1
|
Abdelqader R, Hasan H, Shuqair DA, Zueter AM, Albakri KA, Ghanem M. Global epidemiology, genotype distribution and coinfection rate of Human Aichi virus: A systematic review. J Infect Chemother 2025; 31:102523. [PMID: 39293717 DOI: 10.1016/j.jiac.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Acute gastroenteritis is a major health concern for all age groups and accounts for more than 2.5 million deaths annually in children under five years old. Human Aichi virus causes acute gastroenteritis and is associated with foodborne outbreaks. Little is known about its pathogenicity, evolution, and geographical distribution. OBJECTIVE This study aimed to describe the global seroprevalence of AiV-1 and its genotype distribution, track outbreaks, and estimate co-infection rates with other viral gastroenteritis. METHODS A comprehensive systematic search of the epidemiological aspects of AiV-1 was conducted using peer-reviewed English original articles indexed in several scientific database libraries since its first detection in Japan until October 2022. A total of 55 published studies were included in the final analysis based on the inclusion criteria. RESULT The global prevalence of AiV-1 was 1.45 %. To date, nine AiV-1 outbreaks were reported following the first oyster-associated outbreak in Japan between 1987 and 1991. AiV-1 genotype A has a worldwide distribution, whereas genotypes B and C have a pattern of geo-localization. The gradual and significant increase of AiV-1 seroprevalence with age was reported in all studies. The most predominant viruses causing viral coinfection among AiV-1-infected patients were Norovirus (36.55 %), Rotavirus (18.91 %), and Sapovirus (15.13 %). Coinfections with Norovirus (p-value 0.003), Rotavirus (p = 0.007), and Human Astrovirus (p = 0.032) were significantly correlated with AiV-1 coinfection. CONCLUSION This was the first comprehensive systematic review of AiV-1. Although AiV-1 has a low global prevalence, it can be considered a health concern due to its association with childhood gastroenteritis.
Collapse
Affiliation(s)
- Rana Abdelqader
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | | | - Dalal A Shuqair
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - AbdelRahman M Zueter
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan.
| | | | | |
Collapse
|
2
|
Van Nguyen T, Kasantikul T, Piewbang C, Techangamsuwan S. Evolutionary dynamics of canine kobuvirus in Vietnam and Thailand reveal the evidence of viral ability to evade host immunity. Sci Rep 2024; 14:12037. [PMID: 38802579 PMCID: PMC11130191 DOI: 10.1038/s41598-024-62833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Canine kobuvirus (CaKoV) is a pathogen associated with canine gastrointestinal disease (GID). This study examined 327 rectal swabs (RS), including 113 from Vietnam (46 healthy, 67 with GID) and 214 from Thailand (107 healthy and 107 with GID). CaKoV was detected in both countries, with prevalences of 28.3% (33/113) in Vietnam and 7.9% (17/214) in Thailand. Additionally, CaKoV was found in both dogs with diarrhea and healthy dogs. CaKoV was mainly found in puppies under six months of age (30.8%). Co-detection with other canine viruses were also observed. The complete coding sequence (CDS) of nine Vietnamese and four Thai CaKoV strains were characterized. Phylogenetic analysis revealed a close genetic relationship between Vietnamese and Thai CaKoV strains, which were related to the Chinese strains. CDS analysis indicated a distinct lineage for two Vietnamese CaKoV strains. Selective pressure analysis on the viral capsid (VP1) region showed negative selection, with potential positive selection sites on B-cell epitopes. This study, the first of its kind in Vietnam, provides insights into CaKoV prevalence in dogs of different ages and healthy statuses, updates CaKoV occurrence in Thailand, and sheds light on its molecular characteristics and immune evasion strategies.
Collapse
Affiliation(s)
- Tin Van Nguyen
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanit Kasantikul
- Veterinary Diagnostic Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Wang J, Yan Z, Liu H, Wang W, Liu Y, Zhu X, Tian L, Zhao J, Peng Q, Bi Z. Prevalence and Molecular Evolution of Parvovirus in Cats in Eastern Shandong, China, between 2021 and 2022. Transbound Emerg Dis 2024; 2024:5514806. [PMID: 40303163 PMCID: PMC12016963 DOI: 10.1155/2024/5514806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 05/02/2025]
Abstract
Feline panleukopenia (FPL) is a highly contagious infectious disease caused by infection with feline parvovirus (FPV) and canine parvovirus type 2 (CPV-2). In recent years, the number of cats with FPL has increased with the expansion of pet cat population in China. The feces of 51 cats with diarrhea symptoms collected from 2021 to 2022 in Eastern Shandong, China, were detected by polymerase chain reaction for parvovirus and other viruses related to feline diarrhea to investigate the prevalence and gene variation of parvovirus in cats. In all the 51 samples, 45.1% (23/51) were positive for at least one viral pathogen, and the positivity of parvovirus was 41.2% (21/51), showing a high prevalence. Multiple-pathogen testing indicated high-coinfection rates of 42.9% (9/21) with other common viruses in parvovirus-positive cats. Most of the coinfections are feline coronavirus (FCoV), followed by feline astrovirus (FAstV) and feline bocavirus (FBoV). The complete VP2 sequences of 21 parvoviruses were obtained. Among them, 20 sequences were identified as FPV, and only one was CPV-2c of Asian origin, which was first detected from cats in Eastern Shandong, China. A phylogenetic tree of the 20 FPVs was constructed together with 698 FPVs (cat/dog host) worldwide on the basis of complete VP2. The 18 FPVs displayed high-sequence identity to one another (99.8%-100%), and they were clustered into FPV-G1 group, whereas the other two were clustered into FPV-G3 group. The FPV-G1 group increased dramatically to become predominant after 2019 in China, contributing to the prevalence of A91S mutation due to 96.07% FPV-G1 with A91S mutation as well as 100% of FPV-G2 and 99.12% of FPV-G3 with 91A in the statistical analysis. This study enriched the understanding of the prevalence, molecular evolution, and cross-species transmission of parvovirus in cats and provided a basis for responding to challenges in the diagnosis and treatment of FPL.
Collapse
Affiliation(s)
- Jingyu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Zhirong Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haoran Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjie Wang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- School of Pet Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China
| | - Yakun Liu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Xu Zhu
- Shanghai GlinX Biotechnology Company Limited, Shanghai 200050, China
| | - Lili Tian
- Department of Modern Agriculture, Linyi Vocational University of Science and Technology, Linyi, Shandong 276025, China
| | - Jianjun Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qisheng Peng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhenwei Bi
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China
| |
Collapse
|
4
|
Huang M, Gan J, Xu Z, Guo Y, Chen Z, Gao GF, Liang H, Liu WJ. A black goat-derived novel genotype of Aichi virus C blurs the boundary between caprine and porcine kobuviruses. Virology 2023; 585:215-221. [PMID: 37384968 DOI: 10.1016/j.virol.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Aichi virus C, a species in the genus Kobuvirus, causes diarrhea diseases in pigs and goats and pose health threat and economic loss for stock farming. A nearly complete genome sequence of caprine kobuvirus GCCDC14 was obtained from an anal swab of a black goat died from diarrhea collected in Hubei, China in 2019. Phylogenetic analyses suggested that GCCDC14 is a novel genotype of Aichi virus C, forming a sister branch to other caprine kobuviruses, with P1 and VP0 genes more closely related to porcine kobuviruses and VP3 in an independent branch. Compared to previous caprine kobuviruses, unique amino acid changes in the poly-l-proline type II helix structure of VP0 and VP1 were found, which may affect the cellular machinery of host and pathogenicity. This study indicates the presence of the kobuvirus with continuously evolving features and emphasizes the surveillance and genetic evolution investigation of kobuviruses for safety of husbandry.
Collapse
Affiliation(s)
- Mengkun Huang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530000, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Jinxian Gan
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530000, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Ziqian Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Yuanyuan Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China; School of Public Health, Shandong University, Jinan, 250012, China
| | - Zhangfu Chen
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China; School of Public Health, Shandong University, Jinan, 250012, China
| | - George F Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530000, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China; School of Public Health, Shandong University, Jinan, 250012, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China; Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Hao Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530000, China.
| | - William J Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530000, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China; Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, 102206, China.
| |
Collapse
|
5
|
Le SJ, Xin GY, Wu WC, Shi M. Genetic Diversity and Evolution of Viruses Infecting Felis catus: A Global Perspective. Viruses 2023; 15:1338. [PMID: 37376637 DOI: 10.3390/v15061338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cats harbor many important viral pathogens, and the knowledge of their diversity has been greatly expanded thanks to increasingly popular molecular sequencing techniques. While the diversity is mostly described in numerous regionally defined studies, there lacks a global overview of the diversity for the majority of cat viruses, and therefore our understanding of the evolution and epidemiology of these viruses was generally inadequate. In this study, we analyzed 12,377 genetic sequences from 25 cat virus species and conducted comprehensive phylodynamic analyses. It revealed, for the first time, the global diversity for all cat viruses known to date, taking into account highly virulent strains and vaccine strains. From there, we further characterized and compared the geographic expansion patterns, temporal dynamics and recombination frequencies of these viruses. While respiratory pathogens such as feline calicivirus showed some degree of geographical panmixes, the other viral species are more geographically defined. Furthermore, recombination rates were much higher in feline parvovirus, feline coronavirus, feline calicivirus and feline foamy virus than the other feline virus species. Collectively, our findings deepen the understanding of the evolutionary and epidemiological features of cat viruses, which in turn provide important insight into the prevention and control of cat pathogens.
Collapse
Affiliation(s)
- Shi-Jia Le
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Gen-Yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Wei-Chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Di Profio F, Sarchese V, Fruci P, Aste G, Martella V, Palombieri A, Di Martino B. Exploring the Enteric Virome of Cats with Acute Gastroenteritis. Vet Sci 2023; 10:vetsci10050362. [PMID: 37235445 DOI: 10.3390/vetsci10050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Viruses are a major cause of acute gastroenteritis (AGE) in cats, chiefly in younger animals. Enteric specimens collected from 29 cats with acute enteritis and 33 non-diarrhoeic cats were screened in PCRs and reverse transcription (RT) PCR for a large panel of enteric viruses, including also orphan viruses of recent identification. At least one viral species, including feline panleukopenia virus (FPV), feline enteric coronavirus (FCoV), feline chaphamaparvovirus, calicivirus (vesivirus and novovirus), feline kobuvirus, feline sakobuvirus A and Lyon IARC polyomaviruses, was detected in 66.1% of the samples.. Co-infections were mainly accounted for by FPV and FCoV and were detected in 24.2% of the samples. The virome composition was further assessed in eight diarrhoeic samples, through the construction of sequencing libraries using a sequence-independent single-primer amplification (SISPA) protocol. The libraries were sequenced on Oxford Nanopore Technologies sequencing platform. A total of 41 contigs (>100 nt) were detected from seven viral families infecting mammals, included Parvoviridae, Caliciviridae, Picornaviridae, Polyomaviridae, Anelloviridae, Papillomaviridae and Paramyxoviridae, revealing a broad variety in the composition of the feline enteric virome.
Collapse
Affiliation(s)
- Federica Di Profio
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Vittorio Sarchese
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Paola Fruci
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Giovanni Aste
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy
| | - Andrea Palombieri
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| |
Collapse
|
7
|
Eriksen EØ. A Systematic Review: Is Porcine Kobuvirus Causing Gastrointestinal Disease in Young Pigs? Vet Sci 2023; 10:286. [PMID: 37104441 PMCID: PMC10144032 DOI: 10.3390/vetsci10040286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Since porcine kobuvirus (PKV) was first described in 2008, researchers have speculated whether the virus is of clinical importance. This systematic literature review answers the question: Is porcine kobuvirus a cause of gastrointestinal disease in young pigs? A case-control study showed that PKV was not associated with neonatal diarrhea. A cohort study suffered from a very small sample size (n = 5), and in an experimental trial, the effect of PKV inoculation could not be separated from the effect of being inoculated with porcine epidemic diarrhea virus. In 13 poorly defined observational studies, more than 4000 young pigs had been assigned a diarrhea status and their feces analyzed for PKV. Unfortunately, the studies lacked well-characterized unbiased samples, and thus the strongest possible inference from these studies was that a very strong association between PKV and diarrhea is unlikely. PKV was commonly detected in non-diarrheic pigs, and this could indicate that PKV is not a sufficient cause in itself or that reinfection of individuals with some immunological protection due to previous infections is common. Conclusively, there is a lack of good evidence of PKV being a cause of gastrointestinal disease, but the sparse available evidence suggests that PKV is of limited clinical importance.
Collapse
Affiliation(s)
- Esben Østergaard Eriksen
- Section for Production, Nutrition and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
8
|
Palombieri A, Fruci P, Sarchese V, Robetto S, Orusa R, Arbuatti A, Martella V, Di Martino B, Di Profio F. Detection and Characterization of a Novel Picornavirus in European Badger (Meles meles). Vet Sci 2022; 9:vetsci9110645. [PMID: 36423093 PMCID: PMC9696597 DOI: 10.3390/vetsci9110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary A molecular survey was performed to investigate the gut virome of wild mustelids and sciurids found dead in Northwestern Italy. Using pan-picornavirus primer pair, we discovered a new picornavirus (PV) in the intestinal content of a European badger (Meles meles). The full-length genome of this novel strain was obtained by a sequence-independent single-primer amplification procedure in combination with Oxford Nanopore Technologies sequencing platform. On sequence analysis, the badger PV could be considered the prototype of a new species, proposed as Sakobuvirus B, classified within the still poorly characterized genus Sakobuvirus. The finding of this study poses interesting questions about the genetic diversity of these viruses, suggesting that the PV host range could be wider than expected. Abstract The recent development of unbiased metagenomic next-generation sequencing has provided a richer view of the wild animal virome making it necessary to expand the knowledge about virus diversity in wildlife, as well as to monitor their potential transmission to domestic animals or humans. In the present study, by screening collections of enteric specimens from wild animals, a novel picornavirus was identified in the intestinal content of a badger (Meles meles). By enrichment with a sequence-independent single-primer amplification (SISPA) approach and deep sequencing with Oxford Nanopore Technologies (ONT) platform, the genome sequence of a novel picornavirus strain, Badger/3A-2019/ITA, was reconstructed. On comparison based on the polyprotein sequences, the virus was distantly related (58.7% and 59.7% sequence identity at the nucleotide and amino acid level, respectively) to the feline picornavirus strain FFUP1, identified in 2012 in Portugal and classified into genus Sakobovirus within the species Sakobuvirus A. Upon phylogenetic, pairwise homology, and distance analyses performed on the P1, 2Chel, 3Cpro, and 3Dpol proteins and the complete genomic sequence, the badger picornavirus may be considered a member of a new sakobuvirus species, which we propose as Sakobuvirus B.
Collapse
Affiliation(s)
- Andrea Palombieri
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Paola Fruci
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Vittorio Sarchese
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Serena Robetto
- Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d’Aosta, 11020 Aosta, Italy
| | - Riccardo Orusa
- Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d’Aosta, 11020 Aosta, Italy
| | - Alessio Arbuatti
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Federica Di Profio
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-0861-266845
| |
Collapse
|
9
|
Zou J, Yu J, Mu Y, Xie X, Wang R, Wu H, Liu X, Xu F, Wang J, Wang Y. Development of a TaqMan-based multiplex real-time PCR for simultaneous detection of four feline diarrhea-associated viruses. Front Vet Sci 2022; 9:1005759. [PMID: 36406081 PMCID: PMC9669448 DOI: 10.3389/fvets.2022.1005759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Since their recent discovery, the prevalence of novel feline enteric viruses, including feline bocavirus 1 (FBoV-1), feline astrovirus (FeAstV), and feline kobuvirus (FeKoV), has been reported in China. Co-infections of these viruses with feline parvovirus (FPV) are common causes of diarrhea in cats. Viral co-infections are difficult to identify because of their non-specific clinical signs. To detect and identify these viruses, a quick and specific pathogen-testing approach is required. Here, we establish a real-time PCR (qPCR) based on multiple TaqMan probes for the simultaneous detection of FBoV-1, FeAstV, FeKoV, and FPV. Specific primers and TaqMan fluorescent probes were designed to ensure specificity. The results showed that the detection limit of single qPCR was up to 10 copies, and the detection limit of multiplex qPCR was up to 100 copies, with correlation coefficients >0.995 in all cases. Clinical sample detection revealed a 25.19% (34/135) total rate of co-infection among the viruses and a 1.48% (2/135) quadruple infection rate. Thus, this multiplex qPCR approach can serve as a quick, sensitive, and specific diagnostic tool for FBoV-1, FeAstV, FeKoV, and FPV identification, and it may be utilized for routine surveillance of these emerging and reemerging feline enteric viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Aftab G, Arfaee F, Akhtardanesh B, Nikbakht Brojeni G. Molecular characterization of canine and feline kobuvirus infections in Iran. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:447-450. [PMID: 36320293 PMCID: PMC9548235 DOI: 10.30466/vrf.2020.128667.2975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/25/2020] [Indexed: 11/14/2022]
Abstract
Kobuviruses are viral pathogens with broad host range presented in human gastroenteritis cases; but, the pathogenesis of these viruses in companion animals is not well described. In the present study, the presence of canine (CaKVs) and feline kobuviruses (FeKVs) was detected in the 100 fecal samples of diarrhoeic and healthy companion dogs and cats by polymerase chain reaction in Tehran, Iran. The prevalence of infection was estimated as 8.00% and 4.00% in dogs and cats, respectively. All positive samples were belonged to non-diarrhoeic animals except for a feline sample being co-infected with panleukopenia. Sequence analysis showed multiple point mutations in canine and feline Iranian strains and new feline strain was detected in the present study. This is the first detection of CaKVs and FeKVs in Iran; but, the exact role of these enteric viral pathogens and their zoonotic risks are better to be clarified in all endemic regions.
Collapse
Affiliation(s)
- Ghazal Aftab
- Department of Clinical Sciences, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farnoosh Arfaee
- Department of Clinical Sciences, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Baharak Akhtardanesh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
11
|
Gao Y, He W, Fu J, Li Y, He H, Chen Q. Epidemiological Evidence for Fecal-Oral Transmission of Murine Kobuvirus. Front Public Health 2022; 10:865605. [PMID: 35517645 PMCID: PMC9062591 DOI: 10.3389/fpubh.2022.865605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMurine Kobuvirus (MuKV) is a novel picornavirus of the genus Kobuvirus, and was first identified in the feces of murine rodents in the USA in 2011. There is limited information on the transmission route of MuKV. Thus, we conducted a study to investigate virus detection rates in fecal, serum, throat, and lung tissue samples from murine rodents.ResultsA total of 413 fecal samples, 385 lung samples, 269 throat swab samples, and 183 serum samples were collected from 413 murine rodents (Rattus norvegicus, Rattus tanezumi, and Rattus rattus) captured in urban Shenzhen. Kobuviruses were detected via RT-PCR. Only fecal samples were positive, with prevalence rates of 34.9% in Rattus norvegicus and 29.4% in Rattus tanezumi. Phylogenetic analysis based on partial 3D and complete VP1 sequence regions indicated that all of the MuKV sequences obtained belonged to Aichivirus A, and were genetically closely related to other MuKVs reported in China, Hungary, and the USA. Twenty-eight full-length MuKV sequences were acquired. Phylogenetic analysis of two sequences randomly selected from the two species (SZ59 and SZ171) indicated that they shared very high nucleotide and amino acid identity with one another (94.0 and 99.3%, respectively), and comparison with human Kobuvirus revealed amino acid identity values of ~80%. Additionally, a sewage-derived sequence shared high similarity with the rat-derived sequences identified in this study, with respective nucleotide and amino acid identity values from 86.5 and 90.7% to 87.2 and 91.1%.ConclusionThe results of the current study provide evidence that murine Kobuvirus is transmitted via the fecal-oral route.
Collapse
|
12
|
Kaiser FK, van Dyck L, Jo WK, Schreiner T, Pfankuche VM, Wohlsein P, Baumann I, Peters M, Baumgärtner W, Osterhaus ADME, Ludlow M. Detection of Systemic Canine Kobuvirus Infection in Peripheral Tissues and the Central Nervous System of a Fox Infected with Canine Distemper Virus. Microorganisms 2021; 9:microorganisms9122521. [PMID: 34946122 PMCID: PMC8705045 DOI: 10.3390/microorganisms9122521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Canine kobuvirus (CaKV) is a globally distributed pathogen of dogs and is predominantly associated with infection of the gastrointestinal tract. However, an etiological link to enteric disease has not been established since CaKV has been identified in both asymptomatic dogs and animals with diarrheic symptoms. In this study, an extraintestinal CaKV infection was detected by next-generation sequencing in a fox (Vulpes vulpes) in Germany concomitant with a canine distemper virus (canine morbillivirus; CDV) co-infection. Phylogenetic analysis of the complete coding region sequence showed that this strain was most closely related to a CaKV strain detected in a dog in the United Kingdom in 2008. The tissue and cellular tropism of CaKV was characterized by the detection of viral antigens and RNA. CaKV RNA was detected by in situ hybridization in different tissues, including epithelial cells of the stomach and ependymal cells in the brain. The use of a new RT-qPCR assay for CaKV confirmed the systemic distribution of CaKV with viral RNA also detected in the lymph nodes, bladder, trachea, and brain. The detection of a CDV infection in this fox suggests that immunosuppression should be further investigated as a contributing factor to the enhanced extraintestinal spread of CaKV.
Collapse
Affiliation(s)
- Franziska K. Kaiser
- Research Center for Infectious Disease and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (F.K.K.); (W.K.J.); (I.B.); (A.D.M.E.O.)
| | - Lydia van Dyck
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.v.D.); (T.S.); (V.M.P.); (P.W.); (W.B.)
| | - Wendy K. Jo
- Research Center for Infectious Disease and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (F.K.K.); (W.K.J.); (I.B.); (A.D.M.E.O.)
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.v.D.); (T.S.); (V.M.P.); (P.W.); (W.B.)
| | - Vanessa M. Pfankuche
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.v.D.); (T.S.); (V.M.P.); (P.W.); (W.B.)
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.v.D.); (T.S.); (V.M.P.); (P.W.); (W.B.)
| | - Ilka Baumann
- Research Center for Infectious Disease and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (F.K.K.); (W.K.J.); (I.B.); (A.D.M.E.O.)
| | - Martin Peters
- Chemisches und Veterinäruntersuchungsamt Westfalen, 59821 Arnsberg, Germany;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.v.D.); (T.S.); (V.M.P.); (P.W.); (W.B.)
| | - Albert D. M. E. Osterhaus
- Research Center for Infectious Disease and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (F.K.K.); (W.K.J.); (I.B.); (A.D.M.E.O.)
| | - Martin Ludlow
- Research Center for Infectious Disease and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (F.K.K.); (W.K.J.); (I.B.); (A.D.M.E.O.)
- Correspondence:
| |
Collapse
|
13
|
Di Martino B, Di Profio F, Robetto S, Fruci P, Sarchese V, Palombieri A, Melegari I, Orusa R, Martella V, Marsilio F. Molecular Survey on Kobuviruses in Domestic and Wild Ungulates From Northwestern Italian Alps. Front Vet Sci 2021; 8:679337. [PMID: 34195249 PMCID: PMC8237713 DOI: 10.3389/fvets.2021.679337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Since the first identification in 1989 in humans, kobuviruses (KoVs) have been identified from a wide range of animal species including carnivores, rodents, birds, ungulates, rabbits, and bats. Several studies have described the identification of genetically related KoVs in the fecal virome of domestic and wild animals suggesting a mutual exchange of viruses. By screening a total of 231 fecal samples from wild and domestic ungulates, KoVs RNA was detected in wild boars (3.2%; 2/63), chamois (4.6%; 2/43), and goats (2.6%; 2/77). On phylogenetic analysis of the partial RdRp sequence, the wild boar strains clustered within the species Aichivirus C whilst the strains identified in domestic and wild ruminants grouped into the species Aichivirus B. The complete VP1 gene was obtained for chamois and goat KoVs. Interestingly, upon phylogenetic analysis the strains grouped together with a KoV of ovine origin within a distinct genetic type (B3) of the species Aichivirus B.
Collapse
Affiliation(s)
- Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Serena Robetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Aosta, Italy
| | - Paola Fruci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Irene Melegari
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Riccardo Orusa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Aosta, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| |
Collapse
|
14
|
Epidemiology, Genetic Characterization, and Evolution of Hunnivirus Carried by Rattus norvegicus and Rattus tanezumi: The First Epidemiological Evidence from Southern China. Pathogens 2021; 10:pathogens10060661. [PMID: 34071186 PMCID: PMC8226955 DOI: 10.3390/pathogens10060661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Hunnivirus is a novel member of the family Picornaviridae. A single species, Hunnivirus A, is currently described. However, there is limited information on the identification of Hunnivirus to date, and thereby the circulation of Hunnivirus is not fully understood. Thus, the objective of this study was to investigate the prevalence, genomic characteristics, and evolution of rat hunnivirus in southern China. A total of 404 fecal samples were subjected to detection of Hunnivirus from urban rats (Rattus norvegicus and Rattus tanezumi) using PCR assay based on specific primers targeted to partial 3D regions, with the prevalence of 17.8% in Rattus norvegicus and 15.6% in Rattus tanezumi. An almost full-length rat hunnivirus sequence (RatHuV/YY12/CHN) and the genome structure were acquired in the present study. Phylogenetic analysis of the P1 coding regions suggested the RatHuV/YY12/CHN sequence was found to be within the genotype of Hunnivirus A4. The negative selection was further identified based on analysis of non-synonymous to synonymous substitution rates. The present findings suggest that hunniviruses are common in urban rats. Further research is needed for increased surveillance and awareness of potential risks to human health.
Collapse
|
15
|
Rivadulla E, Romalde JL. A Comprehensive Review on Human Aichi Virus. Virol Sin 2020; 35:501-516. [PMID: 32342286 PMCID: PMC7223127 DOI: 10.1007/s12250-020-00222-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Although norovirus, rotavirus, adenovirus and Astrovirus are considered the most important viral agents transmitted by food and water, in recent years other viruses, such as Aichi virus (AiV), have emerged as responsible for gastroenteritis outbreaks associated with different foods. AiV belongs to the genus Kobuvirus of the family Picornaviridae. It is a virus with icosahedral morphology that presents a single stranded RNA genome with positive sense (8280 nucleotides) and a poly (A) chain. AiV was first detected from clinical samples and in recent years has been involved in acute gastroenteritis outbreaks from different world regions. Furthermore, several studies conducted in Japan, Germany, France, Tunisia and Spain showed a high prevalence of AiV antibodies in adults (between 80% and 99%), which is indicative of a large exposure to this virus. The aim of this review is to bring together all the discovered information about the emerging pathogen human Aichi virus (AiV), discussing the possibles routes of transmission, new detection techniques and future research. Although AiV is responsible for a low percentage of gastroenteritis outbreaks, the high seroprevalence shown by human populations indicates an evident role as an enteric agent. The low percentage of AiV detection could be explained by the fact that the pathogen is more associated to subclinical infections. Further studies will be needed to clarify the real impact of AiV in human health and its importance as a causative gastroenteritis agent worldwide.
Collapse
Affiliation(s)
- Enrique Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago, Spain.
| |
Collapse
|
16
|
Kaszab E, Doszpoly A, Lanave G, Verma A, Bányai K, Malik YS, Marton S. Metagenomics revealing new virus species in farm and pet animals and aquaculture. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149329 DOI: 10.1016/b978-0-12-816352-8.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Viral metagenomics is slowly taking over the traditional and widely used molecular techniques for the investigation of pathogenic viruses responsible for illness and inflicting great economic burden on the farm animal industry. Owing to the continued improvements in sequencing technologies and the dramatic reduction of per base costs of sequencing the use of next generation sequencing have been key factors in this progress. Discoveries linked to viral metagenomics are expected to be beneficial to the field of veterinary medicine starting from the development of better diagnostic assays to the design of new subunit vaccines with minimal investments. With these achievements the research has taken a giant leap even toward the better healthcare of animals and, as a result, the animal sector could be growing at an unprecedented pace.
Collapse
|
17
|
Di Martino B, Di Profio F, Melegari I, Marsilio F. Feline Virome-A Review of Novel Enteric Viruses Detected in Cats. Viruses 2019; 11:v11100908. [PMID: 31575055 PMCID: PMC6832874 DOI: 10.3390/v11100908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/28/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
Recent advances in the diagnostic and metagenomic investigations of the feline enteric environment have allowed the identification of several novel viruses that have been associated with gastroenteritis in cats. In the last few years, noroviruses, kobuviruses, and novel parvoviruses have been repetitively detected in diarrheic cats as alone or in mixed infections with other pathogens, raising a number of questions, with particular regards to their pathogenic attitude and clinical impact. In the present article, the current available literature on novel potential feline enteric viruses is reviewed, providing a meaningful update on the etiology, epidemiologic, pathogenetic, clinical, and diagnostic aspects of the infections caused by these pathogens.
Collapse
Affiliation(s)
- Barbara Di Martino
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Federica Di Profio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Irene Melegari
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Fulvio Marsilio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| |
Collapse
|
18
|
Zhang Q, Niu J, Yi S, Dong G, Yu D, Guo Y, Huang H, Hu G. Development and application of a multiplex PCR method for the simultaneous detection and differentiation of feline panleukopenia virus, feline bocavirus, and feline astrovirus. Arch Virol 2019; 164:2761-2768. [PMID: 31506786 PMCID: PMC7086731 DOI: 10.1007/s00705-019-04394-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/05/2019] [Indexed: 02/04/2023]
Abstract
A multiplex polymerase chain reaction (mPCR) assay was developed to detect and distinguish feline panleukopenia virus (FPV), feline bocavirus (FBoV) and feline astrovirus (FeAstV). Three pairs of primers were designed based on conserved regions in the genomic sequences of the three viruses and were used to specifically amplify targeted fragments of 237 bp from the VP2 gene of FPV, 465 bp from the NP1 gene of FBoV and 645 bp from the RdRp gene of FeAstV. The results showed that this mPCR assay was effective, because it could detect at least 2.25-4.04 × 104 copies of genomic DNA of the three viruses per μl, was highly specific, and had a good broad-spectrum ability to detect different genotypes of the targeted viruses. A total of 197 faecal samples that had been screened previously for FeAstV and FBoV were collected from domestic cats in northeast China and were tested for the three viruses using the newly developed mPCR assay. The total positive rate for these three viruses was 59.89% (118/197). From these samples, DNA from FPV, FBoV and FeAstV was detected in 73, 51 and 46 faecal samples, respectively. The mPCR testing results agreed with the routine PCR results with a coincidence rate of 100%. The results of this study show that this mPCR assay can simultaneously detect and differentiate FPV, FBoV and FeAstV and can be used as an easy, specific and efficient detection tool for clinical diagnosis and epidemiological investigation of these three viruses.
Collapse
Affiliation(s)
- Qian Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jiangting Niu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Shushuai Yi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Guoying Dong
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Dejing Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yanbing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Jilin Institute of Animal Husbandry and Veterinary Science, Changchun, 130062, Jilin, China
| | - Hailong Huang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
19
|
Epidemiology of Aichi virus in fecal samples from outpatients with acute gastroenteritis in Northwestern Spain. J Clin Virol 2019; 118:14-19. [PMID: 31382225 DOI: 10.1016/j.jcv.2019.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/21/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND In recent years, Aichi virus (AiV) has been involved in acute viral gastroenteritis outbreaks. However, the common pathogenesis of AiV releases more in subclinical infections underestimating the impact of AiV in human health. OBJECTIVES The present study describes the presence and genetic diversity of AiV in patients with gastroenteritis in Northwestern Spain. STUDY DESIGN A total of 2667 stool samples, obtained between July 2010 and June 2011, from diarrheic outpatients were studied for detection and molecular characterization of AiV using PCR techniques followed by sequencing and phylogenetic analyses. RESULTS The virus was detected in 124 (5.0%) of the samples among all age groups. Coinfections were also detected, from the 124 positive samples, 72 (58.1%) were positive only for AiV, whereas mixed contaminations with Norovirus genogroup I or genogroup II, Sapovirus, or other enteric pathogens were detected in 52 (41.9%) samples. A total of 70 positive samples could be genotyped, being characterized as genotype A (58.6%) or B (41.4%). AiV was detected from August to April, being the highest number of AiV positive samples detected during autumn and winter seasons. CONCLUSIONS This survey remarks the importance of emerging enteric viruses in patients who require medical assistance, and offers more information about the real importance of AiV as gastroenteritis agent.
Collapse
|
20
|
Lu G, Huang M, Chen X, Sun Y, Huang J, Hu R, Li S. Identification and genome characterization of a novel feline picornavirus proposed in the Hunnivirus genus. INFECTION GENETICS AND EVOLUTION 2019; 71:47-50. [PMID: 30898643 PMCID: PMC7106175 DOI: 10.1016/j.meegid.2019.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/01/2022]
Abstract
The genus Hunnivirus, which has been identified in sheep, cattle, and rats, was first proposed in the family Picornaviridae by the International Committee on Taxonomy of Viruses in 2013. In this study, a hunnivirus was detected in fecal samples collected from a diarrheic cat in Southern China in 2017. Genome sequencing and analysis indicated that the novel hunnivirus has the same genome organization as reported for other hunniviruses, 5'UTR-L-P1(VP4-VP2-VP3-VP1)-P2(2A-2B-2C)-P3(3A-3B-3Cpro-3Dpol)-3'UTR, but is genetically divergent. This hunnivirus is proposed as a novel genotype of the species Hunnivirus A and provisionally designated feline hunnivirus. Our study expands the host range of hunnivirus and enriches knowledge on picornaviruses.
Collapse
Affiliation(s)
- Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong Province, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, Guangdong Province, People's Republic of China
| | - Mian Huang
- Guangzhou Zoo, Guangzhou 510070, Guangdong Province, People's Republic of China
| | - Xuanjiao Chen
- Guangzhou Zoo, Guangzhou 510070, Guangdong Province, People's Republic of China
| | - Yankuo Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong Province, People's Republic of China
| | - Ji Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong Province, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, Guangdong Province, People's Republic of China
| | - Renjun Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong Province, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, Guangdong Province, People's Republic of China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong Province, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, Guangdong Province, People's Republic of China.
| |
Collapse
|
21
|
Niu TJ, Yi SS, Wang X, Wang LH, Guo BY, Zhao LY, Zhang S, Dong H, Wang K, Hu XG. Detection and genetic characterization of kobuvirus in cats: The first molecular evidence from Northeast China. INFECTION GENETICS AND EVOLUTION 2018; 68:58-67. [PMID: 30529719 PMCID: PMC7185515 DOI: 10.1016/j.meegid.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/16/2022]
Abstract
Feline kobuvirus (FeKoV), a novel picornavirus of the genus kobuvirus, was initially identified in the feces of cats with diarrhea in South Korea in 2013. To date, there is only one report of the circulation of kobuvirus in cats in southern China. To investigate the presence and genetic variability of FeKoV in northeast China, 197 fecal samples were collected from 105 cats with obvious diarrhea and 92 asymptomatic cats in Shenyang, Jinzhou, Changchun, Jilin and Harbin regions, Northeast China, and viruses were detected by RT-PCR with universal primers targeting all kobuviruses. Kobuvirus was identified in 28 fecal samples with an overall prevalence of 14.2% (28/197) of which 20 samples were co-infected with feline parvovirus (FPV) and/or feline bocavirus (FBoV). Diarrhoeic cats had a higher kobuvirus prevalence (19.1%, 20/105) than asymptomatic cats (8.7%, 8/92). By genetic analysis based on partial 3D gene, all kobuvirus-positive samples were more closely related to previous FeKoV strains with high identities of 90.5%-97.8% and 96.6%-100% at the nucleotide and amino acid levels. Additionally, phylogenetic analysis based on the complete VP1 gene indicated that all FeKoV strains identified in this study were placed into a cluster, which separated from other reference strains previously reported, and three identical amino acid substitutions were present at the C-terminal of the VP1 protein for these FeKoV strains. Furthermore, two complete FeKoV polyprotein genomes were successfully obtained from two positive samples and designated 16JZ0605 and 17CC0811, respectively. The two strains shared 92.9%-94.9% nucleotide identities and 96.8%-98.4% amino acid identities to FeKoV prototype strains. Phylogenetic analysis indicated that FeKoVs were clustered according to their geographical regions, albeit with limited sequences support. This study provides the first molecular evidence that FeKoV circulates in cats in northeast China, and these FeKoVs exhibit genetic diversity and unique evolutionary trend.
Collapse
Affiliation(s)
- Ting-Jiang Niu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Shuai-Shu Yi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Xin Wang
- Sinovet (Jiangsu) Biopharmaceuticals Co., Ltd, Taizhou 225300, China
| | - Lei-Hua Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Bing-Yan Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, China; Jilin Institute of Animal Husbandry and Veterinary Science, Changchun, Jilin Province 130062, China
| | - Li-Yan Zhao
- Library, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Shuang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Hao Dong
- College of life Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, China.
| | - Kai Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Xue-Gui Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, China.
| |
Collapse
|
22
|
Lu G, Zhang X, Luo J, Sun Y, Xu H, Huang J, Ou J, Li S. First report and genetic characterization of feline kobuvirus in diarrhoeic cats in China. Transbound Emerg Dis 2018; 65:1357-1363. [PMID: 29873199 PMCID: PMC7169872 DOI: 10.1111/tbed.12916] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/03/2018] [Accepted: 05/07/2018] [Indexed: 11/30/2022]
Abstract
Feline kobuvirus (FeKoV) is a newly discovered organism, classified under the species Aichivirus A of the genus Kobuvirus. Since it was first reported in 2013, molecular evidence for FeKoV in the feline population has been restricted to two countries: Korea and Italy. In this study, we collected faecal samples from cats in southern China and detected the FeKoV RNA in these samples. A prevalence rate of 9.9% (8/81) was identified by RT‐PCR, and all positive samples were obtained from diarrhoeic animals. In addition, FeKoV was shown positive associated with diarrhoea in cats, with a correlation coefficient of 0.25. Next, we designed three primer pairs with degenerate bases, which targeted the conservative overlapping region of the entire published FeKoV genome, and sequenced the near‐complete genome of the first Chinese field FeKoV strain, WHJ‐1, using long‐fragment PCR. Finally, we analysed WHJ‐1's homology and phylogeny using the polyprotein gene. The results indicated that FeKoV has rapidly mutated since it was first discovered. This study will help to better understand FeKoV's epidemiology, evolutionary pattern and genetic diversity.
Collapse
Affiliation(s)
- Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China.,Guangdong Technological Engineering Research Center for Pet, Guangdong, Guangdong Province, China
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China.,Guangdong Technological Engineering Research Center for Pet, Guangdong, Guangdong Province, China
| | - Jie Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China.,Guangdong Technological Engineering Research Center for Pet, Guangdong, Guangdong Province, China
| | - Yankuo Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Haibin Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China.,Guangdong Technological Engineering Research Center for Pet, Guangdong, Guangdong Province, China
| | - Ji Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China.,Guangdong Technological Engineering Research Center for Pet, Guangdong, Guangdong Province, China
| | - Jiajun Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China.,Guangdong Technological Engineering Research Center for Pet, Guangdong, Guangdong Province, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China.,Guangdong Technological Engineering Research Center for Pet, Guangdong, Guangdong Province, China
| |
Collapse
|
23
|
Terio V, Bottaro M, Di Pinto A, Fusco G, Barresi T, Tantillo G, Martella V. Occurrence of Aichi virus in retail shellfish in Italy. Food Microbiol 2018; 74:120-124. [PMID: 29706327 DOI: 10.1016/j.fm.2018.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
AiV-1 is considered an emerging human enteric pathogens and foodborne transmission has been documented as an important source of exposure for humans, chiefly in relation to non-safe, risky food habits. We surveyed the presence of AiV-1 in retail shellfish, including oysters and mussles, identifying the virus in 3/170 (1.8%) of the analysed samples. The AiV-1 positive samples were of different geographic origin. Upon sequence analysis of a portion of the 3CD junction region, two AiV strains identified from harvesting areas in Northern Italy were characterised as genotype B and displayed 99-100% identity at the nucleotide level to other AiV-1 strains detected in sewages in Central Italy in 2012, suggesting that such strains are stably circulating in Italian ecosystems. Interestingly, a strain identified from mussles harvested in Southern Italy could not be characterised firmly, as inferred in the Bayesian analysis and by sequence comparison, indicating that different AiV strains are also circulating in Italy. Viral contamination in retail shellfish challenges the microbiological guidelines for food control and requires the development and optimization of additional diagnostic and prevention strategies.
Collapse
Affiliation(s)
- Valentina Terio
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy.
| | - Marilisa Bottaro
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy
| | - Angela Di Pinto
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Division of Caserta, Via Jervolino n. 19, 81029, Caserta, Italy
| | - Teodosio Barresi
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy
| | - Giuseppina Tantillo
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy
| | - Vito Martella
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy
| |
Collapse
|
24
|
Kong N, Zuo Y, Wang Z, Yu H, Zhou EM, Shan T, Tong G. Molecular characterization of new described kobuvirus in dogs with diarrhea in China. SPRINGERPLUS 2016; 5:2047. [PMID: 27995024 PMCID: PMC5130936 DOI: 10.1186/s40064-016-3738-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/25/2016] [Indexed: 11/13/2022]
Abstract
Canine kobuvirus (CaKVs) was a newly described virus detected in dogs in the US and Italy. To learn more about CaKVs, 5 of 106 fecal samples from diarrhea dogs were positive with CaKVs in China, and the full genome of CaKVs strain CH-1 isolated from dog with diarrhea was sequenced. The genome consists of 8186 nucleotides, excluding the 3′ poly (A) tail, and an open reading frame that maps between nucleotide positions 601 and 7943 which encodes a 2446 amino acid polyprotein. Based on the complete amino acid sequence of polyprotein, phylogenetic analysis showed that CH-1 was grouped along with other canine kobuvirus strains detected in the USA (US-PC0082, AN211D).
Collapse
Affiliation(s)
- Ning Kong
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China ; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China ; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yewen Zuo
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Zhongze Wang
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Hai Yu
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China ; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China ; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Guangzhi Tong
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China ; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| |
Collapse
|
25
|
First molecular evidence of kobuviruses in goats in Italy. Arch Virol 2016; 161:3245-8. [DOI: 10.1007/s00705-016-3017-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
26
|
Molecular Epidemiological Investigation of Porcine kobuvirus and Its Coinfection Rate with PEDV and SaV in Northwest China. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7590569. [PMID: 27294133 PMCID: PMC4884858 DOI: 10.1155/2016/7590569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 11/17/2022]
Abstract
Porcine kobuvirus (PKV) has circulated throughout China in recent years. Although many studies have detected it throughout the world, its molecular epidemiology has not been characterized in northwest China. To understand its prevalence, 203 fecal samples were collected from different regions of Gansu Province and tested with reverse transcription-polymerase chain reaction. In this study, we tested these samples for PKV, porcine epidemic diarrhea virus (PEDV), and sapovirus and analyzed the amplified 2C gene fragments of PKV. Overall, 126 (62.1%) samples were positive for PKV. Of the 74 piglets samples among the 203 fecal samples, 65 (87.8%) were positive for PKV. PKV infection was often accompanied by PEDV, but the relationship between the two viruses must be confirmed. A phylogenetic analysis indicated that the PKV strains isolated from the same regions clustered on the same branches. This investigation shows that PKV infections are highly prevalent in pigs in northwest China, especially in piglets with symptoms of diarrhea.
Collapse
|
27
|
Zhu X, Wang Y, Chen J, Zhang X, Shi H, Shi D, Gao J, Feng L. Development of TaqMan real-time reverse transcription-polymerase chain reaction for the detection and quantitation of porcine kobuvirus. J Virol Methods 2016; 234:132-6. [PMID: 26912233 DOI: 10.1016/j.jviromet.2016.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/14/2016] [Accepted: 01/24/2016] [Indexed: 10/22/2022]
Abstract
Porcine kobuvirus (PKV) is a newly emerging virus that has been detected in diarrheic pigs. Presently, reverse transcription-polymerase chain reaction (RT-PCR) and RT-loop-mediated amplification are the only methods that can be used to detect PKV. To develop a TaqMan real-time RT-PCR for the rapid detection and quantitation of PKV nucleic acid in fecal samples, a pair of primers and a probe were designed to amplify the conserved 3D region of the PKV genome. After optimization, the TaqMan real-time RT-PCR was highly specific and ∼1000 times more sensitive than conventional RT-PCR, and the detection limit was as low as 30 DNA copies. Among the 148 intestinal samples from piglets with diarrhea, 136 and 118 were positive based on the TaqMan and conventional RT-PCR methods, respectively, indicating that the TaqMan RT-PCR was more sensitive than conventional RT-PCR, and the total concordance of the two methods was approximately 87.84%. Thus, the TaqMan real-time RT-PCR should be a useful tool for the early detection and quantitation of PKV.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.427 Maduan Street, Nangang District, Harbin 150001, China.
| | - Yufei Wang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.427 Maduan Street, Nangang District, Harbin 150001, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jianfei Chen
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.427 Maduan Street, Nangang District, Harbin 150001, China.
| | - Xin Zhang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.427 Maduan Street, Nangang District, Harbin 150001, China.
| | - Hongyan Shi
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.427 Maduan Street, Nangang District, Harbin 150001, China.
| | - Da Shi
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.427 Maduan Street, Nangang District, Harbin 150001, China.
| | - Jing Gao
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.427 Maduan Street, Nangang District, Harbin 150001, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing 163319, China.
| | - Li Feng
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.427 Maduan Street, Nangang District, Harbin 150001, China.
| |
Collapse
|
28
|
Pankovics P, Boros Á, Bíró H, Horváth KB, Phan TG, Delwart E, Reuter G. Novel picornavirus in domestic rabbits (Oryctolagus cuniculus var. domestica). INFECTION GENETICS AND EVOLUTION 2015; 37:117-22. [PMID: 26588888 PMCID: PMC7172602 DOI: 10.1016/j.meegid.2015.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/20/2015] [Accepted: 11/14/2015] [Indexed: 12/12/2022]
Abstract
Picornaviruses (family Picornaviridae) are small, non-enveloped viruses with positive sense, single-stranded RNA genomes. The numbers of the novel picornavirus species and genera are continuously increasing. Picornaviruses infect numerous vertebrate species from fish to mammals, but have not been identified in a member of the Lagomorpha order (pikas, hares and rabbits). In this study, a novel picornavirus was identified in 16 (28.6%) out of 56 faecal samples collected from clinically healthy rabbits (Oryctolagus cuniculus var. domestica) in two (one commercial and one family farms) of four rabbit farms in Hungary. The 8364 nucleotide (2486 amino acid) long complete genome sequence of strain Rabbit01/2013/HUN (KT325852) has typical picornavirus genome organization with type-V IRES at the 5'UTR, encodes a leader (L) and a single 2A(H-box/NC) proteins, contains a hepatitis-A-virus-like cis-acting replication element (CRE) in the 2A, but it does not contain the sequence forming a "barbell-like" secondary structure in the 3'UTR. Rabbit01/2013/HUN has 52.9%, 52% and 57.2% amino acid identity to corresponding proteins of species Aichivirus A (genus Kobuvirus): to murine Kobuvirus (JF755427) in P1, to canine Kobuvirus (JN387133) in P2 and to feline Kobuvirus (KF831027) in P3, respectively. The sequence and phylogenetic analysis indicated that Rabbit01/2013/HUN represents a novel picornavirus species possibly in genus Kobuvirus. This is the first report of detection of picornavirus in rabbit. Further study is needed to clarify whether this novel picornavirus plays a part in any diseases in domestic or wild rabbits.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Katalin Barbara Horváth
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.
| |
Collapse
|
29
|
Liu X, Oka T, Wang Q. Genomic characterization of a US porcine kobuvirus strain. Arch Microbiol 2015; 197:1033-40. [PMID: 26316163 DOI: 10.1007/s00203-015-1139-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 08/02/2015] [Indexed: 12/14/2022]
Abstract
Porcine kobuvirus has been detected from pig fecal samples in the USA, but there is still no information on the full-length genomes. In this study, we characterized the first complete genomic sequence of a US porcine kobuvirus strain OH/RV50/2011. The viral genome is 8123 nucleotides (nt) long, including a 576-nt 5'-untranslated region (UTR), a 7380-nt polyprotein encoding sequence, and a 167-nt 3'-UTR. A complete genome sequence alignment suggested that two types of porcine kobuviruses were found based on whether a 30-aa deletion existed in the 2B encoding region. Furthermore, several conserved motifs that can be used for the design of universal kobuvirus or porcine kobuvirus-specific primers were verified in non-structural protein genes. Phylogenetic analysis based on the complete genome sequence showed that RV50 was grouped with other porcine kobuviruses and more closely related to Chinese strains. Secondary structure analysis of the 5'-UTR showed that RV50 has three stem-loop domains in the first 108 nt and has a potential hepacivirus-/pestivirus-like type IV group-B-like internal ribosomal entry site, like the porcine kobuvirus prototype strain S-1. Codon usage analysis showed that the most preferred usage tends to be C or U at the end of a codon in a porcine kobuvirus genome. These results will be useful in understanding the evolution of porcine kobuviruses .
Collapse
Affiliation(s)
- Xinsheng Liu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA,
| | | | | |
Collapse
|
30
|
Jin WJ, Yang Z, Zhao ZP, Wang WY, Yang J, Qin AJ, Yang HC. Genetic characterization of porcine kobuvirus variants identified from healthy piglets in China. INFECTION GENETICS AND EVOLUTION 2015; 35:89-95. [PMID: 26238210 DOI: 10.1016/j.meegid.2015.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/20/2023]
Abstract
In this study, two porcine kobuvirus strains, JS-01-CHN and JS-02a-CHN were detected from piglets with diarrhea and asymptomatic, respectively. The sequences of the two strains were analyzed using a bioinformatics software package. The full-length genome of JS-02a-CHN, was detected in healthy piglets was 8121 nucleotides (nt) long excluding the poly(A) tail. There was a 30 amino acid deletion in the 2B-coding region of JS-02a-CHN. We are the first to report a 30 amino acid deletion in porcine kobuvirus from asymptomatic piglets, indicating that porcine kobuvirus may have evolved differently based on geography and host differences. Fecal samples were obtained from pigs with diarrhea (n=91) and healthy (n=126) pigs and analyzed using RT-PCR. Of these, 64.8% (59/91) of diarrheic piglets and 19.8% (25/126) of healthy piglets were positive for PKV using VP1 specific primers. Twenty-eight (28) virus positive samples were randomly selected and the VP1 gene was analyzed. Phylogenetic analysis indicated that the 15 strains isolated from pigs with diarrhea clustered into different branches, while the VP1 sequences from clinically healthy pigs clustered into a single large group. These results indicate that the VP1 gene is diverse in pigs with diarrhea but conserved in healthy pigs in the Jiangsu Province.
Collapse
Affiliation(s)
- Wen-Jie Jin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Zhen Yang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Zhen-Peng Zhao
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Wan-Yi Wang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Juan Yang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Ai-Jian Qin
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Han-Chun Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
31
|
Takano T, Kusuhara H, Kuroishi A, Takashina M, Doki T, Nishinaka T, Hohdatsu T. Molecular characterization and pathogenicity of a genogroup GVI feline norovirus. Vet Microbiol 2015; 178:201-7. [PMID: 26026731 PMCID: PMC7125706 DOI: 10.1016/j.vetmic.2015.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 02/01/2023]
Abstract
We identified novel feline norovirus (FNoV) M49-1 strain. Based on the analysis of VP1, FNoV M49-1 strain was classified into genogroup GVI. FNoV M49-1 strain seems to be produced by recombination between GIV and GVI NoV. Cats inoculated with FNoV gene-positive-fecal samples showed clinical symptoms.
Norovirus (NoV) has been classified into 6 genogroups, GI-GVI. In the present study, we identified novel feline NoV (FNoV) M49-1 strain. The C-terminal of RNA-dependent RNA polymerase of the FNoV M49-1 strain was highly homologous with GIV FNoV and GIV lion norovirus, whereas VP1 was highly homologous with GVI canine NoV (CNoV). Based on the results of the Simplot analysis, the FNoV M49-1 strain may have been produced by recombination between GIV.2 FNoV and GVI.1 CNoV. In addition, specific pathogen-free cats inoculated with FNoV gene-positive-fecal samples developed diarrhea symptoms, and the viral gene was detected in their feces and blood.
Collapse
Affiliation(s)
- Tomomi Takano
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Hajime Kusuhara
- Health and Environment Research Institute, Yokkaichi, Mie, Japan
| | - Akira Kuroishi
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Midori Takashina
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Tomoyoshi Doki
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | | | - Tsutomu Hohdatsu
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| |
Collapse
|
32
|
Detection of canine astrovirus in dogs with diarrhea in Japan. Arch Virol 2015; 160:1549-53. [PMID: 25824600 PMCID: PMC7087093 DOI: 10.1007/s00705-015-2405-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/20/2015] [Indexed: 11/24/2022]
Abstract
Canine astrovirus (CAstV) is the causative agent of gastroenteritis in dogs. We collected rectal swabs from dogs with or without diarrhea symptoms in Japan and examined the feces for the presence of CAstV by RT-PCR with primers based on a conserved region of the ORF1b gene. The ORF1b gene of CAstV was not detected in the 42 dogs without clinical illness but was present in three pups out of the 31 dogs with diarrhea symptoms. Based on the full-length capsid protein, the CAstV KU-D4-12 strain that we detected in this study shared high homology with the novel virulent CAstV VM-2011 strain.
Collapse
|
33
|
Olarte-Castillo XA, Heeger F, Mazzoni CJ, Greenwood AD, Fyumagwa R, Moehlman PD, Hofer H, East ML. Molecular characterization of canine kobuvirus in wild carnivores and the domestic dog in Africa. Virology 2015; 477:89-97. [PMID: 25667111 DOI: 10.1016/j.virol.2015.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
Knowledge of Kobuvirus (Family Picornaviridae) infection in carnivores is limited and has not been described in domestic or wild carnivores in Africa. To fill this gap in knowledge we used RT-PCR to screen fresh feces from several African carnivores. We detected kobuvirus RNA in samples from domestic dog, golden jackal, side-striped jackal and spotted hyena. Using next generation sequencing we obtained one complete Kobuvirus genome sequence from each of these species. Our phylogenetic analyses revealed canine kobuvirus (CaKV) infection in all four species and placed CaKVs from Africa together and separately from CaKVs from elsewhere. Wild carnivore strains were more closely related to each other than to those from domestic dogs. We found that the secondary structure model of the IRES was similar to the Aichivirus-like IRES subclass and was conserved among African strains. We describe the first CaKVs from Africa and extend the known host range of CaKV.
Collapse
Affiliation(s)
- Ximena A Olarte-Castillo
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany
| | - Felix Heeger
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Camila J Mazzoni
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Alex D Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany
| | - Robert Fyumagwa
- Tanzania Wildlife Research Institute, P.O. Box 661, Arusha, Tanzania
| | | | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany
| | - Marion L East
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany.
| |
Collapse
|
34
|
Detection of feline kobuviruses in diarrhoeic cats, Italy. Vet Microbiol 2015; 176:186-9. [PMID: 25631253 PMCID: PMC7117564 DOI: 10.1016/j.vetmic.2015.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/21/2022]
Abstract
Kobuviruses were found in cats with diarrhoea. Kobuviruses were not detected in asymptomatic cats. The complete genome sequence of one such strains was determined. Kobuviruses resembling the newly described feline kobuviruses were identified. First evidence on the circulation of feline kobuviruses outside the Asian continent.
Kobuviruses have been identified in the enteric tract of several mammalian species but their role as enteric pathogens is still not defined. In this study, feline kobuviruses were found in 13.5% of cats with diarrhoea, but not in asymptomatic animals. In the full-length genome, one such strains, TE/52/13/ITA, displayed the highest nucleotide identity (96.0%) to the prototype strain FK-13. These results provide firm evidence that kobuviruses are common constituents of feline enteric viroma and that they are not geographically restricted to the Asian continent, where they were first signalled.
Collapse
|
35
|
Choi JW, Lee MH, Lee KK, Oem JK. Genetic characteristics of the complete feline kobuvirus genome. Virus Genes 2014; 50:52-7. [PMID: 25404141 DOI: 10.1007/s11262-014-1144-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/08/2014] [Indexed: 11/30/2022]
Abstract
We sequenced the complete genome of a feline kobuvirus and determined relationships with other kobuviruses. This kobuvirus has an 8,269-nucleotide-long RNA genome, excluding the poly(A) tail. The genome contains a 7,311-bp open reading frame (ORF) encoding a putative polyprotein precursor of 2,437 amino acids, a 717-bp 5'-untranslated region (UTR), and a 241-bp 3'-UTR. The L protein sequence was found to be the most variable region in the feline kobuvirus genome. Interestingly, the 5'-UTR B and C stem-loops were conserved as observed with other kobuviruses; however, a secondary structure corresponding to stem-loop A was not found in the full length 5'-UTR sequence. Phylogenetic tree analysis showed that kobuviruses can be divided into 3 main groups. The feline kobuvirus belongs to the Aichivirus A species containing Aichivirus, mouse kobuvirus, and canine kobuvirus.
Collapse
Affiliation(s)
- Jeong-Won Choi
- Viral Disease Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 480 Anyang-6-Dong, Anyang, 430-824, Republic of Korea
| | | | | | | |
Collapse
|
36
|
Cho YY, Lim SI, Kim YK, Song JY, Lee JB, An DJ. Molecular evolution of kobuviruses in cats. Arch Virol 2014; 160:537-41. [PMID: 25398594 DOI: 10.1007/s00705-014-2259-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/13/2014] [Indexed: 11/26/2022]
Abstract
Aichi virus, a causative agent of human gastroenteritis, is one of a number of animal viruses belonging to the genus Kobuvirus within the family Picornaviridae. The kobuvirus genome encodes several structural and nonstructural proteins; the capsid proteins encoded by the VP1 gene are key immunogenic factors. Here, we used the VP1 region to determine substitution rates and the time to the most recent common ancestor (TMRCA) by comparing feline kobuvirus (FKoVs) sequences with kobuvirus sequences isolated from members of other species. The substitution rate for FKoVs was 1.29 × 10(-2 )substitutions/site/year (s/s/y) and the TMRCA was 5.3 years.
Collapse
Affiliation(s)
- Yoon-Young Cho
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi, 430-824, Republic of Korea
| | | | | | | | | | | |
Collapse
|
37
|
Pankovics P, Boros Á, Kiss T, Reuter G. Identification and complete genome analysis of kobuvirus in faecal samples of European roller (Coracias garrulus): for the first time in a bird. Arch Virol 2014; 160:345-51. [PMID: 25195063 DOI: 10.1007/s00705-014-2228-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/31/2014] [Indexed: 12/11/2022]
Abstract
The genus Kobuvirus (Picornaviridae) consists of three species, Aichivirus A (e.g., Aichi virus, which infects humans), Aichivirus B and Aichivirus C. Kobuvirus have not been detected in non-mammal species including birds. In this study, a novel kobuvirus was identified in 3 (17 %) out of 18 faecal samples collected from European rollers (Coracias garrulus) in Hungary. The complete genome sequence of strain SZAL6-KoV/2011/HUN (KJ934637), which was determined using a novel 5'/3' RACE method (dsRNA-RACE) involving a double-stranded (ds)RNA intermediate, has a type-V IRES at the 5' end and a cis-acting element (CRE) in the 3C gene and encodes L and 2A(H-box/NC) proteins, but it does not contain the sequence forming a "barbell-like" secondary RNA structure in the 3'UTR. SZAL6-KoV/2011/HUN has 72 %, 73 %, and 81 % amino acid sequence identity to the P1, P2, and P3 protein, respectively, of Aichi virus. Evolutionary analysis showed that SZAL6-KoV/2011/HUN shares a common ancestor with other kobuviruses but belongs to a more ancient lineage in the species Aichivirus A. Investigation of the known kobuviruses in different animals and discovery of novel kobuviruses in potential host species helps to clarify the evolutionary connection and zoonotic potential of kobuviruses.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Szabadság út 7, 7623, Pécs, Hungary
| | | | | | | |
Collapse
|
38
|
Oem JK, Lee MH, Lee KK, An DJ. Novel Kobuvirus species identified from black goat with diarrhea. Vet Microbiol 2014; 172:563-7. [DOI: 10.1016/j.vetmic.2014.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
39
|
Ng TFF, Mesquita JR, Nascimento MSJ, Kondov NO, Wong W, Reuter G, Knowles NJ, Vega E, Esona MD, Deng X, Vinjé J, Delwart E. Feline fecal virome reveals novel and prevalent enteric viruses. Vet Microbiol 2014; 171:102-111. [PMID: 24793097 PMCID: PMC4080910 DOI: 10.1016/j.vetmic.2014.04.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/29/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022]
Abstract
Humans keep more than 80 million cats worldwide, ensuring frequent exposure to their viruses. Despite such interactions the enteric virome of cats remains poorly understood. We analyzed a fecal sample from a single healthy cat from Portugal using viral metagenomics and detected five eukaryotic viral genomes. These viruses included a novel picornavirus (proposed genus "Sakobuvirus") and bocavirus (feline bocavirus 2), a variant of feline astrovirus 2 and sequence fragments of a highly divergent feline rotavirus and picobirnavirus. Feline sakobuvirus A represents the prototype species of a proposed new genus in the Picornaviridae family, distantly related to human salivirus and kobuvirus. Feline astroviruses (mamastrovirus 2) are the closest known relatives of the classic human astroviruses (mamastrovirus 1), suggestive of past cross-species transmission. Presence of these viruses by PCR among Portuguese cats was detected in 13% (rotavirus), 7% (astrovirus), 6% (bocavirus), 4% (sakobuvirus), and 4% (picobirnavirus) of 55 feline fecal samples. Co-infections were frequent with 40% (4/10) of infected cats shedding more than one of these five viruses. Our study provides an initial description of the feline fecal virome indicating a high level of asymptomatic infections. Availability of the genome sequences of these viruses will facilitate future tropism and feline disease association studies.
Collapse
Affiliation(s)
- Terry Fei Fan Ng
- Blood Systems Research Institute, San Francisco, San Francisco, CA, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - João Rodrigo Mesquita
- Department of Animal Science, Rural Engineering and Veterinary, Polytechnic Institut of Viseu, Viseu, Portugal
| | | | - Nikola O Kondov
- Blood Systems Research Institute, San Francisco, San Francisco, CA, USA
| | - Walt Wong
- Blood Systems Research Institute, San Francisco, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Everardo Vega
- NCIRD, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mathew D Esona
- GRVLB, Rotavirus Surveillance, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, San Francisco, CA, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Jan Vinjé
- NCIRD, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, San Francisco, CA, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Oem JK, Choi JW, Lee MH, Lee KK, Choi KS. Canine kobuvirus infections in Korean dogs. Arch Virol 2014; 159:2751-5. [PMID: 24906525 PMCID: PMC7086924 DOI: 10.1007/s00705-014-2136-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/29/2014] [Indexed: 11/02/2022]
Abstract
To investigate canine kobuvirus (CaKoV) infection, fecal samples (n = 59) were collected from dogs with or without diarrhea (n = 21 and 38, respectively) in the Republic of Korea (ROK) in 2012. CaKoV infection was detected in four diarrheic samples (19.0 %) and five non-diarrheic samples (13.2 %). All CaKoV-positive dogs with diarrhea were found to be infected in mixed infections with canine distemper virus and canine parvovirus or canine adenovirus. There was no significant difference in the prevalence of CaKoV in dogs with and without diarrhea. By phylogenetic analysis based on partial 3D genes and complete genome sequences, the Korean isolates were found to be closely related to each other regardless of whether they were associated with diarrhea, and to the canine kobuviruses identified in the USA and UK. This study supports the conclusion that CaKoVs from different countries are not restricted geographically and belong to a single lineage.
Collapse
Affiliation(s)
- Jae-Ku Oem
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Anyang, 430-824, Republic of Korea
| | | | | | | | | |
Collapse
|
41
|
Abstract
Kobuviruses, which belong to the family Picornaviridae, have been detected in fecal samples from infected animals with or without diarrhea. Here, we report the first complete genome sequence of a feline kobuvirus (FKoV) strain, FK-13, identified from the feces of a cat with diarrhea in South Korea in 2011.
Collapse
|
42
|
Wang E, Yang B, Liu W, Liu J, Ma X, Lan X. Complete sequencing and phylogenetic analysis of porcine kobuvirus in domestic pigs in Northwest China. Arch Virol 2014; 159:2533-5. [PMID: 24777826 DOI: 10.1007/s00705-014-2087-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022]
Abstract
Porcine kobuvirus, a member of the genus Kobuvirus that is associated with diarrhea, has been reported in many countries. We determined the complete genome sequence and investigated the genetic evolution of the kobuvirus strain swKoV CH441, which was detected in the highland of Gansu province in Northwest China. The viral genome is 8149 nucleotides (nt) long, including a 29-nt poly(A) tail of the 3' end, and is 90 nt shorter in the 2B coding region than those of other kobuvirus strains whose sequences are available in the GenBank database. Phylogenetic analysis showed that swKoV CH441 was most closely related to porcine kobuvirus CH/HNXX-4 but more distantly related to other strains, including the strains GS-1/2012/CH and GS-2/2012/CH, which were detected in Gansu province, indicating that porcine kobuvirus may have geographic and host differences in evolution.
Collapse
Affiliation(s)
- Enli Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | | | | | | | | | | |
Collapse
|
43
|
Li C, Chen J, Shi H, Zhang X, Shi D, Han X, Chi Y, Feng L. Rapid detection of porcine kobuvirus in feces by reverse transcription loop-mediated isothermal amplification. Virol J 2014; 11:73. [PMID: 24755372 PMCID: PMC4026823 DOI: 10.1186/1743-422x-11-73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/09/2014] [Indexed: 03/02/2023] Open
Abstract
Background PKV is a new emerging pathogen detected in diarrhea pigs. At present, no more detection methods were reported except RT-PCR method. this study was to develop a fast diagnostic method based on the LAMP reaction for rapid detection of PKV nucleic acid in fecal samples. Findings Two pairs of primers were designed to amplify the conservative 3D gene of PKV genome. The PKV RT-LAMP method possessed well specificity and had 100 times higher sensitivity than common reverse transcription PCR (RT-PCR), which could detect up to 10 RNA copies of the target gene. Conclusions The results showed that the optimal reaction condition for RT-LAMP was achieved at 64°C for 50 min. Furthermore, the RT-LAMP procedure does not demand special equipment and is time-saving.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No,427 Maduan Street, Nangang District, Harbin 150001, China.
| |
Collapse
|
44
|
Di Martino B, Di Profio F, Melegari I, Robetto S, Di Felice E, Orusa R, Marsilio F. Molecular evidence of kobuviruses in free-ranging red foxes (Vulpes vulpes). Arch Virol 2014; 159:1803-6. [PMID: 24452667 PMCID: PMC7086952 DOI: 10.1007/s00705-014-1975-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/02/2014] [Indexed: 12/02/2022]
Abstract
Red foxes (Vulpes vulpes) are susceptible to viral diseases of domestic carnivores. In this study, by screening rectal swabs collected from 34 red foxes in Italy, we identified kobuvirus RNA in five samples. Based on analysis of partial RdRp and full-length VP1 genes, all of the strains shared the highest identity with canine kobuviruses (CaKVs) recently detected in the US, the UK and Italy. These findings provide the first evidence of the circulation of these novel viruses in foxes.
Collapse
Affiliation(s)
- Barbara Di Martino
- Department of Scienze Biomediche Comparate, Faculty of Veterinary Medicine, University of Teramo, Piazza Aldo Moro, 45, 64100, Teramo, Italy,
| | | | | | | | | | | | | |
Collapse
|
45
|
Chang J, Wang Q, Wang F, Jiang Z, Liu Y, Yu L. Prevalence and genetic diversity of bovine kobuvirus in China. Arch Virol 2013; 159:1505-10. [PMID: 24366549 DOI: 10.1007/s00705-013-1961-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/20/2013] [Indexed: 12/01/2022]
Abstract
A total of 166 faecal specimens from diarrheic cattle were collected in China for detection of bovine kobuvirus (BKV) by reverse transcription PCR (RT-PCR) targeting the region a portion of the 3D nonstructural protein, with an amplicon size of 631 bp. The RNA corresponding to the BKV 3D region was detected in 34.9 % of faecal samples (58/166) in four major dairy-cattle-production areas in China, and sequence analysis based on the partial 3D sequences (35/58) indicated that the Chinese BKVs shared 88.9-96.2 % nucleotide sequence identity to BKV reference strains. Further phylogenetic analysis based on the complete VP1-encoding sequences (17/35) revealed that the Chinese BKVs shared 81-83.4 % nucleotide sequence identity to the U-1 strain, and these Chinese BKV strains, together with the U-1 strain, are apparently divided into four lineages, representing four genotypes of BKV, designated as A, B, C and D. Our results show that BKV infection is widely distributed, with high genetic diversity in China.
Collapse
Affiliation(s)
- Jitao Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Identification and characterization of porcine kobuvirus variant isolated from suckling piglet in Gansu province, China. Viruses 2013; 5:2548-60. [PMID: 24145960 PMCID: PMC3814603 DOI: 10.3390/v5102548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 01/28/2023] Open
Abstract
Kobuviruses comprise three species, the Aichivirus A, Aichivirus B, and Aichivirus C (porcine kobuvirus). Porcine kobuvirus is endemic to pig farms and is not restricted geographically but, rather, is distributed worldwide. The complete genomic sequences of four porcine kobuvirus strains isolated during a diarrhea outbreak in piglets in the Gansu province of China were determined. Two of these strains exhibited variations relative to the traditional strains. The potential 3C/3D cleavage sites of the variant strains were Q/C, which differed from the Q/S in the traditional porcine kobuvirus genome. A 90-nucleotide deletion in the 2B protein and a single nucleotide insertion in the 3′UTR were found in the variant strains. The VP1 regions of all four porcine kobuviruses in our study were highly variable (81%–86%). Ten common amino acid mutations were found specifically at certain positions within the VP1 region. Significant recombination sites were identified using SimPlot scans of whole genome sequences. Porcine kobuviruses were also detected in pig serum, indicating that the virus can escape the gastrointestinal tract and travel to the circulatory system. These findings suggest that mutations and recombination events may have contributed to the high level of genetic diversity of porcine kobuviruses and serve as a driving force in its evolution.
Collapse
|