1
|
Ding T, Song M, Wang S, Huang C, Pan T. Dapagliflozin has protective effects on palmitate-induced renal tubular epithelial cells by enhancing mitochondrial function and reducing oxidative stress. J Diabetes Complications 2025; 39:108930. [PMID: 39673870 DOI: 10.1016/j.jdiacomp.2024.108930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors, commonly utilized for diabetic nephropathy, have demonstrated benefits beyond glucose control, including organ protection. This study investigated the protective effects of the SGLT2 inhibitor, dapagliflozin (DAPA), on palmitate-induced renal tubular epithelial cell (HK-2) injury, particularly concentrating on mitochondrial function and oxidative stress. HK-2 cells were treated with 150 μmol/L palmitate to induce mitochondrial dysfunction and oxidative stress, and they were co-treated with 2 μmol/L DAPA for 24 h. DAPA significantly increased cell viability (P < 0.05), reduced reactive oxygen species (ROS) levels (P < 0.001), and restored mitochondrial membrane potential (P < 0.05). It also lowered malondialdehyde (MDA) level (P < 0.001) and increased superoxide dismutase (SOD) expression level (P < 0.001). Western blot analysis revealed that DAPA reversed palmitate-induced upregulation of apoptosis-related proteins, including Bax and Cytochrome C. DAPA also mitigated the overactivation of autophagy-related proteins, such as LC3 and Beclin-1, indicating its role in modulating autophagy under diabetic nephropathy. Electron microscopy confirmed improvements in mitochondrial morphology, accompanying by reduced swelling and restored cristae structure. These findings highlight the potential of DAPA, as an SGLT2 inhibitor, to mitigate renal injury by enhancing mitochondrial function and reducing oxidative stress, providing novel insights into its therapeutic value for diabetic nephropathy management.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Endocrinology, Xuancheng People's Hospital, Xuancheng 242000, Anhui Province, China.
| | - Mingzhu Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an 237005, Anhui Province, China
| | - Sihong Wang
- Department of Endocrinology, Xuancheng People's Hospital, Xuancheng 242000, Anhui Province, China
| | - Chongbing Huang
- Department of Endocrinology, Xuancheng People's Hospital, Xuancheng 242000, Anhui Province, China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, Anhui Province, China.
| |
Collapse
|
2
|
Gupta H, Bhandari U. Molecular Insight into Obesity-Associated Nephropathy: Clinical Implications and Possible Strategies for its Management. Curr Drug Targets 2025; 26:188-202. [PMID: 39411934 DOI: 10.2174/0113894501314788241008115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 04/11/2025]
Abstract
Obesity is a significant health concern due to its rapid increase worldwide. It has been linked to the pathogenic factors of renal diseases, cancer, cardiovascular diseases, hypertension, dyslipidemia, and type 2 diabetes. Notably, obesity raises the likelihood of developing chronic kidney disease (CKD), leading to higher adult mortality and morbidity rates. This study explores the molecular mechanisms that underlie obesity-associated nephropathy and its clinical implications. Obesity-Associated Nephropathy (OAN) develops and worsens due to insulin resistance and hyperinsulinemia, which promote renal sodium reabsorption, glomerular hyperfiltration, and hypertension, leading to progressive kidney damage. Renal damage is further aggravated by persistent inflammation and redox damage, mediated by adipokines and proinflammatory cytokines, such as TNF-α and IL-6. Furthermore, stimulation of the sympathetic nervous system and the renin-angiotensin- aldosterone system (RAAS) intensifies glomerular hypertension and fibrosis. These elements cause glomerular hyperfiltration, renal hypertrophy, and progressive kidney damage. Clinical manifestations of obesity-associated nephropathy include proteinuria, reduced glomerular filtration rate (GFR), and ultimately, CKD. Management strategies currently focus on lifestyle modifications, such as weight loss through diet and exercise, which have been effective in reducing proteinuria and improving GFR. Pharmacological treatments targeting metabolic pathways, including GLP-1 receptor agonists and SGLT2 inhibitors, have shown renoprotective properties. Additionally, traditional RAAS inhibitors offer therapeutic benefits. Early detection and comprehensive management of OAN are essential to prevent its progression and lessen the burden of CKD.
Collapse
Affiliation(s)
- Himani Gupta
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
3
|
Chen X, Zhu S, Huang C, Liu J, Wang J, Cui S. Bioinformatic analyses reveal lysosomal-associated protein transmembrane 5 as a potential therapeutic target in lipotoxicity-induced injury in diabetic kidney disease. Ren Fail 2024; 46:2359638. [PMID: 38832484 PMCID: PMC11151807 DOI: 10.1080/0886022x.2024.2359638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Emerging data have revealed that damage to tubular epithelial cell is a driving force in the progression of diabetic kidney disease (DKD). However, the specific mechanisms by which lipotoxicity contributes to the injury of these cells, thereby influencing the development of DKD, are yet to be fully understood. Here, we analyzed the GSE 30529 microarray datasets of human tubulointerstitial tissue samples from the Gene Expression Omnibus database (GEO). Concurrently, we conducted RNA-sequencing on palmitic acid (PA)-treated human renal proximal tubule epithelial cells (HK2 cells). After normalization, the differentially expressed genes (DEGs) were screened by R software and gene ontology (GO) enrichment analysis was conducted, and lysosomal-associated protein transmembrane 5 (LAPTM5) was finally selected. Our findings indicate that the expression of LAPTM5 was obviously increased in DKD patients, and the correlation between LAPTM5, and other clinical parameters of DKD was analyzed using the Spearman correlation analysis. The potential of LAPTM5 as a prognostic biomarker for DKD was further consolidated through receiver operating characteristic (ROC) analysis. To further verify the function of LAPTM5, we established mouse or in vitro systems mimicking DKD. The results showed that a consistent upregulation of LAPTM5, which was also found to be linked with inflammatory mediators within the context of DKD. Additionally, LAPTM5 silencing significantly downregulated mRNA expression of inflammatory factors in PA-treated HK2 cells. These results indicate that LAPTM5 is a potential biomarker and therapeutic treatment target for DKD. This discovery paves the way for future research and development of targeted interventions aimed at mitigating the progression of this prevalent condition.
Collapse
Affiliation(s)
- Xin Chen
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
- School of Medicine, Nanjing Medical University, Nanjing, P. R. China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
| | - Ciyou Huang
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
| | - Jiayi Liu
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
| | - Jinbang Wang
- Subei People’s Hospital of Jiangsu Province, Clinical Medical School of Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Siyuan Cui
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
| |
Collapse
|
4
|
Spellman MJ, Assaf T, Nangia S, Fernandez J, Nicholson KC, Shepard BD. Handling the sugar rush: the role of the renal proximal tubule. Am J Physiol Renal Physiol 2024; 327:F1013-F1025. [PMID: 39447117 PMCID: PMC11687834 DOI: 10.1152/ajprenal.00265.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024] Open
Abstract
Blood glucose homeostasis is critical to ensure the proper functioning of the human body. Through the processes of filtration, reabsorption, secretion, and metabolism, much of this task falls to the kidneys. With a rise in glucose and other added sugars, there is an increased burden on this organ, mainly the proximal tubule, which is responsible for all glucose reabsorption. In this review, we focus on the current physiological and cell biological functions of the renal proximal tubule as it works to reabsorb and metabolize glucose and fructose. We also highlight the physiological adaptations that occur within the proximal tubule as sugar levels rise under pathophysiological conditions including diabetes. This includes the detrimental impacts of an excess glucose load that leads to glucotoxicity. Finally, we explore some of the emerging therapeutics that modulate renal glucose handling and the systemic protection that can be realized by targeting the reabsorptive properties of the kidney.
Collapse
Affiliation(s)
- Michael J Spellman
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Tala Assaf
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Shivani Nangia
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Joel Fernandez
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Kyle C Nicholson
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
5
|
Berra C, Manfrini R, Bifari F, Cipponeri E, Ghelardi R, Centofanti L, Mortola U, Lunati E, Bucciarelli L, Cimino V, Folli F. Improved glycemic and weight control with Dulaglutide addition in SGLT2 inhibitor treated obese type 2 diabetic patients at high cardiovascular risk in a real-world setting. The AWARE-2 study. Pharmacol Res 2024; 210:107517. [PMID: 39613122 DOI: 10.1016/j.phrs.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
We evaluated the effects on glycemic control and body weight of a GLP1-RA in obese type 2 diabetic patients treated with SGLT2-inhibitors and other hypoglycemic agents and/or insulin, in a real-world setting. A cohort of 583 type 2 diabetic outpatients treated with a SGLT2 inhibitor and/or other anti-diabetic medications were examined. Because patients had suboptimal glycemic control, the GLP1-RA Dulaglutide was added to ongoing medications. At 6 months, 334 patients had a follow-up visit. Patients were classified in terms of cardiovascular risk (CVR) employing the ESC-EASD 2019 criteria, with the AWARE app. The study's primary endpoints were changes in: 1) HbA1c level, 2) BMI, and 3) body weight after six months of treatment. Secondary endpoints were evaluation of Dulaglutide addition in type 2 diabetic patients: 1) with more or less than ten years of T2DM; 2) more or less than 75 years of age and in different subgroups of CVR. In the 334 patients which had a 6 months follow-up visit, age was 65,9+9,8; 33.5 % (112) were females and 66.5 % (222) were males. After six months of Dulaglutide treatment, we found a significant reduction in HbA1c levels (8.0+10.5 mmol/mol; p<0.0001) and in body mass index (1.1+1.1 kg/m2; p<0.0001). Efficacy of Dulaglutide was not affected by different CVD risk categories, age and T2DM duration. This real world study provides evidence for significant reductions in HbA1c level, body mass index and body weight in obese type 2 diabetic patients who received add-on treatment with the weekly GLP-1RA, Dulaglutide.
Collapse
Affiliation(s)
- Cesare Berra
- Department of Endocrinology and Metabolic Diseases, IRCCS Multimedica, Milan, Italy.
| | - Roberto Manfrini
- Department of Endocrinology and Metabolic Diseases, IRCCS Multimedica, Milan, Italy; Departmental Unit of Diabetes and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy; Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Segrate, Italy
| | - Elisa Cipponeri
- Department of Endocrinology and Metabolic Diseases, IRCCS Multimedica, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Renata Ghelardi
- UOC Coordinamento e Integrazione Rete ASST Melegnano e della Martesana
| | - Lucia Centofanti
- Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Umberto Mortola
- Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Elena Lunati
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Loredana Bucciarelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Vincenzo Cimino
- Department of Biomedical and Clinical Sciences L. Sacco Endocrinology and Diabetology, Milan, Italy
| | - Franco Folli
- Departmental Unit of Diabetes and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy; Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
6
|
Bellos I, Lagiou P, Benetou V, Marinaki S. Safety and Efficacy of Sodium-Glucose Transport Protein 2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists in Diabetic Kidney Transplant Recipients: Synthesis of Evidence. J Clin Med 2024; 13:6181. [PMID: 39458136 PMCID: PMC11508237 DOI: 10.3390/jcm13206181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: This systematic review and meta-analysis aimed to evaluate the efficacy and safety of novel antidiabetics, namely, sodium-glucose transport protein 2 inhibitors (SGLT2-i) and glucagon-like peptide-1 receptor agonists (GLP1-RA), in diabetic kidney transplant recipients. Methods: Medline, Scopus, Web of Science, CENTRAL, and Clinicaltrials.gov were systematically searched from inception until 25 August 2024. Pooled estimates were obtained by applying random-effects models. Results: Overall, 18 studies (17 observational studies and one randomized controlled trial) were included. GLP1-RA were administered to 270 and SGLT2-i to 1003 patients. After GLP1-RA therapy, patients presented significantly lower glycated hemoglobin [mean difference (MD): -0.61%; 95% confidence interval (CI): -0.99; -0.23] and body weight (MD: -3.32 kg; 95% CI: -5.04; -1.59) but a similar estimated glomerular filtration rate (eGFR) and systolic blood pressure. After SGLT2-i therapy, patients had significantly lower glycated hemoglobin (MD: -0.40%, 95% CI: -0.57; -0.23) and body weight (MD: -2.21 kg, 95% CI: -2.74; -1.67), while no difference was noted in eGFR or systolic blood pressure. Preliminary data have shown an association between SGLT2-i use and a reduced risk of cardiovascular events, graft loss, and mortality. Evidence regarding the association between GLP1-RA and SGLT2-i and proteinuria was mixed. No significant effects on calcineurin inhibitor levels were observed. The risk of urinary tract infections was similar among patients treated with SGLT2-i or placebo (odds ratio: 0.84, 95% CI: 0.43; 1.64). Conclusions: Observational data suggest that GLP1-RA and SGLT2-i administration in diabetic kidney transplant recipients may be associated with better glycemic control and reduced body weight, presenting an acceptable safety profile.
Collapse
Affiliation(s)
- Ioannis Bellos
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 115 27 Athens, Greece (V.B.)
- Department of Nephrology and Renal Transplantation, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 115 27 Athens, Greece (V.B.)
| | - Vassiliki Benetou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 115 27 Athens, Greece (V.B.)
| | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| |
Collapse
|
7
|
Victor-Sami S, Kamali-Roosta A, Shamsaldeen YA. Methylglyoxal induces death in human brain neuronal cells (SH-SY5Y), prevented by metformin and dapagliflozin. J Diabetes Complications 2024; 38:108832. [PMID: 39116474 DOI: 10.1016/j.jdiacomp.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Diabetes mellitus is a metabolic disorder caused by a dysfunction in insulin action or secretion, leading to an elevation in blood glucose levels. It is a highly prevalent condition and as a result, the NHS spends 10 % of its entire budget on diabetes mellitus care, that is equivalent to £10 billion a year. Diabetes mellitus has been linked with vascular and neurological complications which may be associated with the progression of neurodegeneration and Alzheimer's disease. Chronic hyperglycaemia increases the production of the reactive oxidant species (ROS) such as methylglyoxal (MGO). MGO has been linked with vascular complications, neuropathy and cytotoxicity. The main aim of this study was to investigate the potential beneficial effect of antidiabetic agents such as metformin and dapagliflozin on human brain neuronal cells (SH-SY5Y) treated with MGO. SH-SY5Y cells were cultured in DMEM/F12 media and subjected overnight incubation with one of the following treatment conditions: Control (untreated); MGO (1 μM); MGO (100 μM); metformin (100 μM) + MGO (100 μM); and dapagliflozin (10 μM) + MGO (100 μM). Several assays were conducted to explore the effect of the treatment groups on the SH-SY5Y cells. These included: MTT assay; LDH assay, peroxynitrite fluorescence assay, and laser scanning confocal microscopy. MGO (100 μM) led to significant cell injury and damage and significantly reduced the survival of the cells by approximately 50-75 %, associated with significant increase in peroxynitrite. The addition of metformin (100 μM) or dapagliflozin (10 μM) represented significant protective effects on the cells and prevented the cell damage caused by the high MGO concentration. As a result, the findings of this research reveal that MGO-induced cell damage may partly be mediated by the generation of peroxynitrite, while the antidiabetic agents such as metformin and dapagliflozin prevent brain cell death, which potentially may play prophylactic roles against the risk of dementia in diabetic patients.
Collapse
Affiliation(s)
- Samantha Victor-Sami
- Department of applied science, school of pharmacy, University of Brighton, BN24GJ, UK
| | - Ali Kamali-Roosta
- Department of applied science, school of pharmacy, University of Brighton, BN24GJ, UK
| | - Yousif A Shamsaldeen
- Department of applied science, school of pharmacy, University of Brighton, BN24GJ, UK.
| |
Collapse
|
8
|
Troise D, Mercuri S, Infante B, Losappio V, Cirolla L, Netti GS, Ranieri E, Stallone G. mTOR and SGLT-2 Inhibitors: Their Synergistic Effect on Age-Related Processes. Int J Mol Sci 2024; 25:8676. [PMID: 39201363 PMCID: PMC11354721 DOI: 10.3390/ijms25168676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The aging process contributes significantly to the onset of chronic diseases, which are the primary causes of global mortality, morbidity, and healthcare costs. Numerous studies have shown that the removal of senescent cells from tissues extends lifespan and reduces the occurrence of age-related diseases. Consequently, there is growing momentum in the development of drugs targeting these cells. Among them, mTOR and SGLT-2 inhibitors have garnered attention due to their diverse effects: mTOR inhibitors regulate cellular growth, metabolism, and immune responses, while SGLT-2 inhibitors regulate glucose reabsorption in the kidneys, resulting in various beneficial metabolic effects. Importantly, these drugs may act synergistically by influencing senescence processes and pathways. Although direct studies on the combined effects of mTOR inhibition and SGLT-2 inhibition on age-related processes are limited, this review aims to highlight the potential synergistic benefits of these drugs in targeting senescence.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Vincenzo Losappio
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Luciana Cirolla
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
9
|
Rabbani N, Thornalley PJ. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front Endocrinol (Lausanne) 2024; 14:1268308. [PMID: 38292764 PMCID: PMC10824962 DOI: 10.3389/fendo.2023.1268308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Hyperglycemia is a risk factor for the development of insulin resistance, beta-cell glucotoxicity, and vascular complications of diabetes. We propose the hypothesis, hexokinase-linked glycolytic overload and unscheduled glycolysis, in explanation. Hexokinases (HKs) catalyze the first step of glucose metabolism. Increased flux of glucose metabolism through glycolysis gated by HKs, when occurring without concomitant increased activity of glycolytic enzymes-unscheduled glycolysis-produces increased levels of glycolytic intermediates with overspill into effector pathways of cell dysfunction and pathogenesis. HK1 is saturated with glucose in euglycemia and, where it is the major HK, provides for basal glycolytic flux without glycolytic overload. HK2 has similar saturation characteristics, except that, in persistent hyperglycemia, it is stabilized to proteolysis by high intracellular glucose concentration, increasing HK activity and initiating glycolytic overload and unscheduled glycolysis. This drives the development of vascular complications of diabetes. Similar HK2-linked unscheduled glycolysis in skeletal muscle and adipose tissue in impaired fasting glucose drives the development of peripheral insulin resistance. Glucokinase (GCK or HK4)-linked glycolytic overload and unscheduled glycolysis occurs in persistent hyperglycemia in hepatocytes and beta-cells, contributing to hepatic insulin resistance and beta-cell glucotoxicity, leading to the development of type 2 diabetes. Downstream effector pathways of HK-linked unscheduled glycolysis are mitochondrial dysfunction and increased reactive oxygen species (ROS) formation; activation of hexosamine, protein kinase c, and dicarbonyl stress pathways; and increased Mlx/Mondo A signaling. Mitochondrial dysfunction and increased ROS was proposed as the initiator of metabolic dysfunction in hyperglycemia, but it is rather one of the multiple downstream effector pathways. Correction of HK2 dysregulation is proposed as a novel therapeutic target. Pharmacotherapy addressing it corrected insulin resistance in overweight and obese subjects in clinical trial. Overall, the damaging effects of hyperglycemia are a consequence of HK-gated increased flux of glucose metabolism without increased glycolytic enzyme activities to accommodate it.
Collapse
Affiliation(s)
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
10
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
11
|
Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne) 2023; 14:1238927. [PMID: 37600689 PMCID: PMC10433744 DOI: 10.3389/fendo.2023.1238927] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. Currently, there are limited therapeutic drugs available for DKD. While previous research has primarily focused on glomerular injury, recent studies have increasingly emphasized the role of renal tubular injury in the pathogenesis of DKD. Various factors, including hyperglycemia, lipid accumulation, oxidative stress, hypoxia, RAAS, ER stress, inflammation, EMT and programmed cell death, have been shown to induce renal tubular injury and contribute to the progression of DKD. Additionally, traditional hypoglycemic drugs, anti-inflammation therapies, anti-senescence therapies, mineralocorticoid receptor antagonists, and stem cell therapies have demonstrated their potential to alleviate renal tubular injury in DKD. This review will provide insights into the latest research on the mechanisms and treatments of renal tubular injury in DKD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Inhibition of SGLT2 co-transporter by dapagliflozin ameliorates tubular proteinuria and tubule-interstitial injury at the early stage of diabetic kidney disease. Eur J Pharmacol 2023; 942:175521. [PMID: 36681317 DOI: 10.1016/j.ejphar.2023.175521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Diabetic kidney disease (DKD) is characterized by progressive impairment of kidney function. It has been postulated that tubule-interstitial injury, associated with tubular albuminuria, precedes glomerular damage in the early stage of DKD. Here, we wanted to determine if the development of tubule-interstitial injury at the early stage of DKD implies modulation of megalin-mediated protein reabsorption in proximal tubule epithelial cells (PTECs) by SGLT2-dependent high glucose influx. Rats with streptozotocin (STZ)-induced diabetes were treated or not with dapagliflozin (DAPA) for 8 weeks. Four experimental groups were generated: (1) CONT, control; (2) DAPA, rats treated with DAPA; (3) STZ, diabetic rats; (4) STZ + DAPA, diabetic rats treated with DAPA. No changes in glomerular structure and function were observed. The STZ group presented proteinuria and albuminuria associated with an increase in the fractional excretion of proteins. A positive correlation between glycemia and proteinuria was found. These phenomena were linked to a decrease in luminal and total megalin expression and, consequently, in albumin reabsorption in PTECs. We also observed tubule-interstitial injury characterized by an increase in urinary tubular injury biomarkers and changes in tubular histomorphometry parameters. In addition, inverse correlations were found between cortical albumin uptake and tubule-interstitial injury or glycemia. All these modifications were attenuated in the STZ + DAPA group. These results suggest that SGLT2-dependent high glucose influx into PTECs promotes a harmful effect on the PTECs, leading to the development of tubular albuminuria and tubule-interstitial injury preceding glomerular damage. These results expand current knowledge on the renoprotective effects of gliflozins.
Collapse
|
13
|
Therapeutic Advances in Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24032803. [PMID: 36769113 PMCID: PMC9917247 DOI: 10.3390/ijms24032803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Although sodium glucose co-transporter type 2 (SGLT-2) inhibitors were initially introduced as glucose-lowering medications, it was later discovered that cardiorenal protection is the most important treatment effect of these agents. A triad of landmark trials consistently showed the benefits of SGLT-2 inhibitors on kidney and cardiovascular outcomes in patients with chronic kidney disease (CKD), irrespective of the presence or absence of Type 2 diabetes (T2D). Furthermore, finerenone is a novel, selective, nonsteroidal mineralocorticoid receptor antagonist (MRA) that safely and effectively improved cardiorenal outcomes in a large Phase 3 clinical trial program that included >13,000 patients with T2D and a wide spectrum of CKD. These two drug categories have shared and distinct mechanisms of action, generating the hypothesis that an overadditive cardiorenal benefit with their combined use may be biologically plausible. In this article, we describe the mechanism of action, and we provide an overview of the evidence for cardiorenal protection with SGLT-2 inhibitors and the nonsteroidal MRA finerenone in patients with CKD associated with T2D.
Collapse
|
14
|
SGLT2 Inhibitors in Diabetic and Non-Diabetic Chronic Kidney Disease. Biomedicines 2023; 11:biomedicines11020279. [PMID: 36830815 PMCID: PMC9953060 DOI: 10.3390/biomedicines11020279] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Results from recent randomized controlled trials on inhibitors of the sodium-glucose cotransporter 2 (SGLT2) have determined a paradigm shift in the treatment of patients with type 2 diabetes mellitus. These agents have been shown not only to ameliorate metabolic control, but also to independently protect from cardiovascular events and to reduce the progression of chronic kidney disease (CKD) in these patients. The magnitude of the nephroprotective effect observed in these studies is likely to make SGLT2 inhibitors the most impactful drug class for the treatment of diabetic patients with CKD since the discovery of renin-angiotensin system inhibitors. Even more surprisingly, SGLT2 inhibitors have also been shown to slow CKD progression in non-diabetic individuals with varying degrees of proteinuria, suggesting that activation of SGLT2 is involved in the pathogenesis of CKD independent of its etiology. As indications continue to expand, it is still unclear whether the observed benefits of SGLT2 inhibitors may extend to CKD patients at lower risk of progression and if their association with other agents may confer additional protection.
Collapse
|
15
|
Wang Y, Mao X, Shi S, Xu X, Lv J, Zhang B, Wu H, Song Q. SGLT2 inhibitors in the treatment of type 2 cardiorenal syndrome: Focus on renal tubules. FRONTIERS IN NEPHROLOGY 2023; 2:1109321. [PMID: 37674989 PMCID: PMC10479647 DOI: 10.3389/fneph.2022.1109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/22/2022] [Indexed: 09/08/2023]
Abstract
The pathogenesis of type 2 cardiorenal syndrome (CRS) is mostly associated with reduced cardiac output, increased central venous pressure (CVP), activation of the renin-angiotensin-aldosterone system (RAAS), inflammation, and oxidative stress. As a drug to treat diabetes, sodium-glucose transporter 2 inhibitor (SGLT2i) has been gradually found to have a protective effect on the heart and kidney and has a certain therapeutic effect on CRS. In the process of chronic heart failure (CHF) leading to chronic renal insufficiency, the renal tubular system, as the main functional part of the kidney, is the first to be damaged, but this damage can be reversed. In this review, we focus on the protective mechanisms of SGLT2i targeting renal tubular in the treatment of CRS, including natriuresis and diuresis to relieve renal congestion, attenuate renal tubular fibrosis, improve energy metabolism of renal tubular, and slow tubular inflammation and oxidative stress. This may have beneficial effects on the treatment of CRS and is a direction for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqiao Song
- Guang ‘anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Eleftheriadis T, Pissas G, Filippidis G, Efthymiadi M, Liakopoulos V, Stefanidis I. Dapagliflozin Prevents High-Glucose-Induced Cellular Senescence in Renal Tubular Epithelial Cells. Int J Mol Sci 2022; 23:16107. [PMID: 36555751 PMCID: PMC9781434 DOI: 10.3390/ijms232416107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Gliflozins are a new class of antidiabetic drugs with renoprotective properties. In cultures of primary human renal tubular epithelial cells (RPTECs) subjected to high-glucose conditions in the presence or absence of dapagliflozin, we evaluated cellular senescence pathways. High glucose increased sodium-glucose cotransporter-2 (SGLT-2) expression and glucose consumption, enhancing reactive oxygen species production. The latter induced DNA damage, ataxia telangiectasia mutated kinase (ATM), and p53 phosphorylation. Stabilized p53 increased the cell cycle inhibitor p21, resulting in cell cycle arrest and increasing the cellular senescence marker beta-galactosidase (GLB-1). RPTECs under high glucose acquired a senescence-associated secretory phenotype, which was detected by the production of IL-1β, IL-8, and TGF-β1. By decreasing SGLT-2 expression and glucose consumption, dapagliflozin inhibited the above pathway and prevented RPTEC senescence. In addition, dapagliflozin reduced the cell cycle inhibitor p16 independently of the glucose conditions. Neither glucose concentration nor dapagliflozin affected the epithelial-to-mesenchymal transition when assessed with α-smooth muscle actin (α-SMA). Thus, high glucose induces p21-dependent RPTEC senescence, whereas dapagliflozin prevents it. Since cellular senescence contributes to the pathogenesis of diabetic nephropathy, delineating the related molecular mechanisms and the effects of the widely used gliflozins on them is of particular interest and may lead to novel therapeutic approaches.
Collapse
|
17
|
Chen X, Wang J, Lin Y, Liu Y, Zhou T. Signaling Pathways of Podocyte Injury in Diabetic Kidney Disease and the Effect of Sodium-Glucose Cotransporter 2 Inhibitors. Cells 2022; 11:3913. [PMID: 36497173 PMCID: PMC9736207 DOI: 10.3390/cells11233913] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most important comorbidities for patients with diabetes, and its incidence has exceeded one tenth, with an increasing trend. Studies have shown that diabetes is associated with a decrease in the number of podocytes. Diabetes can induce apoptosis of podocytes through several apoptotic pathways or induce autophagy of podocytes through related pathways. At the same time, hyperglycemia can also directly lead to apoptosis of podocytes, and the related inflammatory reactions are all harmful to podocytes. Podocyte damage is often accompanied by the production of proteinuria and the progression of DKD. As a new therapeutic agent for diabetes, sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been demonstrated to be effective in the treatment of diabetes and the improvement of terminal outcomes in many rodent experiments and clinical studies. At the same time, SGLT2i can also play a protective role in diabetes-induced podocyte injury by improving the expression of nephrotic protein defects and inhibiting podocyte cytoskeletal remodeling. Some studies have also shown that SGLT2i can play a role in inhibiting the apoptosis and autophagy of cells. However, there is no relevant study that clearly indicates whether SGLT2i can also play a role in the above pathways in podocytes. This review mainly summarizes the damage to podocyte structure and function in DKD patients and related signaling pathways, as well as the possible protective mechanism of SGLT2i on podocyte function.
Collapse
Affiliation(s)
- Xiutian Chen
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Jiali Wang
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yongda Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yiping Liu
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
18
|
Chong KH, Chang YJ, Hsu WH, Tu YT, Chen YR, Lee MC, Tsai KW. Breast Cancer with Increased Drug Resistance, Invasion Ability, and Cancer Stem Cell Properties through Metabolism Reprogramming. Int J Mol Sci 2022; 23:ijms232112875. [PMID: 36361665 PMCID: PMC9658063 DOI: 10.3390/ijms232112875] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is a heterogeneous disease, and the survival rate of patients with breast cancer strongly depends on their stage and clinicopathological features. Chemoradiation therapy is commonly employed to improve the survivability of patients with advanced breast cancer. However, the treatment process is often accompanied by the development of drug resistance, which eventually leads to treatment failure. Metabolism reprogramming has been recognized as a mechanism of breast cancer resistance. In this study, we established a doxorubicin-resistant MCF-7 (MCF-7-D500) cell line through a series of long-term doxorubicin in vitro treatments. Our data revealed that MCF-7-D500 cells exhibited increased multiple-drug resistance, cancer stemness, and invasiveness compared with parental cells. We analyzed the metabolic profiles of MCF-7 and MCF-7-D500 cells through liquid chromatography−mass spectrometry. We observed significant changes in 25 metabolites, of which, 21 exhibited increased levels (>1.5-fold change and p < 0.05) and 4 exhibited decreased levels (<0.75-fold change and p < 0.05) in MCF-7 cells with doxorubicin resistance. These results suggest the involvement of metabolism reprogramming in the development of drug resistance in breast cancer, especially the activation of glycolysis, the tricarboxylic acid (TCA) cycle, and the hexamine biosynthesis pathway (HBP). Furthermore, most of the enzymes involved in glycolysis, the HBP, and the TCA cycle were upregulated in MCF-7-D500 cells and contributed to the poor prognosis of patients with breast cancer. Our findings provide new insights into the regulation of drug resistance in breast cancer, and these drug resistance-related metabolic pathways can serve as targets for the treatment of chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Kian-Hwee Chong
- Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Yao-Jen Chang
- Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Department of Surgery, School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
| | - Wei-Hsin Hsu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289 Jianguo Road, Xindian District, New Taipei City 23142, Taiwan
| | - Ya-Ting Tu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289 Jianguo Road, Xindian District, New Taipei City 23142, Taiwan
| | - Yi-Ru Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289 Jianguo Road, Xindian District, New Taipei City 23142, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289 Jianguo Road, Xindian District, New Taipei City 23142, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289 Jianguo Road, Xindian District, New Taipei City 23142, Taiwan
- Correspondence: or ; Tel.: +886-2-66289779 (ext. 5796); Fax: +886-2-66281258
| |
Collapse
|
19
|
Marzolla V, Infante M, Armani A, Rizzo M, Caprio M. Efficacy and safety of finerenone for treatment of diabetic kidney disease: current knowledge and future perspective. Expert Opin Drug Saf 2022; 21:1161-1170. [PMID: 36174659 DOI: 10.1080/14740338.2022.2130889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) represents a leading cause of morbidity and mortality in subjects with diabetes and develops in more than one third of diabetic patients. Steroidal mineralocorticoid receptor antagonists (MRAs - eplerenone and spironolactone) reduce mortality in patients with heart failure with reduced ejection fraction (HFrEF). However, in clinical practice the use of steroidal MRAs is limited by the significant risk of hyperkalemia, especially in patients with impaired renal function. Finerenone, a novel nonsteroidal MRA, shows a higher selectivity and binding affinity for mineralocorticoid receptor (MR) compared to steroidal MRAs and has been shown to reduce chronic kidney disease (CKD) progression and cardiovascular mortality in patients with CKD and T2DM. AREAS COVERED This review summarizes the current evidence on efficacy and safety of finerenone in the treatment of patients with CKD and T2DM, and discusses its mechanisms of action investigated in preclinical studies. EXPERT OPINION Pharmacological properties of finerenone and its unique tissue distribution are responsible for a lower risk of hyperkalemia. Therefore, finerenone represents a valuable therapeutic tool in patients with CKD/diabetic kidney disease (DKD). Recent studies have shown that finerenone delays the progression of CKD and reduce cardiovascular events in patients with DKD, highlighting its safety and efficacy in this high-risk population.
Collapse
Affiliation(s)
- Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
| | - Marco Infante
- Clinical Cell Transplant Program (CCTP), Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Diabetes Research Institute Federation (DRIF), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Section of Diabetology, UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
20
|
Sharaf El Din UAA, Salem MM, Abdulazim DO. Sodium-glucose cotransporter 2 inhibitors as the first universal treatment of chronic kidney disease. Nefrologia 2022; 42:390-403. [PMID: 36460429 DOI: 10.1016/j.nefroe.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/16/2021] [Indexed: 06/17/2023] Open
Abstract
In the last five years, the medical community was astonishingly surprised by the sequential large outcome trials that displayed the renal effects of sodium glucose co-transporter inhibitors (SGLT2Is) in type 2 diabetes mellitus (T2DM) patients with or without chronic kidney disease (CKD). This favorable effect was later disclosed in non-diabetic CKD patients. The EMPA-REG OUTCOME trial was the first trial that showed a reduction for the need for dialysis in patients suffering diabetic kidney disease (DKD) by 55%. This figure is double the score achieved by the angiotensin receptor blocker, Losartan, in RENAAL trial. The need for dialysis in DAPA-CKD trial was reduced in diabetic and non-diabetic CKD patients by 33%. The renal-specific composite outcome was reduced by 39% in EMPA-REG trial, 40% in CANVAS study, 47% in DECLARE-TIMI 58 study, 34% in CREDENCE trial, and 44% in DAPA-CKD trial. The greater surprise is the significant favorable effect of SGLT2Is on overall mortality in CKD patients with or without T2DM. Similar survival benefit was not previously encountered with any of the medications used in CKD patients with or without diabetes. In this review, we disclose the results of the DAPA-CKD trial, the CREDENCE trial and those of several cardiovascular outcome trials (CVOT) that used different SGLT2Is and showed that patients with lower eGFR levels may have greater benefit with respect to cardiovascular morbidity than patients with normal kidney function. In addition, we discuss the different mechanisms of action that explain the renal beneficial effects of SGLT2Is.
Collapse
Affiliation(s)
| | - Mona Mansour Salem
- Department of Endocrinology, School of Medicine, Cairo University, Manial, Cairo 11759, Egypt
| | - Dina Ossama Abdulazim
- Department of Rheumatology and Rehabilitation, School of Medicine, Cairo University, Manial, Cairo 11759, Egypt
| |
Collapse
|
21
|
Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, Uribarri J. Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney Int 2022; 102:248-260. [PMID: 35661785 DOI: 10.1016/j.kint.2022.05.012] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease has a high global disease burden and substantially increases risk of kidney failure and cardiovascular events. Despite treatment, there is substantial residual risk of disease progression with existing therapies. Therefore, there is an urgent need to better understand the molecular mechanisms driving diabetic kidney disease to help identify new therapies that slow progression and reduce associated risks. Diabetic kidney disease is initiated by diabetes-related disturbances in glucose metabolism, which then trigger other metabolic, hemodynamic, inflammatory, and fibrotic processes that contribute to disease progression. This review summarizes existing evidence on the molecular drivers of diabetic kidney disease onset and progression, focusing on inflammatory and fibrotic mediators-factors that are largely unaddressed as primary treatment targets and for which there is increasing evidence supporting key roles in the pathophysiology of diabetic kidney disease. Results from recent clinical trials highlight promising new drug therapies, as well as a role for dietary strategies, in treating diabetic kidney disease.
Collapse
Affiliation(s)
- Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care, Spokane, Washington, USA; Institute of Translational Health Sciences, Kidney Research Institute, and Nephrology Division, University of Washington, Seattle, Washington, USA.
| | - Rajiv Agarwal
- Nephrology Division, Indiana University School of Medicine, Indianapolis, Indiana, USA; Nephrology Division, VA Medical Center, Indianapolis, Indiana, USA
| | - Charles E Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George L Bakris
- American Heart Association Comprehensive Hypertension Center at the University of Chicago Medicine, Chicago, Illinois, USA
| | - Frank C Brosius
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Kolkhof
- Cardiovascular Precision Medicines, Pharmaceuticals, Research & Development, Bayer AG, Wuppertal, Germany
| | - Jaime Uribarri
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
22
|
Wang A, Li Z, Zhuo S, Gao F, Zhang H, Zhang Z, Ren G, Ma X. Mechanisms of Cardiorenal Protection With SGLT2 Inhibitors in Patients With T2DM Based on Network Pharmacology. Front Cardiovasc Med 2022; 9:857952. [PMID: 35677689 PMCID: PMC9169967 DOI: 10.3389/fcvm.2022.857952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Sodium-glucose cotransporter 2 (SGLT2) inhibitors have cardiorenal protective effects regardless of whether they are combined with type 2 diabetes mellitus, but their specific pharmacological mechanisms remain undetermined. Materials and Methods We used databases to obtain information on the disease targets of “Chronic Kidney Disease,” “Heart Failure,” and “Type 2 Diabetes Mellitus” as well as the targets of SGLT2 inhibitors. After screening the common targets, we used Cytoscape 3.8.2 software to construct SGLT2 inhibitors' regulatory network and protein-protein interaction network. The clusterProfiler R package was used to perform gene ontology functional analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analyses on the target genes. Molecular docking was utilized to verify the relationship between SGLT2 inhibitors and core targets. Results Seven different SGLT2 inhibitors were found to have cardiorenal protective effects on 146 targets. The main mechanisms of action may be associated with lipid and atherosclerosis, MAPK signaling pathway, Rap1 signaling pathway, endocrine resistance, fluid shear stress, atherosclerosis, TNF signaling pathway, relaxin signaling pathway, neurotrophin signaling pathway, and AGEs-RAGE signaling pathway in diabetic complications were related. Docking of SGLT2 inhibitors with key targets such as GAPDH, MAPK3, MMP9, MAPK1, and NRAS revealed that these compounds bind to proteins spontaneously. Conclusion Based on pharmacological networks, this study elucidates the potential mechanisms of action of SGLT2 inhibitors from a systemic and holistic perspective. These key targets and pathways will provide new ideas for future studies on the pharmacological mechanisms of cardiorenal protection by SGLT2 inhibitors.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhendong Li
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Sun Zhuo
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Feng Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Gaocan Ren
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma
| |
Collapse
|
23
|
Kidney Damage Caused by Obesity and Its Feasible Treatment Drugs. Int J Mol Sci 2022; 23:ijms23020747. [PMID: 35054932 PMCID: PMC8775419 DOI: 10.3390/ijms23020747] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
The rapid growth of obesity worldwide has made it a major health problem, while the dramatic increase in the prevalence of obesity has had a significant impact on the magnitude of chronic kidney disease (CKD), especially in developing countries. A vast amount of researchers have reported a strong relationship between obesity and chronic kidney disease, and obesity can serve as an independent risk factor for kidney disease. The histological changes of kidneys in obesity-induced renal injury include glomerular or tubular hypertrophy, focal segmental glomerulosclerosis or bulbous sclerosis. Furthermore, inflammation, renal hemodynamic changes, insulin resistance and lipid metabolism disorders are all involved in the development and progression of obesity-induced nephropathy. However, there is no targeted treatment for obesity-related kidney disease. In this review, RAS inhibitors, SGLT2 inhibitors and melatonin would be presented to treat obesity-induced kidney injury. Furthermore, we concluded that melatonin can protect the kidney damage caused by obesity by inhibiting inflammation and oxidative stress, revealing its therapeutic potential.
Collapse
|
24
|
Sharaf El Din UAA, Salem MM, Abdulazim DO. Sodium-glucose cotransporter 2 inhibitors as the first universal treatment of chronic kidney disease. Nefrologia 2021; 42:S0211-6995(21)00143-0. [PMID: 34452776 DOI: 10.1016/j.nefro.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 02/09/2023] Open
Abstract
In the last five years, the medical community was astonishingly surprised by the sequential large outcome trials that displayed the renal effects of sodium glucose co-transporter inhibitors (SGLT2Is) in type 2 diabetes mellitus (T2DM) patients with or without chronic kidney disease (CKD). This favorable effect was later disclosed in non-diabetic CKD patients. The EMPA-REG OUTCOME trial was the first trial that showed a reduction for the need for dialysis in patients suffering diabetic kidney disease (DKD) by 55%. This figure is double the score achieved by the angiotensin receptor blocker, Losartan, in RENAAL trial. The need for dialysis in DAPA-CKD trial was reduced in diabetic and non-diabetic CKD patients by 33%. The renal-specific composite outcome was reduced by 39% in EMPA-REG trial, 40% in CANVAS study, 47% in DECLARE-TIMI 58 study, 34% in CREDENCE trial, and 44% in DAPA-CKD trial. The greater surprise is the significant favorable effect of SGLT2Is on overall mortality in CKD patients with or without T2DM. Similar survival benefit was not previously encountered with any of the medications used in CKD patients with or without diabetes. In this review, we disclose the results of the DAPA-CKD trial, the CREDENCE trial and those of several cardiovascular outcome trials (CVOT) that used different SGLT2Is and showed that patients with lower eGFR levels may have greater benefit with respect to cardiovascular morbidity than patients with normal kidney function. In addition, we discuss the different mechanisms of action that explain the renal beneficial effects of SGLT2Is.
Collapse
Affiliation(s)
| | - Mona Mansour Salem
- Department of Endocrinology, School of Medicine, Cairo University, Manial, Cairo 11759, Egypt
| | - Dina Ossama Abdulazim
- Department of Rheumatology and Rehabilitation, School of Medicine, Cairo University, Manial, Cairo 11759, Egypt
| |
Collapse
|
25
|
Korkmaz-Icöz S, Kocer C, Sayour AA, Kraft P, Benker MI, Abulizi S, Georgevici AI, Brlecic P, Radovits T, Loganathan S, Karck M, Szabó G. The Sodium-Glucose Cotransporter-2 Inhibitor Canagliflozin Alleviates Endothelial Dysfunction Following In Vitro Vascular Ischemia/Reperfusion Injury in Rats. Int J Mol Sci 2021; 22:ijms22157774. [PMID: 34360539 PMCID: PMC8345991 DOI: 10.3390/ijms22157774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Vascular ischemia/reperfusion injury (IRI) contributes to graft failure and adverse clinical outcomes following coronary artery bypass grafting. Sodium-glucose-cotransporter (SGLT)-2-inhibitors have been shown to protect against myocardial IRI, irrespective of diabetes. We hypothesized that adding canagliflozin (CANA) (an SGLT-2-inhibitor) to saline protects vascular grafts from IRI. Aortic rings from non-diabetic rats were isolated and immediately mounted in organ bath chambers (control, n = 9–10 rats) or underwent cold ischemic preservation in saline, supplemented either with a DMSO vehicle (IR, n = 8–10 rats) or 50µM CANA (IR + CANA, n = 9–11 rats). Vascular function was measured, the expression of 88 genes using PCR-array was analyzed, and feature selection using machine learning was applied. Impaired maximal vasorelaxation to acetylcholine in the IR-group compared to controls was significantly ameliorated by CANA (IR 31.7 ± 3.2% vs. IR + CANA 51.9 ± 2.5%, p < 0.05). IR altered the expression of 17 genes. Ccl2, Ccl3, Ccl4, CxCr4, Fos, Icam1, Il10, Il1a and Il1b have been found to have the highest interaction. Compared to controls, IR significantly upregulated the mRNA expressions of Il1a and Il6, which were reduced by 1.5- and 1.75-fold with CANA, respectively. CANA significantly prevented the upregulation of Cd40, downregulated NoxO1 gene expression, decreased ICAM-1 and nitrotyrosine, and increased PECAM-1 immunoreactivity. CANA alleviates endothelial dysfunction following IRI.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
- Correspondence: ; Tel.: +49-6221-566246; Fax: +49-6221-564571
| | - Cenk Kocer
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Alex A. Sayour
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Patricia Kraft
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Mona I. Benker
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Sophia Abulizi
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Adrian-Iustin Georgevici
- Department of Anesthesiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany;
| | - Paige Brlecic
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle, Germany
| |
Collapse
|
26
|
Influence of SGLT2 Inhibitor Treatment on Urine Antioxidant Status in Type 2 Diabetic Patients: A Pilot Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5593589. [PMID: 34336104 PMCID: PMC8294983 DOI: 10.1155/2021/5593589] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been recognized as potent antioxidant agents. Since SGLT2i are nephroprotective drugs, we aimed to examine the urine antioxidant status in patients with type 2 diabetes mellitus (T2DM). One hundred and one subjects participated in this study, including 37 T2DM patients treated with SGLT2i, 31 T2DM patients not using SGLT2i, and 33 healthy individuals serving as a control group. Total antioxidant capacity (TAC), superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), free thiol groups (R-SH, sulfhydryl groups), and catalase (CAT) activity, as well as glucose concentration, were assessed in the urine of all participants. Urine SOD and MnSOD activity were significantly higher among T2DM patients treated with SGLT2i than T2DM patients without SGLT2i treatment (p = 0.009 and p = 0.003, respectively) and to the healthy controls (p = 0.002 and p = 0.001, respectively). TAC was significantly lower in patients with T2DM treated with SGLT2i when compared to those not treated and healthy subjects (p = 0.036 and p = 0.019, respectively). It could be hypothesized that the mechanism by which SGLT2i provides nephroprotective effects involves improvement of the SOD antioxidant activity. However, lower TAC might impose higher OS (oxidative stress), and elevation of SOD activity might be a compensatory mechanism.
Collapse
|
27
|
Wang Y, Gou R, Yu L, Wang L, Yang Z, Guo Y, Tang L. Activation of the NLRC4 inflammasome in renal tubular epithelial cell injury in diabetic nephropathy. Exp Ther Med 2021; 22:814. [PMID: 34131437 PMCID: PMC8193214 DOI: 10.3892/etm.2021.10246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Renal tubular interstitial injury plays a key role in the progression of diabetic nephropathy (DN) and, thus, the study of renal tubular injury in DN is important. The aim of the present study was to elucidate the role of the NLR family CARD domain containing 4 (NLRC4) inflammasome in renal tubular epithelial cell (RTEC) injury in DN. Human kidney biopsy tissues were obtained from patients with DN, and normal kidney tissues were obtained from nephrectomies performed for renal hamartoma. Human RTECs (HK2 cells) were divided into normal glucose (D-glucose 5.6 mmol/l), high glucose (HG; 30 mmol/l), high osmotic (D-glucose 5.6 mmol/l + D-mannitol 24.4 mmol/l), HG + NLRC4 small interfering (si)RNA or HG + siRNA control groups. Then, the expression levels of NLRC4, PTEN-induced kinase 1 (PINK1) and parkin, as well as the levels of mitochondrial reactive oxygen species, which are associated with mitophagy, were observed. The expression levels of NLRC4, PINK1, parkin and phosphorylated parkin in the RTECs of patients with DN were higher compared with those in normal controls. In HK2 cells, HG stimulated the expression of NLRC4, the secretion of IL-1β and IL-18 and cell death. Moreover, knockdown of NLRC4 expression in HK2 cells treated with HG reduced the secretion of the inflammatory cytokines, IL-1β and IL-18. The findings of the present study may provide a rationale for the development of treatments for patients with DN by preventing inflammasome activation.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Nephrology, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Rong Gou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lu Yu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liuwei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zijun Yang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanhong Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lin Tang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
28
|
Costa R, Remigante A, Civello DA, Bernardinelli E, Szabó Z, Morabito R, Marino A, Sarikas A, Patsch W, Paulmichl M, Janáky T, Miseta A, Nagy T, Dossena S. O-GlcNAcylation Suppresses the Ion Current IClswell by Preventing the Binding of the Protein ICln to α-Integrin. Front Cell Dev Biol 2020; 8:607080. [PMID: 33330510 PMCID: PMC7717961 DOI: 10.3389/fcell.2020.607080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022] Open
Abstract
O-GlcNAcylation is a post-translational modification of proteins that controls a variety of cellular processes, is chronically elevated in diabetes mellitus, and may contribute to the progression of diabetic complications, including diabetic nephropathy. Our previous work showed that increases in the O-GlcNAcylation of cellular proteins impair the homeostatic reaction of the regulatory volume decrease (RVD) after cell swelling by an unknown mechanism. The activation of the swelling-induced chloride current IClswell is a key step in RVD, and ICln, a ubiquitous protein involved in the activation of IClswell, is O-GlcNAcylated. Here, we show that experimentally increased O-GlcNAcylation of cellular proteins inhibited the endogenous as well as the ICln-induced IClswell current and prevented RVD in a human renal cell line, while decreases in O-GlcNAcylation augmented the current magnitude. In parallel, increases or decreases in O-GlcNAcylation, respectively, weakened or stabilized the binding of ICln to the intracellular domain of α-integrin, a process that is essential for the activation of IClswell. Mutation of the putative YinOYang site at Ser67 rendered the ICln-induced IClswell current unresponsive to O-GlcNAc variations, and the ICln interaction with α-integrin insensitive to O-GlcNAcylation. In addition, exposure of cells to a hypotonic solution reduced the O-GlcNAcylation of cellular proteins. Together, these findings show that O-GlcNAcylation affects RVD by influencing IClswell and further indicate that hypotonicity may activate IClswell by reducing the O-GlcNAcylation of ICln at Ser67, therefore permitting its binding to α-integrin. We propose that disturbances in the regulation of cellular volume may contribute to disease in settings of chronically elevated O-GlcNAcylation, including diabetic nephropathy.
Collapse
Affiliation(s)
- Roberta Costa
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Alessia Remigante
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Davide A Civello
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Zoltán Szabó
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Markus Paulmichl
- Department of Personalized Medicine, Humanomed, Klagenfurt, Austria
| | - Tamás Janáky
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
29
|
Vasquez-Rios G, Nadkarni GN. SGLT2 Inhibitors: Emerging Roles in the Protection Against Cardiovascular and Kidney Disease Among Diabetic Patients. Int J Nephrol Renovasc Dis 2020; 13:281-296. [PMID: 33149657 PMCID: PMC7604253 DOI: 10.2147/ijnrd.s268811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE OF REVIEW Type 2 diabetes mellitus (T2DM) is a prevalent disease with the severe clinical implications including myocardial infarction, stroke, and kidney disease. Therapies focusing on glycemic control in T2DM such as biguanides, sulfonylureas, thiazolidinediones, and insulin-based regimens have largely failed to substantially improve cardiovascular and kidney outcomes. We review the recent findings on sodium-glucose co-transporter type 2 (SGLT2) inhibitors which have shown to have beneficial cardiovascular and kidney-related effects. RECENT FINDINGS SGLT2 inhibitors are a new class of diabetic medications that reduce the absorption of glucose in the kidney, decrease proteinuria, control blood pressure, and are associated with weight loss. SGLT2 inhibitors provide complementary therapy independent of insulin secretion or action with proved glucose-lowering effects. Recent placebo-controlled clinical trials have demonstrated that these medications can decrease cardiovascular death, progression of kidney disease, and all-cause mortality in diabetic and non-diabetic patients. Interestingly, SGT2 inhibitors such as dapagliflozin have also proven to decrease heart failure admissions and cardiovascular endpoints in non-diabetic patients, suggesting pleiotropic effects. The exact mechanisms responsible for reductions in atherosclerotic heart disease, need for kidney replacement therapy, and progressive kidney disease remain unknown. While regulation of glomerular hyperfiltration, albuminuria, and natriuresis may be part of the explanation, it is possible that complex cellular effects including energy balance optimization, downregulation of oxidative stress, and modulation of pro-inflammatory signaling pathways are associated with favorable outcomes observed in large clinical studies. CONCLUSION SGLT2 inhibitors are novel antidiabetic medications with immense utility in the management of patients with T2DM. Furthermore, SGLT2 inhibitors have demonstrated to reduce the progression to advanced forms of kidney disease and its associated complications. These medications should be front and center in the management of patients with diabetic kidney disease with and without chronic kidney disease as they confer protection against cardiovascular/renal death and improve all-cause mortality. Future studies should evaluate the benefits and implications of early initiation of SGLT2 inhibitors, as well as the long-term effects of this therapy.
Collapse
Affiliation(s)
- George Vasquez-Rios
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Girish N Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|