1
|
Charoenkwan P, Waramit S, Chumnanpuen P, Schaduangrat N, Shoombuatong W. TROLLOPE: A novel sequence-based stacked approach for the accelerated discovery of linear T-cell epitopes of hepatitis C virus. PLoS One 2023; 18:e0290538. [PMID: 37624802 PMCID: PMC10456195 DOI: 10.1371/journal.pone.0290538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a concerning health issue that causes chronic liver diseases. Despite many successful therapeutic outcomes, no effective HCV vaccines are currently available. Focusing on T cell activity, the primary effector for HCV clearance, T cell epitopes of HCV (TCE-HCV) are considered promising elements to accelerate HCV vaccine efficacy. Thus, accurate and rapid identification of TCE-HCVs is recommended to obtain more efficient therapy for chronic HCV infection. In this study, a novel sequence-based stacked approach, termed TROLLOPE, is proposed to accurately identify TCE-HCVs from sequence information. Specifically, we employed 12 different sequence-based feature descriptors from heterogeneous perspectives, such as physicochemical properties, composition-transition-distribution information and composition information. These descriptors were used in cooperation with 12 popular machine learning (ML) algorithms to create 144 base-classifiers. To maximize the utility of these base-classifiers, we used a feature selection strategy to determine a collection of potential base-classifiers and integrated them to develop the meta-classifier. Comprehensive experiments based on both cross-validation and independent tests demonstrated the superior predictive performance of TROLLOPE compared with conventional ML classifiers, with cross-validation and independent test accuracies of 0.745 and 0.747, respectively. Finally, a user-friendly online web server of TROLLOPE (http://pmlabqsar.pythonanywhere.com/TROLLOPE) has been developed to serve research efforts in the large-scale identification of potential TCE-HCVs for follow-up experimental verification.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Sajee Waramit
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Bahrami AA, Bandehpour M, Kazemi B, Bozorgmehr M, Mosaffa N, Chegeni R. Assessment of a poly-epitope candidate vaccine against Hepatitis B, C, and poliovirus in interaction with monocyte-derived dendritic cells: An ex-vivo study. Hum Immunol 2020; 81:218-227. [PMID: 32113655 DOI: 10.1016/j.humimm.2020.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Design and application of epitope-based polyvalent vaccines have recently garnered attention as an efficient alternative for conventional vaccines. We previously have reported the in silico design of HHP antigen which encompasses the immune-dominant epitopes of Hepatitis B surface antigen (HBsAg), Hepatitis C core protein (HCVcp) and Poliovirus viral proteins (VPs). It has been shown that the HHP has desirable conformation to expose the epitopes, high antigenicity and other desired physicochemical and immunological properties. To confirm the accuracy of these predictions, the ex-vivo immunogenicity of the HHP was assessed. The HHP gene was chemically synthesized in pET28a and expressed in E. coli (BL21). The expressed protein was purified and its immunological potency was evaluated on dendritic cells (DCs) as antigen presenting cells (APCs). Functional analysis was assessed in co-cultivation of autologous T-cells with matured DCs (mDCs). T-cell activation, proliferation and cytokines secretion were evaluated using flowcytometry and ELISA methods. Our results indicated that the HHP could induce the DC maturation. The mDCs were able to trigger T-cell activation and proliferation. In silico design and ex-vivo confirmation of immunological potential could pave the way to introduce efficient immunogens for further analysis. The ability of HHP in DC maturation and T-cell activation makes it an amenable vaccine candidate for further in-vivo studies.
Collapse
Affiliation(s)
- Armina Alagheband Bahrami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| |
Collapse
|
3
|
Koutsoumpli G, Ip PP, Schepel I, Hoogeboom BN, Boerma A, Daemen T. Alphavirus-based hepatitis C virus therapeutic vaccines: can universal helper epitopes enhance HCV-specific cytotoxic T lymphocyte responses? Ther Adv Vaccines Immunother 2019; 7:2515135519874677. [PMID: 31620673 PMCID: PMC6777054 DOI: 10.1177/2515135519874677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Antigen-specific T cell immune responses play a pivotal role in resolving
acute and chronic hepatitis C virus (HCV) infections. Currently, no
prophylactic or therapeutic vaccines against HCV are available. We
previously demonstrated the preclinical potency of therapeutic HCV vaccines
based on recombinant Semliki Forest virus (SFV) replicon particles. However,
clinical trials do not always meet the high expectations of preclinical
studies, thus, optimization of vaccine strategies is crucial. In efforts to
further increase the frequency of HCV-specific immune responses in the
candidate SFV-based vaccines, the authors assessed whether inclusion of
three strong, so-called universal helper T cell epitopes, and an endoplasmic
reticulum localization, and retention signal (collectively termed
sigHELP-KDEL cassette) could enhance HCV-specific immune responses. Methods: We included the sigHELP-KDEL cassette in two of the candidate SFV-based HCV
vaccines, targeting NS3/4A and NS5A/B proteins. We characterized the new
constructs in vitro for the expression and stability of the
transgene-encoded proteins. Their immune efficacy with respect to
HCV-specific immune responses in vivo was compared with the
parental SFV vaccine expressing the corresponding HCV antigen. Further
characterization of the functionality of the HCV-specific CD8+ T
cells was assessed by surface and intracellular cytokine staining and flow
cytometry analysis. Results: Moderate, but significantly, enhanced frequencies of antigen-specific immune
responses were achieved upon lower/suboptimal dosage immunization. In
optimal dosage immunization, the inclusion of the cassette did not further
increase the frequencies of HCV-specific CD8+ T cells when
compared with the parental vaccines and the frequencies of effector and
memory populations were identical. Conclusion: We hypothesize that the additional effect of the sigHELP-KDEL cassette in
SFV-based vaccines depends on the immunogenicity, nature, and stability of
the target antigen expressed by the vaccine.
Collapse
Affiliation(s)
- Georgia Koutsoumpli
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Peng Ip
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ilona Schepel
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Baukje Nynke Hoogeboom
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annemarie Boerma
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Toos Daemen
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| |
Collapse
|
4
|
Kord E, Dubuisson J, Vausselin T, Amirzargar AA, Yekaninejad MS, Hajikhezri Z, Keshavarz A, Samimi-Rad K. A DNA Vaccine Expressing Fusion Protein E2-NT(gp96) Induces Hepatitis C Virus Cross-Neutralizing Antibody in BALB/c Mice. HEPATITIS MONTHLY 2019; 19. [DOI: 10.5812/hepatmon.96347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
5
|
Bahrami AA, Bandehpour M, Khalesi B, Kazemi B. Computational Design and Analysis of a Poly-Epitope Fusion Protein: A New Vaccine Candidate for Hepatitis and Poliovirus. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09845-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Himmah K, Fitriyah, Ardyati T, Afiyanti M, Rifa'i M, Widodo. Designing a polytope for use in a broad-spectrum dengue virus vaccine. J Taibah Univ Med Sci 2018; 13:156-161. [PMID: 31435318 PMCID: PMC6695032 DOI: 10.1016/j.jtumed.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/01/2017] [Accepted: 11/11/2017] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Dengue virus surface proteins are often used in the development of vaccines that protect against dengue virus infection. However, the surface proteins on the four serotypes of dengue virus display high variation, which increases the difficulty of developing a vaccine that can protect against all viral strains. In this study, a polytope that is recognized by broadly neutralizing antibodies (bnAbs) was designed using conserved epitopes from the four serotypes. METHODS We constructed a polytope using four conserved dengue virus epitopes such that two aligned epitopes were separated from the other two epitopes by a histidyl-tRNA synthetase spacer. The epitopes were selected based on our previous docking studies. We then performed molecular docking of the polytope with the four bnAbs. RESULTS The polytope bound precisely to the four bnAbs-B7, C8, A11, and C10. Moreover, the polytope had a higher affinity for the bnAbs compared to the DENV2 antigen. The polytope and A11 antibody complex had the lowest binding energy relative to complexes between the polytope and the other three antibodies assessed. The highest total number of hydrogen bonds was found in the polytope and B7 antibody complex. The hydrogen bond length in all the complexes ranged from 2.07 to 3.03 Å, implying that hydrogen bonds stabilized the complexes. CONCLUSION The developed polytope interacted with four different bnAbs that recognize the four serotypes of dengue virus. The results of this study suggest that this polytope warrants further development for use in a broad-spectrum vaccine against dengue virus.
Collapse
Affiliation(s)
- Karimatul Himmah
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
| | - Fitriyah
- Biology Department, Faculty of Science and Engineering, State Islamic University of Maulana Malik Ibrahim, Indonesia
| | - Tri Ardyati
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
| | | | - Muhaimin Rifa'i
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
- Pusat Studi Biosistem, Lembaga Penelitian dan Pengabdian Masyarakat, Brawijaya University, Indonesia
| | - Widodo
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
- Pusat Studi Biosistem, Lembaga Penelitian dan Pengabdian Masyarakat, Brawijaya University, Indonesia
| |
Collapse
|
7
|
von Delft A, Donnison TA, Lourenço J, Hutchings C, Mullarkey CE, Brown A, Pybus OG, Klenerman P, Chinnakannan S, Barnes E. The generation of a simian adenoviral vectored HCV vaccine encoding genetically conserved gene segments to target multiple HCV genotypes. Vaccine 2018; 36:313-321. [PMID: 29203182 PMCID: PMC5756538 DOI: 10.1016/j.vaccine.2017.10.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/29/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) genomic variability is a major challenge to the generation of a prophylactic vaccine. We have previously shown that HCV specific T-cell responses induced by a potent T-cell vaccine encoding a single strain subtype-1b immunogen target epitopes dominant in natural infection. However, corresponding viral regions are highly variable at a population level, with a reduction in T-cell reactivity to these variants. We therefore designed and manufactured second generation simian adenovirus vaccines encoding genomic segments, conserved between viral genotypes and assessed these for immunogenicity. METHODS We developed a computer algorithm to identify HCV genomic regions that were conserved between viral subtypes. Conserved segments below a pre-defined diversity threshold spanning the entire HCV genome were combined to create novel immunogens (1000-1500 amino-acids), covering variation in HCV subtypes 1a and 1b, genotypes 1 and 3, and genotypes 1-6 inclusive. Simian adenoviral vaccine vectors (ChAdOx) encoding HCV conserved immunogens were constructed. Immunogenicity was evaluated in C57BL6 mice using panels of genotype-specific peptide pools in ex-vivo IFN-ϒ ELISpot and intracellular cytokine assays. RESULTS ChAdOx1 conserved segment HCV vaccines primed high-magnitude, broad, cross-reactive T-cell responses; the mean magnitude of total HCV specific T-cell responses was 1174 SFU/106 splenocytes for ChAdOx1-GT1-6 in C57BL6 mice targeting multiple genomic regions, with mean responses of 935, 1474 and 1112 SFU/106 against genotype 1a, 1b and 3a peptide panels, respectively. Functional assays demonstrated IFNg and TNFa production by vaccine-induced CD4 and CD8 T-cells. In silico analysis shows that conserved immunogens contain multiple epitopes, with many described in natural HCV infection, predicting immunogenicity in humans. CONCLUSIONS Simian adenoviral vectored vaccines encoding genetic segments that are conserved between all major HCV genotypes contain multiple T-cell epitopes and are highly immunogenic in pre-clinical models. These studies pave the way for the assessment of multi-genotypic HCV T-cell vaccines in humans.
Collapse
Affiliation(s)
- Annette von Delft
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Timothy A Donnison
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | | | - Claire Hutchings
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Caitlin E Mullarkey
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Anthony Brown
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | | | - Paul Klenerman
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Senthil Chinnakannan
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
8
|
Yu J, Liu X, Ke C, Wu Q, Lu W, Qin Z, He X, Liu Y, Deng J, Xu S, Li Y, Zhu L, Wan C, Zhang Q, Xiao W, Xie Q, Zhang B, Zhao W. Effective Suckling C57BL/6, Kunming, and BALB/c Mouse Models with Remarkable Neurological Manifestation for Zika Virus Infection. Viruses 2017; 9:v9070165. [PMID: 28661429 PMCID: PMC5537657 DOI: 10.3390/v9070165] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/10/2017] [Accepted: 06/21/2017] [Indexed: 01/07/2023] Open
Abstract
Since 2015, 84 countries and territories reported evidence of vector-borne Zika Virus (ZIKV) transmission. The World Health Organization (WHO) declared that ZIKV and associated consequences especially the neurological autoimmune disorder Guillain–Barré syndrome (GBS) and microcephaly will remain a significant enduring public health challenge requiring intense action. We apply a standardization of the multi-subcutaneous dorsal inoculation method to systematically summarize clinical neurological manifestation, viral distribution, and tissue damage during the progress of viremia and systemic spread in suckling mouse models. We found that C57BL/6 and Kunming mice (KM) both showed remarkable and uniform neurologic manifestations. C57BL/6 owned the highest susceptibility and pathogenicity to the nervous system, referred to as movement disorders, with 100% incidence, while KM was an economic model for a Chinese study characterized by lower limb weakness with 62% morbidity. Slight yellow extraocular exudates were observed in BALB/c, suggesting the association with similar ocular findings to those of clinical cases. The virus distribution and pathological changes in the sera, brains, livers, kidneys, spleens, and testes during disease progression had strong regularity and uniformity, demonstrating the effectiveness and plasticity of the animal models. The successful establishment of these animal models will be conducive to expound the pathogenic mechanism of GBS.
Collapse
Affiliation(s)
- Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Xuling Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Changwen Ke
- Institute of Microbiology, Center for Diseases Control and Prevention of Guangdong Province, 176 Xin Gang West Road, Guangzhou, Guangdong 510300, China.
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Weizhi Lu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Yujing Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Jieli Deng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Suiqi Xu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Ying Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Li Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Chengsong Wan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Weiwei Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qian Xie
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmacy, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Gholizadeh M, Khanahmad H, Memarnejadian A, Aghasadeghi MR, Roohvand F, Sadat SM, Cohan RA, Nazemi A, Motevalli F, Asgary V, Arezumand R. Design and expression of fusion protein consists of HBsAg and Polyepitope of HCV as an HCV potential vaccine. Adv Biomed Res 2015; 4:243. [PMID: 26682209 PMCID: PMC4673707 DOI: 10.4103/2277-9175.168610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/16/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a serious public health threat worldwide. Cellular immune responses, especially cytotoxic T-lymphocytes (CTLs), play a critical role in immune response toward the HCV clearance. Since polytope vaccines have the ability to stimulate the cellular immunity, a recombinant fusion protein was developed in this study. MATERIALS AND METHODS The designed fusion protein is composed of hepatitis B surface antigen (HBsAg), as an immunocarrier, fused to an HCV polytope sequence. The polytope containing five immunogenic epitopes of HCV was designed to induce specific CTL responses. The construct was cloned into the pET-28a, and its expression was investigated in BL21 (DE3), BL21 pLysS, BL21 pLysE, and BL21 AI Escherichia coli strains using 12% gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Finally, the identity of expressed fusion protein was confirmed by Western blotting using anti-His monoclonal antibody and affinity chromatography was applied to purify the expressed protein. RESULTS The accuracy of the construct was confirmed by restriction map analysis and sequencing. The transformation of the construct into the BL21 (DE3), pLysS, and pLysE E. coli strains did not lead to any expression. The fusion protein was found to be toxic for E. coli DE3. By applying two steps inhibition, the fusion protein was successfully expressed in BL21 (AI) E. coli strain. CONCLUSION The HBsAg-polytope fusion protein expressed in this study can be further evaluated for its immunogenicity in animal models.
Collapse
Affiliation(s)
- Monireh Gholizadeh
- Department of Biology, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Hossein Khanahmad
- Department of Genetics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Farzin Roohvand
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ali Nazemi
- Department of Biology, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Fatemeh Motevalli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Asgary
- Department Of Rabies, Pasteur Institute of Iran, Tehran, Iran ; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghaye Arezumand
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Mohammadzadeh S, Roohvand F, Memarnejadian A, Jafari A, Ajdary S, Salmanian AH, Ehsani P. Co-expression of hepatitis C virus polytope-HBsAg and p19-silencing suppressor protein in tobacco leaves. PHARMACEUTICAL BIOLOGY 2015; 54:465-73. [PMID: 25990925 DOI: 10.3109/13880209.2015.1048371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Plants transformed by virus-based vectors have emerged as promising tools to rapidly express large amounts and inexpensive antigens in transient condition. OBJECTIVE We studied the possibility of transient-expression of an HBsAg-fused polytopic construct (HCVpc) [containing H-2d and HLA-A2-restricted CD8+CTL-epitopic peptides of C (Core; aa 132-142), E6 (Envelope2; aa 614-622), N (NS3; aa 1406-1415), and E4 (Envelope2; aa 405-414) in tandem of CE6NE4] in tobacco (Nicotiana tabacum) leaves for the development of a plant-based HCV vaccine. MATERIALS AND METHODS A codon-optimized gene encoding the Kozak sequence, hexahistidine (6×His)-tag peptide, and HCVpc in tandem was designed, chemically synthesized, fused to HBsAg gene, and inserted into Potato virus X (PVX-GW) vector under the control of duplicated PVX coat protein promoter (CPP). The resulted recombinant plasmids (after confirmation by restriction and sequencing analyses) were transferred into Agrobacterium tumefaciens strain GV3101 and vacuum infiltrated into tobacco leaves. The effect of gene-silencing suppressor, p19 protein from tomato bushy stunt virus, on the expression yield of HCVpc-HBsAg was also evaluated by co-infiltration of a p19 expression vector. RESULTS Codon-optimized gene increased adaptation index (CAI) value (from 0.61 to 0.92) in tobacco. The expression of the HCVpc-HBsAg was confirmed by western blot and HBsAg-based detection ELISA on total extractable proteins of tobacco leaves. The expression level of the fusion protein was significantly higher in p19 co-agroinfiltrated plants. DISCUSSION AND CONCLUSION The results indicated the possibility of expression of HCVpc-HBsAg constructs with proper protein conformations in tobacco for final application as a plant-derived HCV vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Soheila Ajdary
- d Department of Immunology , Pasteur Institute of Iran , Tehran , Iran , and
| | - Ali-Hatef Salmanian
- e Department of Plant Biotechnology , National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | | |
Collapse
|
11
|
Yazdanian M, Memarnejadian A, Mahdavi M, Motevalli F, Sadat SM, Vahabpour R, Khanahmad H, Soleimanjahi H, Budkowska A, Roohvand F. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice. Adv Biomed Res 2015; 4:13. [PMID: 25625119 PMCID: PMC4300588 DOI: 10.4103/2277-9175.148296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022] Open
Abstract
Background: Fusion of Hepatitis B virus surface antigen (HBsAg) to a DNA construct might be considered as a strategy to enhance cellular and cytotoxic T-lymphocytes (CTL) responses of a Hepatitis C Virus core protein (HCVcp)-based DNA vaccine comparable to that of adjuvanted protein (subunit) immunization. Materials and Methods: pCHCORE vector harboring coding sequence of HBsAg and HCVcp (amino acids 2-120) in tandem within the pCDNA3.1 backbone was constructed. The corresponding recombinant HCVcp was also expressed and purified in Escherichia coli. Mice were immunized either by adjuvanted HCVcp (pluronic acid + protein) or by pCHCORE vector primed/protein boosted immunization regimen. The cellular immune responses (proliferation, In vivo CTL assay and IFN-γ/IL-4 ELISpot) against a strong and dominant H2-d restricted, CD8+-epitopic peptide (C39) (core 39-48; RRGPRLGVRA) of HCVcp were compared in immunized animals. Result: Proper expression of the fused protein by pCHCORE in transiently transfected HEK 293T cells and in the expected size (around 50 kDa) was confirmed by western blotting. The immunization results indicated that the pCHCORE shifted the immune responses pathway to Th1 by enhancing the IFN-γ cytokine level much higher than protein immunization while the proliferative and CTL responses were comparable (or slightly in favor of DNA immunization). Conclusion: Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine) immunization.
Collapse
Affiliation(s)
- Maryam Yazdanian
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehdi Mahdavi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Motevalli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hossein Khanahmad
- BCG Research Center, Karaj Research and Production, Pasteur Institute of Iran, Karaj, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Medical School, Tarbiat Moderes University (TMU), Tehran, Iran
| | - Agata Budkowska
- Department of Virology, Unit of Hepacivirus and Innate Immunity, Pasteur Institute, 25/28 Rue du Dr. Roux, Paris 75724, France
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Mohammadzadeh S, Khabiri A, Roohvand F, Memarnejadian A, Salmanian AH, Ajdary S, Ehsani P. Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana tabacum, a Protein With Potential Clinical Applications. HEPATITIS MONTHLY 2014; 14:e20524. [PMID: 25598788 PMCID: PMC4286711 DOI: 10.5812/hepatmon.20524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/29/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is major cause of liver cirrhosis in humans. HCV capsid (core) protein (HCVcp) is a highly demanded antigen for various diagnostic, immunization and pathogenesis studies. Plants are considered as an expression system for producing safe and inexpensive biopharmaceutical proteins. Although invention of transgenic (stable) tobacco plants expressing HCVcp with proper antigenic properties was recently reported, no data for "transient-expression" that is currently the method of choice for rapid, simple and lower-priced protein expression in plants is available for HCVcp. OBJECTIVES The purpose of this study was to design a highly codon-optimized HCVcp gene for construction of an efficient transient-plant expression system for production of HCVcp with proper antigenic properties in a regional tobacco plant (Iranian Jafarabadi-cultivar) by evaluation of different classes of vectors and suppression of gene-silencing in tobacco. MATERIALS AND METHODS A codon-optimized gene encoding the Kozak sequence, 6xHis-tag, HCVcp (1-122) and KDEL peptide in tandem (from N- to C-terminal) was designed and inserted into potato virus-X (PVX) and classic pBI121 binary vectors in separate cloning reactions. The resulted recombinant plasmids were transferred into Agrobacterium tumefaciens and vacuum infiltrated into tobacco leaves. The effect of gene silencing suppressor P19 protein derived from tomato bushy stunt virus on the expression yield of HCVcp by each construct was also evaluated by co-infiltration in separate groups. The expressed HCVcp was evaluated by dot and western blotting and ELISA assays. RESULTS The codon-optimized gene had an increased adaptation index value (from 0.65 to 0.85) and reduced GC content (from 62.62 to 51.05) in tobacco and removed the possible deleterious effect of "GGTAAG" splice site in native HCVcp. Blotting assays via specific antibodies confirmed the expression of the 15 kDa HCVcp. The expression level of HCVcp was enhanced by 4-5 times in P19 co-agroinfiltrated plants with better outcomes for PVX, compared to pBI121 vector (0.022% versus 0.019% of the total soluble protein). The plant-derived HCVcp (pHCVcp) could properly identify the HCVcp antibody in HCV-infected human sera compared to Escherichia coli-derived HCVcp (eHCVcp), indicating its potential for diagnostic/immunization applications. CONCLUSIONS By employment of gene optimization strategies, use of viral-based vectors and suppression of plant-derived gene silencing effect, efficient transient expression of HCVcp in tobacco with proper antigenic properties could be possible.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Alireza Khabiri
- Department of Mycology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Arash Memarnejadian
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran
| | - Ali Hatef Salmanian
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
| |
Collapse
|
13
|
Pishraft Sabet L, Taheri T, Memarnejadian A, Mokhtari Azad T, Asgari F, Rahimnia R, Alavian SM, Rafati S, Samimi Rad K. Immunogenicity of Multi-Epitope DNA and Peptide Vaccine Candidates Based on Core, E2, NS3 and NS5B HCV Epitopes in BALB/c Mice. HEPATITIS MONTHLY 2014; 14:e22215. [PMID: 25419219 PMCID: PMC4238154 DOI: 10.5812/hepatmon.22215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/21/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hypervariability of HCV proteins is an important obstacle to design an efficient vaccine for HCV infection. Multi-epitope vaccines containing conserved epitopes of the virus could be a promising approach for protection against HCV. OBJECTIVES Cellular and humoral immune responses against multi-epitope DNA and peptide vaccines were evaluated in BALB/c mice. MATERIALS AND METHODS In this experimental study, multi-epitope DNA- and peptide-based vaccines for HCV infection harboring immunodominant CD8+ T cell epitopes (HLA-A2 and H2-Dd) from Core (132-142), NS3 (1073-1081) and NS5B (2727-2735), a Th CD4+ epitope from NS3 (1248-1262) and a B-cell epitope from E2 (412-426) were designed. Multi-epitope DNA and peptide vaccines were tested in two regimens as heterologous DNA/peptide (group 1) and homologous peptide/peptide (group 2) prime/boost vaccine in BALB/c mice model. Electroporation was used for delivery of the DNA vaccine. Peptide vaccine was formulated with Montanide ISA 720 (M720) as adjuvant. Cytokine assay and antibody detection were performed to analyze the immune responses. RESULTS Mice immunized with multi-epitope peptide formulated with M720 developed higher HCV-specific levels of total IgG, IgG1 and IgG2a than those immunized with multi-epitope DNA vaccine. IFN-γ levels in group 2 were significantly higher than group 1 (i.e. 3 weeks after the last immunization; 37.61 ± 2.39 vs. 14.43 ± 0.43, P < 0.05). Moreover, group 2 had a higher IFN-γ/IL-4 ratio compared to group 1, suggesting a shift toward Th1 response. In addition, in the present study, induced immune responses were long lasting and stable after 9 weeks of the last immunization. CONCLUSIONS Evaluation of multi-epitope DNA and peptide-vaccines confirmed their specific immunogenicity in BALB/c mice. However, lower Th1 immune responses in mice immunized with DNA vaccine suggests further investigations to improve the immunogenicity of the multi-epitope DNA vaccine through immune enhancers.
Collapse
Affiliation(s)
- Leila Pishraft Sabet
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Razi Vaccine and Serum Research Institute, Karaj, IR Iran
| | - Tahereh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Talat Mokhtari Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Fatemeh Asgari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ramin Rahimnia
- Department of Nano Medicine, School of Advanced Technologies in Medicine, Tehran, IR Iran
| | - Seyed Moayed Alavian
- Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Middle East Liver Disease Center (MELD), Tehran, IR Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, IR Iran
| | - Katayoun Samimi Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Katayoun Samimi Rad, Department of Virology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 6446, Tehran, IR Iran. Tel +98-2188950595; Fax: +98-2166462267, E-mail:
| |
Collapse
|
14
|
Ikram A, Anjum S, Tahir M. In Silico Identification and Conservation Analysis of B-cell and T-Cell Epitopes of Hepatitis C Virus 3a Genotype Enveloped Glycoprotein 2 From Pakistan: A Step Towards Heterologous Vaccine Design. HEPATITIS MONTHLY 2014; 14:e9832. [PMID: 24976845 PMCID: PMC4071360 DOI: 10.5812/hepatmon.9832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/22/2013] [Accepted: 10/17/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is known for the eminent global disease burden responsible for encumbering public health. Development of an effective vaccine is the major need of the day; however, several obstacles loom ahead of this objective. One of the major barriers is that as a RNA virus, it mutates rapidly resulting in high sequence divergence and several viral isolates in the world. Theglycoprotein 2 (gpE2) is the primary component of HCV envelope with direct interaction with the host cell surface receptors; it is an indispensable target of neutralizing antibodies and hence, should be a fundamental component of vaccine design. OBJECTIVES This study focused on B-cells and T-cells epitopes prediction in HCV gpE2, particularly in 3a genotype, in Pakistan and identification of the conserved epitopes among various 3a isolates at global level, principally conserved across HCV major genotypes. MATERIALS AND METHODS Epitope finding was done by using online available bioinformatics tools including Immune Epitope Database (IEDB), ProPred-I, and ProPred. Conservation of these epitopes was found by aligning selected gpE2 sequences using MultAlin online software and conservancy analysis tool available at IEDB. RESULTS Many B-cell and T-cell epitopes predicted in gpE2 were found conserved among HCV 3a genotypes whereas few were conserved in other genotypes anticipating these epitopes as potential candidates of producing strong B-cell and T-cell response against HCV 3a and other genotypes. CONCLUSIONS HCV gpE2 is an ideal target for HCV vaccine. Prediction of epitope immunogenicity and characterization on the basis of peptide sequences will be significantly helpful for development of a heterologous vaccine against HCV variants.
Collapse
Affiliation(s)
- Aqsa Ikram
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadia Anjum
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Corresponding Author: Sadia Anjum, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan. Tel: +92-5190856152 Fax+92-5190856102, E-mail:
| | - Muhammad Tahir
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
15
|
Martinez-Donato G, Amador-Cañizares Y, Alvarez-Lajonchere L, Guerra I, Pérez A, Dubuisson J, Wychowsk C, Musacchio A, Aguilar D, Dueñas-Carrera S. Neutralizing antibodies and broad, functional T cell immune response following immunization with hepatitis C virus proteins-based vaccine formulation. Vaccine 2014; 32:1720-6. [PMID: 24486345 DOI: 10.1016/j.vaccine.2014.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 01/01/2023]
Abstract
HCV is a worldwide health problem despite the recent advances in the development of more effective therapies. No preventive vaccine is available against this pathogen. However, non-sterilizing immunity has been demonstrated and supports the potential success of HCV vaccines. Induction of cross-neutralizing antibodies and T cell responses targeting several conserved epitopes, have been related to hepatitis C virus (HCV) clearance. Therefore, in this work, the immunogenicity of a preparation (MixprotHC) based on protein variants of HCV Core, E1, E2 and NS3 was evaluated in mice and monkeys. IgG from MixprotHC immunized mice and monkeys neutralized the infectivity of heterologous HCVcc. Moreover, strong CD4+ and CD8+ T cells proliferative and IFN-γ secretion responses were elicited against HCV proteins. Remarkably, immunization with MixprotHC induced control of viremia in a surrogate challenge model in mice. These results suggest that MixprotHC might constitute an effective immunogen against HCV in humans with potential for reducing the likelihood of immune escape and viral persistence.
Collapse
Affiliation(s)
- Gillian Martinez-Donato
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba.
| | - Yalena Amador-Cañizares
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Liz Alvarez-Lajonchere
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Ivis Guerra
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Angel Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Jean Dubuisson
- Institut de Biologie de Lille (UMR8161), CNRS, Universite de Lille I & II and Institut Pasteur de Lille, Lille, France
| | - Czeslaw Wychowsk
- Institut de Biologie de Lille (UMR8161), CNRS, Universite de Lille I & II and Institut Pasteur de Lille, Lille, France
| | - Alexis Musacchio
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Daylen Aguilar
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Santiago Dueñas-Carrera
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| |
Collapse
|
16
|
Wada T, Kohara M, Yasutomi Y. DNA vaccine expressing the non-structural proteins of hepatitis C virus diminishes the expression of HCV proteins in a mouse model. Vaccine 2013; 31:5968-74. [PMID: 24144476 DOI: 10.1016/j.vaccine.2013.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/08/2013] [Indexed: 12/20/2022]
Abstract
Most of the people infected with hepatitis C virus (HCV) develop chronic hepatitis, which in some cases progresses to cirrhosis and ultimately to hepatocellular carcinoma. Although various immunotherapies against the progressive disease status of HCV infection have been studied, a preventive or therapeutic vaccine against this pathogen is still not available. In this study, we constructed a DNA vaccine expressing an HCV structural protein (CN2), non-structural protein (N25) or the empty plasmid DNA as a control and evaluated their efficacy as a candidate HCV vaccine in C57BL/6 and novel genetically modified HCV infection model (HCV-Tg) mice. Strong cellular immune responses to several HCV structural and non-structural proteins, characterized by cytotoxicity and interferon-gamma (IFN-γ) production, were observed in CN2 or N25 DNA vaccine-immunized C57BL/6 mice but not in empty plasmid DNA-administered mice. The therapeutic effects of these DNA vaccines were also examined in HCV-Tg mice that conditionally express HCV proteins in their liver. Though a reduction in cellular immune responses was observed in HCV-Tg mice, there was a significant decrease in the expression of HCV protein in mice administered the N25 DNA vaccine but not in mice administered the empty plasmid DNA. Moreover, both CD8(+) and CD4(+) T cells were required for the decrease of HCV protein in the liver. We found that the N25 DNA vaccine improved pathological changes in the liver compared to the empty plasmid DNA. Thus, these DNA vaccines, especially that expressing the non-structural protein gene, may be an alternative approach for treatment of individuals chronically infected with HCV.
Collapse
Affiliation(s)
- Takeshi Wada
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
17
|
Yazdanian M, Memarnejadian A, Mahdavi M, Sadat SM, Motevali F, Vahabpour R, Khanahmad H, Siadat SD, Aghasadeghi MR, Roohvand F. Immunization of Mice by BCG Formulated HCV Core Protein Elicited Higher Th1-Oriented Responses Compared to Pluronic-F127 Copolymer. HEPATITIS MONTHLY 2013; 13:e14178. [PMID: 24348641 PMCID: PMC3842517 DOI: 10.5812/hepatmon.14178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/14/2013] [Accepted: 09/25/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND A supreme vaccine for Hepatitis C virus (HCV) infection should elicit strong Th1-oriented cellular responses. In the absence of a Th1-specific adjuvant, immunizations by protein antigens generally induce Th2-type and weak cellular responses. OBJECTIVES To evaluate the adjuvant effect of BCG in comparison with nonionic copolymer-Pluronic F127 (F127) as a classic adjuvant in the formulation of HCV core protein (HCVcp) as a candidate vaccine for induction of Th1 immune responses. MATERIALS AND METHODS Expression of N-terminally His-Tagged HCVcp (1-122) by pIVEX2.4a-core vector harboring the corresponding gene under the control of arabinose-inducible (araBAD) promoter was achieved in BL21-AI strain of E.coli and purified through application of nitrilotriacetic acid (Ni-NTA) chromatography. Mice were immunized subcutaneously (s.c.) in base of the tail with 100 μl of immunogen (F127+HCVcp or BCG+HCVcp; 5 μgHCVcp/mouse/dose) or control formulations (PBS, BCG, F127) at weeks 0, 3, 6. Total and subtypes of IgG, as well as cellular immune responses (Proliferation, In vivo CTL and IFN-γ/IL-4 ELISpot assays against a strong and dominant H2-d restricted, CD8+-epitopic peptide, core 39-48; RRGPRLGVRA of HCVcp) were compared in each group of immunized animals. RESULTS Expression and purification of core protein around the expected size (21 kDa) was confirmed by Western blotting. The HCVcp + BCG vaccinated mice showed significantly higher lymphocyte proliferation and IFN-γ production but lower levels of cell lysis (45% versus 62% in CTL assay) than the HCVcp+F127 immunized animals. "Besides, total anti-core IgG and IgG1 levels were significantly higher in HCVcp + F127 immunized mice as compared to HCVcp + BCG vaccinated animals, indicating relatively higher efficacy of F127 for the stimulation of humoral and Th2-oriented immune responses". CONCLUSIONS Results showed that HCVcp + BCG induced a moderate CTL and mixed Th1/Th2 immune responses with higher levels of cell proliferation and IFN-γ secretion, indicating that BCG may have a better outcome when formulated in HCVcp-based subunit vaccines.
Collapse
Affiliation(s)
- Maryam Yazdanian
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Mehdi Mahdavi
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Seyed Mehdi Sadat
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Fatemeh Motevali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Hossein Khanahmad
- BCG Research Center, Karaj Research and Production Complex, Pasteur Institute of Iran, Karaj, IR Iran
| | | | | | - Farzin Roohvand
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| |
Collapse
|
18
|
Kulkarni R, Sapkal G, Mahishi L, Shil P, Gore MM. Design and characterization of polytope construct with multiple B and TH epitopes of Japanese encephalitis virus. Virus Res 2012; 166:77-86. [DOI: 10.1016/j.virusres.2012.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 12/22/2022]
|
19
|
Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, part two: advances in hepatitis C virus vaccine formulations and modalities. Expert Opin Ther Pat 2012; 22:391-415. [PMID: 22455502 DOI: 10.1517/13543776.2012.673589] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Developing a vaccine against HCV is an important medical and global priority. Unavailability and potential dangers associated with using attenuated HCV viral particles for vaccine preparation have resulted in the use of HCV genes and proteins formulated in novel vaccine modalities. AREAS COVERED In part one of this review, advances in basic knowledge for HCV vaccine design were provided. Herein, a detailed and correlated patents (searched by Espacenet) and literatures (searched by Pubmed) review on HCV vaccine formulations and modalities is provided, including: subunit, DNA, epitopic-peptide/polytopic, live vector- and whole yeast-based vaccines. Less-touched areas in vaccine studies such as mucosal, plant-based, and chimeric HBV/HCV vaccines are also discussed. Furthermore, results of preclinical/clinical studies on selected HCV vaccines as well as pros and cons of different strategies are reviewed. Finally, potential strategies for creation and/or improvement of HCV vaccine formulations are discussed. EXPERT OPINION Promising outcomes of a few HCV vaccine modalities in phase I/II clinical trials predict the accessibility of at least partially effective vaccines to inhibit or treat the chronic state of HCV infection (specially in combination with standard antiviral therapy). ChronVac-C (plasmid DNA), TG4040 (MVA-based), and GI-5005 (whole yeast-based) might be the most obvious HCV vaccine candidates to be approved in the near future.
Collapse
Affiliation(s)
- Farzin Roohvand
- Hepatitis & AIDS Department, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
20
|
Ullah S, Shah MAA, Riaz N. Recent Advances in Development of DNA Vaccines Against Hepatitis C virus. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:253-60. [PMID: 24293811 DOI: 10.1007/s13337-012-0058-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 02/03/2012] [Indexed: 01/28/2023]
Abstract
Hepatitis C is one of the foremost challenging diseases all over the world. No vaccine has been developed, yet against Hepatitis C virus (HCV). This is partly due to the high mutation rate in the HCV genome, which generates new genotypes and sub genotypes. A mass of efforts have been devoted for the development of an efficient vaccine against HCV. DNA Vaccines, an emerging field of Vaccinology, grasp strong potential to be the most reliable and efficient mode of vaccination in the future. This technology is under investigation currently. Incredibly diverse approaches have been applied as an endeavor to develop a potent DNA vaccine against HCV. The HCV structural genes and the virus like particles have been attempted and so far the results are quite promising in the Lab animals. As there is no proper animal model for HCV infection except chimpanzees, it is very difficult to articulate whether these vaccines will also be pertinent in humans or not. This review will focus on different approaches being used for the development of DNA vaccines, the major tribulations in designing a DNA vaccine against HCV as well as the future prospects for the improvement of under trials DNA vaccines developed against HCV.
Collapse
Affiliation(s)
- Sami Ullah
- NUST Center of Virology and Immunology, National University of Science and Technology, Islamabad, Pakistan
| | | | | |
Collapse
|
21
|
Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, Part one: Advances in basic knowledge for hepatitis C virus vaccine design. Expert Opin Ther Pat 2011; 21:1811-30. [PMID: 22022980 DOI: 10.1517/13543776.2011.630662] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Around 3% of the world population is infected with HCV, with 3 - 4 million newly infected subjects added to this reservoir every year. At least 10% of these people will develop liver cirrhosis or cancer over time, while no approved vaccine against HCV infection is available to date. AREAS COVERED This paper includes a detailed and correlated patent (selected by HCAPLUS search database) and literature (searched by PubMed) review on the HCV genome, proteins and key epitopes (including underestimated HCV proteins, alternate reading frame proteins), HCV immunology, immunosuppressive mechanisms and protective correlations of immunity in acute and chronic states of infection (features for prophylactic and therapeutic HCV vaccine design), recent HCV cell culture systems (HCV/JFH1) and animal models. In part two of this review, advances in HCV vaccine formulations and modalities as well as a detailed list of the current trials for HCV vaccine and discussion of the pros and cones of different strategies will be provided. EXPERT OPINION By using the advanced basic knowledge and tools obtained about HCV vaccinology in recent years and the application of novel formulations and modalities, at least partially effective vaccines will become available in the near future to prevent (or treat) the chronic (if not the acute) state of HCV infection. A few of such vaccines are already in clinical trials.
Collapse
Affiliation(s)
- Farzin Roohvand
- Pasteur Institute of Iran, Hepatitis & AIDS Department, Pasteur Ave., Tehran, Iran.
| | | |
Collapse
|