1
|
O’Neill BF, Boeckman C, LeRoy K, Linderblood C, Olson T, Woods R, Challender M. An environmental risk assessment of IPD079Ea: a protein derived from Ophioglossum pendulum with activity against Diabrotica spp.In maize. GM CROPS & FOOD 2024; 15:15-31. [PMID: 38238889 PMCID: PMC10802193 DOI: 10.1080/21645698.2023.2299503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Farmers in North America face significant pressure from insects in their maize fields, particularly from corn rootworm (Diabrotica spp.). Research into proteins capable of insecticidal activity has found several produced by ferns. One protein, IPD079Ea, was derived from Ophioglossum pendulum and has shown activity against corn rootworm. An environmental risk assessment was conducted for maize event DP-915635-4, which provides control of corn rootworms via expression of the IPD079Ea protein. This assessment focused on IPD079Ea and characterized potential exposure and hazard to non-target organisms (NTOs). For exposure, estimated environmental concentrations (EECs) were calculated. For hazard, laboratory dietary toxicity studies were conducted with IPD079Ea and surrogate non-target organisms. Environmental risk was characterized by comparing hazard and exposure to calculate the margin of exposure (MOE). Based on the MOE values for DP-915635-4 maize, the IPD079Ea protein is not expected to result in unreasonable adverse effects on beneficial NTO populations at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Bridget F. O’Neill
- Corteva Agriscience™, Regulatory and Stewardship institution, Indianapolis, IN, USA
| | - Chad Boeckman
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | - Kristine LeRoy
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | | | - Taylor Olson
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | - Rachel Woods
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | - Mary Challender
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| |
Collapse
|
2
|
Storer NP, Simmons AR, Sottosanto J, Anderson JA, Huang MH, Mahadeo D, Mathesius CA, Sanches da Rocha M, Song S, Urbanczyk-Wochniak E. Modernizing and harmonizing regulatory data requirements for genetically modified crops-perspectives from a workshop. Front Bioeng Biotechnol 2024; 12:1394704. [PMID: 38798956 PMCID: PMC11117168 DOI: 10.3389/fbioe.2024.1394704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Genetically modified (GM) crops that have been engineered to express transgenes have been in commercial use since 1995 and are annually grown on 200 million hectares globally. These crops have provided documented benefits to food security, rural economies, and the environment, with no substantiated case of food, feed, or environmental harm attributable to cultivation or consumption. Despite this extensive history of advantages and safety, the level of regulatory scrutiny has continually increased, placing undue burdens on regulators, developers, and society, while reinforcing consumer distrust of the technology. CropLife International held a workshop at the 16th International Society of Biosafety Research (ISBR) Symposium to examine the scientific basis for modernizing global regulatory frameworks for GM crops. Participants represented a spectrum of global stakeholders, including academic researchers, GM crop developers, regulatory consultants, and regulators. Concurrently examining the considerations of food and feed safety, along with environmental safety, for GM crops, the workshop presented recommendations for a core set of data that should always be considered, and supplementary (i.e., conditional) data that would be warranted only on a case-by-case basis to address specific plausible hypotheses of harm. Then, using a case-study involving a hypothetical GM maize event expressing two familiar traits (insect protection and herbicide tolerance), participants were asked to consider these recommendations and discuss if any additional data might be warranted to support a science-based risk assessment or for regulatory decision-making. The discussions during the workshop highlighted that the set of data to address the food, feed, and environmental safety of the hypothetical GM maize, in relation to a conventional comparator, could be modernized compared to current global regulatory requirements. If these scientific approaches to modernize data packages for GM crop regulation were adopted globally, GM crops could be commercialized in a more timely manner, thereby enabling development of more diverse GM traits to benefit growers, consumers, and the environment.
Collapse
Affiliation(s)
| | | | | | | | - Ming Hua Huang
- Syngenta Seeds LLC, Research Triangle Park, NC, United States
| | | | | | | | - Shuang Song
- Syngenta Seeds LLC, Research Triangle Park, NC, United States
| | | |
Collapse
|
3
|
Diao F, Li Y, Gao X, Luo J, Zhu X, Wang L, Zhang K, Li D, Ji J, Cui J. Response of the Propylea japonica Microbiota to Treatment with Cry1B Protein. Genes (Basel) 2023; 14:2008. [PMID: 38002951 PMCID: PMC10671136 DOI: 10.3390/genes14112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) is a dominant natural enemy of insect pests in farmland ecosystems. It also serves as an important non-target insect for environmental safety evaluations of transgenic crops. Widespread planting of transgenic crops may result in direct or indirect exposure of P. japonica to recombinant Bacillus thuringiensis (Bt) protein, which may in turn affect the biological performance of this natural enemy by affecting the P. japonica microflora. However, the effects of Bt proteins (such as Cry1B) on the P. japonica microbiota are currently unclear. Here, we used a high-throughput sequencing method to investigate differences in the P. japonica microbiota resulting from treatment with Cry1B compared to a sucrose control. The results demonstrated that the P. japonica microbiome was dominated by Firmicutes at the phylum level and by Staphylococcus at the genus level. Within-sample (α) diversity indices demonstrated a high degree of consistency between the microbial communities of P. japonica treated with the sucrose control and those treated with 0.25 or 0.5 mg/mL Cry1B. Furthermore, there were no significant differences in the abundance of any taxa after treatment with 0.25 mg/mL Cry1B for 24 or 48 h, and treatment with 0.5 mg/mL Cry1B for 24 or 48 h led to changes only in Staphylococcus, a member of the phylum Firmicutes. Treatment with a high Cry1B concentration (1.0 mg/mL) for 24 or 48 h caused significant changes in the abundance of specific taxa (e.g., Gemmatimonades, Patescibacteria, Thauera, and Microbacterium). However, compared with the control, most taxa remained unchanged. The statistically significant differences may have been due to the stimulatory effects of treatment with a high concentration of Cry1B. Overall, the results showed that Cry1B protein could alter endophytic bacterial community abundance, but not composition, in P. japonica. The effects of Bt proteins on endophytes and other parameters in non-target insects require further study. This study provides data support for the safety evaluation of transgenic plants.
Collapse
Affiliation(s)
- Fengchao Diao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (F.D.); (X.G.); (J.L.); (J.J.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.L.); (X.Z.); (L.W.); (K.Z.); (D.L.)
| | - Yarong Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.L.); (X.Z.); (L.W.); (K.Z.); (D.L.)
| | - Xueke Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (F.D.); (X.G.); (J.L.); (J.J.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.L.); (X.Z.); (L.W.); (K.Z.); (D.L.)
| | - Junyu Luo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (F.D.); (X.G.); (J.L.); (J.J.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.L.); (X.Z.); (L.W.); (K.Z.); (D.L.)
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.L.); (X.Z.); (L.W.); (K.Z.); (D.L.)
| | - Li Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.L.); (X.Z.); (L.W.); (K.Z.); (D.L.)
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.L.); (X.Z.); (L.W.); (K.Z.); (D.L.)
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.L.); (X.Z.); (L.W.); (K.Z.); (D.L.)
| | - Jichao Ji
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (F.D.); (X.G.); (J.L.); (J.J.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.L.); (X.Z.); (L.W.); (K.Z.); (D.L.)
| | - Jinjie Cui
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (F.D.); (X.G.); (J.L.); (J.J.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.L.); (X.Z.); (L.W.); (K.Z.); (D.L.)
| |
Collapse
|
4
|
Zhou Q, Han L, Li Y, Li J, Yang X. Neutral Dietary Effects of Two MicroRNAs, Csu-Novel-260 and Csu-Mir-14, on the Non-Target Arthropod Folsomia candida. PLANTS (BASEL, SWITZERLAND) 2023; 12:1885. [PMID: 37176942 PMCID: PMC10181208 DOI: 10.3390/plants12091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
RNA interference (RNAi) that is triggered by small or short RNAs has shown enormous potential in the development of pest control strategies. Two microRNAs (miRNAs), Csu-novel-260 and Csu-miR-14, were used in insect-resistant genetically engineered (IRGE) rice lines to confer resistance to Chilo suppressalis. However, a risk assessment of RNAi-based products is essential to determine the safety of a biopesticide or IRGE crop for commercialization. The non-target organism Folsomia candida, which plays an important ecological role as a soil decomposer in agricultural ecosystems, was used to assess the risk of miRNAs Csu-novel-260 and Csu-miR-14. In this study, a dietary miRNA toxicity assay system was established in F. candida. The expression levels of target genes, survival rate, fecundity and body size were investigated to evaluate the effects of the miRNAs on F. candida under the worst-case scenario. The results showed that the dietary miRNA toxicity assay system could be used for risk assessment of miRNA in F. candida. The target genes of miRNAs were influenced by miRNA at some time points. However, no significant differences were observed in the life-table parameters in F. candida fed with a diet containing miRNAs. The dietary effects of two miRNAs on F. candida are neutral.
Collapse
Affiliation(s)
- Qinli Zhou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences and College of Agriculture, Henan University, Kaifeng 475004, China
| | - Jing Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xiaowei Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Dos Santos CF, Ramos JD, de Carvalho FG, Dorneles AL, Menezes TRD, Pinheiro AC, Blochtein B. Survivorship and food consumption of immatures and adults of Apis mellifera and Scaptotrigona bipunctata exposed to genetically modified eucalyptus pollen. Transgenic Res 2023; 32:179-191. [PMID: 37029291 DOI: 10.1007/s11248-023-00343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Eucalyptus comprises the largest planted area of cultivated production forest in Brazil. Genetic modification (GM) of eucalyptus can provide additional characteristics for increasing productivity and protecting wood yield, as well as potentially altering fiber for a diversity of industrial uses. However, prior to releasing a new GM plant, risk assessments studies with non-target organisms must be undertaken. Bees are prominent biological models since they play an important role in varied ecosystems, including for Eucalyptus pollination. The main goal of this study was to evaluate whether a novel event (Eucalyptus 751K032), which carries the cp4-epsps gene that encodes the protein CP4-EPSPS and nptII gene that encodes the protein NPTII, might adversely affect honey bees (Apis mellifera) and stingless bees (Scaptotrigona bipunctata). The experiments were performed in southern Brazil, as follows: (i) larvae and adults were separately investigated, (ii) three or four different pollen diets were offered to bees, depending on larval or adult status, and (iii) two biological attributes, i.e., survivorship of larvae and adults and food intake by adults were evaluated. The diets were prepared with pollen from GM Eucalyptus 751K032; pollen from conventional Eucalyptus clone FGN-K, multifloral pollen or pure larval food. The insecticide dimethoate was used to evaluate the sensitivity of bees to toxic substances. Datasets were analyzed with Chi-square test, survival curves and repeated measures ANOVA. Results indicated no evidence of adverse effects of Eucalyptus pollen 751K032 on either honey bees or stingless bees assessed here. Therefore, the main findings suggest that the novel event may be considered harmless to these organisms since neither survivorship nor food consumption by bees were affected by it.
Collapse
Affiliation(s)
- Charles F Dos Santos
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil.
| | - Jenifer D Ramos
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Fernanda G de Carvalho
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Andressa L Dorneles
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Thais R D Menezes
- Suzano S.A. (FuturaGene - Biotech Division), Itapetininga, SP, 18207-780, Brazil
| | | | - Betina Blochtein
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| |
Collapse
|
6
|
Wang X, Faucher J, Dhandapani RK, Duan JJ, Palli SR. Potential effects of RNA interference of Asian longhorned beetle on its parasitoid. PEST MANAGEMENT SCIENCE 2023; 79:1557-1565. [PMID: 36529841 DOI: 10.1002/ps.7328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND It is important to understand how non-target insects such as parasitoids may be impacted directly or indirectly by RNA interference with double-stranded RNA (dsRNA) that has emerged as a novel pest control tool. We examined the potential effects of a dsRNA targeting an inhibitor of apoptosis (IAP) of the Asian longhorned beetle Anoplophora glabripennis on its gregarious larval ectoparasitoid Ontsira mellipes, directly on adult wasp's survival via injection of 4 μg of dsIAP per wasp, and indirectly on the detectability and suitability of host larvae injected with 2, 4 or 8 μg of dsIAP per larva. RESULTS Compared with no injection or injection with a control dsGFP targeting a region of gene coding for a green fluorescence protein (GFP), dsIAP did not affect adult wasp's survival. Ontsira mellipes locates hosts in the wood by sensing their movement. Host larvae did not completely cease movement after the injection of dsIAP and were still detected and parasitized. Clutch size was reduced and only 3.8% of the parasitoid offspring developed into adults on host larvae treated at the highest dose. However, clutch size was not affected and 25.5% of the parasitoid offspring developed into adults on host larvae treated at the lowest dose. The fitness of developed wasps (development time, sex ratio, body size, and fecundity) was not affected when compared to the control treatments. No dsIAP was detected in parasitoid larvae. CONCLUSION The results show no direct effect of the dsRNA on its parasitoid, but the potential indirect effect of dsRNA-affected host on the parasitoid, which may be minimized through optimizing dsRNA dosage to promote compatible applications of both management options for this invasive forest pest. © 2022 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Xingeng Wang
- Beneficial Insects Introduction Research Unit, Agricultural Research Service, United States Department of Agriculture, Newark, Delaware, USA
| | - Jessica Faucher
- Beneficial Insects Introduction Research Unit, Agricultural Research Service, United States Department of Agriculture, Newark, Delaware, USA
| | - Ramesh Kumar Dhandapani
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Jian J Duan
- Beneficial Insects Introduction Research Unit, Agricultural Research Service, United States Department of Agriculture, Newark, Delaware, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Cai L, Liu X, Tian Z, Michaud JP, Shen Z, Li Z, Zhang S, Liu X. Safety of Bacillus thuringiensis Cry1Ah and Vip3Aa toxins for the predatory stink bug Arma custos (Hemiptera: Pentatomidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158120. [PMID: 35987246 DOI: 10.1016/j.scitotenv.2022.158120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The widespread adoption of Bt crops expressing insecticidal proteins derived from Bacillus thuringiensis has created a need to assess the potential effects of these toxins on non-target organisms, especially species such as Arma custos, a generalist predator that provides important biological control services in many field crops in Asia. Direct dietary exposure of A. custos to Cry1Ah and Vip3Aa proteins produced no adverse effects on life history traits, despite continuous exposure throughout development and early adult life to concentrations significantly higher than the Bt protein concentration likely encountered by A.custos in the field, even when feeding directly on Bt plants. Enzyme-linked immunosorbent assay confirmed the presence of Bt proteins in A. custos midguts, but quantitative real-time PCR analysis of 12 genes associated with detoxification, antioxidative responses, immune responses, and metabolism revealed no significant changes in expression in adult bugs. Indirect exposure to these toxins via consumption of intoxicated prey, larvae of Helicoverpa armigera (Hübner), likewise produced no negative impacts on survival, development, adult weight, or female fecundity in either the F0 (exposed) or F1 (unexposed) generation, but female fresh weight was reduced in the F0 generation by the Cry1Ah (50 μg/g) treatment. Finally, a competitive binding assay with labelled protein and a ligand blotting assay both demonstrated that the Cry1Ah protein could not bind to receptors on the midgut brush border membrane vesicles (BBMVs) of A. custos adults. Therefore, we conclude that Cry1Ah and Vip3Aa proteins are unlikely to have significant negative effects on A. custos populations if employed as plant-incorporated protectants in field crops.
Collapse
Affiliation(s)
- Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Station-Hays, Hays, KS 67601, USA
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
8
|
Boeckman CJ, Ballou S, Gunderson T, Huang E, Linderblood C, Olson T, Stolte B, LeRoy K, Walker C, Wang Y, Woods R, Zhang J. Characterization of the Spectrum of Activity of IPD079Ea: A Protein Derived From Ophioglossum pendulum (Ophioglossales: Ophioglossaceae) With Activity Against Western Corn Rootworm [Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)]. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1531-1538. [PMID: 35640234 PMCID: PMC9554786 DOI: 10.1093/jee/toac079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 06/15/2023]
Abstract
Western corn rootworm (Diabrotica virgifera virgifera LeConte) is a major pest of corn in both North America and Europe and as such presents significant challenges for farmers. IPD079Ea protein is encoded by the ipd079Ea gene from Ophioglossum pendulum (a species of fern) and was found to have activity against western corn rootworm in multiple corn events transformed to express the IPD079Ea protein. In chronic laboratory hazard studies, IPD079Ea protein was fed to eleven species in the order Coleoptera and four species in the order Lepidoptera to assess the spectrum of activity. Activity was observed on certain species of the Chrysomelidae and Coccinellidae families, with western corn rootworm as the most sensitive insect tested. No adverse effects on mortality or other sublethal endpoints were observed on any species within Lepidoptera. Overall, IPD079Ea protein appears not to have broad insecticidal properties and has potential value as an effective trait to control western corn rootworm in agricultural systems.
Collapse
Affiliation(s)
| | - Stephan Ballou
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Tim Gunderson
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Emily Huang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | | | - Taylor Olson
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Brian Stolte
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Kristine LeRoy
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Carl Walker
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Yiwei Wang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Rachel Woods
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - John Zhang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| |
Collapse
|
9
|
Negligible Impact of Drought-Resistant Genetically Modified Maize on Arthropod Community Structure Observed in a 2-Year Field Investigation. PLANTS 2022; 11:plants11081092. [PMID: 35448820 PMCID: PMC9025266 DOI: 10.3390/plants11081092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Dehydration-responsive element-binding (DREB) transcription factors regulate diverse processes during plant development. Here, a 2-year field study was conducted to assess the potential effects of DREB-genetically modified maize (GM1) on arthropod species and ecological communities. Arthropod abundance, diversity, and community composition in GM1 and its non-transformed counterpart maize variety, Chang 7-2, were compared using whole plant inspection, pitfall trap, and suction sampler methods. Based on Shannon–Wiener diversity, Simpson’s diversity, Pielou’s indexes, number of species, and total number of individuals, GM1 had a negligible effect on arthropod abundance and diversity. Redundancy analysis indicated that the composition of arthropod community was not associated with maize type in the three investigation methods, while it exhibited significant correlation with year and sampling time in whole plant inspection and suction sample methods, and distinctly correlated with sampling time in the pitfall trap method. Nonmetric multidimensional scaling analysis of variable factors in the three investigation methods showed that sampling time, rather than maize type or year, was closely related to the composition of arthropod community in the field. Our results provide direct evidence to support that DREB-GM maize had negligible effects on arthropods in the Jilin Province under natural conditions.
Collapse
|
10
|
Chen Y, Romeis J, Meissle M. No Adverse Effects of Stacked Bacillus thuringiensis Maize on the Midge Chironomus riparius. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1078-1088. [PMID: 35040173 PMCID: PMC9306926 DOI: 10.1002/etc.5293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Material from genetically engineered maize producing insecticidal Cry proteins from Bacillus thuringiensis (Bt) may enter aquatic ecosystems and expose nontarget organisms. We investigated the effects on life table parameters of the midge Chironomus riparius (Diptera: Chironomidae) of SmartStax maize leaves, which contain six different Cry proteins targeting Lepidoptera and Coleoptera pests, in two plant backgrounds. For midge development and emergence, 95% confidence intervals for the means of six conventional maize lines (Rheintaler, Tasty Sweet, ES-Eurojet, Planoxx, EXP 258, and EXP 262), were used to capture the natural range of variation. For reproduction, lowest and highest means were used. The natural range of variation allows one to judge whether observed effects between Bt maize and the closest non-Bt comparator are likely to be of biological relevance. No adverse effects on C. riparius were observed with any Bt maize line compared with the respective non-Bt counterpart. Development time was shorter when females were fed Bt maize than when they were fed non-Bt maize, but this effect was not considered adverse. Development time, emergence ratio, sex ratio, and larvae/egg rope measured for Bt maize were within the natural range of variation. Fecundity for the Bt lines was equal to or higher than that for the conventional lines. Future risk assessment studies may consider plant background effects and the natural range of variation to judge the relevance of observed differences between particular genetically engineered and non-genetically engineered plants. Environ Toxicol Chem 2022;41:1078-1088. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Yi Chen
- Research Division Agroecology and Environment, AgroscopeZurichSwitzerland
- Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouHainanChina
- Sanya Research InstituteChinese Academy of Tropical Agricultural SciencesSanyaHainanChina
| | - Jörg Romeis
- Research Division Agroecology and Environment, AgroscopeZurichSwitzerland
| | - Michael Meissle
- Research Division Agroecology and Environment, AgroscopeZurichSwitzerland
| |
Collapse
|
11
|
De Luca Peña LV, Taelman SE, Préat N, Boone L, Van der Biest K, Custódio M, Hernandez Lucas S, Everaert G, Dewulf J. Towards a comprehensive sustainability methodology to assess anthropogenic impacts on ecosystems: Review of the integration of Life Cycle Assessment, Environmental Risk Assessment and Ecosystem Services Assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152125. [PMID: 34871681 DOI: 10.1016/j.scitotenv.2021.152125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, a variety of methodologies are available to assess local, regional and global impacts of human activities on ecosystems, which include Life Cycle Assessment (LCA), Environmental Risk Assessment (ERA) and Ecosystem Services Assessment (ESA). However, none can individually assess both the positive and negative impacts of human activities at different geographical scales in a comprehensive manner. In order to overcome the shortcomings of each methodology and develop more holistic assessments, the integration of these methodologies is essential. Several studies have attempted to integrate these methodologies either conceptually or through applied case studies. To understand why, how and to what extent these methodologies have been integrated, a total of 110 relevant publications were reviewed. The analysis of the case studies showed that the integration can occur at different positions along the cause-effect chain and from this, a classification scheme was proposed to characterize the different integration approaches. Three categories of integration are distinguished: post-analysis, integration through the combination of results, and integration through the complementation of a driving method. The literature review highlights that the most recurrent type of integration is the latter. While the integration through the complementation of a driving method is more realistic and accurate compared to the other two categories, its development is more complex and a higher data requirement could be needed. In addition to this, there is always the risk of double-counting for all the approaches. None of the integration approaches can be categorized as a full integration, but this is not necessarily needed to have a comprehensive assessment. The most essential aspect is to select the appropriate components from each methodology that can cover both the environmental and socioeconomic costs and benefits of human activities on the ecosystems.
Collapse
Affiliation(s)
- Laura Vittoria De Luca Peña
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Sue Ellen Taelman
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Nils Préat
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Lieselot Boone
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Katrien Van der Biest
- Ecosystem Management Research Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Marco Custódio
- Flanders Marine Institute, Wandelaarkaai 7, B8400 Ostend, Belgium
| | - Simon Hernandez Lucas
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium; Ghent University, BLUEGent Business Development Center in Aquaculture and Blue Life Sciences, 9000 Ghent, Belgium
| | - Gert Everaert
- Flanders Marine Institute, Wandelaarkaai 7, B8400 Ostend, Belgium
| | - Jo Dewulf
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
12
|
Lanzoni A, Bosi S, Bregola V, Camastra F, Ciaramella A, Staiano A, Dinelli G, Burgio G. Assessing the effects of Bt maize on the non-target pest Rhopalosiphum maidis by demographic and life-history measurement endpoints. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:29-43. [PMID: 34218832 DOI: 10.1017/s0007485321000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The most commercialized Bt maize plants in Europe were transformed with genes which express a truncated form of the insecticidal delta-endotoxin (Cry1Ab) from the soil bacterium Bacillus thuringiensis (Bt) specifically against Lepidoptera. Studies on the effect of transgenic maize on non-target arthropods have mainly converged on beneficial insects. However, considering the worldwide extensive cultivation of Bt maize, an increased availability of information on their possible impact on non-target pests is also required. In this study, the impact of Bt-maize on the non-target corn leaf aphid, Rhopalosiphum maidis, was examined by comparing biological traits and demographic parameters of two generations of aphids reared on transgenic maize with those on untransformed near-isogenic plants. Furthermore, free and bound phenolics content on transgenic and near-isogenic plants were measured. Here we show an increased performance of the second generation of R. maidis on Bt-maize that could be attributable to indirect effects, such as the reduction of defense against pests due to unintended changes in plant characteristics caused by the insertion of the transgene. Indeed, the comparison of Bt-maize with its corresponding near-isogenic line strongly suggests that the transformation could have induced adverse effects on the biosynthesis and accumulation of free phenolic compounds. In conclusion, even though there is adequate evidence that aphids performed better on Bt-maize than on non-Bt plants, aphid economic damage has not been reported in commercial Bt corn fields in comparison to non-Bt corn fields. Nevertheless, Bt-maize plants can be more easily exploited by R. maidis, possibly due to a lower level of secondary metabolites present in their leaves. The recognition of this mechanism increases our knowledge concerning how insect-resistant genetically modified plants impact on non-target arthropods communities, including tritrophic web interactions, and can help support a sustainable use of genetically modified crops.
Collapse
Affiliation(s)
- Alberto Lanzoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Sara Bosi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Valeria Bregola
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Francesco Camastra
- Dipartimento di Scienze e Tecnologie, Università di Napoli Parthenope, Napoli, Italy
| | - Angelo Ciaramella
- Dipartimento di Scienze e Tecnologie, Università di Napoli Parthenope, Napoli, Italy
| | - Antonino Staiano
- Dipartimento di Scienze e Tecnologie, Università di Napoli Parthenope, Napoli, Italy
| | - Giovanni Dinelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Giovanni Burgio
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| |
Collapse
|
13
|
Darlington M, Reinders JD, Sethi A, Lu AL, Ramaseshadri P, Fischer JR, Boeckman CJ, Petrick JS, Roper JM, Narva KE, Vélez AM. RNAi for Western Corn Rootworm Management: Lessons Learned, Challenges, and Future Directions. INSECTS 2022; 13:57. [PMID: 35055900 PMCID: PMC8779393 DOI: 10.3390/insects13010057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is considered one of the most economically important pests of maize (Zea mays L.) in the United States (U.S.) Corn Belt with costs of management and yield losses exceeding USD ~1-2 billion annually. WCR management has proven challenging given the ability of this insect to evolve resistance to multiple management strategies including synthetic insecticides, cultural practices, and plant-incorporated protectants, generating a constant need to develop new management tools. One of the most recent developments is maize expressing double-stranded hairpin RNA structures targeting housekeeping genes, which triggers an RNA interference (RNAi) response and eventually leads to insect death. Following the first description of in planta RNAi in 2007, traits targeting multiple genes have been explored. In June 2017, the U.S. Environmental Protection Agency approved the first in planta RNAi product against insects for commercial use. This product expresses a dsRNA targeting the WCR snf7 gene in combination with Bt proteins (Cry3Bb1 and Cry34Ab1/Cry35Ab1) to improve trait durability and will be introduced for commercial use in 2022.
Collapse
Affiliation(s)
- Molly Darlington
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Jordan D. Reinders
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Amit Sethi
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Albert L. Lu
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Joshua R. Fischer
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Chad J. Boeckman
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Jay S. Petrick
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Jason M. Roper
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Ana M. Vélez
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| |
Collapse
|
14
|
Chen Y, Romeis J, Meissle M. Addressing the challenges of non-target feeding studies with genetically engineered plant material - stacked Bt maize and Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112721. [PMID: 34478987 DOI: 10.1016/j.ecoenv.2021.112721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Previous studies reported adverse effects of genetically engineered maize that produces insecticidal Cry proteins from Bacillus thuringiensis (Bt) on the water flea Daphnia magna. In the current study, effects of flour, leaves, or pollen from stacked Bt maize that contains six Bt proteins (SmartStax) in two plant backgrounds on life table parameters of D. magna were investigated. Adverse effects were observed for Bt maize flour, originating from different production fields and years, but not for leaves or pollen, produced from plants grown concurrently in a glasshouse. Because leaves contained eight to ten times more Cry protein than flour, the effects of the flour were probably not caused by the Cry proteins, but by compositional differences between the plant backgrounds. Furthermore, considering the natural range of variation in the response of D. magna to conventional maize lines, the observed effects of Bt maize flour were unlikely to be of biological relevance. Our study demonstrates how Cry protein effects can be separated from plant background effects in non-target studies using Bt plant material as the test substance and how detected effects can be judged for their biological relevance.
Collapse
Affiliation(s)
- Yi Chen
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Michael Meissle
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland.
| |
Collapse
|
15
|
Claus G, Pisman M, Spanoghe P, Smagghe G, Eeraerts M. Larval oral exposure to thiacloprid: Dose-response toxicity testing in solitary bees, Osmia spp. (Hymenoptera: Megachilidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112143. [PMID: 33740489 DOI: 10.1016/j.ecoenv.2021.112143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Risk assessment of pesticides involves ecotoxicological testing. In case pesticide exposure to bees is likely, toxicity tests are performed with honey bees (Apis mellifera), with a tiered approach, for which validated and internationally accepted test protocols exist. However, concerns have grown regarding the protection of non-Apis bees [bumble bees (Bombus spp.), solitary and stingless bees], given their different life cycles and therefore distinct exposure routes. Larvae of solitary bees of the genus Osmia feed on unprocessed pollen during development, yet no toxicity test protocol is internationally accepted or validated to assess the impact of pesticide exposure during this stage of their life cycle. Therefore, the purpose of this study is to further validate a test protocol with two solitary bee species (O. cornuta and O. bicornis) to assess lethal and sublethal effects of pesticide exposure on larval development. Larvae were exposed to thiacloprid (neonicotinoid insecticide) mixed in a new, artificial pollen provision. Both lethal (developmental and winter mortality) and sublethal endpoints (larval development time, pollen provision consumption, cocoon weight, emergence time and adult longevity) were recorded. Effects of lower, more environmentally realistic doses were only reflected in sublethal endpoints. In both bee species, thiacloprid treatment was associated with increased developmental mortality and larval development time, and decreased pollen provision consumption and cocoon weight. The test protocol proved valid and robust and showed that for higher doses of thiacloprid the acute endpoint (larval mortality) is sufficient. In addition, new insights needed to develop a standardized test protocol were acquired, such as testing of a positive control for the first time and selection of male and female individuals at egg level.
Collapse
Affiliation(s)
- Gregor Claus
- Laboratory of Crop Protection Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Matti Pisman
- Laboratory of Agrozoology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pieter Spanoghe
- Laboratory of Crop Protection Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Maxime Eeraerts
- Laboratory of Agrozoology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Marques LH, Lepping M, Castro BA, Santos AC, Rossetto J, Nunes MZ, Silva OABN, Moscardini VF, de Sá VGM, Nowatzki T, Dahmer ML, Gontijo PC. Field efficacy of Bt cotton containing events DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 against lepidopteran pests and impact on the non-target arthropod community in Brazil. PLoS One 2021; 16:e0251134. [PMID: 33945577 PMCID: PMC8096009 DOI: 10.1371/journal.pone.0251134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The efficacy and non-target arthropod effects of transgenic DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 Bt cotton, expressing proteins Cry1Ac, Cry1F and Vip3Aa19, was examined through field trials in Brazil. Fifteen field efficacy experiments were conducted from 2014 through the 2020 growing season across six different states in Brazil to evaluate performance against key lepidopteran pests through artificial infestations of Chrysodeixis includens (Walker), Spodoptera frugiperda (J.E. Smith,1797), Spodoptera cosmioides (Walker, 1858) and Chloridea virescens (F., 1781), and natural infestations of Alabama argillacea (Hübner) and S. frugiperda. The impact of this Bt cotton technology on the non-target arthropod community in Brazilian cotton production systems was also assessed in a multi-site experiment. DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton significantly reduced the feeding damage caused by S. frugiperda, S. cosmioides, C. includens, C. virescens and A. argillacea, causing high levels of mortality (greater than 99%) to all target lepidopteran pests evaluated during vegetative and/or reproductive stages of crop development. Non-target arthropod community-level analyses confirmed no unintended effects on the arthropod groups monitored. These results demonstrate the value of transgenic Bt cotton containing event DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 for consideration as part of an integrated approach for managing key lepidopteran pests in Brazilian cotton production systems.
Collapse
Affiliation(s)
| | - Miles Lepping
- Corteva Agriscience, Indianapolis, Indiana, United States of America
| | - Boris A. Castro
- Corteva Agriscience, Indianapolis, Indiana, United States of America
| | | | | | | | | | | | | | | | - Mark L. Dahmer
- Corteva Agriscience, Johnston, Iowa, United States of America
| | - Pablo C. Gontijo
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, Goiás, Brazil
| |
Collapse
|
17
|
Chen J, Wang H, Yang X, Chen G, Du L, Chen H, Li Y, Peng Y, Han L. Consumption of miRNA-Mediated Insect-Resistant Transgenic Rice Pollen Does Not Harm Apis mellifera Adults. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4234-4242. [PMID: 33818077 DOI: 10.1021/acs.jafc.1c00585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RNAi-based insect-resistant genetically engineered (IRGE) crops represent a promising approach for pest management by suppressing gene expressions or translation. A developed microRNA-mediated IRGE rice line expressing endogenous Chilo suppressalis Csu-novel-260 shows significant resistance to target pests. The nontarget insect Apis mellifera is an important pollinator used as a surrogate species for the ecological risk assessment of IRGE plants. To simulate a worst-case scenario, the full-length C. suppressalis and A. mellifera disembodied (dib) cDNAs were cloned. The dib 3'-untranslated regions shared 58.06% nucleotide sequence similarity between C. suppressalis and A. mellifera. No potential Csu-novel-260 binding site in Amdib was detected through the bioinformatics analysis. A dietary RNAi toxicity assay of the impacts of ingested Csu-novel-260 on A. mellifera adults showed that the survival rates of RNAi-treated A. mellifera did not significantly differ from those in the blank control (CK) and negative control (NC) treatments. The Csu-novel-260 uptake by A. mellifera peaked at 8 days postfeeding and then gradually decreased. The Amdib expression was not affected by the RNAi assay days or treatments. These results suggest that A. mellifera adults are not susceptible to high doses of Csu-novel-260 in the dietary RNAi assay and that the impact of miRNA-mediated IRGE plants on A. mellifera is negligible.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huilin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaowei Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Geng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Chen
- Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Chen Y, Romeis J, Meissle M. Performance of Daphnia magna on flour, leaves, and pollen from different maize lines: Implications for risk assessment of genetically engineered crops. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111967. [PMID: 33524911 DOI: 10.1016/j.ecoenv.2021.111967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Non-target effects of genetically engineered (GE) plants on aquatic Daphnia magna have been studied by feeding the species with different maize materials containing insecticidal Cry proteins from Bacillus thuringiensis (Bt). The results of those studies were often difficult to interpret, because only one GE plant was compared to one related non-GE control. In such a setting, effects of the Cry proteins cannot be distinguished from plant background effects, in particular when the test species is nutritionally stressed. In the present study, we tested the suitability of three different maize materials, i.e., flour, leaves and pollen, from five diverse non-GE maize lines (including EXP 258, a breeding line that is closely related to a SmartStax Bt maize) as exclusive food sources for D. magna. The parameters recorded included survival, sublethal endpoints such as body size, number of moltings to first offspring, time to first offspring, number of individuals in first clutch, total number of clutches, total number of offspring, average number of offspring per clutch, and population measures such as net reproductive rate R0, generation time T and intrinsic rate of increase rm. The results showed that D. magna can survive, grow and reproduce when fed only maize materials, although the performance was poorer than when fed algae, which indicates nutritional stress. Large differences in life table and population parameters of D. magna were observed among the different maize lines. Our results suggest that confounding effects caused by nutritional stress and plant background might explain some of the conflicting results previously published on the effects of Bt crops on D. magna. Using 95% confidence intervals for the means of the five maize lines for all measured parameters of D. magna performance in our study, we captured the natural range of variation. This information is useful for the interpretation of observed differences in D. magna performance between a GE plant and its non-GE comparator as it helps judging whether observed effects are of biological relevance. If differences between a GE and comparator line are observed and their biological relevance needs to be assessed in future risk assessments of GE maize, 1) the data on natural variation of the different parameters generated by previous studies can be informative (e.g. data from our study for maize fed D. magna); 2) for additional experiments the inclusion of multiple unrelated non-GE comparators should be considered; In addition, it should be taken into account that nutritional stress can affect the outcome of the study.
Collapse
Affiliation(s)
- Yi Chen
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Jörg Romeis
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Michael Meissle
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
| |
Collapse
|
19
|
Han B, Cao B, Yang Y, Wang X, Geng L, Diao Q, Dai P. Effects of Bt Cry78Ba1 Toxin on Larvae and Adults of Apis mellifera (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:403-408. [PMID: 33179737 DOI: 10.1093/jee/toaa261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Cry78Ba1 is Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt) protein found with high insecticidal activity against the piercing-sucking insect Laodelphax striatellus Fallén (Homoptera: Delphacidae) and has broad application prospects for control of the rice planthopper. As honey bees may be exposed to Bt Cry78Ba1 rice pollen by feeding, we evaluated the risk of Bt Cry78Ba1 toxin to Apis mellifera L. workers. A dietary exposure experiment was conducted on worker larvae and adults under controlled laboratory conditions to examine the effects of Cry78Ba1 toxin on honey bees. Worker bee larvae were fed a diet containing Cry78Ba1 toxin (0.01, 0.1, 1, and 10 mg/liter) on day 2 through day 5 after grafting, and adults were exposed to syrup containing Cry78Ba1 for up to 16 d. Negative control (no test substance added), solvent control (1 mM Tris-HCl), and positive control (dimethoate 45 mg/liter for the larva test, 1 and 45 mg/liter for the adult test) groups were established. Compared with the negative control, larvae and adults that consumed food containing Cry78Ba1 toxin exhibited no significant differences in survival, larval weight, or pollen or syrup consumption. This result indicates that chronic oral exposure to Cry78Ba1 toxin has no negative effects on honey bees at the maximum tested concentration.
Collapse
Affiliation(s)
- Bo Han
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Beibei Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Yang
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinling Wang
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyun Diao
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingli Dai
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Singh D, Samiksha, Thayil SM, Sohal SK, Kesavan AK. Exploration of insecticidal potential of Cry protein purified from Bacillus thuringiensis VIID1. Int J Biol Macromol 2021; 174:362-369. [PMID: 33493564 DOI: 10.1016/j.ijbiomac.2021.01.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
Insect pests are a threat to agriculture as they cause a loss of 15-22% to economically important crops every year. Bacillus thuringiensis produces parasporal crystal inclusions that have insecticidal 'Cry' proteins which are toxic to insect larvae of the order Lepidoptera, Coleoptera and Diptera, etc. In the present study, 40 different soil samples from Amritsar and its surrounding areas were selected for isolation of B. thuringiensis. The rod shaped, gram-positive bacterial isolates were further analyzed for characteristic crystal formation using phase contrast and scanning electron microscopy. 6 Bacillus samples containing cry genes were identified using the universal primers for cry genes, of which one isolate exhibited a protein band of ~95 kDa. This protein was purified using a Sephadex G-75 column. The insecticidal assays conducted with purified Cry protein on insect larvae of lepidopteran and dipteran orders viz. Spodoptera litura, Galleria malonella, Bactrocera cucurbitae and Culex pipens revealed considerable detrimental effects. A significant increase in larval mortality was observed for the larvae of all insects in a concentration dependent manner when treated with Cry protein purified from B. thuringenisis VIID1. The purified Cry protein did not have any significant effect on honey bee larvae.
Collapse
Affiliation(s)
- Drishtant Singh
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Samiksha
- Insect Physiology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Seema Madhumal Thayil
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinder Kaur Sohal
- Insect Physiology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anup Kumar Kesavan
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
21
|
Guo M, Wang Z, Cai W, Hua H, Zhao J. Safety assessment of transgenic Cry2Aa rice to a generalist predator, Paederus fuscipes Curtis (Coleoptera: Staphylinidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110719. [PMID: 32460046 DOI: 10.1016/j.ecoenv.2020.110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The insecticidal crystal proteins of Cry2A family from Bacillus thuringiensis (Bt) are important candidate proteins expressed in gene pyramiding Bt crops. A transgenic rice line (T2A-1) harboring a synthetic Cry2A* (Cry2Aa) gene showed effective resistance to some lepidopteran rice pests. As a generalist predator in rice ecosystems, the rove beetle (Paederus fuscipes) can prey on many rice insect pests such as planthoppers. Considering the possible exposure of Cry2Aa to P. fuscipes through tritrophic food chain, it is necessary to assess the potential risks of T2A-1 rice to this predator. In this study, a tritrophic experiment was conducted to assess the prey-mediated effects of Cry2Aa on P. fuscipes through the T2A-1 rice-Nilaparvata lugens-P. fuscipes food chain. After preying on N. lugens nymphs reared on T2A-1, no accumulated Cry2Aa could be detected in P. fuscipes adults, despite Cry2Aa being detected in N. lugens. In addition, no harmful effects were detected on the life table parameters of P. fuscipes in this tritrophic chain. Additionally, direct exposure to a high dose of purified Cry2Aa protein, representing the worst case scenario, showed no significant adverse effects on the development of P. fuscipes. These results showed that transgenic Cry2Aa rice had no harmful effects on P. fuscipes.
Collapse
Affiliation(s)
- Mengjian Guo
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengjie Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wanlun Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
22
|
Wang W, Cai W, Wang Z, Zhao J, Hua H. A new method for evaluating the effects of insecticidal proteins expressed by transgenic plants on ectoparasitoid of target pest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29983-29992. [PMID: 32447725 DOI: 10.1007/s11356-020-08664-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Transgenic Bt insect-resistant plants are highly resistant to Lepidoptera stockpile pest Indian meal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae), a storage pest. Habrobracon hebetor (Say) (Hymenoptera: Braconidae), which is an ectoparasitic wasp of Indian meal moth, may be exposed to the Bt protein through the food chain. In the current study, high dose of Cry1C protein was injected into the hemolymph of P. interpunctella by microinjection, and the hemolymph was used as the carrier to deliver Bt protein to the H. hebetor. Using this method, we developed a new Tier-1 risk assessment system for ectoparasitoid, successfully avoided "host/prey quality-mediated effect," and improve the accuracy of safety evaluation. Results showed that injected Cry1C was stable and bioactive in the hemolymph of P. interpunctella parasitized by H. hebetor, and high dose of Cry1C has no negative impacts on egg hatching rate, developmental duration from egg to adult, survival egg to adult, pupa weight, adults weight (male and female), adult longevity and reproduction, and activity of stress-related enzymes of H. hebetor. However, the hemolymph of P. interpunctella injected into Galanthus nivalis L. agglutinin (the positive control) had significant negative impact on these biological parameters of H. hebetor. The results indicate that H. hebetor are not sensitive to Cry1C protein at the tested concentration and there were no detrimental effects of Cry1C protein on any biological parameters tested in the present study. More importantly, we constructed a new efficient and simple system for the biosafety assessment on the larvae of ectoparasitoid of target pest.
Collapse
Affiliation(s)
- Wenjun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wanlun Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengjie Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
23
|
Roberts A, Boeckman CJ, Mühl M, Romeis J, Teem JL, Valicente FH, Brown JK, Edwards MG, Levine SL, Melnick RL, Rodrigues TB, Vélez AM, Zhou X, Hellmich RL. Sublethal Endpoints in Non-target Organism Testing for Insect-Active GE Crops. Front Bioeng Biotechnol 2020; 8:556. [PMID: 32582674 PMCID: PMC7295912 DOI: 10.3389/fbioe.2020.00556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Historically, genetically engineered (GE) plants that have incorporated genes conferring insect protection have primarily used Cry proteins derived from Bacillus thuringiensis (Bt) to achieve their insecticidal phenotype. As a result, regulators have developed a level of familiarity and confidence in reviewing plants incorporating these insecticidal proteins. However, new technologies have been developed that produce GE plants that incorporate pest protection by triggering an RNA interference (RNAi) response or proteins other than Bt Cry proteins. These technologies have new modes of action. Although the overall assessment paradigm for GE plants is robust, there are ongoing discussions about the appropriate tests and measurement endpoints needed to inform non-target arthropod assessment for technologies that have a different mode of action than the Bt Cry proteins. As a result, increasing attention is being paid to the use of sublethal endpoints and their value for environmental risk assessment (ERA). This review focuses on the current status and history of sublethal endpoint use in insect-active GE crops, and evaluates the future use of sublethal endpoints for new and emerging technologies. It builds upon presentations made at the Workshop on Sublethal Endpoints for Non-target Organism Testing for Non-Bt GE Crops (Washington DC, USA, 4-5 March 2019), and the discussions of government, academic and industry scientists convened for the purpose of reviewing the progress and status of sublethal endpoint testing in non-target organisms.
Collapse
Affiliation(s)
- Andrew Roberts
- Agriculture and Food Systems Institute, Washington, DC, United States
| | | | - Marina Mühl
- Ministerio de Agricultura, Ganadería y Pesca, Dirección de Biotecnología, Buenos Aires, Argentina
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - John L Teem
- Agriculture and Food Systems Institute, Washington, DC, United States
| | | | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Martin G Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Rachel L Melnick
- Agriculture and Food Systems Institute, Washington, DC, United States
| | | | - Ana M Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Richard L Hellmich
- USDA, Corn Insects and Crop Genetics Research Unit, Ames, IA, United States.,Department of Entomology, Iowa State University, Ames, IA, United States
| |
Collapse
|
24
|
Romeis J, Widmer F. Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. FRONTIERS IN PLANT SCIENCE 2020; 11:679. [PMID: 32582240 PMCID: PMC7289159 DOI: 10.3389/fpls.2020.00679] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
RNA interference (RNAi) is a powerful technology that offers new opportunities for pest control through silencing of genes that are essential for the survival of arthropod pests. The approach relies on sequence-specificity of applied double-stranded (ds) RNA that can be designed to have a very narrow spectrum of both the target gene product (RNA) as well as the target organism, and thus allowing highly targeted pest control. Successful RNAi has been reported from a number of arthropod species belonging to various orders. Pest control may be achieved by applying dsRNA as foliar sprays. One of the main concerns related to the use of dsRNA is adverse environmental effects particularly on valued non-target species. Arthropods form an important part of the biodiversity in agricultural landscapes and contribute important ecosystem services. Consequently, environmental risk assessment (ERA) for potential impacts that plant protection products may have on valued non-target arthropods is legally required prior to their placement on the market. We describe how problem formulation can be used to set the context and to develop plausible pathways on how the application of dsRNA-based products could harm valued non-target arthropod species, such as those contributing to biological pest control. The current knowledge regarding the exposure to and the hazard posed by dsRNA in spray products for non-target arthropods is reviewed and suggestions are provided on how to select the most suitable test species and to conduct laboratory-based toxicity studies that provide robust, reliable and interpretable results to support the ERA.
Collapse
Affiliation(s)
- Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Franco Widmer
- Competence Division Method Development and Analytics, Agroscope, Zurich, Switzerland
| |
Collapse
|
25
|
Wang Z, Cai W, Wang W, Zhao J, Li Y, Zou Y, Elgizawy KK, Hua H. Assessing the effects of Cry2Aa protein on Habrobracon hebetor (Hymenoptera: Braconidae), a parasitoid of Indian meal moth, Plodia interpunctella (lepidoptera: Pyralidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110380. [PMID: 32145528 DOI: 10.1016/j.ecoenv.2020.110380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Transgenic crops express Cry proteins exhibit high resistant to target insect pests. When we evaluate the effects of Cry proteins on the parasitoid of target insect pest via tritrophic experiments (transgenic plant-target insect pest-parasitoid) host quality of parasitoids might decrease because of insecticidal protein ingestion, this would cause host-quality mediated effects and influence the accuracy of biosafety assessment. In the current study, high dose of Cry2Aa protein was injected into the hemolymph of Plodia interpunctella by microinjection, and the hemolymph was used as the carrier to deliver Cry protein to Habrobracon hebetor, which has been previously reported as an ectoparasitoid of P. interpunctella larval, in order to avoid the "host-quality mediated effects". Results showed that injected Cry2Aa remained at high concentration and bioactive in the hemolymph of P. interpunctella parasitized by H. hebetor, the hemolymph of P. interpunctella could be used as carriers of Cry protein to H. hebetor, and high dose of Cry2Aa have no negative impacts on the development time, weight of pupa, sex ratio, adults weight (male and female), adult longevity and fecundity, and the activity of stress-related enzymes of H. hebetor. However, the hemolymph of P. interpunctella injected into Galanthus nivalis agglutinin (the positive control) showed significant negative impact on these parameters measured in the present study of H. hebetor. This indicated that Cry2Aa protein had no detrimental effects on the biological parameters of H. hebetor measured in the current study. Meanwhile, this study provides a new method for the safety evaluation of the ectoparasitoids of target pest and might be expanded to the other species of ectoparasitoids of target insects of Cry proteins in biosafety risk assessment.
Collapse
Affiliation(s)
- Zhengjie Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wanlun Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenjun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yifeng Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yulan Zou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Zhao Y, Yun Y, Peng Y. Bacillus thuringiensis protein Vip3Aa does not harm the predator Propylea japonica: A toxicological, histopathological, biochemical and molecular analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110292. [PMID: 32035396 DOI: 10.1016/j.ecoenv.2020.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The ladybeetle Propylea japonica is a widely distributed natural enemy in many agricultural systems. P. japonica is often used as a test organism for safety assessments of transgenic Bacillus thuringiensis crops. Plant varieties expressing the Vip3Aa insecticidal protein are not currently commercially available in China. In this study, protease inhibitor E-64 was used as a positive control to examine the responses of P. japonica larvae to a high concentration of Vip3Aa proteins. Larvae that were fed E-64 had increased mortality and prolonged developmental period, but these parameters were unaffected when larvae were fed Vip3Aa. The epithelial cells of midguts were intact and closely connected with the basal membrane when larvae were fed Vip3Aa, but the epithelial cells degenerated in the E-64 treatment. The activities of antioxidative enzymes and expression levels of detoxification-related genes in P. japonica larvae were not altered after exposure to Vip3Aa; however, these biochemical and molecular parameters were significantly changed in the E-64 treatment. The results demonstrate that Vip3Aa protein is not harmful to the predator P. japonica.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yu Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
27
|
Souza CSF, Silveira LCP, Souza BHS, Nascimento PT, Damasceno NCR, Mendes SM. Efficiency of biological control for fall armyworm resistant to the protein Cry1F. BRAZ J BIOL 2020; 81:154-163. [PMID: 32159617 DOI: 10.1590/1519-6984.224774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
Understanding the ecological and toxicological relationship between genetically modified cultivars (GM) and biological control agents is of great importance for discussions related to the compatability of GM cultivars and integrated management strategies for pest resistance. The present study evaluated the search behavior and predatory capacity of Orius insidiosus (Say) (Hemiptera: Anthocoridae) and Doru luteipes (Scudder) (Dermaptera: Forficulidae) on eggs and caterpillars of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) resistant or not to the protein Cry1F expressed in Bt corn. To determine the search time, a stopwatch was run until the capture of the first prey, predation capacity was evaluated by counting the prey remaining after 24 hours of infestation. The injuries of S. frugiperda in genetically modified and conventional corn in the presence and absence of predators was also evaluated. The predators were not able to distinguish between resistant and susceptible prey (eggs or caterpillars), given the predatory behaviour observed. There was no difference in searching time or predatory capacity between the predators for eggs and caterpillars of either resistant or susceptible S. frugiperda. In the presence of predators, the injury scores for resistant S. frugiperda on the Bt corn plants were lower. It was concluded that O. insidiosus and D. luteipes did not notice the presence of the protein Cry1F in the prey S. frugiperda, which may facilitate the combined use of GM corn and biological control in integrated management programs and for management of pest resistance.
Collapse
Affiliation(s)
- C S F Souza
- Departamento de Entomologia, Universidade Federal de Lavras - UFLA, Campus Universitario, CP 3037, CEP 37200-000, Lavras, MG, Brasil
| | - L C P Silveira
- Departamento de Entomologia, Universidade Federal de Lavras - UFLA, Campus Universitario, CP 3037, CEP 37200-000, Lavras, MG, Brasil
| | - B H S Souza
- Departamento de Entomologia, Universidade Federal de Lavras - UFLA, Campus Universitario, CP 3037, CEP 37200-000, Lavras, MG, Brasil
| | - P T Nascimento
- Departamento de Entomologia, Universidade Federal de Lavras - UFLA, Campus Universitario, CP 3037, CEP 37200-000, Lavras, MG, Brasil
| | - N C R Damasceno
- Centro Universitário de Sete Lagoas - UNIFEMM, Av. Marechal Castelo Branco, 2765, Santo Antonio, CEP 35701-242, Sete Lagoas, MG, Brasil
| | - S M Mendes
- Centro Nacional de Pesquisa de Milho e Sorgo - CNPMS, Rodovia MG 424, Km 45, CP 285, CEP 35701-970, Sete Lagoas, MG, Brasil
| |
Collapse
|
28
|
McDonald J, Burns A, Raybould A. Advancing ecological risk assessment on genetically engineered breeding stacks with combined insect-resistance traits. Transgenic Res 2020; 29:135-148. [PMID: 31953798 PMCID: PMC7000536 DOI: 10.1007/s11248-019-00185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 11/01/2022]
Abstract
To inform the ecological risk assessment (ERA) of a transgenic crop with multiple insecticidal traits combined by conventional breeding (breeding stack), a comparative field study is customarily conducted to compare transgenic protein concentrations in a breeding stack to those in corresponding component single events used in the breeding process. This study tests the hypothesis that transgenic protein expression will not significantly increase due to stacking, such that existing margins of exposure erode to unacceptable levels. Corroboration of this hypothesis allows for the use of existing non-target organism (NTO) effects tests results, where doses were based on the estimated environmental concentrations determined for a component single event. Results from over 20 studies comparing expression profiles of insecticidal proteins produced by commercial events in various combinations of conventionally-bred stacks were examined to evaluate applying previously determined no-observed-effect concentrations (NOECs) to stack ERAs. This paper presents a large number of tests corroborating the hypothesis of no significant increase in insecticidal protein expression due to combination by conventional breeding, and much of the variation in protein expression is likely attributed to genetic and environmental factors. All transgenic protein concentrations were well within conservative margins between exposure and corresponding NOEC. This work supports the conclusion that protein expression data generated for single events and the conservative manner for setting NTO effects test concentrations allows for the transportability of existing NOECs to the ERA of conventionally-bred stacks, and that future tests of the stated hypothesis are no longer critically informative for ERA on breeding stacks.
Collapse
Affiliation(s)
- Justin McDonald
- Product Safety, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA.
| | - Andrea Burns
- Product Safety, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Alan Raybould
- Science, Technology and Innovation Studies and Global Academy of Agriculture and Food Security, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Raybould A. Hypothesis-Led Ecological Risk Assessment of GM Crops to Support Decision-Making About Product Use. GMOS 2020. [DOI: 10.1007/978-3-030-53183-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Zhang S, Luo J, Jiang W, Wu L, Zhang L, Ji J, Wang L, Ma Y, Cui J. Response of the bacterial community of Propylea japonica (Thunberg) to Cry2Ab protein. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113063. [PMID: 31454585 DOI: 10.1016/j.envpol.2019.113063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/04/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Propylea japonica is a very important predator in agricultural ecosystems, which could be exposed to Bt protein. In this study, the bacterial community of P. japonica fed with normal food and food containing Cry2Ab protein was characterized for the first time using qPCR and high-throughput sequencing approaches. Results showed no effect of Cry2Ab on P. japonica development and reproduction. The most abundant bacterial phylum was Firmicutes, and the most abundant genus was Staphylococcus. The total bacteria copy number was not significantly different across four larval stages. Bacteria species composition was gathered more closely in feed on sucrose solution (sucrose-fed) than in larvae only fed on pea aphid (aphid-fed), the diversity indices of some operational taxonomic unit (OTU) were significantly different between sucrose-fed and aphid-fed samples. Different instar larval stages of P. japonica fed with sucrose solution containing Cry2Ab Bt protein and found no effect on microbial community composition and total bacteria copy numbers. However, effects on relative abundance of microbes, copy numbers of Corynebacterium 1 and Glutamicibacter arilaitensis were observed significantly lower in Bt-fed first and fourth larval stages. Low and high concentrations of Cry2Ab protein altered the microbial abundance relative to sucrose-fed P. japonica and copy numbers of G. arilaitensis and Staphylococcus xylosus were significantly lower in Bt-fed samples than control sucrose-fed. Our results are the first report showing that feeding on Cry2Ab protein does not alter microbial species composition in P. japonica, but effects gene copy number of some dominant bacteria. Further investigations are needed to assess the effect of copy number change on P. japonica.
Collapse
Affiliation(s)
- Shuai Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Junyu Luo
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Weili Jiang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Linke Wu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Lijuan Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jichao Ji
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yan Ma
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
31
|
Dai P, Wang M, Geng L, Yan Z, Yang Y, Guo L, Ma S, Diao Q. The effect of Bt Cry9Ee toxin on honey bee brood and adults reared in vitro, Apis mellifera (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:381-387. [PMID: 31212186 DOI: 10.1016/j.ecoenv.2019.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
The effects of Bt Cry9Ee toxin on honey bee, Apis mellifera L., survival, developmental rate, larval weight, pollen consumption, and midgut bacterial diversity were tested in the laboratory. Honey bee larvae and adults were reared in vitro and fed a diet that contained Cry9Ee toxin at 0.01, 0.1, 1, and 10 mg/L. Cry9Ee toxin 0.01, 0.1, and 1 mg/L in diet used in this study may represent a value closer to field relevance and the highest concentration is unlikely to be encountered in the field and thus represent a worst case scenario. The dependent variables were compared for groups of honey bees feeding on treated diet and those feeding on negative control (no addition of a test substance), solvent control (0.01 mM Na2CO3), and positive control diet (dimethoate 45 mg/L). Bt Cry9Ee toxin did not affect survival or larval weight, and the result was great confidence in accepting the null hypothesis by power analysis. The effect on development rates and pollen consumption were the inconclusive results because the post-hoc power was less than 0.8. Furthermore, the midgut bacterial structure and compositions were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial class such as γ-Proteobacteria, Actinobacteria, α-Proteobacteria, Bacilli, β-Proteobacteria, and Bacteroidia were detected, and no significant changes were found in the species diversity and richness between Cry9Ee treatments and laboratory control.
Collapse
Affiliation(s)
- Pingli Dai
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Mengyue Wang
- Beijing University of Agriculture, Beijing, 102206, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhenxiong Yan
- Beijing University of Agriculture, Beijing, 102206, China
| | - Yang Yang
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Lin Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shilong Ma
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China; College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qingyun Diao
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
32
|
Haller S, Widmer F, Siegfried BD, Zhuo X, Romeis J. Responses of two ladybird beetle species (Coleoptera: Coccinellidae) to dietary RNAi. PEST MANAGEMENT SCIENCE 2019; 75:2652-2662. [PMID: 30729648 DOI: 10.1002/ps.5370] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 02/04/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND One concern with the adoption of RNAi-based genetically engineered (GE) crops is the potential harm to valued non-target organisms. Species of Coccinellidae (Coleoptera) are important natural enemies and might be exposed to the insecticidal dsRNA produced by the plant. To assess their susceptibility to dietary RNAi, we fed Adalia bipunctata and Coccinella septempunctata with a dsRNA designed to target the vATPase A of the western corn rootworm, Diabrotica virgifera virgifera (Dvv dsRNA). Specific dsRNAs designed to target the vATPase A of the two ladybird beetle species served as positive controls. RESULTS Our results revealed that both species were sensitive to dietary RNAi when ingesting their own dsRNAs, with C. septempunctata being more sensitive than A. bipunctata. Dvv dsRNA also adversely affected the two ladybird beetles as indicated by a significantly (but marginally) prolonged developmental time for A. bipunctata and a significantly reduced survival rate for C. septempunctata. These results, however, were obtained at Dvv dsRNA concentrations that were orders of magnitude higher than expected to occur in the field. Gene expression analyses confirmed the bioactivity of the dsRNA treatments and the results from the feeding bioassays. These results are consistent with the bioinformatics analyses, which revealed a higher number of 21-nucleotide-long matches, a requirement for effective RNAi, of the Dvv dsRNA with the vATPase A of C. septempunctata (34 matches) than with that of A. bipunctata (six matches). CONCLUSION Feeding bioassays revealed that two ladybird species are responsive to dietary RNAi. The two species, however, differed in their sensitivity. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Simone Haller
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Franco Widmer
- Competence Division Method Development and Analytics, Agroscope, Zurich, Switzerland
| | - Blair D Siegfried
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Xuguo Zhuo
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| |
Collapse
|
33
|
Devos Y, Craig W, Devlin RH, Ippolito A, Leggatt RA, Romeis J, Shaw R, Svendsen C, Topping CJ. Using problem formulation for fit-for-purpose pre-market environmental risk assessments of regulated stressors. EFSA J 2019; 17:e170708. [PMID: 32626445 PMCID: PMC7055725 DOI: 10.2903/j.efsa.2019.e170708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pre-market/prospective environmental risk assessments (ERAs) contribute to risk analyses performed to facilitate decisions about the market introduction of regulated stressors. Robust ERAs begin with an explicit problem formulation, which involves among other steps: (1) formally devising plausible pathways to harm that describe how the deployment of a regulated stressor could be harmful; (2) formulating risk hypotheses about the likelihood and severity of such events; (3) identifying the information that will be useful to test the risk hypotheses; and (4) developing a plan to acquire new data for hypothesis testing should tests with existing information be insufficient for decision-making. Here, we apply problem formulation to the assessment of possible adverse effects of RNA interference-based insecticidal genetically modified (GM) plants, GM growth hormone coho salmon, gene drive-modified mosquitoes and classical biological weed control agents on non-target organisms in a prospective manner, and of neonicotinoid insecticides on bees in a retrospective manner. In addition, specific considerations for the problem formulation for the ERA of nanomaterials and for landscape-scale population-level ERAs are given. We argue that applying problem formulation to ERA maximises the usefulness of ERA studies for decision-making, through an iterative process, because: (1) harm is defined explicitly from the start; (2) the construction of risk hypotheses is guided by policy rather than an exhaustive attempt to address any possible differences; (3) existing information is used effectively; (4) new data are collected with a clear purpose; (5) risk is characterised against well-defined criteria of hypothesis corroboration or falsification; and (6) risk assessment conclusions can be communicated clearly. However, problem formulation is still often hindered by the absence of clear policy goals and decision-making criteria (e.g. definition of protection goals and what constitutes harm) that are needed to guide the interpretation of scientific information. We therefore advocate further dialogue between risk assessors and risk managers to clarify how ERAs can address policy goals and decision-making criteria. Ideally, this dialogue should take place for all classes of regulated stressors, as this can promote alignment and consistency on the desired level of protection and maximum tolerable impacts across regulated stressors.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit European Food Safety Authority (EFSA) Italy
| | - Wendy Craig
- Biosafety Group International Centre for Genetic Engineering & Biotechnology (ICGEB) Italy
| | | | | | | | - Jörg Romeis
- Research Division Agroecology and Environment Agroscope Switzerland
| | - Richard Shaw
- Centre for Agriculture and Biosciences International (CABI) United Kingdom
| | - Claus Svendsen
- Ecotoxicology and Chemical Risk Group United Kingdom Research and Innovation Centre for Ecology and Hydrology (CEH) United Kingdom
| | | |
Collapse
|
34
|
Raybould A, Holt K, Kimber I. Using problem formulation to clarify the meaning of weight of evidence and biological relevance in environmental risk assessments for genetically modified crops. GM CROPS & FOOD 2019; 10:63-76. [PMID: 31184249 PMCID: PMC6615591 DOI: 10.1080/21645698.2019.1621615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
Weight of evidence and biological relevance are important concepts for risk assessment and decision-making over the use of GM crops; however, their meanings are not well defined. We use problem formulation to clarify the definition of these concepts and thereby identify data that are relevant for risk assessment. Problem formulation defines criteria for the acceptability of risk and devises rigorous tests of the hypothesis that the criteria are met. Corroboration or falsification of such hypotheses characterize risk and enable predictable and transparent decisions about whether certain risks from using a particular GM crop are acceptable. Decisions based on a weight of evidence approach use a synthesis of several lines of evidence, whereas a "definitive" approach to risk assessment enables some decisions to be based on the results of a single test. Data are biologically relevant for risk assessment only if they test a hypothesis that is useful for decision-making.
Collapse
Affiliation(s)
| | - Karen Holt
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, UK
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Boeckman CJ, Huang E, Sturtz K, Walker C, Woods R, Zhang J. Characterization of the Spectrum of Insecticidal Activity for IPD072Aa: A Protein Derived from Pseudomonas chlororaphis with Activity Against Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1190-1196. [PMID: 30817816 PMCID: PMC6529897 DOI: 10.1093/jee/toz029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Western corn rootworm (Diabrotica virgifera virgifera LeConte) presents significant pest management challenges for farmers in both North America and Europe. IPD072Aa, a protein derived from Pseudomonas chlororaphis, has previously been shown to have activity against western corn rootworm. In the current study, the spectrum of activity of IPD072Aa was evaluated in controlled laboratory diet bioassays. IPD072Aa was fed at high concentrations in subchronic or chronic bioassays to 11 different insect species, representing 4 families within Coleoptera, and an additional 4 species representing four families of Lepidoptera. No adverse effects were noted in the Lepidoptera species. Within the order Coleoptera, western corn rootworm was the most sensitive species tested. A range of responses was observed within each of the four families of Coleoptera evaluated that included either no-observed effects or reduced growth, developmental delays, and/or reduced survival. These data will help inform the environmental risk assessment of genetically modified plants that express the IPD072Aa protein for western corn rootworm control.
Collapse
|
36
|
Schiemann J, Dietz-Pfeilstetter A, Hartung F, Kohl C, Romeis J, Sprink T. Risk Assessment and Regulation of Plants Modified by Modern Biotechniques: Current Status and Future Challenges. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:699-726. [PMID: 30822113 DOI: 10.1146/annurev-arplant-050718-100025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review describes the current status and future challenges of risk assessment and regulation of plants modified by modern biotechniques, namely genetic engineering and genome editing. It provides a general overview of the biosafety and regulation of genetically modified plants and details different regulatory frameworks with a focus on the European situation. The environmental risk and safety assessment of genetically modified plants is explained, and aspects of toxicological assessments are discussed, especially the controversial debate in Europe on the added scientific value of untargeted animal feeding studies. Because RNA interference (RNAi) is increasingly explored for commercial applications, the risk and safety assessment of RNAi-based genetically modified plants is also elucidated. The production, detection, and identification of genome-edited plants are described. Recent applications of modern biotechniques, namely synthetic biology and gene drives, are discussed, and a short outlook on the future follows.
Collapse
Affiliation(s)
- Joachim Schiemann
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Antje Dietz-Pfeilstetter
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Frank Hartung
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Christian Kohl
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland
| | - Thorben Sprink
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| |
Collapse
|
37
|
Xie X, Cui Z, Wang Y, Wang Y, Cao F, Romeis J, Peng Y, Li Y. Bacillus thuringiensis Maize Expressing a Fusion Gene Cry1Ab/Cry1AcZM Does Not Harm Valued Pollen Feeders. Toxins (Basel) 2018; 11:toxins11010008. [PMID: 30587774 PMCID: PMC6356232 DOI: 10.3390/toxins11010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022] Open
Abstract
The ladybird Propylea japonica, adults of the green lacewing Chrysoperla nipponensis and the honey bee Apis mellifera are common pollen feeders in many crop systems. They could therefore be directly exposed to Cry proteins in Bacillus thuringiensis (Bt)-transgenic crop fields by ingestion of pollen. They, or closely related species, are therefore often selected as surrogate test species in non-target risk assessment of Bt plants. In the current study, we evaluated the potential effects of the ingestion of Bt maize pollen containing the Cry1Ab/Cry1Ac fusion protein on various life-table parameters of the three pollen-feeding non-target species in laboratory feeding assays. The results showed that pupation rate and male adult fresh weight of P. japonica were significantly increased when fed pollen from Bt maize compared to control maize pollen, but other test life-table parameters were not affected. For the other two species, none of the tested life-table parameters (survival, pre-oviposition period, fecundity and adult fresh weight for C. nipponensis; survival and mean acinus diameter of hypopharyngeal glands for A. mellifera) differed between non-Bt and Bt maize pollen treatments. ELISA measurements confirmed the stability and uptake of the Cry protein by all three species during the feeding bioassays. In addition, a sensitive insect bioassay confirmed the bioactivity of the Cry1Ab/Cry1Ac protein in the Bt maize pollen used. Overall, the results suggested that the three pollen feeders are not sensitive to the Cry1Ab/Cry1Ac protein, and planting of the Bt maize variety will pose a negligible risk to P. japonica, adult C. nipponensis and adult A. mellifera.
Collapse
Affiliation(s)
- Xiaowei Xie
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of PlantProtection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhifu Cui
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
| | - Yanan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of PlantProtection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yuanyuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of PlantProtection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengqin Cao
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
| | - Jörg Romeis
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of PlantProtection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Agroscope, Research Division Agroecology and Environment, 8046 Zurich, Switzerland.
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of PlantProtection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of PlantProtection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
38
|
Carvalho GASD, Martins DJ, Brito IMCD, Assis Júnior SLD, Soares MA, Laia MLD, Valicente FH. Can Bacillus thuringiensis affect the biological variables of natural enemies of Lepidoptera? ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000052018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: The entomopathogen Bacillus thuringiensis (Bt) is widely used as one of the ingredients in pest control formulations, but researches conducted on its effect on non-target organisms are still in the nascent stage. This investigation aimed to uncover if Bt treated with Tenebrio molitor (Coleoptera: Tenebrionidae) larvae and pupae could affect the biological variables of Podisus nigrispinus (Hemiptera: Pentatomidae) and Palmistichus elaeisis (Hymenoptera: Eulophidae), all of which established natural enemies of leaf defoliator caterpillars in the eucalyptus culture. Larvae of T. molitor were fed on wheat bran containing different concentrations of B. thuringiensis (0.00; 0.25; 0.50; 1.00; 2.00 and 4.00 g Agree/kg bran). When the larvae attained size of about 2 cm, they were used as prey for P. nigrispinus (Bioassay I), and their pupae used as hosts for P. elaeisis (Bioassay II). Only the biological variables oviposition period and egg numbers by posture of the predator P. nigrispinus were altered. The biological variables of P. elaeisis were not altered, since it was possible to use these control methods within the integrated pest management.
Collapse
|
39
|
Meissle M, Romeis J. Transfer of Cry1Ac and Cry2Ab proteins from genetically engineered Bt cotton to herbivores and predators. INSECT SCIENCE 2018; 25:823-832. [PMID: 28374515 DOI: 10.1111/1744-7917.12468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/09/2017] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
With the cultivation of Bt cotton, the produced insecticidal Cry proteins are ingested by herbivores and potentially transferred along the food chain to natural enemies, such as predators. In laboratory experiments with Bollgard II cotton, concentrations of Cry1Ac and Cry2Ab were measured in Lepidoptera larvae (Spodoptera littoralis, Heliothis virescens), plant bugs (Euschistus heros), aphids (Aphis gossypii), whiteflies (Bemisia tabaci), thrips (Thrips tabaci, Frankliniella occidentalis), and spider mites (Tetranychus urticae). Tritrophic experiments were conducted with caterpillars of S. littoralis as prey and larvae of ladybird beetles (Harmonia axyridis, Adalia bipunctata) and lacewings (Chrysoperla carnea) as predators. Immunological measurements (ELISA) indicated that herbivores feeding on Bt cotton contained 5%-50% of the Bt protein concentrations in leaves except whiteflies and aphids, which contained no or only traces of Bt protein, and spider mites, which contained 7 times more Cry1Ac than leaves. Similarly, predators contained 1%-30% of the Cry protein concentration in prey. For the nontarget risk assessment, this indicates that Bt protein concentrations decrease considerably from one trophic level to the next in the food web, except for spider mites that contain Bt protein concentrations higher than those measured in the leaves. Exposure of phloem sucking hemipterans is negligible.
Collapse
Affiliation(s)
- Michael Meissle
- Agroscope Research Division Agroecology and Environment, Zürich, Switzerland
| | - Jörg Romeis
- Agroscope Research Division Agroecology and Environment, Zürich, Switzerland
| |
Collapse
|
40
|
Zhao M, Li Y, Yuan X, Liang G, Wang B, Liu C, Khaing MM. Establishment of a dietary exposure assay for evaluating the toxicity of insecticidal compounds to Apolygus lucorum (Hemiptera: Miridae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:414-423. [PMID: 29502004 DOI: 10.1016/j.envpol.2018.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 11/16/2017] [Accepted: 01/05/2018] [Indexed: 06/08/2023]
Abstract
With the commercialization of transgenic cotton that expresses Bt (Bacillus thuringiensis) insecticidal proteins, mirid bugs have become key pests in cotton and maize fields in China. Genetically engineered (GE) crops for controlling mirids are unavailable owing to a lack of suitable insecticidal genes. In this study, we developed and validated a dietary exposure assay for screening insecticidal compounds and for assessing the potential effects of insecticidal proteins produced by GE plants on Apolygus lucorum, one of the main mirid pests of Bt cotton and Bt maize. Diets containing potassium arsenate (PA) or the cysteine protease inhibitor E-64 were used as positive controls for validating the efficacy of the dietary exposure assay. The results showed that with increasing concentrations of PA or E-64, A. lucorum larval development time was prolonged and adult weight and fecundity were decreased, suggesting that the dietary exposure assay was useful for detecting the toxicity of insecticidal compounds to A. lucorum. This assay was then used to assess the toxicity of Cry1Ab, Cry1Ac, Cry1F, Cry2Aa, and Cry2Ab proteins, which have been transformed into several crops, against A. lucorum. The results showed that A. lucorum did not show a negative effect by feeding on an artificial diet containing any of the purified Cry proteins. No significant changes in the activities of digestive, detoxifying, or antioxidant enzymes were detected in A. lucorum that fed on a diet containing Cry proteins, but A. lucorum fitness was reduced when the insect fed on a diet containing E-64 or PA. These results demonstrate that A. lucorum is not sensitive to the tested Cry proteins and that the dietary exposure assay is useful for evaluating the toxicity of insecticidal compounds to this species.
Collapse
Affiliation(s)
- Man Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangdong Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bingjie Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Myint Myint Khaing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
41
|
Gao YJ, Zhu HJ, Chen Y, Li YH, Peng YF, Chen XP. Safety Assessment of Bacillus thuringiensis Insecticidal Proteins Cry1C and Cry2A with a Zebrafish Embryotoxicity Test. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4336-4344. [PMID: 29653490 DOI: 10.1021/acs.jafc.8b01070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a result of the large-scale planting of transgenic Bacillus thuringiensis (Bt) crops, fish would be exposed to freely soluble Bt insecticidal protein(s) that are released from Bt crop tissues into adjacent bodies of water or by way of direct feeding on deposited plant material. To assess the safety of two Bt proteins Cry1C and Cry2A to fish, we used zebrafish as a representative species and exposed their embryos to 0.1, 1, and 10 mg/L of the two Cry proteins until 132 h post-fertilization and then several developmental, biochemical, and molecular parameters were evaluated. Chlorpyrifos (CPF), a known toxicant to aquatic organisms, was used as a positive control. Although CPF exposure resulted in significant developmental, biochemical, and molecular changes in the zebrafish embryos, there were almost no significant differences after Cry1C or Cry2A exposure. Thus, we conclude that zebrafish embryos are not sensitive to Cry1C and Cry2A insecticidal proteins at test concentrations.
Collapse
Affiliation(s)
- Yan-Jie Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| | - Hao-Jun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center , Chinese Academy of Fishery Sciences , Wuxi , Jiangsu 214081 , People's Republic of China
| | - Yi Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
- Research Division Agroecology and Environment , Agroscope , 8046 Zurich , Switzerland
| | - Yun-He Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| | - Yu-Fa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| | - Xiu-Ping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| |
Collapse
|
42
|
Álvarez F, Devos Y, Georgiadis M, Messéan A, Waigmann E. Annual post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in 2016. EFSA J 2018; 16:e05287. [PMID: 32625921 PMCID: PMC7009447 DOI: 10.2903/j.efsa.2018.5287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, EFSA assessed the annual post-market environmental monitoring (PMEM) report for the 2016 growing season of the Cry1Ab-expressing maize event MON 810 provided by Monsanto Europe S.A. Partial compliance with refuge requirements was reported in Spain, as observed in previous years. EFSA reiterates the need to achieve full compliance in areas of high maize MON 810 adoption to delay resistance evolution, and therefore advocates increasing the level of compliance in such areas. Resistance monitoring data do not indicate a decrease in susceptibility to the Cry1Ab protein in the field corn borer populations tested in the 2016 season. However, EFSA identified some methodological and reporting limitations pertaining to resistance monitoring that need improvement in future PMEM reports. No complaints related to corn borer infestation of maize MON 810 were received via the farmer alert system during the 2016 cultivation season. EFSA encourages the consent holder to provide more information on this complementary resistance monitoring tool. The data on general surveillance do not indicate any unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. EFSA reiterates its recommendations on the methodology and analysis of farmer questionnaires, and considers that future literature searches on maize MON 810 performed in the context of annual PMEM reports should follow the guidelines given in the 2017 EFSA explanatory note on literature searching. Moreover, EFSA encourages relevant stakeholders to implement a methodological framework that enables the use of existing networks in the broader context of environmental monitoring. EFSA concludes that no new evidence has been reported in the 2016 PMEM report that would invalidate previous EFSA evaluations on the safety of maize MON 810.
Collapse
|
43
|
Yang Y, Zhang B, Zhou X, Romeis J, Peng Y, Li Y. Toxicological and Biochemical Analyses Demonstrate the Absence of Lethal or Sublethal Effects of cry1C- or cry2A-Expressing Bt Rice on the Collembolan Folsomia candida. FRONTIERS IN PLANT SCIENCE 2018; 9:131. [PMID: 29467788 PMCID: PMC5808118 DOI: 10.3389/fpls.2018.00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/23/2018] [Indexed: 05/27/2023]
Abstract
Assessing the potential effects of insect-resistant genetically engineered (GE) plants on collembolans is important because these common soil arthropods may be exposed to insecticidal proteins produced in GE plants by ingestion of plant residues, crop pollen, or root exudates. Laboratory studies were conducted to evaluate the potential effects of two Bacillus thuringiensis (Bt)-rice lines expressing Cry1C and Cry2A in pollen and leaves and of their non-Bt conventional isolines on the fitness of the collembolan Folsomia candida and on the activities of its antioxidant-related enzymes, superoxide dismutase and peroxidase, and of its detoxification-related enzymes, glutathione reductase and glutathione S-transferase. Survival, development, reproduction, and the intrinsic rate of increase (rm) were not significantly reduced when F. candida fed on the Bt rice pollen or leaf powder than on the non-Bt rice materials; these parameters, however, were significantly reduced when F. candida fed on non-Bt rice pollen or non-Bt leaf-based diets containing the protease inhibitor E-64 at 75 μg/g. The activities of the antioxidant-related and detoxification-related enzymes in F. candida were not significantly affected when F. candida fed on the Bt rice materials, but were significantly increased when F. candida fed on the non-Bt rice materials containing E-64. The results demonstrate that Cry1C and Cry2A are not toxic to F. candida, and also indicate the absence of unintended effects on the collembolan caused by any change in plant tissue nutritional composition due to foreign gene transformation.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Bing Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xiang Zhou
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jörg Romeis
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
44
|
Marques LH, Santos AC, Castro BA, Storer NP, Babcock JM, Lepping MD, Sa V, Moscardini VF, Rule DM, Fernandes OA. Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. PLoS One 2018; 13:e0191567. [PMID: 29394266 PMCID: PMC5796694 DOI: 10.1371/journal.pone.0191567] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Field-scale studies that examine the potential for adverse effects of Bt crop technology on non-target arthropods may supplement data from laboratory studies to support an environmental risk assessment. A three year field study was conducted in Brazil to evaluate potential for adverse effects of cultivating soybean event DAS-81419-2 that produces the Cry1Ac and Cry1F proteins. To do so, we examined the diversity and abundance of non-target arthropods (NTAs) in Bt soybean in comparison with its non-Bt near isoline, with and without conventional insecticide applications, in three Brazilian soybean producing regions. Non-target arthropod abundance was surveyed using Moericke traps (yellow pan) and pitfall trapping. Total abundance (N), richness (S), Shannon-Wiener (H'), Simpson's (D) and Pielou's evenness (J) values for arthropod samples were calculated for each treatment and sampling period (soybean growth stages). A faunistic analysis was used to select the most representative NTAs which were used to describe the NTA community structure associated with soybean, and to test for effects due to the treatments effects via application of the Principal Response Curve (PRC) method. Across all years and sites, a total of 254,054 individuals from 190 taxa were collected by Moericke traps, while 29,813 individuals from 100 taxa were collected using pitfall traps. Across sites and sampling dates, the abundance and diversity measurements of representative NTAs were not significantly affected by Bt soybean as compared with non-sprayed non-Bt soybean. Similarly, community analyses and repeated measures ANOVA, when applicable, indicated that neither Bt soybean nor insecticide sprays altered the structure of the NTA communities under study. These results support the conclusion that transgenic soybean event DAS-81419-2 producing Cry1Ac and Cry1F toxins does not adversely affect the NTA community associated with soybean.
Collapse
Affiliation(s)
- Luiz H. Marques
- Dow AgroSciences Industrial Ltda, São Paulo, São Paulo, Brazil
| | | | - Boris A. Castro
- Dow AgroSciences LLC, Indianapolis, Indiana, United States of America
| | | | | | - Miles D. Lepping
- Dow AgroSciences LLC, Indianapolis, Indiana, United States of America
| | - Verissimo Sa
- Dow AgroSciences Industrial Ltda, São Paulo, São Paulo, Brazil
| | | | - Dwain M. Rule
- Dow AgroSciences LLC, Indianapolis, Indiana, United States of America
| | - Odair A. Fernandes
- Universidade Estadual Paulista (FCAV/UNESP), Faculdade de Ciências Agrárias e Veterinárias, FCAV/UNESP, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
45
|
Roderick H, Urwin PE, Atkinson HJ. Rational design of biosafe crop resistance to a range of nematodes using RNA interference. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:520-529. [PMID: 28703405 PMCID: PMC5787825 DOI: 10.1111/pbi.12792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 05/31/2023]
Abstract
Double-stranded RNA (dsRNA) molecules targeting two genes have been identified that suppress economically important parasitic nematode species of banana. Proteasomal alpha subunit 4 (pas-4) and Actin-4 (act-4) were identified from a survey of sequence databases and cloned sequences for genes conserved across four pests of banana, Radopholus similis, Pratylenchus coffeae, Meloidogyne incognita and Helicotylenchus multicinctus. These four species were targeted with dsRNAs containing exact 21 nucleotide matches to the conserved regions. Potential off-target effects were limited by comparison with Caenorhabditis, Drosophila, rat, rice and Arabidopsis genomes. In vitro act-4 dsRNA treatment of R. similis suppressed target gene expression by 2.3-fold, nematode locomotion by 66 ± 4% and nematode multiplication on carrot discs by 49 ± 5%. The best transgenic carrot hairy root lines expressing act-4 or pas-4 dsRNA reduced transcript message abundance of target genes in R. similis by 7.9-fold and fourfold and nematode multiplication by 94 ± 2% and 69 ± 3%, respectively. The same act-4 and pas-4 lines reduced P. coffeae target transcripts by 1.7- and twofold and multiplication by 50 ± 6% and 73 ± 8%. Multiplication of M. incognita on the pas-4 lines was reduced by 97 ± 1% and 99 ± 1% while target transcript abundance was suppressed 4.9- and 5.6-fold. There was no detectable RNAi effect on nontarget nematodes exposed to dsRNAs targeting parasitic nematodes. This work defines a framework for development of a range of nonprotein defences to provide broad resistance to pests and pathogens of crops.
Collapse
|
46
|
Yi D, Fang Z, Yang L. Effects of Bt cabbage pollen on the honeybee Apis mellifera L. Sci Rep 2018; 8:482. [PMID: 29323206 PMCID: PMC5764958 DOI: 10.1038/s41598-017-18883-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/19/2017] [Indexed: 11/12/2022] Open
Abstract
Honeybees may be exposed to insecticidal proteins from transgenic plants via pollen during their foraging activity. Assessing effects of such exposures on honeybees is an essential part of the risk assessment process for transgenic Bacillus thuringiensis (Bt) cabbage. Feeding trials were conducted in a laboratory setting to test for possible effects of Cry1Ba3 cabbage pollen on Italian-derived honeybees Apis mellifera L. Newly emerged A. mellifera were fed transgenic pollen, activated Cry1Ba3 toxin, pure sugar syrup (60% w/v sucrose solution), and non-transgenic cabbage pollen, respectively. Then the effects on survival, pollen consumption, weight, detoxification enzyme activity and midgut enzyme activity of A. mellifera were monitored. The results showed that there were no significant differences in survival, pollen consumption, weight, detoxification enzyme activity among all treatments. No significant differences in the activities of total proteolytic enzyme, active alkaline trypsin-like enzyme and weak alkaline trypsin-like enzyme were observed among all treatments. These results indicate that the side-effects of the Cry1Ba3 cabbage pollen on A. mellifera L. are unlikely.
Collapse
Affiliation(s)
- Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zhiyuan Fang
- Key Laboratory of Biology and Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Limei Yang
- Key Laboratory of Biology and Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
47
|
Bt cotton producing Cry1Ac and Cry2Ab does not harm two parasitoids, Cotesia marginiventris and Copidosoma floridanum. Sci Rep 2018; 8:307. [PMID: 29321488 PMCID: PMC5762887 DOI: 10.1038/s41598-017-18620-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/06/2017] [Indexed: 11/29/2022] Open
Abstract
Cabbage looper, Trichoplusia ni (Hübner) is an important lepidopteran pest on many vegetable and greenhouse crops, and some field crops. Although there are no commercial transgenic Bt vegetable or greenhouse crops, T. ni is a target of Bollgard II cotton, which produces Cry1Ac and Cry2Ab. We expand on previous work that examined the effect of Bt crops on parasitoids using Bt-resistant lepidopteran populations as hosts. Cry1Ac/Cry2Ab-resistant T. ni larvae were used to eliminate host quality effects and to evaluate the direct effects of Bt cotton on the parasitoids Copidosoma floridanum (Ashmead) and Cotesia marginiventris (Cresson). These tri-trophic studies confirm that Bt cotton had no significant impact on development, success of parasitism, survival and adult longevity of C. marginiventris when using Bt-resistant T. ni fed on Bt cotton. Similarly, this Bt cotton had no significant impact on the development, mummy weight and the number of progeny produced by C. floridanum. Our studies verified that lyophilized Bt crop tissue maintained its insecticidal bioactivity when incorporated into an artificial diet, demonstrating that hosts and parasitoids were exposed to active Cry proteins. The egg-larval parasitoid C. floridanum, or similar species that consume their entire host, should be considered useful surrogates in risk assessment of Bt crops to non-target arthropods.
Collapse
|
48
|
Chen Y, Yang Y, Zhu H, Romeis J, Li Y, Peng Y, Chen X. Safety of Bacillus thuringiensis Cry1C protein for Daphnia magna based on different functional traits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:631-636. [PMID: 28926817 DOI: 10.1016/j.ecoenv.2017.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Cry1C is a Bacillus thuringiensis (Bt) insecticidal protein and it can be produced by transgenic rice lines developed in China. Cladocera species are common aquatic arthropods that may be exposed to insecticidal proteins produced in Bt-transgenic plants through ingestion of pollen or crop residues in water. As the cladoceran Daphnia magna plays an important role in the aquatic food chain, it is important to assess the possible effects of Bt crops to this species. To evaluate the safety of the Cry1C protein for D. magna, individuals were exposed to different concentrations of purified Cry1C protein in M4 medium for 21 days. Potassium dichromate (K2Cr2O7), a known toxicant to D. magna, was added to M4 medium as a positive control treatment, and pure M4 medium was used as a negative control. Our results show that developmental, reproductive, and biochemical parameters of D. magna were not significantly different between Cry1C and negative control treatments but were significantly inhibited by the positive control. We thus conclude that D. magna is insensitive to Cry1C.
Collapse
Affiliation(s)
- Yi Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haojun Zhu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jörg Romeis
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Agroscope, Research Division Agroecology and Environment, 8046 Zurich, Switzerland
| | - Yunhe Li
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yufa Peng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiuping Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
49
|
Fischhoff IR, Keesing F, Ostfeld RS. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods. PLoS One 2017; 12:e0187675. [PMID: 29155838 PMCID: PMC5695842 DOI: 10.1371/journal.pone.0187675] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 01/01/2023] Open
Abstract
Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control). Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray), habitat (lawn vs. forest), and treatment (Met52 vs. control), versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.
Collapse
Affiliation(s)
- Ilya R. Fischhoff
- Cary Institute of Ecosystem Studies, Sharon Turnpike, Millbrook, NY, United States of America
- * E-mail:
| | - Felicia Keesing
- Bard College, Annandale-on-Hudson, New York, United States of America
| | - Richard S. Ostfeld
- Cary Institute of Ecosystem Studies, Sharon Turnpike, Millbrook, NY, United States of America
| |
Collapse
|
50
|
Kumar D, Gong C. Insect RNAi: Integrating a New Tool in the Crop Protection Toolkit. TRENDS IN INSECT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2017. [PMCID: PMC7121382 DOI: 10.1007/978-3-319-61343-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protecting crops against insect pests is a major focus area in crop protection. Over the past two decades, biotechnological interventions, especially Bt proteins, have been successfully implemented across the world and have had major impacts on reducing chemical pesticide applications. As insects continue to adapt to insecticides, both chemical and protein-based, new methods, molecules, and modes of action are necessary to provide sustainable solutions. RNA interference (RNAi) has emerged as a significant tool to knock down or alter gene expression profiles in a species-specific manner. In the past decade, there has been intense research on RNAi applications in crop protection. This chapter looks at the current state of knowledge in the field and outlines the methodology, delivery methods, and precautions required in designing targets. Assessing the targeting of specific gene expression is also an important part of a successful RNAi strategy. The current literature on the use of RNAi in major orders of insect pests is reviewed, along with a perspective on the regulatory aspects of the approach. Risk assessment of RNAi would focus on molecular characterization, food/feed risk assessment, and environmental risk assessment. As more RNAi-based products come through regulatory systems, either via direct application or plant expression based, the impact of this approach on crop protection will become clearer.
Collapse
Affiliation(s)
- Dhiraj Kumar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|