1
|
Isah A, Ndana RW, Malann YD, Nwankwo OF, Ibrahim AB, Gidado RS. Biodiversity assessment and environmental risk analysis of the single line transgenic pod borer resistant cowpea. PeerJ 2024; 12:e18094. [PMID: 39434787 PMCID: PMC11493023 DOI: 10.7717/peerj.18094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
Background The discussion surrounding biological diversity has reached a critical point with the introduction of Nigeria's first transgenic food crop, the pod borer-resistant (PBR) cowpea. Questions have been raised about the potential risks of the transgenic Maruca vitrata-resistant cowpea to human health and beneficial insects. Public apprehension, coupled with social activists' calling for the removal of this crop from the nation's food market, persists. However, there is a lack of data to counter the assertion that cultivating PBR cowpea may have adverse effects on biodiversity and the overall ecological system. This research, with its multifaceted objective of examining the environmental safety of PBR cowpea and assessing its impact on biodiversity compared to its non-transgenic counterpart, IT97KN, is of utmost importance in providing the necessary data to address these concerns. Methods Seeds for both the transgenic PBR cowpea and its isoline were obtained from the Institute for Agricultural Research (IAR) Zaria before planting at various farm sites (Addae et al., 2020). Throughout the experiment, local cultural practices were strictly followed to cultivate both transgenic and non-transgenic cowpeas. Elaborate taxonomic keys were used to identify arthropods and other non-targeted organisms. Principal component analysis (PCA) was used to evaluate potential modifications in all ecological niches of the crops. The lmer function of the R package lme4 was used to analyze diversity indices, including Shannon, Pielou, and Simpson. The Bray-Curtis index was used to analyzed potential modifications in the dissimilarities of non-targeted organisms' communities. Results Examination of ecological species abundance per counting week (CW) revealed no disruption in the biological properties of non-targeted species due to the cultivation of transgenic PBR cowpea. Analysis of species evenness and diversity indices indicated no significant difference between the fields of transgenic PBR cowpea and its isoline. Principal component analysis results demonstrated that planting PBR cowpea did not create an imbalance in the distribution of ecological species. All species and families observed during this study were more abundant in transgenic PBR cowpea fields than in non-transgenic cowpea fields, suggesting that the transformation of cowpea does not negatively impact non-targeted organisms and their communities. Evolution dynamics of the species community between transgenic and non-transgenic cowpea fields showed a similar trend throughout the study period, with no significant divergence induced in the community structure because of PBR cowpea planting. This study concludes that planting transgenic PBR cowpea positively influences biodiversity and the environment.
Collapse
Affiliation(s)
- Abraham Isah
- Department of Biological Sciences, Faculty of Science, University of Abuja, Abuja, FCT, Nigeria
- Open Forum on Agricultural Biotechnology in Africa, Nigeria Chapter, National Biotechnology Development Agency, Abuja, FCT, Nigeria
| | - Rebeccah Wusa Ndana
- Department of Biological Sciences, Faculty of Science, University of Abuja, Abuja, FCT, Nigeria
| | - Yoila David Malann
- Department of Biological Sciences, Faculty of Science, University of Abuja, Abuja, FCT, Nigeria
| | | | | | - Rose Suniso Gidado
- Open Forum on Agricultural Biotechnology in Africa, Nigeria Chapter, National Biotechnology Development Agency, Abuja, FCT, Nigeria
- Department of Agricultural Biotechnology, National Biotechnology Development Agency, Abuja, FCT, Nigeria
| |
Collapse
|
2
|
Pogačar K, Grundner M, Žigon P, Coll A, Panevska A, Lukan T, Petek M, Razinger J, Gruden K, Sepčić K. Protein complexes from edible mushrooms as a sustainable potato protection against coleopteran pests. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2518-2529. [PMID: 38733093 PMCID: PMC11331795 DOI: 10.1111/pbi.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024]
Abstract
Protein complexes from edible oyster mushrooms (Pleurotus sp.) composed of pleurotolysin A2 (PlyA2) and pleurotolysin B (PlyB) exert toxicity in feeding tests against Colorado potato beetle (CPB) larvae, acting through the interaction with insect-specific membrane sphingolipid. Here we present a new strategy for crop protection, based on in planta production of PlyA2/PlyB protein complexes, and we exemplify this strategy in construction of transgenic potato plants of cv Désirée. The transgenics in which PlyA2 was directed to the vacuole and PlyB to the endoplasmic reticulum are effectively protected from infestation by CPB larvae without impacting plant performance. These transgenic plants showed a pronounced effect on larval feeding rate, the larvae feeding on transgenic plants being on average five to six folds lighter than larvae feeding on controls. Further, only a fraction (11%-37%) of the larvae that fed on transgenic potato plants completed their life cycle and developed into adult beetles. Moreover, gene expression analysis of CPB larvae exposed to PlyA2/PlyB complexes revealed the response indicative of a general stress status of larvae and no evidence of possibility of developing resistance due to the functional inactivation of PlyA2/PlyB sphingolipid receptors.
Collapse
Affiliation(s)
- Karmen Pogačar
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Maja Grundner
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Primož Žigon
- Plant Protection DepartmentAgricultural Institute of SloveniaLjubljanaSlovenia
| | - Anna Coll
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Anastasija Panevska
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Marko Petek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Jaka Razinger
- Plant Protection DepartmentAgricultural Institute of SloveniaLjubljanaSlovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
3
|
Engineered chimeric insecticidal crystalline protein improves resistance to lepidopteran insects in rice (Oryza sativa L.) and maize (Zea mays L.). Sci Rep 2022; 12:12529. [PMID: 35869123 PMCID: PMC9307649 DOI: 10.1038/s41598-022-16426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe insecticidal crystalline proteins (Crys) are a family of insect endotoxin functioning in crop protection. As insects keep evolving into tolerance to the existing Crys, it is necessary to discover new Cry proteins to overcome potential threatens. Crys possess three functional domains at their N-termini, and the most active region throughout evolution was found at the domain-III. We swapped domain-IIIs from various Cry proteins and generated seven chimeric proteins. All recombinants were expressed in Escherichia coli and their toxicity was assessed by dietary exposure assays. Three of the seven Crys exhibited a high toxicity to Asian corn borer over the controls. One of them, Cry1Ab-Gc, a chimeric Cry1Ab being replaced with the domain-III of Cry1Gc, showed the highest toxicity to rice stem borer when it was over-expressed in Oryza sativa. Furthermore, it was also transformed into maize, backcrossed into commercial maize inbred lines and then produced hybrid to evaluate their commercial value. Transgenic maize performed significant resistance to the Asian corn borer without affecting the yield. We further showed that this new protein did not have adverse effects on the environment. Our results indicated that domain III swapped of Crys could be used as an efficient method for developing new engineered insecticidal protein.
Collapse
|
4
|
Ren Z, Yang M, He H, Ma Y, Zhou Y, Liu B, Xue K. Transgenic Maize Has Insignificant Effects on the Diversity of Arthropods: A 3-Year Study. PLANTS 2022; 11:plants11172254. [PMID: 36079638 PMCID: PMC9460771 DOI: 10.3390/plants11172254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
In order to provide more evidence for the evaluation of the ecological risks of transgenic maize, arthropod population dynamics and biodiversity in fields planted with two kinds of transgenic maize (DBN9868, expressing the PAT and EPSPS genes, and DBN9936, expressing the Cry1Ab and EPSPS gene) were investigated by direct observation and trapping for three years. The recorded arthropod species belonged to 19 orders and 87 families, including Aphidoidea, Chrysomelidae, Coccinellidae, Chrysopidae and Araneae. The species richness, Shannon–Wiener diversity index, Pielou evenness index, dominance index and community similarity index of arthropod communities in maize fields were statistically analyzed, and the results showed that (1) the biodiversity difference of arthropod communities between transgenic maize and non-transgenic maize was smaller than that between different conventional cultivars; (2) the differences between ground-dwelling arthropod communities were less obvious than those between plant-inhabiting arthropod communities; and (3) Lepidoptera, the target pests of Bt maize, were not the dominant population in maize fields, and the dominant arthropod population in maize fields varied greatly between years and months. Combining those results, we concluded that the transgenic maize DBN9868 and DBN9936 had no significant effect on the arthropod communities in the field.
Collapse
Affiliation(s)
- Zhentao Ren
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Muzhi Yang
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Haopeng He
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanjie Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (B.L.); (K.X.)
| | - Kun Xue
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (B.L.); (K.X.)
| |
Collapse
|
5
|
Yu Y, Yang L, Sun Y, Jin C, Zhang Y. Intervention on Externalizing Problems of Undercontrolled Personality Types in Primary School Students. Front Psychol 2020; 11:1233. [PMID: 32714227 PMCID: PMC7344270 DOI: 10.3389/fpsyg.2020.01233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/12/2020] [Indexed: 11/25/2022] Open
Abstract
Three personality types (resilient, overcontrolled, and undercontrolled) have been repeatedly verified across different languages and cultures, different personality models, and different stages of development. Undercontrollers are socially maladapted types with high impulsivity and low self-control. Research shows they are at risk for externalizing problems, such as aggressiveness, impulsivity, and antisocial behavior. The aim of this study was to develop an intervention to reduce externalizing problems of undercontrolled personality types in primary school students. Participants were 69 undercontrolled primary school students from two primary schools in North China. The experimental group underwent 14 weeks of systematic experiential mental health activities, while the control group performed typical daily classroom activities. Personality and externalizing problem behaviors were measured before the intervention, at the end of the intervention, and 4 months post-intervention. The results showed that the intervention significantly reduced the level of externalizing problems of undercontrolled primary school students. The effects of the intervention were maintained at the 4-month follow-up. This study provides some reference and suggestions on how to intervene in the externalizing problem behaviors of undercontrolled primary school students.
Collapse
Affiliation(s)
- Yongjin Yu
- School of Philosophy and Sociology, Jilin University, Changchun, China
| | - Lizhu Yang
- College of Psychology, Liaoning Normal University, Dalian, China
| | - Yan Sun
- College of Psychology, Liaoning Normal University, Dalian, China
| | | | - Ying Zhang
- Shidao Street Primary School, Dalian, China
| |
Collapse
|
6
|
Roberts A, Boeckman CJ, Mühl M, Romeis J, Teem JL, Valicente FH, Brown JK, Edwards MG, Levine SL, Melnick RL, Rodrigues TB, Vélez AM, Zhou X, Hellmich RL. Sublethal Endpoints in Non-target Organism Testing for Insect-Active GE Crops. Front Bioeng Biotechnol 2020; 8:556. [PMID: 32582674 PMCID: PMC7295912 DOI: 10.3389/fbioe.2020.00556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Historically, genetically engineered (GE) plants that have incorporated genes conferring insect protection have primarily used Cry proteins derived from Bacillus thuringiensis (Bt) to achieve their insecticidal phenotype. As a result, regulators have developed a level of familiarity and confidence in reviewing plants incorporating these insecticidal proteins. However, new technologies have been developed that produce GE plants that incorporate pest protection by triggering an RNA interference (RNAi) response or proteins other than Bt Cry proteins. These technologies have new modes of action. Although the overall assessment paradigm for GE plants is robust, there are ongoing discussions about the appropriate tests and measurement endpoints needed to inform non-target arthropod assessment for technologies that have a different mode of action than the Bt Cry proteins. As a result, increasing attention is being paid to the use of sublethal endpoints and their value for environmental risk assessment (ERA). This review focuses on the current status and history of sublethal endpoint use in insect-active GE crops, and evaluates the future use of sublethal endpoints for new and emerging technologies. It builds upon presentations made at the Workshop on Sublethal Endpoints for Non-target Organism Testing for Non-Bt GE Crops (Washington DC, USA, 4-5 March 2019), and the discussions of government, academic and industry scientists convened for the purpose of reviewing the progress and status of sublethal endpoint testing in non-target organisms.
Collapse
Affiliation(s)
- Andrew Roberts
- Agriculture and Food Systems Institute, Washington, DC, United States
| | | | - Marina Mühl
- Ministerio de Agricultura, Ganadería y Pesca, Dirección de Biotecnología, Buenos Aires, Argentina
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - John L Teem
- Agriculture and Food Systems Institute, Washington, DC, United States
| | | | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Martin G Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Rachel L Melnick
- Agriculture and Food Systems Institute, Washington, DC, United States
| | | | - Ana M Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Richard L Hellmich
- USDA, Corn Insects and Crop Genetics Research Unit, Ames, IA, United States.,Department of Entomology, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Yin Y, Xu Y, Cao K, Qin Z, Zhao X, Dong X, Shi W. Impact assessment of Bt maize expressing the Cry1Ab and Cry2Ab protein simultaneously on non-target arthropods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21552-21559. [PMID: 32279254 DOI: 10.1007/s11356-020-08665-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Transgenic maize expressing the Cry1Ab and Cry2Ab protein simultaneously from Bacillus thuringiensis (Bt-maize) has been grown for farm-scale study to investigate its potential impact to non-target arthropod (NTA). The trials were conducted between Bt maize 2A-7 and its parental line (B73-329) in Beijing, China, over 3 years. Richness (C), Shannon index (H), Pielou index (J), Simpson index (D), and Bray-Curtis index were used to evaluate the population dynamics and biodiversity of the dominant arthropods from per 50 plants in crop field. The mainly abundant groups were Aphidoidea, Araneae, Coccinellidae, Anthocoridae, and Thripidae which represented about 90% of the total number of NTA. Although the abundance of NTA varied from year to year, there is no significant difference between Bt maize and non-Bt maize field. Fluctuations were found at individual sample dates, but the trend of these descriptors remained consistent. Further analysis showed the biodiversity indexes of the dominant arthropods C, H, J, D, and Bray-Curtis dissimilarity between Bt maize producing Cry1Ab and Cry2Ab toxin simultaneously and its parental line had no significant difference except for some sampling dates. These results suggested that Bt maize is compatible with the NTAs and provides further evidence of the ecological impact of genetically modified maize.
Collapse
Affiliation(s)
- Yue Yin
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Yudi Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Kaili Cao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Zifang Qin
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Xinxin Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Xuehui Dong
- Department of Agriculture Science, China Agricultural University, Beijing, China
| | - Wangpeng Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
van der Voet H, Goedhart PW, Lazebnik J, Kessel GJT, Mullins E, van Loon JJA, Arpaia S. Equivalence analysis to support environmental safety assessment: Using nontarget organism count data from field trials with cisgenically modified potato. Ecol Evol 2019; 9:2863-2882. [PMID: 30891222 PMCID: PMC6405891 DOI: 10.1002/ece3.4964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/08/2022] Open
Abstract
This paper considers the statistical analysis of entomological count data from field experiments with genetically modified (GM) plants. Such trials are carried out to assess environmental safety. Potential effects on nontarget organisms (NTOs), as indicators of biodiversity, are investigated. The European Food Safety Authority (EFSA) gives broad guidance on the environmental risk assessment (ERA) of GM plants. Field experiments must contain suitable comparator crops as a benchmark for the assessment of designated endpoints. In this paper, a detailed protocol is proposed to perform data analysis for the purpose of assessing environmental safety. The protocol includes the specification of a list of endpoints and their hierarchical relations, the specification of intended levels of data analysis, and the specification of provisional limits of concern to decide on the need for further investigation. The protocol emphasizes a graphical representation of estimates and confidence intervals for the ratio of mean abundances for the GM plant and its comparator crop. Interpretation relies mainly on equivalence testing in which confidence intervals are compared with the limits of concern. The proposed methodology is illustrated with entomological count data resulting from multiyear, multilocation field trials. A cisgenically modified potato line (with enhanced resistance to late blight disease) was compared to the original conventional potato variety in the Netherlands and Ireland in two successive years (2013, 2014). It is shown that the protocol encompasses alternative schemes for safety assessment resulting from different research questions and/or expert choices. Graphical displays of equivalence testing at several hierarchical levels and their interpretation are presented for one of these schemes. The proposed approaches should be of help in the ERA of GM or other novel plants.
Collapse
Affiliation(s)
| | | | - Jenny Lazebnik
- Wageningen University & ResearchWageningenThe Netherlands
| | | | | | | | - Salvatore Arpaia
- Energy and Environment Research CenterENEA, Italian National Agency for New TechnologiesTrisaia di RotondellaItaly
| |
Collapse
|
9
|
Xing Y, Qin Z, Feng M, Li A, Zhang L, Wang Y, Dong X, Zhang Y, Tan S, Shi W. The impact of Bt maize expressing the Cry1Ac protein on non-target arthropods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5814-5819. [PMID: 30613882 DOI: 10.1007/s11356-018-4025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
From 2014 to 2016, individuals of the principal non-target arthropod (NTA) species in a field of Bt maize expressing the Cry1Ac protein (Bt38) were compared to those in a control field of the corresponding non-transformed near isoline (Z58). For all 3 years, the population dynamics and biodiversity of NTAs were analyzed to determine if any differences might be attributable to the genetically modified (GM) maize being evaluated. The main NTAs in these fields were Aphidoidea, Pentatomidae,Araneae, and Coccinellidae. Temporal variation in NTA diversity across sample dates within a year showed no significant differences between the Bt maize and the non-Bt maize field in the total number of individuals of the dominant arthropod species per 25 plants, the Shannon index (H), Pielou index (J), Simpson index (D), and Bray-Curtis index. The cultivation of Bt corn failed to show any detrimental evidence on individuals, H, J, D, and Bray-Curtis index of NTAs, and these parameters were identical in Bt and non-Bt corn plots. These results provide further evidence of the lack of ecological impact of GM maize.
Collapse
Affiliation(s)
- Yongjie Xing
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Zifang Qin
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Mingyue Feng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Aomei Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Liu Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Yang Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Xuehui Dong
- Department of Agriculture Science, China Agricultural University, Beijing, China
| | - Yuxin Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Shuqian Tan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Wangpeng Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Santos-Vigil KI, Ilhuicatzi-Alvarado D, García-Hernández AL, Herrera-García JS, Moreno-Fierros L. Study of the allergenic potential of Bacillus thuringiensis Cry1Ac toxin following intra-gastric administration in a murine model of food-allergy. Int Immunopharmacol 2018; 61:185-196. [PMID: 29886072 DOI: 10.1016/j.intimp.2018.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
|
11
|
Tsatsakis AM, Nawaz MA, Tutelyan VA, Golokhvast KS, Kalantzi OI, Chung DH, Kang SJ, Coleman MD, Tyshko N, Yang SH, Chung G. Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food. Food Chem Toxicol 2017. [PMID: 28645870 DOI: 10.1016/j.fct.2017.06.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Modern agriculture provides the potential for sustainable feeding of the world's increasing population. Up to the present moment, genetically modified (GM) products have enabled increased yields and reduced pesticide usage. Nevertheless, GM products are controversial amongst policy makers, scientists and the consumers, regarding their possible environmental, ecological, and health risks. Scientific-and-political debates can even influence legislation and prospective risk assessment procedure. Currently, the scientifically-assessed direct hazardous impacts of GM food and feed on fauna and flora are conflicting; indeed, a review of literature available data provides some evidence of GM environmental and health risks. Although the consequences of gene flow and risks to biodiversity are debatable. Risks to the environment and ecosystems can exist, such as the evolution of weed herbicide resistance during GM cultivation. A matter of high importance is to provide precise knowledge and adequate current information to regulatory agencies, governments, policy makers, researchers, and commercial GMO-releasing companies to enable them to thoroughly investigate the possible risks.
Collapse
Affiliation(s)
- Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Victor A Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Kirill S Golokhvast
- Educational Scientific Center of Nanotechnology, Engineering School, Far Eastern Federal Univeristy, 37 Pushkinskaya Street, 690950, Vladivostok, Russian Federation
| | | | - Duck Hwa Chung
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sung Jo Kang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Geyongnam 52828, Republic of Korea
| | - Michael D Coleman
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Nadia Tyshko
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
12
|
Kwadha CA, Ong'amo GO, Ndegwa PN, Raina SK, Fombong AT. The Biology and Control of the Greater Wax Moth, Galleria mellonella. INSECTS 2017; 8:E61. [PMID: 28598383 PMCID: PMC5492075 DOI: 10.3390/insects8020061] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/02/2022]
Abstract
The greater wax moth, Galleria mellonella Linnaeus, is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius. The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to the midrib of honeybee comb. Burrowing larvae leave behind masses of webs which causes galleriasis and later absconding of colonies. The damage caused by G. mellonella larvae is severe in tropical and sub-tropical regions, and is believed to be one of the contributing factors to the decline in both feral and wild honeybee populations. Previously, the pest was considered a nuisance in honeybee colonies, therefore, most studies have focused on the pest as a model for in vivo studies of toxicology and pathogenicity. It is currently widespread, especially in Africa, and the potential of transmitting honeybee viruses has raised legitimate concern, thus, there is need for more studies to find sustainable integrated management strategies. However, our knowledge of this pest is limited. This review provides an overview of the current knowledge on the biology, distribution, economic damage, and management options. In addition, we provide prospects that need consideration for better understanding and management of the pest.
Collapse
Affiliation(s)
- Charles A Kwadha
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - George O Ong'amo
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Paul N Ndegwa
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Suresh K Raina
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| | - Ayuka T Fombong
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
13
|
Liu Y, Jiang W, Liang Y, Zhao C, Li J. No effect of Bt-transgenic rice litter on the meiobenthos community in field ditches. PEST MANAGEMENT SCIENCE 2017; 73:1213-1219. [PMID: 27717164 DOI: 10.1002/ps.4446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/18/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The non-target effect of Bacillus thuringiensis (Bt) toxins in aquatic ecosystems is crucial to improve the present assessment of Bt-transgenic plants, particularly where crops are cultivated near aquatic ecosystems. We conducted decomposition experiments during two growing seasons to determine the effects of Bt-transgenic rice litter with and without insecticide application on the meiobenthos communities in a field ditch. RESULTS The community composition of meiobenthos colonised on leaf litter was not significantly different between Bt and non-Bt rice. The abundance of meiobenthos colonising leaves differed between insecticide application and control, and this insecticide effect interacted with rice type. No Bt toxin was detected in field ditch water. Leaf decomposition and nutrient content were comparable for both Bt and non-Bt rice with or without insecticide application. CONCLUSION Bt-transgenic rice litter had no effect on the meiobenthos community composition in field ditches, but the chronic persistence of transgenic litter in nature needs to be taken into account at large scales in aquatic ecosystems. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wanxiang Jiang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Yuyong Liang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Caiyun Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
14
|
Navasero MV, Candano RN, Hautea DM, Hautea RA, Shotkoski FA, Shelton AM. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines. PLoS One 2016; 11:e0165190. [PMID: 27798662 PMCID: PMC5087897 DOI: 10.1371/journal.pone.0165190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/08/2016] [Indexed: 11/18/2022] Open
Abstract
Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides.
Collapse
Affiliation(s)
- Mario V. Navasero
- National Crop Protection Center/CPC, College of Agriculture, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Randolph N. Candano
- National Crop Protection Center/CPC, College of Agriculture, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Desiree M. Hautea
- Institute of Plant Breeding/CSC, College of Agriculture, University of the Philippines Los Baños, College, Laguna, Philippines
- * E-mail: ,
| | - Randy A. Hautea
- International Service for the Acquisition of Agri-Biotech Applications, Los Baños, Laguna, Philippines
| | - Frank A. Shotkoski
- International Programs, Cornell University, Ithaca, New York, United States of America
| | - Anthony M. Shelton
- Department of Entomology, Cornell/NYSAES, Geneva, New York, United States of America
| |
Collapse
|
15
|
Svobodová Z, Skoková Habuštová O, Boháč J, Sehnal F. Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:432-445. [PMID: 26781035 DOI: 10.1017/s000748531500111x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Staphylinid beetles are recommended bioindicators for the pre-market environmental risk assessment of genetically modified (GM) insect protected maize expressing the Cry3Bb1 toxin. Our multiannual study is a unique European analysis of a staphylinid community within a 14 ha maize field. GM maize, its near-isogenic hybrid (with or without insecticide treatment), and two other reference hybrids were each grown in five 0.5 ha plots. The opportunity for exposure to Cry toxin from plant residues ploughed into the soil was shown by the presence of saprophagous dipteran larvae that are common prey of predatory staphylinid species and hosts of the parasitoid species. 2587 individuals belonging to 77 staphylinid species were sampled using pitfall traps. Lesteva longoelytrata (31%), Oxypoda acuminata (12%), Aloconota sulcifrons (8%) and Anotylus rugosus (7%) were the most abundant beetles in the field. Bionomics, food specialization, temperature requirements and size group were assigned for 25 most common species. These traits determine the occurrence of staphylinid beetles in the field, the food sources they could utilize and thus also their likely contact with the Cry3Bb1 toxin. Statistical analysis of activity abundance, Rao indices and multivariate analysis of distribution of particular categories of functional traits in the field showed negligible effects of the experimental treatments, including the GM maize, upon the staphylinid community. Staphylinid beetles represent a considerably diverse part of epigeic field fauna with wide food specialization; these features render them suitable for the assessment of environmental safety of GM insect protected maize. However, the availability of prey and the presence of particular staphylinid species and their abundance are highly variable; this complicates the interpretation of the results.
Collapse
Affiliation(s)
- Z Svobodová
- Institute of Entomology, Biology Centre CAS,Branišovská 31, 370 05,České Budějovice,Czech Republic
| | - O Skoková Habuštová
- Institute of Entomology, Biology Centre CAS,Branišovská 31, 370 05,České Budějovice,Czech Republic
| | - J Boháč
- Faculty of Agriculture,University of South Bohemia in České Budějovice,Studentská 13,370 05 České Budějovice,Czech Republic
| | - F Sehnal
- Institute of Entomology, Biology Centre CAS,Branišovská 31, 370 05,České Budějovice,Czech Republic
| |
Collapse
|
16
|
Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance, diversity and community composition. Transgenic Res 2016; 25:761-772. [PMID: 27344564 DOI: 10.1007/s11248-016-9968-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon-Wiener diversity index, Simpson's diversity index, species richness, and Pielou's index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.
Collapse
|
17
|
Kim YJ, Lee JH, Harn CH, Kim CG. Transgenic Cabbage Expressing Cry1Ac1 Does Not Affect the Survival and Growth of the Wolf Spider, Pardosa astrigera L. Koch (Araneae: Lycosidae). PLoS One 2016; 11:e0153395. [PMID: 27055120 PMCID: PMC4824485 DOI: 10.1371/journal.pone.0153395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
Both herbivores that consume transgenic crops and their predators can be exposed to insecticidal proteins expressed in those crops. We conducted a tritrophic bioassay to evaluate the ecotoxicological impacts that Bt cabbage (Brassica oleracea var. capitata) expressing Cry1Ac1 protein might have on the wolf spider (Pardosa astrigera), a non-target generalist predator. Enzyme-Linked Immunosorbent Assays indicated that protein levels were 4.61 ng g-1 dry weight in fruit flies (Drosophila melanogaster) fed with the transgenic cabbage and 1.86 ng g-1 dry weight in the wolf spiders that preyed upon them. We also compared the life history traits of spiders collected from Bt versus non-Bt cabbage and found no significant differences in their growth, survival, and developmental rates. Because Bt cabbage did not affect the growth of fruit flies, we conclude that any indirect effects that this crop had on the wolf spider were probably not mediated by prey quality. Therefore, exposure to Cry1Ac1 protein when feeding upon prey containing that substance from transgenic cabbage has only a negligible influence on those non-target predatory spiders.
Collapse
Affiliation(s)
- Young-Joong Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Entomology program, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon-Ho Lee
- Entomology program, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chee Hark Harn
- R&D Headquarters, Nongwoo Bio Co., Yeoju 12648, Republic of Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Tan J, Levine SL, Bachman PM, Jensen PD, Mueller GM, Uffman JP, Meng C, Song Z, Richards KB, Beevers MH. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:287-94. [PMID: 26011006 PMCID: PMC4744748 DOI: 10.1002/etc.3075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/02/2015] [Accepted: 05/18/2015] [Indexed: 05/08/2023]
Abstract
The honey bee (Apis mellifera L.) is the most important managed pollinator species worldwide and plays a critical role in the pollination of a diverse range of economically important crops. This species is important to agriculture and historically has been used as a surrogate species for pollinators to evaluate the potential adverse effects for conventional, biological, and microbial pesticides, as well as for genetically engineered plants that produce pesticidal products. As part of the ecological risk assessment of MON 87411 maize, which expresses a double-stranded RNA targeting the Snf7 ortholog (DvSnf7) in western corn rootworm (Diabrotica virgifera virgifera), dietary feeding studies with honey bee larvae and adults were conducted. Based on the mode of action of the DvSnf7 RNA in western corn rootworm, the present studies were designed to be of sufficient duration to evaluate the potential for adverse effects on larval survival and development through emergence and adult survival to a significant portion of the adult stage. Testing was conducted at concentrations of DvSnf7 RNA that greatly exceeded environmentally relevant exposure levels based on expression levels in maize pollen. No adverse effects were observed in either larval or adult honey bees at these high exposure levels, providing a large margin of safety between environmental exposure levels and no-observed-adverse-effect levels.
Collapse
Affiliation(s)
- Jianguo Tan
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Steven L Levine
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | | | - Peter D Jensen
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | | | - Joshua P Uffman
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Chen Meng
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Zihong Song
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | | | | |
Collapse
|
19
|
Ahmad A, Negri I, Oliveira W, Brown C, Asiimwe P, Sammons B, Horak M, Jiang C, Carson D. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA. Transgenic Res 2016; 25:1-17. [PMID: 26433587 PMCID: PMC4735227 DOI: 10.1007/s11248-015-9907-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual-site comparisons (94.6 %) of NTA pest damage to the crop. In each case where a significant difference was observed in arthropod abundance or damage, the mean value for MON 87411 was within the reference range and/or the difference was not consistently observed across collection methods and/or sites. Thus, the differences were not representative of an adverse effect unfamiliar to maize and/or were not indicative of a consistent plant response associated with the GM traits. Results from this study support a conclusion of no adverse environmental impact of MON 87411 on NTAs compared to conventional maize and demonstrate the utility of relevant transportable data across regions for the ERA of GM crops.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA.
| | - Ignacio Negri
- Monsanto Company, Fontezuela Research Station Route 8, km214, CP2700, Pergamino, Buenos Aires, Argentina
| | - Wladecir Oliveira
- Monsanto Company, Dionisio Bortolotti Avenue, km 0.5, Caixa Postal 9, Santa Cruz das Palmeiras, São Paulo, Brazil
| | - Christopher Brown
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Peter Asiimwe
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Bernard Sammons
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Michael Horak
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Changjian Jiang
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - David Carson
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| |
Collapse
|
20
|
Levine SL, Tan J, Mueller GM, Bachman PM, Jensen PD, Uffman JP. Independent action between DvSnf7 RNA and Cry3Bb1 protein in southern corn rootworm, Diabrotica undecimpunctata howardi and Colorado potato beetle, Leptinotarsa decemlineata. PLoS One 2015; 10:e0118622. [PMID: 25734482 PMCID: PMC4348175 DOI: 10.1371/journal.pone.0118622] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/21/2015] [Indexed: 01/28/2023] Open
Abstract
In recent years, corn rootworm (CRW)-resistant maize events producing two or more CRW-active Bt proteins have been commercialized to enhance efficacy against the target pest(s) by providing multiple modes of action (MoA). The maize hybrid MON 87411 has been developed that produces the CRW-active Cry3Bb1 Bt protein (hereafter Cry3Bb1) and expresses a RNAi-mediated MoA that also targets CRW. As part of an environmental risk assessment for MON 87411, the potential for an interaction between the CRW-active DvSnf7 RNA (hereafter DvSnf7) and Cry3Bb1 was assessed in 12-day diet incorporation bioassays with the southern corn rootworm (SCR, Diabrotica undecimpunctata howardi). The potential for an interaction between DvSnf7 and Cry3Bb1 was evaluated with two established experimental approaches. The first approach evaluated each substance alone and in combination over three different response levels. For all three response levels, observed responses were shown to be additive and not significantly different from predicted responses under the assumption of independent action. The second approach evaluated the potential for a fixed sub-lethal concentration of Cry3Bb1 to decrease the median lethal concentration (LC50) of DvSnf7 and vice-versa. With this approach, the LC50 value of DvSnf7 was not altered by a sub-lethal concentration of Cry3Bb1 and vice-versa. In addition, the potential for an interaction between the Cry3Bb1 and DvSnf7 was tested with Colorado potato beetle (CPB, Leptinotarsa decemlineata), which is sensitive to Cry3Bb1 but not DvSnf7. CPB assays also demonstrated that DvSnf7 does not alter the activity of Cry3Bb1. The results from this study provide multiple lines of evidence that DvSnf7 and Cry3Bb1 produced in MON 87411 have independent action.
Collapse
Affiliation(s)
- Steven L. Levine
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, United States of America
- * E-mail: (SLL); (JT)
| | - Jianguo Tan
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, United States of America
- * E-mail: (SLL); (JT)
| | - Geoffrey M. Mueller
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, United States of America
| | - Pamela M. Bachman
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, United States of America
| | - Peter D. Jensen
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, United States of America
| | - Joshua P. Uffman
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, United States of America
| |
Collapse
|
21
|
Guo Y, Feng Y, Ge Y, Tetreau G, Chen X, Dong X, Shi W. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods. PLoS One 2014; 9:e114228. [PMID: 25437213 PMCID: PMC4250226 DOI: 10.1371/journal.pone.0114228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The “sampling dates” had a significant effect on these indices, but no clear tendencies related to “Bt corn” or “sampling dates X corn variety” interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.
Collapse
Affiliation(s)
- Yanyan Guo
- Department of Entomology, China Agricultural University, Beijing, China
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, 14456, United States of America
| | - Yanjie Feng
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yang Ge
- Department of Entomology, China Agricultural University, Beijing, China
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, 14456, United States of America
| | - Xiaowen Chen
- Department of Agriculture Science, China Agricultural University, Beijing, China
| | - Xuehui Dong
- Department of Agriculture Science, China Agricultural University, Beijing, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
A 90-day subchronic feeding study of genetically modified rice expressing Cry1Ab protein in Sprague-Dawley rats. Transgenic Res 2014; 24:295-308. [PMID: 25367203 DOI: 10.1007/s11248-014-9844-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 10/17/2014] [Indexed: 01/12/2023]
Abstract
Bacillus thuringiensis (Bt) transgenic rice line (mfb-MH86) expressing a synthetic cry1Ab gene can be protected against feeding damage from Lepidopteran insects, including Sesamia inferens, Chilo suppressalis, Tryporyza incertulas and Cnaphalocrocis medinalis. Rice flour from mfb-MH86 and its near-isogenic control MH86 was separately formulated into rodent diets at concentrations of 17.5, 35 and 70 % (w/w) for a 90-day feeding test with rats, and all of the diets were nutritionally balanced. In this study, the responses of rats fed diets containing mfb-MH86 were compared to those of rats fed flour from MH86. Overall health, body weight and food consumption were comparable between groups fed diets containing mfb-MH86 and MH86. Blood samples were collected prior to sacrifice and a few significant differences (p < 0.05) were observed in haematological and biochemical parameters between rats fed genetically modified (GM) and non-GM diets. However, the values of these parameters were within the normal ranges of values for rats of this age and sex, thus not considered treatment related. In addition, upon sacrifice a large number of organs were weighed, macroscopic and histopathological examinations were performed with only minor changes to report. In conclusion, these results demonstrated that no toxic effect was observed in the conditions of the experiment, based on the different parameters assessed. GM rice mfb-MH86 is as safe and nutritious as non-GM rice.
Collapse
|
23
|
Yu H, Romeis J, Li Y, Li X, Wu K. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields. PLoS One 2014; 9:e103973. [PMID: 25110881 PMCID: PMC4128818 DOI: 10.1371/journal.pone.0103973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.
Collapse
Affiliation(s)
- Huilin Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jörg Romeis
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute for Sustainability Sciences ISS, Agroscope, Zurich, Switzerland
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Yu H, Li Y, Li X, Wu K. Arthropod abundance and diversity in transgenic Bt soybean. ENVIRONMENTAL ENTOMOLOGY 2014; 43:1124-34. [PMID: 24915416 DOI: 10.1603/en13337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Before the commercialization of any insect-resistant genetically modified crop, it must be subjected to a rigorous premarket risk assessment. Here, possible effects of growing of transgenic Cry1Ac soybean on arthropod communities under field conditions were assessed for 2 yr and quantified in terms of arthropod community indices including the Shannon-Weaver diversity index, richness index, and dominance index. Our results showed no significant differences of diversity, richness, or dominant indices for Bt soybean compared with the recipient cultivar, conventional soybean, or sprayed conventional soybean. Conventional soybean treatment with insecticide had an adverse effect on the arthropod community after spraying, but arthropod community diversity recovered quickly. Bt soybean had no negative effect on the dominant distribution of subcommunities, including sucking pests, other pests, predators, parasitoids, and others except for lepidopteran pests. The dominance distribution of lepidopteran pests decreased significantly in Bt soybean because of the significant decrease in the numbers of Spodoptera litura (F.) and Ascotis selenaria Schiffermüller et Denis compared with the recipient cultivar. Our results showed that there were no negative effects of Cry1Ac soybean on the arthropod community in soybean field plots in the short term.
Collapse
Affiliation(s)
- Huilin Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | |
Collapse
|
25
|
Romeis J, Meissle M, Alvarez-Alfageme F, Bigler F, Bohan DA, Devos Y, Malone LA, Pons X, Rauschen S. Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants. Transgenic Res 2014; 23:995-1013. [PMID: 24633599 DOI: 10.1007/s11248-014-9791-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Worldwide, plants obtained through genetic modification are subject to a risk analysis and regulatory approval before they can enter the market. An area of concern addressed in environmental risk assessments is the potential of genetically modified (GM) plants to adversely affect non-target arthropods and the valued ecosystem services they provide. Environmental risk assessments are conducted case-by-case for each GM plant taking into account the plant species, its trait(s), the receiving environments into which the GM plant is to be released and its intended uses, and the combination of these characteristics. To facilitate the non-target risk assessment of GM plants, information on arthropods found in relevant agro-ecosystems in Europe has been compiled in a publicly available database of bio-ecological information during a project commissioned by the European Food Safety Authority (EFSA). Using different hypothetical GM maize case studies, we demonstrate how the information contained in the database can assist in identifying valued species that may be at risk and in selecting suitable species for laboratory testing, higher-tier studies, as well as post-market environmental monitoring.
Collapse
Affiliation(s)
- Jörg Romeis
- Agroscope, Institute for Sustainability Sciences (ISS), Reckenholzstrasse 191, 8046, Zurich, Switzerland,
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Al-Hmoud N, Al-Husseini N, Ibrahim-Alobaide MA, Kübler E, Farfoura M, Alobydi H, Al-Rousan H. Unconventional P-35S sequence identified in genetically modified maize. GM CROPS & FOOD 2014; 5:58-64. [PMID: 24495911 PMCID: PMC5033183 DOI: 10.4161/gmcr.27542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Cauliflower Mosaic Virus 35S promoter sequence, CaMV P-35S, is one of several commonly used genetic targets to detect genetically modified maize and is found in most GMOs. In this research we report the finding of an alternative P-35S sequence and its incidence in GM maize marketed in Jordan. The primer pair normally used to amplify a 123 bp DNA fragment of the CaMV P-35S promoter in GMOs also amplified a previously undetected alternative sequence of CaMV P-35S in GM maize samples which we term V3. The amplified V3 sequence comprises 386 base pairs and was not found in the standard wild-type maize, MON810 and MON 863 GM maize. The identified GM maize samples carrying the V3 sequence were found free of CaMV when compared with CaMV infected brown mustard sample. The data of sequence alignment analysis of the V3 genetic element showed 90% similarity with the matching P-35S sequence of the cauliflower mosaic virus isolate CabbB-JI and 99% similarity with matching P-35S sequences found in several binary plant vectors, of which the binary vector locus JQ693018 is one example. The current study showed an increase of 44% in the incidence of the identified 386 bp sequence in GM maize sold in Jordan’s markets during the period 2009 and 2012.
Collapse
Affiliation(s)
- Nisreen Al-Hmoud
- Biosafety Unit; Royal Scientific Society; Amman, Jordan; Environment Management and Technology Postgraduate Programme; Princess Sumaya University for Technology; Amman, Jordan
| | - Nawar Al-Husseini
- Environment Management and Technology Postgraduate Programme; Princess Sumaya University for Technology; Amman, Jordan
| | - Mohammed A Ibrahim-Alobaide
- Environment Management and Technology Postgraduate Programme; Princess Sumaya University for Technology; Amman, Jordan
| | - Eric Kübler
- School for Life Sciences; University of Applied Sciences Northwestern Switzerland; Muttenz, Switzerland
| | | | | | | |
Collapse
|
27
|
Nicolia A, Manzo A, Veronesi F, Rosellini D. An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 2013; 34:77-88. [DOI: 10.3109/07388551.2013.823595] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Scientific Opinion on an application from Pioneer Hi‐Bred International and Dow AgroSciences LLC (EFSA‐GMO‐NL‐2005‐23) for placing on the market of genetically modified maize 59122 for food and feed uses, import, processing and cultivation under Regulation (EC) No 1829/2003. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
29
|
Scientific Opinion updating the risk assessment conclusions and risk management recommendations on the genetically modified insect resistant maize MON 810. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|