1
|
Liang C, Xu H, You H, Zhang O, Han Y, Li Q, Hu Y, Xiang X. Physicochemical properties and molecular mechanisms of different resistant starch subtypes in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1313640. [PMID: 38259949 PMCID: PMC10800921 DOI: 10.3389/fpls.2023.1313640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024]
Abstract
Resistant starch (RS) can help prevent diabetes and decrease calorie intake and that from plants are the main source of mankind consumption. Rice is many people's staple food and that with higher RS will help health management. A significantly positive correlation exists between apparent amylose content (AAC) of rice and its RS content. In this study, 72 accessions with moderate or high AAC were selected to explore the regulatory mechanisms and physicochemical properties on different proceeding types of rice RS. RS in raw milled rice (RSm), hot cooked rice (RSc), and retrogradation rice (RSr) showed a wide variation and distinct controlling mechanisms. They were co-regulated by Waxy (Wx), soluble starch synthase (SS) IIb and SSI. Besides that, RSm was also regulated by SSIIa and SSIVb, RSc by granule-bound starch synthase (GBSS) II and RSr by GBSSII and Pullulanase (PUL). Moreover, Wx had significant interactions with SSIIa, SSI, SSIIb and SSIVb on RSm, but only the dominant interactions with SSIIb and SSI on RSc and RSr. Wx was the key factor for the formation of RS, especially the RSc and RSr. The genes had the highest expression at 17 days after flowering and were beneficial for RS formation. The longer the chain length of starch, the higher the RS3 content. RSc and RSr were likely to be contained in medium-size starch granules. The findings favor understanding the biosynthesis of different subtypes of RS.
Collapse
Affiliation(s)
- Cheng Liang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Haoyang Xu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Hui You
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Ouling Zhang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Yiman Han
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Qingyu Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Yungao Hu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Xunchao Xiang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| |
Collapse
|
2
|
He Z, Shang X, Zhang T, Yun J. Effect of calcium and magnesium on starch synthesis in maize kernels and its physiological driving mechanism. FRONTIERS IN PLANT SCIENCE 2024; 14:1332517. [PMID: 38259946 PMCID: PMC10800842 DOI: 10.3389/fpls.2023.1332517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
The content of kernel starch (STC), which is a fundamental indicator of the nutritional value of maize, is directly correlated with the grain's taste and aroma. Both calcium (Ca) and magnesium (Mg) are critical nutrients that play a significant role in the growth and development of maize, as well as in the synthesis of STC. To determine the physiological driving mechanisms of Ca and Mg effects on the accumulation of STC synthesis in maize kernels and the characteristics of their effects on endogenous hormones and enzymes of STC synthesis in maize leaves, our study applied foliar Ca and Mg fertilizers at various levels to maize prior to pollination. (1) The levels of Ca, Mg, indole-3-acetic acid (IAA), gibberellin (GA), and zeatin riboside (ZR) in maize leaves increased and then decreased after the supplementation of Ca and Mg. They peaked on the 32nd day after pollination. In contrast, the levels of abscisic acid (ABA) initially decreased and then increased. Ca and Mg had a negative correlation with ABA and a positive correlation with IAA, GA, and ZR. (2) As the levels of Ca and Mg increased, correspondingly rose the activities of enzymes responsible for STC synthesis and the content of STC and its components. Principally influencing the synthesis of STC were ABA, IAA, uridine diphosphate-glucose pyrophosphorylase (UDPG), granule-bound starch synthase (GBSS), and soluble starch synthase (SSS). (3) "IAA-UDPG or GBSS-STC" was the predominant physiological regulation pathway of Ca on kernel STC, whereas "IAA-GBSS-STC" was the dominant physiological regulation pathway of Mg on kernel STC. The regulatory impact of STC by UDPG and GBSS was positive, as were the effects of IAA on UDPG and GBSS. In conclusion, the accumulation of kernel starch was significantly enhanced by Ca and Mg supplementation via the modulation of endogenous hormone levels and key enzyme activities. This research identifies a viable approach to improve the nutritional composition of maize.
Collapse
Affiliation(s)
- Zhaoquan He
- School of Life Sciences, Yan’an University, Yan’an, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
| | - Xue Shang
- School of Life Sciences, Yan’an University, Yan’an, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Land Resource and Environment, Jiangxi Agricultural University, Jiangxi, Nanchang, China
| | - Tonghui Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Jianying Yun
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
3
|
Li P, Ma H, Xiao N, Zhang Y, Xu T, Xia T. Overexpression of the ZmSUS1 gene alters the content and composition of endosperm starch in maize (Zea mays L.). PLANTA 2023; 257:97. [PMID: 37052727 DOI: 10.1007/s00425-023-04133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
ZmSUS1 increases the amylose content of maize by regulating the expression of Shrunken2 (Sh2) and Brittle2 (Bt2) which encode the size subunits of endosperm ADP-glucose pyrophosphorylase, and Granule bound starchsynthase1 (GBSS1) and Starch synthase1 (SS1). Cereal crops accumulate starch in seeds as an energy reserve. Sucrose Synthase (SuSy) plays an important role in grain starch synthesis. In this study, ZmSUS1 was transformed into maize inbred line KN5585, and transgenic plants were obtained. Compared with the non-transgenic negative control, the content and activity of SuSy were significantly increased, the amylose content in mature seeds of transgenic maize increased by 41.1-69.2%, the total starch content increased by 5.0-13.5%, the 100-grain weight increased by 19.0-26.2% and the average diameter of starch granules increased by 10.8-17.2%. These results indicated that overexpression of ZmSUS1 can significantly improve the traits of maize seeds and obtain new lines with high amylose content. It was also found that the overexpression of ZmSUS1 may increase the amylose content by altering the expression of endosperm ADP-glucose pyrophosphorylase (AGPase) subunits Shrunken2 (Sh2) and Brittle2 (Bt2). Moreover, the ectopic expression of ZmSUS1 also affected the expression of Granule bound starch synthase1 (GBSS1) and Starch synthase1 (SS1) which encode starch synthase. This study proved the important role of ZmSUS1 in maize starch synthesis and provided a new technology strategy for improving maize starch content and yield.
Collapse
Affiliation(s)
- Panpan Li
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, People's Republic of China
| | - Haizhen Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, People's Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Ning Xiao
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, People's Republic of China
| | - Yuqing Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, People's Republic of China
| | - Tianyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, People's Republic of China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, People's Republic of China.
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Wan W, Wu Y, Hu D, Ye F, Wu X, Qi X, Liang H, Zhou H, Xue J, Xu S, Zhang X. Genome-wide association analysis of kernel nutritional quality in two natural maize populations. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:18. [PMID: 37313300 PMCID: PMC10248675 DOI: 10.1007/s11032-023-01360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/05/2023] [Indexed: 06/15/2023]
Abstract
As one of the three staple crops, nutritional traits in maize are important for human and animal nutrition. Grain quality-related traits are closely related to grain commercial value. Understanding the genetic basis of quality-related traits in maize would be helpful for breeding high-quality maize varieties. In this study, two association panels (AM122 and AM180) were subjected to genome-wide association analysis of grain quality-related traits, including protein content, oil content, starch content, and fiber content. In total, 98 SNPs (P < 1 × 10-4) were identified to be significantly associated with these four grain quality-related traits. By integrating two sets of public transcriptome data, 31 genes located in 200 kb regions flanking the associated SNP showed high expression during kernel development and were differentially expressed in two maize inbred lines, KA225 and KB035, with significantly different quality. These genes might regulate maize grain quality by participating in plant hormone processes, autophagy processes, and others. All these results could provide important reference information for breeding high‑quality maize varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01360-w.
Collapse
Affiliation(s)
- Wenting Wan
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre, Yangling, 712100 Shaanxi China
| | - Ying Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre, Yangling, 712100 Shaanxi China
| | - Die Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre, Yangling, 712100 Shaanxi China
| | - Fan Ye
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre, Yangling, 712100 Shaanxi China
| | - Xiaopeng Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre, Yangling, 712100 Shaanxi China
| | - Xingyue Qi
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre, Yangling, 712100 Shaanxi China
| | - Hangyu Liang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre, Yangling, 712100 Shaanxi China
| | - Haiyang Zhou
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre, Yangling, 712100 Shaanxi China
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre, Yangling, 712100 Shaanxi China
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre, Yangling, 712100 Shaanxi China
| |
Collapse
|
5
|
Niu L, Liu L, Zhang J, Scali M, Wang W, Hu X, Wu X. Genetic Engineering of Starch Biosynthesis in Maize Seeds for Efficient Enzymatic Digestion of Starch during Bioethanol Production. Int J Mol Sci 2023; 24:ijms24043927. [PMID: 36835340 PMCID: PMC9967003 DOI: 10.3390/ijms24043927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Maize accumulates large amounts of starch in seeds which have been used as food for human and animals. Maize starch is an importantly industrial raw material for bioethanol production. One critical step in bioethanol production is degrading starch to oligosaccharides and glucose by α-amylase and glucoamylase. This step usually requires high temperature and additional equipment, leading to an increased production cost. Currently, there remains a lack of specially designed maize cultivars with optimized starch (amylose and amylopectin) compositions for bioethanol production. We discussed the features of starch granules suitable for efficient enzymatic digestion. Thus far, great advances have been made in molecular characterization of the key proteins involved in starch metabolism in maize seeds. The review explores how these proteins affect starch metabolism pathway, especially in controlling the composition, size and features of starch. We highlight the roles of key enzymes in controlling amylose/amylopectin ratio and granules architecture. Based on current technological process of bioethanol production using maize starch, we propose that several key enzymes can be modified in abundance or activities via genetic engineering to synthesize easily degraded starch granules in maize seeds. The review provides a clue for developing special maize cultivars as raw material in the bioethanol industry.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangwei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
6
|
Changes of starch and sucrose content and related gene expression during the growth and development of Lanzhou lily bulb. PLoS One 2022; 17:e0262506. [PMID: 35015792 PMCID: PMC8752016 DOI: 10.1371/journal.pone.0262506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022] Open
Abstract
As the main forms of carbohydrates, starch and sucrose play a vital role in the balance and coordination of various carbohydrates. Lanzhou lily is the most popular edible lily in China, mainly distributed in the central region of Gansu. To clarify the relationship between carbohydrate metabolism and bulb development of Lanzhou lily, so as to provide a basis for the promotion of the growth and development in Lanzhou lily and its important economic value, we studied lily bulbs in the squaring stage, flowering stage, half withering stage and withering stage. The plant height, fresh weight of mother and daughter bulbs continued to increase during the whole growth period and fresh weight of stem and leaf began to decrease in the half withering stage. The content of starch, sucrose and total soluble sugar in the lily mother bulb accumulated mostly in the flowering, withering and half withering stages, respectively. Starch, sucrose and total soluble sugar accumulated in the daughter bulb with the highest concentration during the withering stage. In the transcription level, sucrose synthase (SuSy1) and sucrose invertase (INV2) expressed the highest in squaring stage, and the expression was significantly higher in the mother bulb than in the daughter bulb. In flowering stage, the expression levels of soluble starch synthase (SSS1), starch-branching enzyme (SBE) and adenosine diphosphate-glucose pyrophosphorylase (AGP1) genes were higher in the mother bulb than in the daughter bulb. Altogether, our results indicate that starch and sucrose are important for the bulb growth and development of Lanzhou lily.
Collapse
|
7
|
Zhang X, Wang M, Zhang C, Dai C, Guan H, Zhang R. Genetic dissection of QTLs for starch content in four maize DH populations. FRONTIERS IN PLANT SCIENCE 2022; 13:950664. [PMID: 36275573 PMCID: PMC9583244 DOI: 10.3389/fpls.2022.950664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 05/17/2023]
Abstract
Starch is the principal carbohydrate source in maize kernels. Understanding the genetic basis of starch content (SC) benefits greatly in improving maize yield and optimizing end-use quality. Here, four double haploid (DH) populations were generated and were used to identify quantitative trait loci (QTLs) associated with SC. The phenotype of SC exhibited continuous and approximate normal distribution in each population. A total of 13 QTLs for SC in maize kernels was detected in a range of 3.65-16.18% of phenotypic variation explained (PVE). Among those, only some partly overlapped with QTLs previously known to be related to SC. Meanwhile, 12 genes involved in starch synthesis and metabolism located within QTLs were identified in this study. These QTLs will lay the foundation to explore candidate genes regulating SC in maize kernel and facilitate the application of molecular marker-assisted selection for a breeding program to cultivate maize varieties with a deal of grain quality.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Min Wang
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan, China
| | | | - Changjun Dai
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haitao Guan
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ruiying Zhang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Ruiying Zhang
| |
Collapse
|
8
|
Yu JK, Moon YS. Corn Starch: Quality and Quantity Improvement for Industrial Uses. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010092. [PMID: 35009095 PMCID: PMC8747220 DOI: 10.3390/plants11010092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 05/02/2023]
Abstract
Corn starch serves as food, feed, and a raw material for industrial use. Starch makes up most of the biomass of the corn hybrid and is the most important and main yield component in corn breeding programs. Starch is composed of two polymers, branched amylopectin and linear amylose, which normally constitute about 75% and 25% of the corn starch, respectively. Breeding for corn starch quality has become economically beneficial because of the development of niche markets for specialty grains. In addition, due to the increased demands of biofuel production, corn ethanol production is receiving more attention. Consequently, improving starch quantity has become one of the most important breeding objectives. This review will summarize the use of corn starch, and the genetics and breeding of grain quality and quantity for industrial applications.
Collapse
Affiliation(s)
- Ju-Kyung Yu
- Syngenta Crop Protection LLC, Seeds Research, Research Triangle Park, Durham, NC 27709, USA;
| | - Yong-Sun Moon
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence:
| |
Collapse
|
9
|
Castano-Duque L, Gilbert MK, Mack BM, Lebar MD, Carter-Wientjes CH, Sickler CM, Cary JW, Rajasekaran K. Flavonoids Modulate the Accumulation of Toxins From Aspergillus flavus in Maize Kernels. FRONTIERS IN PLANT SCIENCE 2021; 12:761446. [PMID: 34899785 PMCID: PMC8662736 DOI: 10.3389/fpls.2021.761446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Aspergillus flavus is an opportunistic fungal pathogen capable of producing aflatoxins, potent carcinogenic toxins that accumulate in maize kernels after infection. To better understand the molecular mechanisms of maize resistance to A. flavus growth and aflatoxin accumulation, we performed a high-throughput transcriptomic study in situ using maize kernels infected with A. flavus strain 3357. Three maize lines were evaluated: aflatoxin-contamination resistant line TZAR102, semi-resistant MI82, and susceptible line Va35. A modified genotype-environment association method (GEA) used to detect loci under selection via redundancy analysis (RDA) was used with the transcriptomic data to detect genes significantly influenced by maize line, fungal treatment, and duration of infection. Gene ontology enrichment analysis of genes highly expressed in infected kernels identified molecular pathways associated with defense responses to fungi and other microbes such as production of pathogenesis-related (PR) proteins and lipid bilayer formation. To further identify novel genes of interest, we incorporated genomic and phenotypic field data from a genome wide association analysis with gene expression data, allowing us to detect significantly expressed quantitative trait loci (eQTL). These results identified significant association between flavonoid biosynthetic pathway genes and infection by A. flavus. In planta fungal infections showed that the resistant line, TZAR102, has a higher fold increase of the metabolites naringenin and luteolin than the susceptible line, Va35, when comparing untreated and fungal infected plants. These results suggest flavonoids contribute to plant resistance mechanisms against aflatoxin contamination through modulation of toxin accumulation in maize kernels.
Collapse
|
10
|
Hu S, Wang M, Zhang X, Chen W, Song X, Fu X, Fang H, Xu J, Xiao Y, Li Y, Bai G, Li J, Yang X. Genetic basis of kernel starch content decoded in a maize multi-parent population. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2192-2205. [PMID: 34077617 PMCID: PMC8541773 DOI: 10.1111/pbi.13645] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 05/25/2023]
Abstract
Starch is the most abundant storage carbohydrate in maize kernels and provides calories for humans and other animals as well as raw materials for various industrial applications. Decoding the genetic basis of natural variation in kernel starch content is needed to manipulate starch quantity and quality via molecular breeding to meet future needs. Here, we identified 50 unique single quantitative trait loci (QTLs) for starch content with 18 novel QTLs via single linkage mapping, joint linkage mapping and a genome-wide association study in a multi-parent population containing six recombinant inbred line populations. Only five QTLs explained over 10% of phenotypic variation in single populations. In addition to a few large-effect and many small-effect additive QTLs, limited pairs of epistatic QTLs also contributed to the genetic basis of the variation in kernel starch content. A regional association study identified five non-starch-pathway genes that were the causal candidate genes underlying the identified QTLs for starch content. The pathway-driven analysis identified ZmTPS9, which encodes a trehalose-6-phosphate synthase in the trehalose pathway, as the causal gene for the QTL qSTA4-2, which was detected by all three statistical analyses. Knockout of ZmTPS9 increased kernel starch content and, in turn, kernel weight in maize, suggesting potential applications for ZmTPS9 in maize starch and yield improvement. These findings extend our knowledge about the genetic basis of starch content in maize kernels and provide valuable information for maize genetic improvement of starch quantity and quality.
Collapse
Affiliation(s)
- Shuting Hu
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
| | - Min Wang
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
| | - Xuan Zhang
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
| | - Wenkang Chen
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
| | - Xinran Song
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
- Agronomy CollegeXinjiang Agricultural UniversityUrumqiChina
| | - Xiuyi Fu
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
- Maize Research CenterBeijing Academy of Agriculture & Forestry Sciences (BAAFS)BeijingChina
| | - Hui Fang
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
| | - Jing Xu
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
| | - Yingni Xiao
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
- Crop Research InstituteGuangdong Academy of Agricultural SciencesKey Laboratory of Crops Genetics and Improvement of Guangdong ProvinceGuangzhouChina
| | - Yaru Li
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
| | - Guanghong Bai
- Agronomy CollegeXinjiang Agricultural UniversityUrumqiChina
| | - Jiansheng Li
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and BiochemistryNational Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
11
|
Zheng Y, Yuan F, Huang Y, Zhao Y, Jia X, Zhu L, Guo J. Genome-wide association studies of grain quality traits in maize. Sci Rep 2021; 11:9797. [PMID: 33963265 PMCID: PMC8105333 DOI: 10.1038/s41598-021-89276-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
High quality is the main goal of today's maize breeding and the investigation of grain quality traits would help to breed high-quality varieties in maize. In this study, genome-wide association studies in a set of 248 diverse inbred lines were performed with 83,057 single nucleotide polymorphisms (SNPs), and five grain quality traits were investigated in diverse environments for two years. The results showed that maize inbred lines showed substantial natural variations of grain quality and these traits showed high broad-sense heritability. A total of 49 SNPs were found to be significantly associated with grain quality traits. Among these SNPs, four co-localized sites were commonly detected by multiple traits. The candidate genes which were searched for can be classified into 11 biological processes, 13 cellular components, and 6 molecular functions. Finally, we found 29 grain quality-related genes. These genes and the SNPs identified in the study would offer essential information for high-quality varieties breeding programs in maize.
Collapse
Affiliation(s)
- Yunxiao Zheng
- grid.274504.00000 0001 2291 4530College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China ,Hebei Sub-Center of National Maize Improvement Center, Baoding, 071001 Hebei China ,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001 Hebei China
| | - Fan Yuan
- grid.274504.00000 0001 2291 4530College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China ,Hebei Sub-Center of National Maize Improvement Center, Baoding, 071001 Hebei China ,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001 Hebei China
| | - Yaqun Huang
- grid.274504.00000 0001 2291 4530College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China ,Hebei Sub-Center of National Maize Improvement Center, Baoding, 071001 Hebei China ,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001 Hebei China
| | - Yongfeng Zhao
- grid.274504.00000 0001 2291 4530College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China ,Hebei Sub-Center of National Maize Improvement Center, Baoding, 071001 Hebei China ,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001 Hebei China
| | - Xiaoyan Jia
- grid.274504.00000 0001 2291 4530College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China ,Hebei Sub-Center of National Maize Improvement Center, Baoding, 071001 Hebei China ,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001 Hebei China
| | - Liying Zhu
- grid.274504.00000 0001 2291 4530College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China ,Hebei Sub-Center of National Maize Improvement Center, Baoding, 071001 Hebei China ,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001 Hebei China
| | - Jinjie Guo
- grid.274504.00000 0001 2291 4530College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China ,Hebei Sub-Center of National Maize Improvement Center, Baoding, 071001 Hebei China ,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001 Hebei China
| |
Collapse
|
12
|
Zou G, Zhai G, Yan S, Li S, Zhou L, Ding Y, Liu H, Zhang Z, Zou J, Zhang L, Chen J, Xin Z, Tao Y. Sorghum qTGW1a encodes a G-protein subunit and acts as a negative regulator of grain size. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5389-5401. [PMID: 32497208 DOI: 10.1093/jxb/eraa277] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Grain size is a major determinant of grain yield in sorghum and other cereals. Over 100 quantitative trait loci (QTLs) of grain size have been identified in sorghum. However, no gene underlying any grain size QTL has been cloned. Here, we describe the fine mapping and cloning of one grain size QTL. From an F8 recombinant inbred line population derived from a cross between inbred lines 654 and LTR108, we identified 44 grain size QTLs. One QTL, qTGW1a, was detected consistently on the long arm of chromosome 1 in the span of 4 years. Using the extreme recombinants from an F2:3 fine-mapping population, qTGW1a was delimited within a ~33 kb region containing three predicted genes. One of them, SORBI_3001G341700, predicted to encode a G-protein γ subunit and homologous to GS3 in rice, is likely to be the causative gene for qTGW1a. qTGW1a appears to act as a negative regulator of grain size in sorghum. The functional allele of the putatively causative gene of qTGW1a from inbred line 654 decreased grain size, plant height, and grain yield in transgenic rice. Identification of the gene underlying qTGW1a advances our understanding of the regulatory mechanisms of grain size in sorghum and provides a target to manipulate grain size through genome editing.
Collapse
Affiliation(s)
- Guihua Zou
- Institute of Crop and Nuclear Technology Utilization, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guowei Zhai
- Institute of Crop and Nuclear Technology Utilization, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Song Yan
- Rice National Engineering Laboratory, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Sujuan Li
- Institute of Crop and Nuclear Technology Utilization, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lengbo Zhou
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yanqing Ding
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Heqin Liu
- Institute of Crop and Nuclear Technology Utilization, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhipeng Zhang
- Chinese National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jianqiu Zou
- Chinese National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Liyi Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Junping Chen
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, USA
| | - Zhanguo Xin
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, USA
| | - Yuezhi Tao
- Institute of Crop and Nuclear Technology Utilization, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
13
|
Wang Z, Li Y, Hou B, Pronobis MI, Wang M, Wang Y, Cheng G, Weng W, Wang Y, Tang Y, Xu X, Pan R, Lin F, Wang N, Chen Z, Wang S, Ma LZ, Li Y, Huang D, Jiang L, Wang Z, Zeng W, Zhang Y, Du X, Lin Y, Li Z, Xia Q, Geng J, Dai H, Yu Y, Zhao XD, Yuan Z, Yan J, Nie Q, Zhang X, Wang K, Chen F, Zhang Q, Zhu Y, Zheng S, Poss KD, Tao SC, Meng X. An array of 60,000 antibodies for proteome-scale antibody generation and target discovery. SCIENCE ADVANCES 2020; 6:eaax2271. [PMID: 32195335 PMCID: PMC7065887 DOI: 10.1126/sciadv.aax2271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/13/2019] [Indexed: 05/28/2023]
Abstract
Antibodies are essential for elucidating gene function. However, affordable technology for proteome-scale antibody generation does not exist. To address this, we developed Proteome Epitope Tag Antibody Library (PETAL) and its array. PETAL consists of 62,208 monoclonal antibodies (mAbs) against 15,199 peptides from diverse proteomes. PETAL harbors binders for a great multitude of proteins in nature due to antibody multispecificity, an intrinsic antibody feature. Distinctive combinations of 10,000 to 20,000 mAbs were found to target specific proteomes by array screening. Phenotype-specific mAb-protein pairs were found for maize and zebrafish samples. Immunofluorescence and flow cytometry mAbs for membrane proteins and chromatin immunoprecipitation-sequencing mAbs for transcription factors were identified from respective proteome-binding PETAL mAbs. Differential screening of cell surface proteomes of tumor and normal tissues identified internalizing tumor antigens for antibody-drug conjugates. By finding high-affinity mAbs at a fraction of current time and cost, PETAL enables proteome-scale antibody generation and target discovery.
Collapse
Affiliation(s)
- Zhaohui Wang
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Hou
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Mira I. Pronobis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Yuemeng Wang
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | | | - Weining Weng
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Yiqiang Wang
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Yanfang Tang
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Xuefan Xu
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Rong Pan
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Fei Lin
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Nan Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziqing Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyan zulie Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangrui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi 530007, China
| | - Dongliang Huang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi 530007, China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Xuemei Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100083, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Yuan Yu
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
| | - Xiao-dong Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Yuan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Yan
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kun Wang
- Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Fulin Chen
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuxian Zhu
- Institute for Advanced Studies and College of Life Sciences, Wuhan University, Wuhan, China
| | - Susan Zheng
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng-ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| | - Xun Meng
- School of Life Sciences, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| |
Collapse
|
14
|
Qu J, Xu S, Tian X, Li T, Wang L, Zhong Y, Xue J, Guo D. Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents. PeerJ 2019; 7:e7528. [PMID: 31523504 PMCID: PMC6717500 DOI: 10.7717/peerj.7528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
In seeds, the endosperm is a crucial organ that plays vital roles in supporting embryo development and determining seed weight and quality. Starch is the predominant storage carbohydrate of the endosperm and accounts for ∼70% of the mature maize kernel weight. Nonetheless, because starch biosynthesis is a complex process that is orchestrated by multiple enzymes, the gene regulatory networks of starch biosynthesis, particularly amylose and amylopectin biosynthesis, have not been fully elucidated. Here, through high-throughput RNA sequencing, we developed a temporal transcriptome atlas of the endosperms of high-amylose maize and common maize at 5-, 10-, 15- and 20-day after pollination and found that 21,986 genes are involved in the programming of the high-amylose and common maize endosperm. A coexpression analysis identified multiple sequentially expressed gene sets that are closely correlated with cellular and metabolic programmes and provided valuable insight into the dynamic reprogramming of the transcriptome in common and high-amylose maize. In addition, a number of genes and transcription factors were found to be strongly linked to starch synthesis, which might help elucidate the key mechanisms and regulatory networks underlying amylose and amylopectin biosynthesis. This study will aid the understanding of the spatiotemporal patterns and genetic regulation of endosperm development in different types of maize and provide valuable genetic information for the breeding of starch varieties with different contents.
Collapse
Affiliation(s)
- Jianzhou Qu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Xiaokang Tian
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Ting Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Licheng Wang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Yuyue Zhong
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Dongwei Guo
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Xia J, Zhu D, Wang R, Cui Y, Yan Y. Crop resistant starch and genetic improvement: a review of recent advances. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2495-2511. [PMID: 30374526 DOI: 10.1007/s00122-018-3221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/24/2018] [Indexed: 05/12/2023]
Abstract
Resistant starch (RS), as a healthy dietary fiber, meets with great human favor along with the rapid development and improvement of global living standards. RS shows direct effects in reducing postprandial blood glucose levels, serum cholesterol levels and glycemic index. Therefore, RS plays an important role in preventing and improving non-communicable diseases, such as obesity, diabetes, colon cancer, cardiovascular diseases and chronic kidney disease. In addition, RS leads to its potential applied value in the development of high-quality foodstuffs, such as bread, noodles and dumplings. This paper reviews the recent advances in RS research, focusing mainly on RS classification and measurement, formation, quantitative trait locus mapping, genome-wide association studies, molecular marker development and genetic improvement through induced mutations, plant breeding combined with marker-assisted selection and genetic transformation. Challenges and perspectives on further RS research are also discussed.
Collapse
Affiliation(s)
- Jian Xia
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Dong Zhu
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Ruomei Wang
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yue Cui
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yueming Yan
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|
16
|
Liu N, Zhang Z, Xue Y, Meng S, Huang Y, Li W, Huang J, Tang J. Identification of Quantitative Trait Loci and Candidate Genes for Maize Starch Granule Size through Association Mapping. Sci Rep 2018; 8:14236. [PMID: 30250035 PMCID: PMC6155146 DOI: 10.1038/s41598-018-31863-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
Starch is an important nutrient component of maize kernels, and starch granule size largely determines kernel waxiness, viscosity, and other physiochemical and processing properties. To explore the genetic basis of maize starch granule size, 266 tropical, subtropical, and temperate inbred lines were subjected to genome-wide association analyses with an array of 56,110 random single nucleotide polymorphisms (SNPs). In the present panel, the kernel starch granule size ranged from 7–15.8 µm long and 6.8–14.3 µm wide. Fourteen significant SNPs were identified as being associated with the length of starch granules and 9 with their width. One linkage disequilibrium block flanking both sides of a significant SNP was defined as a quantitative trait locus (QTL) interval, and seven QTLs were mapped for both granule length and width. A total of 79 and 88 candidate genes associated with starch length and width, respectively, were identified as being distributed on QTL genomic regions. Among these candidate genes, six with high scores were predicted to be associated with maize starch granule size. A candidate gene association analysis identified significant SNPs within genes GRMZM2G419655 and GRMZM2G511067, which could be used as functional markers in screening starch granule size for different commercial uses.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,College of Biological engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhanhui Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Xue
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shujun Meng
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Weihua Li
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jihong Huang
- College of Biological engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
17
|
Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A. The Enhancement of Plant Disease Resistance Using CRISPR/Cas9 Technology. FRONTIERS IN PLANT SCIENCE 2018; 9:1245. [PMID: 30197654 PMCID: PMC6117396 DOI: 10.3389/fpls.2018.01245] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/06/2018] [Indexed: 05/03/2023]
Abstract
Genome editing technologies have progressed rapidly and become one of the most important genetic tools in the implementation of pathogen resistance in plants. Recent years have witnessed the emergence of site directed modification methods using meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). Recently, CRISPR/Cas9 has largely overtaken the other genome editing technologies due to the fact that it is easier to design and implement, has a higher success rate, and is more versatile and less expensive. This review focuses on the recent advances in plant protection using CRISPR/Cas9 technology in model plants and crops in response to viral, fungal and bacterial diseases. As regards the achievement of viral disease resistance, the main strategies employed in model species such as Arabidopsis and Nicotiana benthamiana, which include the integration of CRISPR-encoding sequences that target and interfere with the viral genome and the induction of a CRISPR-mediated targeted mutation in the host plant genome, will be discussed. Furthermore, as regards fungal and bacterial disease resistance, the strategies based on CRISPR/Cas9 targeted modification of susceptibility genes in crop species such as rice, tomato, wheat, and citrus will be reviewed. After spending years deciphering and reading genomes, researchers are now editing and rewriting them to develop crop plants resistant to specific pests and pathogens.
Collapse
Affiliation(s)
- Virginia M. G. Borrelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences – Production, Territory, Agroenergy, University of Milan, Milan, Italy
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
18
|
Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A. The Enhancement of Plant Disease Resistance Using CRISPR/Cas9 Technology. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30197654 DOI: 10.3389/fpls.2018.01245.s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Genome editing technologies have progressed rapidly and become one of the most important genetic tools in the implementation of pathogen resistance in plants. Recent years have witnessed the emergence of site directed modification methods using meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). Recently, CRISPR/Cas9 has largely overtaken the other genome editing technologies due to the fact that it is easier to design and implement, has a higher success rate, and is more versatile and less expensive. This review focuses on the recent advances in plant protection using CRISPR/Cas9 technology in model plants and crops in response to viral, fungal and bacterial diseases. As regards the achievement of viral disease resistance, the main strategies employed in model species such as Arabidopsis and Nicotiana benthamiana, which include the integration of CRISPR-encoding sequences that target and interfere with the viral genome and the induction of a CRISPR-mediated targeted mutation in the host plant genome, will be discussed. Furthermore, as regards fungal and bacterial disease resistance, the strategies based on CRISPR/Cas9 targeted modification of susceptibility genes in crop species such as rice, tomato, wheat, and citrus will be reviewed. After spending years deciphering and reading genomes, researchers are now editing and rewriting them to develop crop plants resistant to specific pests and pathogens.
Collapse
Affiliation(s)
- Virginia M G Borrelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy, University of Milan, Milan, Italy
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
19
|
Hu K, Ding C, Zhou M, Wang C, Hu B, Chen Y, Wu Q, Feng N. Artificial Neural Network–Genetic Algorithm to Optimize Yin Rice Inoculation Fermentation Conditions for Improving Physico-chemical Characteristics. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kaiqun Hu
- Hubei University of Technology
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation
| | - Cheng Ding
- Hubei University of Technology
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University
| | - Mengzhou Zhou
- Hubei University of Technology
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation
| | - Chao Wang
- Hubei University of Technology
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation
| | - Bei Hu
- College of Food Science and Technology, Huazhong Agricultural University
| | - Yuanyuan Chen
- Hubei University of Technology
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation
| | - Qian Wu
- Hubei University of Technology
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation
| | | |
Collapse
|
20
|
Chen L, Lu D, Wang T, Li Z, Zhao Y, Jiang Y, Zhang Q, Cao Q, Fang K, Xing Y, Qin L. Identification and expression analysis of starch branching enzymes involved in starch synthesis during the development of chestnut (Castanea mollissima Blume) cotyledons. PLoS One 2017; 12:e0177792. [PMID: 28542293 PMCID: PMC5441625 DOI: 10.1371/journal.pone.0177792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Chinese chestnut (Castanea mollissima Blume) is native to China and distributes widely in arid and semi-arid mountain area with barren soil. As a perennial crop, chestnut is an alternative food source and acts as an important commercial nut tree in China. Starch is the major metabolite in nuts, accounting for 46 ~ 64% of the chestnut dry weight. The accumulation of total starch and amylopectin showed a similar increasing trend during the development of nut. Amylopectin contributed up to 76% of the total starch content at 80 days after pollination (DAP). The increase of total starch mainly results from amylopectin synthesis. Among genes associated with starch biosynthesis, CmSBEs (starch branching enzyme) showed significant increase during nut development. Two starch branching enzyme isoforms, CmSBE I and CmSBE II, were identified from chestnut cotyledon using zymogram analysis. CmSBE I and CmSBE II showed similar patterns of expression during nut development. The accumulations of CmSBE transcripts and proteins in developing cotyledons were characterized. The expressions of two CmSBE genes increased from 64 DAP and reached the highest levels at 77 DAP, and SBE activity reached its peak at 74 DAP. These results suggested that the CmSBE enzymes mainly contributed to amylopectin synthesis and influenced the amylopectin content in the developing cotyledon, which would be beneficial to chestnut germplasm selection and breeding.
Collapse
Affiliation(s)
- Liangke Chen
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Dan Lu
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Teng Wang
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Zhi Li
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Yanyan Zhao
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Yichen Jiang
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Qingqin Cao
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing, China
| | - Kefeng Fang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
- * E-mail: (YX); (LQ)
| | - Ling Qin
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
- * E-mail: (YX); (LQ)
| |
Collapse
|
21
|
Yang Y, Gao T, Xu M, Dong J, Li H, Wang P, Li G, Guo T, Kang G, Wang Y. Functional Analysis of a Wheat AGPase Plastidial Small Subunit with a Truncated Transit Peptide. Molecules 2017; 22:molecules22030386. [PMID: 28257051 PMCID: PMC6155376 DOI: 10.3390/molecules22030386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/17/2017] [Accepted: 02/25/2017] [Indexed: 11/16/2022] Open
Abstract
ADP-glucose pyrophosphorylase (AGPase), the key enzyme in starch synthesis, consists of two small subunits and two large subunits with cytosolic and plastidial isoforms. In our previous study, a cDNA sequence encoding the plastidial small subunit (TaAGPS1b) of AGPase in grains of bread wheat (Triticum aestivum L.) was isolated and the protein subunit encoded by this gene was characterized as a truncated transit peptide (about 50% shorter than those of other plant AGPS1bs). In the present study, TaAGPS1b was fused with green fluorescent protein (GFP) in rice protoplast cells, and confocal fluorescence microscopy observations revealed that like other AGPS1b containing the normal transit peptide, TaAGPS1b-GFP was localized in chloroplasts. TaAGPS1b was further overexpressed in a Chinese bread wheat cultivar, and the transgenic wheat lines exhibited a significant increase in endosperm AGPase activities, starch contents, and grain weights. These suggested that TaAGPS1b subunit was targeted into plastids by its truncated transit peptide and it could play an important role in starch synthesis in bread wheat grains.
Collapse
Affiliation(s)
- Yang Yang
- The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou 450002, China.
| | - Tian Gao
- The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mengjun Xu
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jie Dong
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hanxiao Li
- The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450002, China.
| | - Pengfei Wang
- The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gezi Li
- The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450002, China.
| | - Tiancai Guo
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guozhang Kang
- The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yonghua Wang
- The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou 450002, China.
- The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
22
|
Tao Y, Mace ES, Tai S, Cruickshank A, Campbell BC, Zhao X, Van Oosterom EJ, Godwin ID, Botella JR, Jordan DR. Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28769949 DOI: 10.3389/fp/s.2017.01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.
Collapse
Affiliation(s)
- Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
| | - Emma S Mace
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
- Department of Agriculture and Fisheries, Hermitage Research FacilityWarwick, QLD, Australia
| | | | - Alan Cruickshank
- Department of Agriculture and Fisheries, Hermitage Research FacilityWarwick, QLD, Australia
| | - Bradley C Campbell
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Xianrong Zhao
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
| | - Erik J Van Oosterom
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandBrisbane, QLD, Australia
| | - Ian D Godwin
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Jose R Botella
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - David R Jordan
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
| |
Collapse
|
23
|
Tao Y, Mace ES, Tai S, Cruickshank A, Campbell BC, Zhao X, Van Oosterom EJ, Godwin ID, Botella JR, Jordan DR. Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1237. [PMID: 28769949 PMCID: PMC5513986 DOI: 10.3389/fpls.2017.01237] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/30/2017] [Indexed: 05/22/2023]
Abstract
Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.
Collapse
Affiliation(s)
- Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
- *Correspondence: Yongfu Tao
| | - Emma S. Mace
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
- Department of Agriculture and Fisheries, Hermitage Research FacilityWarwick, QLD, Australia
- Emma S. Mace
| | | | - Alan Cruickshank
- Department of Agriculture and Fisheries, Hermitage Research FacilityWarwick, QLD, Australia
| | - Bradley C. Campbell
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Xianrong Zhao
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
| | - Erik J. Van Oosterom
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandBrisbane, QLD, Australia
| | - Ian D. Godwin
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - David R. Jordan
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandWarwick, QLD, Australia
- David R. Jordan
| |
Collapse
|
24
|
Yu X, Jiang L, Wu R, Meng X, Zhang A, Li N, Xia Q, Qi X, Pang J, Xu ZY, Liu B. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development. Sci Rep 2016; 6:38504. [PMID: 27917953 PMCID: PMC5137073 DOI: 10.1038/srep38504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure.
Collapse
Affiliation(s)
- Xiaoming Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China.,School of Bioengineering, Jilin College of Agricultural Science &Technology, Jilin 132301, P. R. China
| | - Lili Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Rui Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Qiong Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Xin Qi
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
25
|
Lin L, Guo D, Huang J, Zhang X, Zhang L, Wei C. Molecular structure and enzymatic hydrolysis properties of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Hu L, Zheng Y, Peng Y, Yao C, Zhang H. The optimization of isoamylase processing conditions for the preparation of high-amylose ginkgo starch. Int J Biol Macromol 2016; 86:105-11. [DOI: 10.1016/j.ijbiomac.2016.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 11/24/2022]
|
27
|
|
28
|
Liu N, Xue Y, Guo Z, Li W, Tang J. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels. FRONTIERS IN PLANT SCIENCE 2016; 7:1046. [PMID: 27512395 PMCID: PMC4961707 DOI: 10.3389/fpls.2016.01046] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/04/2016] [Indexed: 05/18/2023]
Abstract
Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65-75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.
Collapse
Affiliation(s)
- Na Liu
- College of Biological Engineering, Henan University of TechnologyZhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural UniversityZhengzhou, China
| | - Yadong Xue
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural UniversityZhengzhou, China
| | - Zhanyong Guo
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural UniversityZhengzhou, China
| | - Weihua Li
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural UniversityZhengzhou, China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural UniversityZhengzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJinzhou, China
- *Correspondence: Jihua Tang,
| |
Collapse
|
29
|
Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK. Progress and challenges in improving the nutritional quality of rice (Oryza sativaL.). Crit Rev Food Sci Nutr 2015; 57:2455-2481. [DOI: 10.1080/10408398.2015.1084992] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Deep Shikha Birla
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Kapil Malik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Manish Sainger
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Darshna Chaudhary
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ranjana Jaiwal
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Pawan K. Jaiwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
30
|
Shu X, Livingston DP, Franks RG, Boston RS, Woloshuk CP, Payne GA. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2015; 16:662-74. [PMID: 25469958 PMCID: PMC6638326 DOI: 10.1111/mpp.12224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aspergillus flavus and Fusarium verticillioides are fungal pathogens that colonize maize kernels and produce the harmful mycotoxins aflatoxin and fumonisin, respectively. Management practice based on potential host resistance to reduce contamination by these mycotoxins has proven difficult, resulting in the need for a better understanding of the infection process by these fungi and the response of maize seeds to infection. In this study, we followed the colonization of seeds by histological methods and the transcriptional changes of two maize defence-related genes in specific seed tissues by RNA in situ hybridization. Maize kernels were inoculated with either A. flavus or F. verticillioides 21-22 days after pollination, and harvested at 4, 12, 24, 48, 72, 96 and 120 h post-inoculation. The fungi colonized all tissues of maize seed, but differed in their interactions with aleurone and germ tissues. RNA in situ hybridization showed the induction of the maize pathogenesis-related protein, maize seed (PRms) gene in the aleurone and scutellum on infection by either fungus. Transcripts of the maize sucrose synthase-encoding gene, shrunken-1 (Sh1), were observed in the embryo of non-infected kernels, but were induced on infection by each fungus in the aleurone and scutellum. By comparing histological and RNA in situ hybridization results from adjacent serial sections, we found that the transcripts of these two genes accumulated in tissue prior to the arrival of the advancing pathogens in the seeds. A knowledge of the patterns of colonization and tissue-specific gene expression in response to these fungi will be helpful in the development of resistance.
Collapse
Affiliation(s)
- Xiaomei Shu
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7567, USA
| | - David P Livingston
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Robert G Franks
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rebecca S Boston
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Charles P Woloshuk
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gary A Payne
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7567, USA
| |
Collapse
|
31
|
Li X, Wang C, Cheng J, Zhang J, da Silva JAT, Liu X, Duan X, Li T, Sun H. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor. BMC PLANT BIOLOGY 2014; 14:358. [PMID: 25524032 PMCID: PMC4302423 DOI: 10.1186/s12870-014-0358-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/27/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND The formation and development of bulblets are crucial to the Lilium genus since these processes are closely related to carbohydrate metabolism, especially to starch and sucrose metabolism. However, little is known about the transcriptional regulation of both processes. To gain insight into carbohydrate-related genes involved in bulblet formation and development, we conducted comparative transcriptome profiling of Lilium davidii var. unicolor bulblets at 0 d, 15 d (bulblets emerged) and 35 d (bulblets formed a basic shape with three or four scales) after scale propagation. RESULTS Analysis of the transcriptome revealed that a total of 52,901 unigenes with an average sequence size of 630 bp were generated. Based on Clusters of Orthologous Groups (COG) analysis, 8% of the sequences were attributed to carbohydrate transport and metabolism. The results of KEGG pathway enrichment analysis showed that starch and sucrose metabolism constituted the predominant pathway among the three library pairs. The starch content in mother scales and bulblets decreased and increased, respectively, with almost the same trend as sucrose content. Gene expression analysis of the key enzymes in starch and sucrose metabolism suggested that sucrose synthase (SuSy) and invertase (INV), mainly hydrolyzing sucrose, presented higher gene expression in mother scales and bulblets at stages of bulblet appearance and enlargement, while sucrose phosphate synthase (SPS) showed higher expression in bulblets at morphogenesis. The enzymes involved in the starch synthetic direction such as ADPG pyrophosphorylase (AGPase), soluble starch synthase (SSS), starch branching enzyme (SBE) and granule-bound starch synthase (GBSS) showed a decreasing trend in mother scales and higher gene expression in bulblets at bulblet appearance and enlargement stages while the enzyme in the cleavage direction, starch de-branching enzyme (SDBE), showed higher gene expression in mother scales than in bulblets. CONCLUSIONS An extensive transcriptome analysis of three bulblet development stages contributes considerable novel information to our understanding of carbohydrate metabolism-related genes in Lilium at the transcriptional level, and demonstrates the fundamentality of carbohydrate metabolism in bulblet emergence and development at the molecular level. This could facilitate further investigation into the molecular mechanisms underlying these processes in lily and other related species.
Collapse
Affiliation(s)
- XueYan Li
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - ChunXia Wang
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - JinYun Cheng
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - Jing Zhang
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | | | - XiaoYu Liu
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - Xin Duan
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - TianLai Li
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - HongMei Sun
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| |
Collapse
|
32
|
|