not fully understood. Therefore, in this work, we compared the effects of chronic β1- or β2-AR activation with a specific β1-AR agonist, dobutamine (DOB), or a specific β2-AR agonist, clenbuterol (CB), on masseter and cardiac muscles in mice. In cardiac muscle, chronic β1-AR stimulation induced cardiac hypertrophy, fibrosis and myocyte apoptosis, whereas chronic β2-AR stimulation induced cardiac hypertrophy without histological abnormalities. In masseter muscle, however, chronic β1-AR stimulation did not induce muscle hypertrophy, but did induce fibrosis and apoptosis concomitantly with increased levels of p44/42 MAPK (ERK1/2) (Thr-202/Tyr-204), calmodulin kinase II (Thr-286) and mammalian target of rapamycin (mTOR) (Ser-2481) phosphorylation. On the other hand, chronic β2-AR stimulation in masseter muscle induced muscle hypertrophy without histological abnormalities, as in the case of cardiac muscle, concomitantly with phosphorylation of Akt (Ser-473) and mTOR (Ser-2448) and increased expression of microtubule-associated protein light chain 3-II, an autophagosome marker. These results suggest that the β1-AR pathway is deleterious and the β2-AR is protective in masseter muscle. These data should be helpful in developing pharmacological approaches for the treatment of skeletal muscle wasting and weakness.
Collapse
Affiliation(s)
- Aiko Ito
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Daisuke Umeki
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Nakamura
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- * E-mail:
| |
Collapse
|
3
|
Myocardial Response to Milrinone in Single Right Ventricle Heart Disease. J Pediatr 2016; 174:199-203.e5. [PMID: 27181939 PMCID: PMC4925285 DOI: 10.1016/j.jpeds.2016.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/02/2016] [Accepted: 04/05/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Empiric treatment with milrinone, a phosphodiesterase (PDE) 3 inhibitor, has become increasingly common in patients with single ventricle heart disease of right ventricular (RV) morphology (SRV); our objective was to characterize the myocardial response to PDE3 inhibition (PDE3i) in the pediatric population with SRV. STUDY DESIGN Cyclic adenosine monophosphate levels, PDE activity, and phosphorylated phospholamban (PLN) were determined in explanted human ventricular myocardium from nonfailing pediatric donors (n = 10) and pediatric patients transplanted secondary to SRV. Subjects with SRV were further classified by PDE3i treatment (n = 13 with PDE3i and n = 12 without PDE3i). RESULTS In comparison with nonfailing RV myocardium (n = 8), cyclic adenosine monophosphate levels are lower in patients with SRV treated with PDE3i (n = 12, P = .021). Chronic PDE3i does not alter total PDE or PDE3 activity in SRV myocardium. Compared with nonfailing RV myocardium, SRV myocardium (both with and without PDE3i) demonstrates equivalent phosphorylated PLN at the protein kinase A phosphorylation site. CONCLUSIONS As evidenced by preserved phosphorylated PLN, the molecular adaptation associated with SRV differs significantly from that demonstrated in pediatric heart failure because of dilated cardiomyopathy. These alterations support a pathophysiologically distinct mechanism of heart failure in pediatric patients with SRV, which has direct implications regarding the presumed response to PDE3i treatment in this population.
Collapse
|
4
|
Fajardo VA, Bombardier E, McMillan E, Tran K, Wadsworth BJ, Gamu D, Hopf A, Vigna C, Smith IC, Bellissimo C, Michel RN, Tarnopolsky MA, Quadrilatero J, Tupling AR. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech 2015; 8:999-1009. [PMID: 26035394 PMCID: PMC4527296 DOI: 10.1242/dmm.020859] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022] Open
Abstract
Centronuclear myopathy (CNM) is a congenital myopathy that is histopathologically characterized by centrally located nuclei, central aggregation of oxidative activity, and type I fiber predominance and hypotrophy. Here, we obtained commercially available mice overexpressing phospholamban (PlnOE), a well-known inhibitor of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), in their slow-twitch type I skeletal muscle fibers to determine the effects on SERCA function. As expected with a 6- to 7-fold overexpression of phospholamban, SERCA dysfunction was evident in PlnOE muscles, with marked reductions in rates of Ca2+ uptake, maximal ATPase activity and the apparent affinity of SERCA for Ca2+. However, our most significant discovery was that the soleus and gluteus minimus muscles from the PlnOE mice displayed overt signs of myopathy: they histopathologically resembled human CNM, with centrally located nuclei, central aggregation of oxidative activity, type I fiber predominance and hypotrophy, progressive fibrosis and muscle weakness. This phenotype is associated with significant upregulation of muscle sarcolipin and dynamin 2, increased Ca2+-activated proteolysis, oxidative stress and protein nitrosylation. Moreover, in our assessment of muscle biopsies from three human CNM patients, we found a significant 53% reduction in SERCA activity and increases in both total and monomeric PLN content compared with five healthy subjects, thereby justifying future studies with more CNM patients. Altogether, our results suggest that the commercially available PlnOE mouse phenotypically resembles human CNM and could be used as a model to test potential mechanisms and therapeutic strategies. To date, there is no cure for CNM and our results suggest that targeting SERCA function, which has already been shown to be an effective therapeutic target for murine muscular dystrophy and human cardiomyopathy, might represent a novel therapeutic strategy to combat CNM. Summary: Phospholamban overexpression in mouse slow-twitch muscle impairs SERCA function and causes histopathological features associated with human centronuclear myopathy.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Elliott McMillan
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Khanh Tran
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brennan J Wadsworth
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew Hopf
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ian C Smith
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Catherine Bellissimo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Robin N Michel
- Department of Exercise Science, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Mark A Tarnopolsky
- Departement of Kinesiology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Bibli SI, Andreadou I, Chatzianastasiou A, Tzimas C, Sanoudou D, Kranias E, Brouckaert P, Coletta C, Szabo C, Kremastinos DT, Iliodromitis EK, Papapetropoulos A. Cardioprotection by H2S engages a cGMP-dependent protein kinase G/phospholamban pathway. Cardiovasc Res 2015; 106:432-42. [PMID: 25870184 DOI: 10.1093/cvr/cvv129] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/02/2015] [Indexed: 12/29/2022] Open
Abstract
AIMS H2S is known to confer cardioprotection; however, the pathways mediating its effects in vivo remain incompletely understood. The purpose of the present study is to evaluate the contribution of cGMP-regulated pathways in the infarct-limiting effect of H2S in vivo. METHODS AND RESULTS Anaesthetized rabbits were subjected to myocardial ischaemia (I)/reperfusion (R), and infarct size was determined in control or H2S-exposed groups. The H2S donor sodium hydrosulfide (NaHS, an agent that generates H2S) increased cardiac cGMP and reduced the infarct size. The cGMP-dependent protein kinase (PKG)-I inhibitor DT2 abrogated the protective effect of NaHS, whereas the control peptide TAT or l-nitroarginine methyl ester (l-NAME) did not alter the effect of NaHS. Moreover, the KATP channel inhibitor, glibenclamide, partially reversed the effects of NaHS, whereas inhibition of mitochondrial KATP did not modify the NaHS response. NaHS enhanced phosphorylation of phospholamban (PLN), in a PKG-dependent manner. To further investigate the role of PLN in H2S-mediated cardioprotection, wild-type and PLN KO mice underwent I/R. NaHS did not exert cardioprotection in PLN KO mice. Unlike what was observed in rabbits, genetic or pharmacological inhibition of eNOS abolished the infarct-limiting effect of NaHS in mice. CONCLUSIONS Our findings demonstrate (i) that administration of NaHS induces cardioprotection via a cGMP/PKG/PLN pathway and (ii) contribution of nitric oxide to the H2S response is species-specific.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Faculty of Pharmacy, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Ioanna Andreadou
- Faculty of Pharmacy, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Athanasia Chatzianastasiou
- Faculty of Medicine, First Department of Critical Care and Pulmonary Services, Evangelismos Hospital, University of Athens, Athens, Greece
| | - Christos Tzimas
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, Athens, Greece Department of Pharmacology, Faculty of Medicine, University of Athens, Athens, Greece
| | - Evangelia Kranias
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, Athens, Greece Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium Department of Molecular Biomedical Research, VIB, Ghent, Belgium
| | - Ciro Coletta
- Department of Anesthesiology University of Texas Medical Branch, Galveston, TX, USA Shriners Burns Hospital for Children, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology University of Texas Medical Branch, Galveston, TX, USA Shriners Burns Hospital for Children, Galveston, TX, USA
| | - Dimitrios Th Kremastinos
- Faculty of Medicine, Second Department of Cardiology, Attikon University Hospital, University of Athens, Athens, Greece
| | - Efstathios K Iliodromitis
- Faculty of Medicine, Second Department of Cardiology, Attikon University Hospital, University of Athens, Athens, Greece
| | - Andreas Papapetropoulos
- Faculty of Pharmacy, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
6
|
Abrol N, de Tombe PP, Robia SL. Acute inotropic and lusitropic effects of cardiomyopathic R9C mutation of phospholamban. J Biol Chem 2015; 290:7130-40. [PMID: 25593317 DOI: 10.1074/jbc.m114.630319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A naturally occurring R9C mutation of phospholamban (PLB) triggers cardiomyopathy and premature death by altering regulation of sarco/endoplasmic reticulum calcium-ATPase (SERCA). The goal of this study was to investigate the acute physiological consequences of the R9C-PLB mutation on cardiomyocyte calcium kinetics and contractility. We measured the physiological consequences of R9C-PLB mutation on calcium transients and sarcomere shortening in adult cardiomyocytes. In contrast to studies of chronic R9C-PLB expression in transgenic mice, we found that acute expression of R9C-PLB exerts a positively inotropic and lusitropic effect in cardiomyocytes. Importantly, R9C-PLB exhibited blunted sensitivity to frequency potentiation and β-adrenergic stimulation, two major physiological mechanisms for the regulation of cardiac performance. To identify the molecular mechanism of R9C pathology, we quantified the effect of R9C on PLB oligomerization and PLB-SERCA binding. FRET measurements in live cells revealed that R9C-PLB exhibited an increased propensity for oligomerization, and this was further increased by oxidative stress. The R9C also decreased PLB binding to SERCA and altered the structure of the PLB-SERCA regulatory complex. The structural change after oxidative modification of R9C-PLB was similar to that observed after PLB phosphorylation. We conclude that R9C mutation of PLB decreases SERCA inhibition by decreasing the amount of the regulatory complex and altering its conformation. This has an acute inotropic/lusitropic effect but yields negative consequences of impaired frequency potentiation and blunted β-adrenergic responsiveness. We envision a self-reinforcing mechanism beginning with phosphomimetic R9C-PLB oxidation and loss of SERCA inhibition, leading to impaired calcium regulation and heart failure.
Collapse
Affiliation(s)
- Neha Abrol
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60163
| | - Pieter P de Tombe
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60163
| | - Seth L Robia
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60163
| |
Collapse
|
7
|
Abstract
The treatment of heart failure (HF) may be entering a new era with clinical trials currently assessing the value of gene therapy as a novel therapeutic strategy. If these trials demonstrate efficacy then a new avenue of potential treatments could become available to the clinicians treating HF. In principle, gene therapy allows us to directly target the underlying molecular abnormalities seen in the failing myocyte. In this review we discuss the fundamentals of gene therapy and the challenges of delivering it to patients with HF. The molecular abnormalities underlying HF are discussed along with potential targets for gene therapy, focusing on SERCA2a. We discuss the laboratory and early clinical evidence for the benefit of SERCA2a gene therapy in HF. Finally, we discuss the ongoing clinical trials of SERCA2a gene therapy and possible future directions for this treatment.
Collapse
Affiliation(s)
- Carl Hayward
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital
| | | | | |
Collapse
|
8
|
Ablorh NAD, Dong X, James ZM, Xiong Q, Zhang J, Thomas DD, Karim CB. Synthetic phosphopeptides enable quantitation of the content and function of the four phosphorylation states of phospholamban in cardiac muscle. J Biol Chem 2014; 289:29397-405. [PMID: 25190804 DOI: 10.1074/jbc.m114.556621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the differential effects of phospholamban (PLB) phosphorylation states on the activity of the sarcoplasmic reticulum Ca-ATPase (SERCA). It has been shown that unphosphorylated PLB (U-PLB) inhibits SERCA and that phosphorylation of PLB at Ser-16 or Thr-17 relieves this inhibition in cardiac sarcoplasmic reticulum. However, the levels of the four phosphorylation states of PLB (U-PLB, P16-PLB, P17-PLB, and doubly phosphorylated 2P-PLB) have not been measured quantitatively in cardiac tissue, and their functional effects on SERCA have not been determined directly. We have solved both problems through the chemical synthesis of all four PLB species. We first used the synthetic PLB as standards for a quantitative immunoblot assay, to determine the concentrations of all four PLB phosphorylation states in pig cardiac tissue, with and without left ventricular hypertrophy (LVH) induced by aortic banding. In both LVH and sham hearts, all phosphorylation states were significantly populated, but LVH hearts showed a significant decrease in U-PLB, with a corresponding increase in the ratio of total phosphorylated PLB to U-PLB. To determine directly the functional effects of each PLB species, we co-reconstituted each of the synthetic peptides in phospholipid membranes with SERCA and measured calcium-dependent ATPase activity. SERCA inhibition was maximally relieved by P16-PLB (the most highly populated PLB state in cardiac tissue homogenates), followed by 2P-PLB, then P17-PLB. These results show that each PLB phosphorylation state uniquely alters Ca(2+) homeostasis, with important implications for cardiac health, disease, and therapy.
Collapse
Affiliation(s)
| | - Xiaoqiong Dong
- From the Departments of Biochemistry, Molecular Biology and Biophysics and
| | - Zachary M James
- From the Departments of Biochemistry, Molecular Biology and Biophysics and
| | - Qiang Xiong
- Medicine, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jianyi Zhang
- Medicine, University of Minnesota, Minneapolis, Minnesota 55455
| | - David D Thomas
- From the Departments of Biochemistry, Molecular Biology and Biophysics and
| | - Christine B Karim
- From the Departments of Biochemistry, Molecular Biology and Biophysics and
| |
Collapse
|
9
|
Scimia MC, Cannavo A, Koch WJ. Gene therapy for heart disease: molecular targets, vectors and modes of delivery to myocardium. Expert Rev Cardiovasc Ther 2014; 11:999-1013. [PMID: 23984926 DOI: 10.1586/14779072.2013.818813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite the numerous hurdles that gene therapy has encountered along the way, clinical trials over the last few years are showing promising results in many fields of medicine, including cardiology, where many targets are moving toward clinical development. In this review, the authors discuss the current state of the art in terms of clinical and preclinical development. They also examine vector technology and available vector-delivery strategies.
Collapse
Affiliation(s)
- Maria Cecilia Scimia
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, 3500 N Broad St, MERB 941, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
10
|
Abstract
INTRODUCTION Cardiovascular gene therapy is the third most popular application for gene therapy, representing 8.4% of all gene therapy trials as reported in 2012 estimates. Gene therapy in cardiovascular disease is aiming to treat heart failure from ischemic and non-ischemic causes, peripheral artery disease, venous ulcer, pulmonary hypertension, atherosclerosis and monogenic diseases, such as Fabry disease. AREAS COVERED In this review, we will focus on elucidating current molecular targets for the treatment of ventricular dysfunction following myocardial infarction (MI). In particular, we will focus on the treatment of i) the clinical consequences of it, such as heart failure and residual myocardial ischemia and ii) etiological causes of MI (coronary vessels atherosclerosis, bypass venous graft disease, in-stent restenosis). EXPERT OPINION We summarise the scheme of the review and the molecular targets either already at the gene therapy clinical trial phase or in the pipeline. These targets will be discussed below. Following this, we will focus on what we believe are the 4 prerequisites of success of any gene target therapy: safety, expression, specificity and efficacy (SESE).
Collapse
Affiliation(s)
- Maria C Scimia
- Temple University, Translational Medicine/Pharmacology , 3500 N. Broad Street, Philadelphia, 19140 , USA
| | | | | |
Collapse
|
11
|
Duranthon V, Beaujean N, Brunner M, Odening KE, Santos AN, Kacskovics I, Hiripi L, Weinstein EJ, Bosze Z. On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools. Transgenic Res 2012; 21:699-713. [PMID: 22382461 DOI: 10.1007/s11248-012-9599-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/04/2012] [Indexed: 12/19/2022]
Abstract
The laboratory rabbit (Oryctolagus cuniculus) is widely used as a model for human diseases, because of its size, which permits non-lethal monitoring of physiological changes and similar disease characteristics. Novel transgenic tools such as, the zinc finger nuclease method and the sleeping beauty transposon mediated or BAC transgenesis were recently adapted to the laboratory rabbit and opened new opportunities in precise tissue and developmental stage specific gene expression/silencing, coupled with increased transgenic efficiencies. Many facets of human development and diseases cannot be investigated in rodents. This is especially true for early prenatal development, its long-lasting effects on health and complex disorders, and some economically important diseases such as atherosclerosis or cardiovascular diseases. The first transgenic rabbits models of arrhythmogenesis mimic human cardiac diseases much better than transgenic mice and hereby underline the importance of non-mouse models. Another emerging field is epigenetic reprogramming and pathogenic mechanisms in diabetic pregnancy, where rabbit models are indispensable. Beyond that rabbit is used for decades as major source of polyclonal antibodies and recently in monoclonal antibody production. Alteration of its genome to increase the efficiency and value of the antibodies by humanization of the immunoglobulin genes, or by increasing the expression of a special receptor (Fc receptor) that augments humoral immune response is a current demand.
Collapse
Affiliation(s)
- V Duranthon
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Torrado M, Iglesias R, Centeno A, López E, Mikhailov AT. Targeted gene-silencing reveals the functional significance of myocardin signaling in the failing heart. PLoS One 2011; 6:e26392. [PMID: 22028870 PMCID: PMC3196561 DOI: 10.1371/journal.pone.0026392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/26/2011] [Indexed: 12/20/2022] Open
Abstract
Background Myocardin (MYOCD), a potent transcriptional coactivator of smooth muscle (SM) and cardiac genes, is upregulated in failing myocardium in animal models and human end-stage heart failure (HF). However, the molecular and functional consequences of myocd upregulation in HF are still unclear. Methodology/Principal Findings The goal of the present study was to investigate if targeted inhibition of upregulated expression of myocd could influence failing heart gene expression and function. To this end, we used the doxorubicin (Dox)-induced diastolic HF (DHF) model in neonatal piglets, in which, as we show, not only myocd but also myocd-dependent SM-marker genes are highly activated in failing left ventricular (LV) myocardium. In this model, intra-myocardial delivery of short-hairpin RNAs, designed to target myocd variants expressed in porcine heart, leads on day 2 post-delivery to: (1) a decrease in the activated expression of myocd and myocd-dependent SM-marker genes in failing myocardium to levels seen in healthy control animals, (2) amelioration of impaired diastolic dysfunction, and (3) higher survival rates of DHF piglets. The posterior restoration of elevated myocd expression (on day 7 post-delivery) led to overexpression of myocd-dependent SM-marker genes in failing LV-myocardium that was associated with a return to altered diastolic function. Conclusions/Significance These data provide the first evidence that a moderate inhibition (e.g., normalization) of the activated MYOCD signaling in the diseased heart may be promising from a therapeutic point of view.
Collapse
Affiliation(s)
- Mario Torrado
- Developmental Biology Group, Institute of Health Sciences, University of La Coruña, La Coruña, Spain
| | - Raquel Iglesias
- Developmental Biology Group, Institute of Health Sciences, University of La Coruña, La Coruña, Spain
| | - Alberto Centeno
- Experimental Surgery Unit, University Hospital Center of La Coruña, La Coruña, Spain
| | - Eduardo López
- Experimental Surgery Unit, University Hospital Center of La Coruña, La Coruña, Spain
| | - Alexander T. Mikhailov
- Developmental Biology Group, Institute of Health Sciences, University of La Coruña, La Coruña, Spain
- * E-mail:
| |
Collapse
|
13
|
Raake PWJ, Tscheschner H, Reinkober J, Ritterhoff J, Katus HA, Koch WJ, Most P. Gene therapy targets in heart failure: the path to translation. Clin Pharmacol Ther 2011; 90:542-53. [PMID: 21866097 DOI: 10.1038/clpt.2011.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is the common end point of cardiac diseases. Despite the optimization of therapeutic strategies and the consequent overall reduction in HF-related mortality, the key underlying intracellular signal transduction abnormalities have not been addressed directly. In this regard, the gaps in modern HF therapy include derangement of β-adrenergic receptor (β-AR) signaling, Ca(2+) disbalances, cardiac myocyte death, diastolic dysfunction, and monogenetic cardiomyopathies. In this review we discuss the potential of gene therapy to fill these gaps and rectify abnormalities in intracellular signaling. We also examine current vector technology and currently available vector-delivery strategies, and we delineate promising gene therapy structures. Finally, we analyze potential limitations related to the transfer of successful preclinical gene therapy approaches to HF treatment in the clinic, as well as impending strategies aimed at overcoming these limitations.
Collapse
Affiliation(s)
- P W J Raake
- Division of Cardiology, Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
CMV promoter is inadequate for expression of mutant human RyR2 in transgenic rabbits. J Pharmacol Toxicol Methods 2011; 63:180-5. [DOI: 10.1016/j.vascn.2010.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/19/2010] [Accepted: 09/21/2010] [Indexed: 11/22/2022]
|
15
|
Zhao S, Wei K, Yu Q, Li Y, Cheng F, Wang Y, Yang P, Fan J, Liu E. General topic: applications of transgenic rabbits in biomedical research - based on literature search. WORLD RABBIT SCIENCE 2010; 18:159-167. [DOI: 10.4995/wrs.2010.7279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
16
|
Abstract
Congestive heart failure is a leading cause of morbidity and mortality. Congestive heart failure is marked by atrial and ventricular enlargements and reduced cardiac contractility and an association with an increased incidence of atrial and ventricular arrhythmias and sudden cardiac death. Dysfunctional ion channel function is one of the major underlying mechanisms of the reduced contractility and arrhythmias. In this review, we explore the utility of ion channels, transporters, and pumps as targets for the treatment of heart failure, focusing predominantly on the treatment for reduced contractility and arrhythmias.
Collapse
|
17
|
|
18
|
Vandecaetsbeek I, Raeymaekers L, Wuytack F, Vangheluwe P. Factors controlling the activity of the SERCA2a pump in the normal and failing heart. Biofactors 2009; 35:484-99. [PMID: 19904717 DOI: 10.1002/biof.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart failure is the leading cause of death in western countries and is often associated with impaired Ca(2+) handling in the cardiomyocyte. In fact, cardiomyocyte relaxation and contraction are tightly controlled by the activity of the cardiac sarco(endo)plasmic reticulum (ER/SR) Ca(2+) pump SERCA2a, pumping Ca(2+) from the cytosol into the lumen of the ER/SR. This review addresses three important facets that control the SERCA2 activity in the heart. First, we focus on the alternative splicing of the SERCA2 messenger, which is strictly regulated in the developing heart. This splicing controls the formation of three SERCA2 splice variants with different enzymatic properties. Second, we will discuss the role and regulation of SERCA2a activity in the normal and failing heart. The two well-studied Ca(2+) affinity modulators phospholamban and sarcolipin control the activity of SERCA2a within a narrow window. An aberrantly high or low Ca(2+) affinity is often observed in and may even trigger cardiac failure. Correcting SERCA2a activity might therefore constitute a therapeutic approach to improve the contractility of the failing heart. Finally, we address the controversies and unanswered questions of other putative regulators of the cardiac Ca(2+) pump, such as sarcalumenin, HRC, S100A1, Bcl-2, HAX-1, calreticulin, calnexin, ERp57, IRS-1, and -2.
Collapse
Affiliation(s)
- Ilse Vandecaetsbeek
- Department of Molecular Cell Biology, Laboratory of Ca(2+)-transport ATPases, K.U.Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
19
|
Ai X, Zhao W, Pogwizd SM. Connexin43 knockdown or overexpression modulates cell coupling in control and failing rabbit left ventricular myocytes. Cardiovasc Res 2009; 85:751-62. [PMID: 19880431 DOI: 10.1093/cvr/cvp353] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS We have shown that failing human and rabbit left ventricle (LV) exhibits downregulation and dephosphorylation of connexin43 (Cx43) and that Cx43 dephosphorylation in heart failure (HF) contributes to reduced cell coupling. However, the role of Cx43 downregulation per se in impaired coupling in HF is unclear. METHODS AND RESULTS First, we used adenovirus (Ad) encoding a Cx43 siRNA sequence to knock down Cx43 protein levels in cultured control rabbit LV myocytes. Cells cultured for up to 48 h with intermittent pacing maintained Cx43 protein levels and phosphorylation status. Cell coupling in Cx43 knockdown myocyte pairs (by Lucifer Yellow dye transfer) was markedly reduced after 24 h infection (associated with approximately 40% Cx43 knockdown) and after 48 h (associated with approximately 70% Cx43 knockdown). The phosphorylation status, distribution of remaining Cx43 proteins, and levels of other cardiac connexins (Cx40 and Cx45) were unchanged. Second, we overexpressed Cx43 to levels comparable to control using an adenovirus encoding wild-type Cx43 (Cx43WT) gene in isolated LV myocytes from our arrhythmogenic HF rabbit model. We found 87% more Cx43WT proteins improved dye coupling [vs. Ad-beta-galactosidase (LacZ) infected HF controls]. Overexpressed Cx43 protein was located throughout the myocyte membrane (same pattern as in controls), and the phosphorylation status of Cx43 remained comparable to that in AdLacZ infected HF controls. CONCLUSION In addition to Cx43 dephosphorylation, downregulation of Cx43 plays an essential role in reduced cell coupling in the failing rabbit heart. Modulation of Cx43 expression could be a novel therapeutic approach to improve conduction and decrease sudden death in HF.
Collapse
Affiliation(s)
- Xun Ai
- Division of Cardiovascular Disease, Department of Medicine, UAB Center for Cardiovascular Biology, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall B140, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
20
|
Abstract
Human heart disease is a major cause of death and disability. A variety of animal models of cardiac disease have been developed to better understand the etiology, cellular and molecular mechanisms of cardiac dysfunction and novel therapeutic strategies. The animal models have included large animals (e.g. pig and dog) and small rodents (e.g. mouse and rat) and the advantages of genetic manipulation in mice have appropriately encouraged the development of novel mouse models of cardiac disease. However, there are major differences between rodent and human hearts that raise cautions about the extrapolation of results from mouse to human. The rabbit is a medium-sized animal that has many cellular and molecular characteristics very much like human, and is a practical alternative to larger mammals. Numerous rabbit models of cardiac disease are discussed, including pressure or volume overload, ischemia, rapid-pacing, doxorubicin, drug-induced arrhythmias, transgenesis and infection. These models also lead to the assessment of therapeutic strategies which may become beneficial in human cardiac disease. Ju Chen – University of California, San Diego, Department of Medicine, La Jolla, CA, USA Robert Ross – University of California, San Diego, Cardiology Section, San Diego, CA, USA
Collapse
Affiliation(s)
- Steven M Pogwizd
- Departments of Medicine, Physiology, and Biophysics & Bioengineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Genome Building 3513, Davis, CA 95616-8636, United States
| |
Collapse
|
21
|
Gross DR. Other Transgenic Animal Models Used in Cardiovascular Studies. ANIMAL MODELS IN CARDIOVASCULAR RESEARCH 2009. [PMCID: PMC7121723 DOI: 10.1007/978-0-387-95962-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Previous chapters have described a large number of transgenic animal models used to study specific cardiovascular syndromes. This chapter will fill in some gaps. Many of these transgenic animals were developed to study normal and/or abnormal physiological responses in other organ systems, or to study basic biochemical and molecular reactions or pathways. These models were then discovered to also have effects on the cardiovascular system, some of them unanticipated. A word of caution, particularly when highly inbred mouse strains are used to develop transgenic models - not all strains of a particular species are created equal. When cardiovascular parameters of age- and sex-matched A/J and C57BL/6J inbred mice were compared the C57BL/6J mice demonstrated eccentric physiologic ventricular hypertrophy, increased ventricular function, lower heart rates, and increased exercise endurance.1
Collapse
|
22
|
Waggoner JR, Ginsburg KS, Mitton B, Haghighi K, Robbins J, Bers DM, Kranias EG. Phospholamban overexpression in rabbit ventricular myocytes does not alter sarcoplasmic reticulum Ca transport. Am J Physiol Heart Circ Physiol 2008; 296:H698-703. [PMID: 19112098 DOI: 10.1152/ajpheart.00272.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholamban has been suggested to be a key regulator of cardiac sarcoplasmic reticulum (SR) Ca cycling and contractility and a potential therapeutic target in restoring the depressed Ca cycling in failing hearts. Our understanding of the function of phospholamban stems primarily from studies in genetically altered mouse models. To evaluate the significance of this protein in larger mammalian species, which exhibit Ca cycling properties similar to humans, we overexpressed phospholamban in adult rabbit cardiomyocytes. Adenoviral-mediated gene transfer, at high multiplicities of infection, resulted in an insignificant 1.22-fold overexpression of phospholamban. There were no effects on twitch Ca-transient amplitude or decay under basal or isoproterenol-stimulated conditions. Furthermore, the SR Ca load and Na/Ca exchanger function were not altered. These apparent differences between phospholamban overexpression in rabbit compared with previous findings in the mouse may be due to a significantly higher (1.5-fold) endogenous phospholamban-to-sarco(endo)plasmic reticulum Ca-ATPase (SERCA) 2a ratio and potential functional saturation of SERCA2a by phospholamban in rabbit cardiomyocytes. The findings suggest that important species-dependent differences in phospholamban regulation of SERCA2a occur. In larger mammals, a higher fraction of SERCA2a pumps are regulated by phospholamban, and this may influence therapeutic strategies to enhance cardiac contractility and functional cardiac reserve.
Collapse
Affiliation(s)
- Jason R Waggoner
- Dept. of Pharmacology & Cell Biophysics, Univ. of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
With increasing knowledge of basic molecular mechanisms governing the development of heart failure (HF), the possibility of specifically targeting key pathological players is evolving. Technology allowing for efficient in vivo transduction of myocardial tissue with long-term expression of a transgene enables translation of basic mechanistic knowledge into potential gene therapy approaches. Gene therapy in HF is in its infancy clinically with the predominant amount of experience being from animal models. Nevertheless, this challenging and promising field is gaining momentum as recent preclinical studies in larger animals have been carried out and, importantly, there are 2 newly initiated phase I clinical trials for HF gene therapy. To put it simply, 2 parameters are needed for achieving success with HF gene therapy: (1) clearly identified detrimental/beneficial molecular targets; and (2) the means to manipulate these targets at a molecular level in a sufficient number of cardiac cells. However, several obstacles do exist on our way to efficient and safe gene transfer to human myocardium. Some of these obstacles are discussed in this review; however, it primarily focuses on the molecular target systems that have been subjected to intense investigation over the last decade in an attempt to make gene therapy for human HF a reality.
Collapse
Affiliation(s)
- Leif Erik Vinge
- Center for Translational Medicine, George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|