1
|
Yan T, Wang Z, Li R, Zhang D, Song Y, Cheng Z. Gyrovirus: current status and challenge. Front Microbiol 2024; 15:1449814. [PMID: 39220040 PMCID: PMC11362077 DOI: 10.3389/fmicb.2024.1449814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Gyrovirus (GyV) is small, single-stranded circular DNA viruses that has recently been assigned to the family Anelloviridae. In the last decade, many GyVs that have an apparent pan-tropism at the host level were identified by high-throughput sequencing (HTS) technology. As of now, they have achieved global distribution. Several species of GyVs have been demonstrated to be pathogenic to poultry, particularly chicken anemia virus (CAV), causing significant economic losses to the global poultry industry. Although GyVs are highly prevalent in various birds worldwide, their direct involvement in the etiology of specific diseases and the reasons for their ubiquity and host diversity are not fully understood. This review summarizes current knowledge about GyVs, with a major emphasis on their morphofunctional properties, epidemiological characteristics, genetic evolution, pathogenicity, and immunopathogenesis. Additionally, the association between GyVs and various diseases, as well as its potential impact on the poultry industry, have been discussed. Future prevention and control strategies have also been explored. These insights underscore the importance of conducting research to establish a virus culture system, optimize surveillance, and develop vaccines for GyVs.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziqiang Cheng
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
2
|
Sahnan S, Olivo D, Custer JM, Bandoo RA, Jackson D, Lund MC, McGraw H, Regney M, Aguiar de Souza Penha V, Neil J, Drake D, McGraw K, Varsani A, Kraberger S. Genome analysis of gyroviruses identified in waterfowl in Arizona (USA). Arch Virol 2024; 169:120. [PMID: 38753261 DOI: 10.1007/s00705-024-06049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
Gyroviruses are small single-stranded DNA (ssDNA) viruses that are largely associated with birds. Chicken anemia virus is the most extensively studied gyrovirus due to its disease impact on the poultry industry. However, we know much less about gyroviruses infecting other avian species. To investigate gyroviruses infecting waterfowl, we determined six complete genome sequences that fall into three gyrovirus groups, referred to as waterfowl gyrovirus 1 (n = 3), 2 (n = 2), and 3 (n = 1), in organs from hunter-harvested waterfowl from Arizona (USA). The waterfowl gyrovirus 1 variants were identified in multiple organs of a single American wigeon and represent a tentative new species. The waterfowl gyrovirus 2 variants were identified in the livers of two American wigeons and share >70% VP1 nucleotide sequence identity with gyrovirus 9, previously identified in the spleen of a Brazilian Pekin duck (MT318123) and a human fecal sample (KP742975). Waterfowl gyrovirus 3 was identified in a northern pintail spleen sample, and it shares >73% VP1 nucleotide sequence identity with two gyrovirus 13 sequences previously identified in Brazilian Pekin duck spleens (MT318125 and MT318127). These gyroviruses are the first to be identified in waterfowl in North America, as well as in American wigeons and northern pintails.
Collapse
Affiliation(s)
- Shawnpreet Sahnan
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Diego Olivo
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Rohan A Bandoo
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Danny Jackson
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85719, USA
| | - Michael C Lund
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Hannah McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Melanie Regney
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Victor Aguiar de Souza Penha
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Organismal and Evolutionary Research Programme, University of Helsinki, Helsinki, Finland
| | - Julia Neil
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Dean Drake
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA.
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
3
|
Zhang S, Yang J, Zhou D, Yan T, Li G, Hao X, Yang Q, Cheng X, Shi H, Liu Q, Li Y, Cheng Z. Development of a DAS-ELISA for Gyrovirus Homsa1 Prevalence Survey in Chickens and Wild Birds in China. Vet Sci 2023; 10:vetsci10050312. [PMID: 37235395 DOI: 10.3390/vetsci10050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Gyrovirus homsa1 (GyH1) is an emerging pathogenic single-stranded circular DNA virus that leads to immunosuppression, aplastic anemia, and multisystem damage in chickens. However, the prevalence of GyH1 infection in chickens and wild birds remains unknown. Here, we developed a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to investigate GyH1 infection in 8 chicken species and 25 wild bird species. A total of 2258 serum samples from chickens (n = 2192) in 15 provinces, and wild birds (n = 66) in Jinan Wildlife Hospital were collected from 2017 to 2021 in China. The GyH1-positive rates in chickens and wild birds were 9.3% (203/2192) and 22.7% (15/66), respectively. GyH1 was present in all flocks in 15 provinces. From 2017 to 2021, the positive rate ranged from 7.93% (18/227) to 10.67% (56/525), and the highest positive rate was present in 2019. Upon chicken age, the highest positive rate (25.5%) was present in young chickens (14-35 days old). Moreover, the GyH1-positive rate in broiler breeders (12.6%, 21/167) was significantly higher than that in layer chickens (8.9%, 14/157). This study shows that GyH1 has spread in chicken flocks and wild birds, and the higher GyH1-positive rate in wild birds indicates the risk of spillover from wild birds to chickens. Our study expanded the GyH1 epidemiological aspects and provided a theoretical basis for GyH1 prevention.
Collapse
Affiliation(s)
- Shicheng Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jianhao Yang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Tianxing Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Gen Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaojing Hao
- Qingdao Husbandry and Veterinary Institute, Qingdao 266199, China
| | - Qi Yang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xiangyu Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hengyang Shi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Qing Liu
- Zoo Wildlife Hospital, Jinan 250032, China
| | - Yubao Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252059, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
4
|
A novel gyrovirus is abundant in yellow-eyed penguin (Megadyptes antipodes) chicks with a fatal respiratory disease. Virology 2023; 579:75-83. [PMID: 36608597 DOI: 10.1016/j.virol.2022.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Yellow-eyed penguins (Megadyptes antipodes), or hoiho in te reo Māori, are predicted to become extinct on mainland Aotearoa New Zealand in the next few decades, with infectious disease a significant contributor to their decline. A recent disease phenomenon termed respiratory distress syndrome (RDS) causing lung pathology has been identified in very young chicks. To date, no causative pathogens for RDS have been identified. In 2020 and 2021, the number of chick deaths from suspected RDS increased four- and five-fold, respectively, causing mass mortality with an estimated mortality rate of >90%. We aimed to identify possible pathogens responsible for RDS disease impacting these critically endangered yellow-eyed penguins. Total RNA was extracted from tissue samples collected during post-mortem of 43 dead chicks and subject to metatranscriptomic sequencing and histological examination. From these data we identified a novel and highly abundant gyrovirus (Anelloviridae) in 80% of tissue samples. This virus was most closely related to Gyrovirus 8 discovered in a diseased seabird, while other members of the genus Gyrovirus include Chicken anaemia virus, which causes severe disease in juvenile chickens. No other exogenous viral transcripts were identified in these tissues. Due to the high relative abundance of viral reads and its high prevalence in diseased animals, it is likely that this novel gyrovirus is associated with RDS in yellow-eyed penguin chicks.
Collapse
|
5
|
Detection of Gyrovirus galga 1 in Cryopreserved Organs from Two Commercial Broiler Flocks in Japan. Viruses 2022; 14:v14071590. [PMID: 35891569 PMCID: PMC9319249 DOI: 10.3390/v14071590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Gyrovirus galga 1 (GyVg1, previously recognized as avian gyrovirus 2), which was first reported in chicken in 2011, is a new member of the genus Gyrovirus. The presence of GyVg1 has also been confirmed in different regions of Europe, South America, Africa, and Asia, indicating its global distribution. However, because there are no reports of examining the distribution of GyVg1 in animals in Japan, the epidemiology of this virus is unknown. In this study, we attempted to retrospectively detect GyVg1 in cryopreserved chicken materials derived from different two commercial broiler flocks in 1997. The GyVg1 genome was detected in organ materials derived from both flocks by PCR. GyVg1 detected in both flocks was classified into four genetic groups by analyzing the nucleotide sequences of the detected PCR products. These results suggest that diverse GyVg1 strains were present in commercial chicken flocks as early as 1997 in Japan.
Collapse
|
6
|
Zhang S, Yuan S, Yan T, Li G, Hao X, Zhou D, Li R, Li Y, Cheng Z. Serological investigation of Gyrovirus homsa1 infections in chickens in China. BMC Vet Res 2022; 18:231. [PMID: 35717195 PMCID: PMC9206369 DOI: 10.1186/s12917-022-03334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gyrovirus homsa1 (GyH1) (also known as Gyrovirus 3, GyV3) is a non-enveloped, small, single-stranded DNA virus, which was first identified in children with acute diarrhea, and was subsequently detected in marketed chickens, broilers with transmissible viral proventriculitis (TVP), and mammals. GyH1 is a pathogenic virus in chickens, causing aplastic anemia, immunosuppression, and multisystem damage. However, the seroepidemiology of GyH1 infection in chickens remains unclear. Here, we investigated the seroprevalence of GyH1 in chickens by ELISA to reveal the endemic status of GyH1 in China. RESULTS An indirect ELISA with high sensitivity and specificity was developed for investigation of seroepidemiology of GyH1 in chickens in China. The seropositive rate of GyH1 ranged from 0.6% to 7.7% in thirteen provinces, and ranged from 4.1% to 8.1% in eight species chickens. The seropositive rate of GyH1 in broiler breeders was significantly higher than that of in layers. There was a negative correlation between seropositive rate and age of chickens. The highest and lowest seropositive rate were present in chickens at 30-60 days and over 180 days, respectively. CONCLUSIONS The seroepidemiological investigation results demonstrated that natural GyH1 infection is widespread in chickens in China. Different species showed different susceptibility for GyH1. Aged chickens showed obvious age-resistance to GyH1. GyH1 has shown a high risk to the poultry industry and should be highly concerned.
Collapse
Affiliation(s)
- Shicheng Zhang
- College of Veterinary Medicine, Shandong Agricultural University, No.61, Daizong Street, Taian, 271018, China
| | - Shiyu Yuan
- College of Veterinary Medicine, Shandong Agricultural University, No.61, Daizong Street, Taian, 271018, China
| | - Tianxing Yan
- College of Veterinary Medicine, Shandong Agricultural University, No.61, Daizong Street, Taian, 271018, China
| | - Gen Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266000, China
| | - Xiaojing Hao
- Qingdao Animal Husbandry Workstation (Qingdao Animal Husbandry and Veterinary Research Institute), Qingdao, 266000, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, No.61, Daizong Street, Taian, 271018, China
| | - Ruiqi Li
- College of Veterinary Medicine, Shandong Agricultural University, No.61, Daizong Street, Taian, 271018, China
| | - Yubao Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, 252000, China.
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, No.61, Daizong Street, Taian, 271018, China.
| |
Collapse
|
7
|
Liu Y, Lv Q, Li Y, Yu Z, Huang H, Lan T, Wang W, Cao L, Shi Y, Sun W, Zheng M. Cross-species transmission potential of chicken anemia virus and avian gyrovirus 2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105249. [PMID: 35183752 DOI: 10.1016/j.meegid.2022.105249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/18/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
The Gyrovirus genus consists of nonenveloped, icosahedral viruses with small circular single-stranded DNA genomes. Gyroviruses have been detected in diverse hosts, including humans, chickens, rodents, and cats. Two Gyroviruses were detected in canine serum samples using PCR in this study. The results indicated that four serum samples were positive for CAV (0.28%, 2/700) or AGV2 (0.28%, 2/700). Additionally, recombination analysis showed that AGV2 and CAV might have originated from the recombination of viruses similar to those detected in chickens and humans. We detected a total of 14 mutations in CAV VP1 amino acid sequences and identified new mutations at positions 31, 388, 390, 399, and 421 for the first time. The identification of T390C, C912T, T1230C, and T1297C mutations in AGV2 VP1, R93C mutations in AGV2 VP2, and R58C mutations AGV2 VP3 indicated that the differences might be related to a transboundary movement among hosts, which requires further elucidation. To the best of our knowledge, this study is the first report of an AGV2-infected dog in China, suggesting that the cross-species transmission of viruses with circular single-stranded DNA genomes is a public health concern.
Collapse
Affiliation(s)
- Yumeng Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qiao Lv
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuying Li
- Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Ziping Yu
- Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Haixin Huang
- Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Tian Lan
- Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Wei Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Liang Cao
- College of Laboratory, Jilin Medical University, Jilin 132013, China
| | - Yaokai Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou 325035, China.
| | - Min Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Centre for Animal Disease Control and Prevention, Nanning 530001, China.
| |
Collapse
|
8
|
Fehér E, Bali K, Kaszab E, Ihász K, Jakab S, Nagy B, Ursu K, Farkas SL, Bányai K. A novel gyrovirus in a common pheasant (Phasianus colchicus) with poult enteritis and mortality syndrome. Arch Virol 2022; 167:1349-1353. [PMID: 35306591 PMCID: PMC9038835 DOI: 10.1007/s00705-022-05417-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/06/2022] [Indexed: 01/15/2023]
Abstract
A novel gyrovirus was detected in an intestinal specimen of a common pheasant that died due to poult enteritis and mortality syndrome. The genome of the pheasant-associated gyrovirus (PAGyV) is 2353 nucleotides (nt) long and contains putative genes for the VP1, VP2, and VP3 proteins in an arrangement that is typical for gyroviruses. Gyrovirus-specific motifs were identified in both the coding region and the intergenic region of the PAGyV genome. The VP1 of PAGyV shares up to 67.6% pairwise nt sequence identity with reference sequences and forms a distinct branch in the phylogenetic tree. Thus, according to the recently described species demarcation criteria, PAGyV belongs to a novel species in the genus Gyrovirus, family Anelloviridae, for which we propose the name "Gyrovirus phaco 1".
Collapse
Affiliation(s)
- Enikő Fehér
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary.
| | - Krisztina Bali
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary
| | - Eszter Kaszab
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary
| | - Katalin Ihász
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary
| | - Szilvia Jakab
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary
| | - Borbála Nagy
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary
| | - Krisztina Ursu
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, Budapest, 1143, Hungary
| | - Szilvia L Farkas
- University of Veterinary Medicine, István utca 2, Budapest, 1078, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt 21, Budapest, 1143, Hungary.,University of Veterinary Medicine, István utca 2, Budapest, 1078, Hungary
| |
Collapse
|
9
|
Whole genome analysis and molecular characterization of chicken infectious anemia virus from an outbreak in a layer flock reveals circulation of genogroup IIIb in South India. Virus Res 2022; 308:198649. [PMID: 34861312 DOI: 10.1016/j.virusres.2021.198649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
Abstract
The complete genome (2298 nucleotides) of the economically important and immunosuppressive, chicken infectious anemia virus (CAV), from a disease outbreak in a layer flock is discussed. This is the first report of a complete genome sequence of CAV from India. The phylogenetic analyses grouped this isolate with CAV genogroup IIIb based on both complete genome and capsid protein (VP1) sequences. The analyses further revealed the presence of CAV genogroups II, IIIa and IIIb in India. The VP1 sequence identity ranged between 84.4 to 99.3% with that of the Indian isolates and carried a unique substitution at position 447 (serine instead of threonine). Two novel amino acid substitutions were observed at position 52 of VP1 (serine instead of proline) and at position 26 of VP2 (asparagine instead of serine). Sequence analyses of VP1, VP2 and VP3 suggested that the isolate could be attenuated. Comparison with CAV variants, isolated from mammalian species, showed similarities in the numbers of certain transcription factor binding sites in the non-coding regions. Recombination analysis detected no recombination events in this isolate. Further investigations are needed to understand the implications of the unique features of this isolate on viral virulence.
Collapse
|
10
|
Li G, Zhou D, Zhao M, Liu Q, Hao X, Yan T, Yuan S, Zhang S, Cheng Z. Kinetic analysis of pathogenicity and tissue tropism of gyrovirus 3 in experimentally infected chickens. Vet Res 2021; 52:120. [PMID: 34526128 PMCID: PMC8442313 DOI: 10.1186/s13567-021-00990-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Gyrovirus 3 (GyV3), the third novel emerging species of the genus Gyrovirus of the Anelloviridae family, has been described in multiple hosts. Epidemiologically, there are suggestions that GyV3 is associated with diarrhea/proventriculitis, however, no direct causal evidence exists between GyV3 infection and specific clinical diseases. Herein, we infected special pathogen-free (SPF) chickens with GyV3, and then assessed the pathogenicity and tissue tropism. The results revealed that GyV3 induced persistent infection characterized by diarrhea, aplastic anemia, immunosuppression, and persistent systemic lymphocytic inflammation. Clinically, the infected chickens presented ruffled feathers, diarrhea, anemia, and weight loss. Aplastic anemia was characterized by progressive depletion of hematopoietic cells in the bone marrow, immunosuppression was associated with atrophy of the thymus, spleen, and bursa of Fabricious, progressive lymphocytic inflammations were characterized by proventriculitis, adrenalitis, pancreatitis, hepatitis, nephritis, and bronchitis. Viral loads of GyV3 in tissues exhibited “M”, “N”, “W” or “V” type dynamic changes. The highest level of viral loads was reported in bone marrow at 7dpi, followed by the adrenal gland at 2 dpi, the sciatic nerve at 7 dpi, and bile at 35 dpi. The bone marrow and kidney demonstrate the strongest immunostaining of GyV3-VP1 antigen and were suggested as the target tissues of GyV3. Collectively, GyV3 is an immunosuppressive pathogenic virus that targets the bone marrow and kidney in chickens. Exploring the pathogenicity and tissue tropism of GyV3 will guide the basic understanding of the biology of GyV3 and its pathogenesis in chickens.
Collapse
Affiliation(s)
- Gen Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.,College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Manda Zhao
- Department of Animal Science and Technology, Vocational-Technical School of Husbandry and Veterinary Medicine, Weifang, China
| | - Qing Liu
- Service Center of Jinan Zoo, Jinan, China
| | - Xiaojing Hao
- Qindao Husbandry and Veterinary Institute, Qingdao, China
| | - Tianxing Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Shiyu Yuan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Shicheng Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
11
|
Yuan S, Yan T, Huang L, Hao X, Zhao M, Zhang S, Zhou D, Cheng Z. Cross-species pathogenicity of gyrovirus 3 in experimentally infected chickens and mice. Vet Microbiol 2021; 261:109191. [PMID: 34385005 DOI: 10.1016/j.vetmic.2021.109191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/01/2021] [Indexed: 11/26/2022]
Abstract
Gyrovirus 3 (GyV3) has been identified in humans and other hosts, suggesting its cross-species pathogenicity, which poses an increased public health risk. In the current study, we established chicken and mouse models of GyV3 infection. We found that GyV3 induced persistent infections, characterized by viremia, aplastic anemia, immunosuppression, and systematic lymphocytic inflammation, in both species. Kinetic viral loads and antigen expression demonstrated rapid viral replication and broad tissue tropism of GyV3 in both models. The highest viral loads and the strongest antigen immunostaining were present in bone marrow and cerebrum in both chickens and mice, indicating that these are target tissues for GyV3. Genetic diversity analysis of VP1 in infected chickens and mice showed that GyV3 adapts to new hosts via rapid evolution of the hypervariable region of the gene encoding the structural protein VP1. Overall, our results indicate that GyV3 is a cross-species pathogenic virus; therefore, more attention needs to be paid to high levels of GyV3-induced neurotropism and aplastic anemia as a public health risk.
Collapse
Affiliation(s)
- Shiyu Yuan
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China
| | - Tianxing Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China
| | - Libo Huang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China
| | - Xiaojing Hao
- Qingdao Husbandry and Veterinary Institute, Qingdao, 266000, China
| | - Manda Zhao
- Department of Animal Science and Technology, Vocational-technical School of Husbandry and Veterinary Medicine, Weifang, 261061, China
| | - Shicheng Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, China.
| |
Collapse
|
12
|
Deng Z, Delwart E. ContigExtender: a new approach to improving de novo sequence assembly for viral metagenomics data. BMC Bioinformatics 2021; 22:119. [PMID: 33706720 PMCID: PMC7953547 DOI: 10.1186/s12859-021-04038-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metagenomics is the study of microbial genomes for pathogen detection and discovery in human clinical, animal, and environmental samples via Next-Generation Sequencing (NGS). Metagenome de novo sequence assembly is a crucial analytical step in which longer contigs, ideally whole chromosomes/genomes, are formed from shorter NGS reads. However, the contigs generated from the de novo assembly are often very fragmented and rarely longer than a few kilo base pairs (kb). Therefore, a time-consuming extension process is routinely performed on the de novo assembled contigs. RESULTS To facilitate this process, we propose a new tool for metagenome contig extension after de novo assembly. ContigExtender employs a novel recursive extending strategy that explores multiple extending paths to achieve highly accurate longer contigs. We demonstrate that ContigExtender outperforms existing tools in synthetic, animal, and human metagenomics datasets. CONCLUSIONS A novel software tool ContigExtender has been developed to assist and enhance the performance of metagenome de novo assembly. ContigExtender effectively extends contigs from a variety of sources and can be incorporated in most viral metagenomics analysis pipelines for a wide variety of applications, including pathogen detection and viral discovery.
Collapse
Affiliation(s)
- Zachary Deng
- Vitalant Research Institute, San Francisco, CA, 94118, USA.
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94107, USA.
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, 94118, USA.
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94107, USA.
| |
Collapse
|
13
|
Comparative Metagenomics of Palearctic and Neotropical Avian Cloacal Viromes Reveal Geographic Bias in Virus Discovery. Microorganisms 2020; 8:microorganisms8121869. [PMID: 33256173 PMCID: PMC7761369 DOI: 10.3390/microorganisms8121869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/11/2023] Open
Abstract
Our understanding about viruses carried by wild animals is still scarce. The viral diversity of wildlife may be best described with discovery-driven approaches to the study of viral diversity that broaden research efforts towards non-canonical hosts and remote geographic regions. Birds have been key organisms in the transmission of viruses causing important diseases, and wild birds are threatened by viral spillovers associated with human activities. However, our knowledge of the avian virome may be biased towards poultry and highly pathogenic diseases. We describe and compare the fecal virome of two passerine-dominated bird assemblages sampled in a remote Neotropical rainforest in French Guiana (Nouragues Natural Reserve) and a Mediterranean forest in central Spain (La Herrería). We used metagenomic data to quantify the degree of functional and genetic novelty of viruses recovered by examining if the similarity of the contigs we obtained to reference sequences differed between both locations. In general, contigs from Nouragues were significantly less similar to viruses in databases than contigs from La Herrería using Blastn but not for Blastx, suggesting that pristine regions harbor a yet unknown viral diversity with genetically more singular viruses than more studied areas. Additionally, we describe putative novel viruses of the families Picornaviridae, Reoviridae and Hepeviridae. These results highlight the importance of wild animals and remote regions as sources of novel viruses that substantially broaden the current knowledge of the global diversity of viruses.
Collapse
|
14
|
Loiko MR, Varela APM, Tochetto C, Lopes BC, Scheffer CM, Morel AP, Vidaletti MR, Lima DA, Cerva C, Mayer FQ, Roehe PM. Novel Gyrovirus genomes recovered from free-living pigeons in Southern Brazil. Virology 2020; 548:132-135. [PMID: 32838934 DOI: 10.1016/j.virol.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023]
Abstract
Wild birds carry a number of infectious agents, some of which may have pathogenic potential for the host and others species, including humans. Domestic pigeons (Columba livia) are important targets of study since these increasingly cohabit urban spaces, being possible spillover sources of pathogens to humans. In the present study, two genomes (PiGyV_Tq/RS/Br and PiGyV_RG/RS/Br), representative of Gyrovirus genus, family Anelloviridae, were detected in sera of free-living pigeons collected in Southern Brazil. The genomes exhibit less than 50% identity to previously described members of Gyrovirus genus, suggesting that they constitute a new viral species circulating in pigeons, to which the name "pigeon gyrovirus (PiGyV)" is proposed. The current study characterizes these two PiGyV genomes which, to date, are the first gyrovirus species identified in domestic pigeons.
Collapse
Affiliation(s)
- M R Loiko
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil; Feevale - Universidade Feevale, RS-239, 2755, CEP 93525-075, Novo Hamburgo, RS, Brazil
| | - A P M Varela
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - C Tochetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - B C Lopes
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - C M Scheffer
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - A P Morel
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil; Falcoaria e Consultoria Ambiental - HAYABUSA, São Francisco de Paula, RS, Brazil
| | - M R Vidaletti
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - D A Lima
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - C Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - F Q Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil.
| | - P M Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Cibulski S, Weber MN, de Sales Lima FE, Lima DAD, Fernandes Dos Santos H, Teixeira TF, Varela APM, Tochetto C, Mayer FQ, Roehe PM. Viral metagenomics in Brazilian Pekin ducks identifies two gyrovirus, including a new species, and the potentially pathogenic duck circovirus. Virology 2020; 548:101-108. [PMID: 32838930 DOI: 10.1016/j.virol.2020.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 01/01/2023]
Abstract
Viral metagenomics coupled to high-throughput sequencing has provided a powerful tool for large-scale detection of known and unknown viruses associated to distinct hosts and environments. Using this approach, known and novel viruses have been characterized from sylvatic and commercial avian hosts, increasing our understanding of the viral diversity in these species. In the present work we applied an exploratory viral metagenomics on organs (spleen, liver and bursa of Fabricious) of Pekin ducks from Southern Brazil. The virome contained sequences related to a known duck pathogen (duck circovirus) and a number of other circular ssDNA viruses. Additionally, we detected avian gyrovirus 9 (to date detected only in human feces) and one new avian gyrovirus species, to which is proposed the name avian gyrovirus 13 (GyV13). This study is expected to contribute to the knowledge of the viral diversity in Pekin ducks.
Collapse
Affiliation(s)
- Samuel Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil.
| | - Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Francisco Esmaile de Sales Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diane Alves de Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helton Fernandes Dos Santos
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Tochetto
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
A Novel and Divergent Gyrovirus with Unusual Genomic Features Detected in Wild Passerine Birds from a Remote Rainforest in French Guiana. Viruses 2019; 11:v11121148. [PMID: 31835740 PMCID: PMC6950609 DOI: 10.3390/v11121148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Sequence-independent amplification techniques have become important tools for virus discovery, metagenomics, and exploration of viral diversity at the global scale, especially in remote areas. Here, we describe the detection and genetic characterization of a novel gyrovirus, named GyV11, present in cloacal, oral, and blood samples from neotropical wild birds in French Guiana. The molecular epidemiology revealed the presence of GyV11 only in passerine birds from three different species at a low prevalence (0.73%). This is the first characterization and prevalence study of a gyrovirus carried out in resident wild bird populations in a remote region, and provides evidence of the fecal-oral route transmission and local circulation of the virus. The molecular phylogeny of gyroviruses reveals the existence of two distinct gyrovirus lineages in which GyV11 is phylogenetically distinct from previously reported gyroviruses. Furthermore, GyV11 is placed basal in the gyrovirus phylogeny, likely owing to its ancestral origin and marked divergence. This study also provides important insights into the ecology, epidemiology, and genomic features of gyroviruses in a remote neotropical rainforest. The pathogenesis of this virus in avian species or whether GyV11 can infect humans and/or chickens needs to be further investigated.
Collapse
|
17
|
Genomic Characterization of Diverse Gyroviruses Identified in the Feces of Domestic Cats. Sci Rep 2019; 9:13303. [PMID: 31527770 PMCID: PMC6746754 DOI: 10.1038/s41598-019-49955-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Gyroviruses (GyVs) are small, single-stranded, circular DNA viruses in the genus Gyrovirus, which consists of the chicken anemia virus (CAV) prototype and nine other viral species. These different GyV species have been reported in chickens, humans, mice, and companion animals. To date, CAV has been identified in the feces of domestic cats, while the circulation of other GyV species in cats is currently unknown. In the present study, 197 fecal samples were collected from pet cats in northeast China, and samples were screened for different GyV species by PCR. Twelve GyV strains were identified from the feces of pet cats. These included 4 positive for CAV, 3 for HGyV/AGV2, 3 for GyV3 and 2 positive for GyV6. The complete genome sequences of the 12 cat-sourced GyV strains showed 93.9-99.7% nucleotide identities to the homologous reference GyV strains. Phylogenetic analyses based on the complete genomes, VP1, VP2 and VP3 genes showed the identical classification of GyV species with previous reports. Moreover, one and four unique amino acid substitutions were identified in the VP1 protein of the cat-sourced HGyV/AGV2 and GyV6 strains, respectively, and one substitution was also observed in the VP2 protein of one GyV6 strain identified in this study. In conclusion, our investigation demonstrates that the diverse GyV species were circulating in domestic cats, and provides the first molecular evidence for the circulation of HGyV/AGV2, GyV3 and GyV6 in domestic cats. These cat-origin GyVs possessed considerable genetic diversity. This study also raises the possibility that domestic cats, as reservoirs for gyroviruses, may inadvertently disseminate viruses to other species, e.g., humans and chickens.
Collapse
|
18
|
Goldberg TL, Clyde VL, Gendron-Fitzpatrick A, Sibley SD, Wallace R. Severe neurologic disease and chick mortality in crested screamers (Chauna torquata) infected with a novel Gyrovirus. Virology 2018; 520:111-115. [DOI: 10.1016/j.virol.2018.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 12/19/2022]
|
19
|
Li G, Yuan S, He M, Zhao M, Hao X, Song M, Zhang L, Qiao C, Huang L, Zhang L, Li C, Wang G, Cheng Z. Emergence of gyrovirus 3 in commercial broiler chickens with transmissible viral proventriculitis. Transbound Emerg Dis 2018; 65:1170-1174. [DOI: 10.1111/tbed.12927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Gen Li
- College of Veterinary Medicine; Shandong Agricultural University; Tai'an China
| | - Shiyu Yuan
- College of Veterinary Medicine; Shandong Agricultural University; Tai'an China
| | - Menglian He
- College of Veterinary Medicine; Shandong Agricultural University; Tai'an China
- Department of Animal Science and Technology; Vocational-technical school of Husbandry and Veterinary Medicine; Weifang China
| | - Manda Zhao
- Department of Animal Science and Technology; Vocational-technical school of Husbandry and Veterinary Medicine; Weifang China
| | - Xiaojing Hao
- Qindao husbandry and Veterinary Institute; Qingdao China
| | - Minxun Song
- Poultry Institute of Shandong Agricultural Science Academy; Jinan China
| | - Lingjuan Zhang
- Animal Diseases Control and Prevention Center in Penglai; Yantai China
| | | | - Libo Huang
- College of Veterinary Medicine; Shandong Agricultural University; Tai'an China
| | - Li Zhang
- College of Veterinary Medicine; Shandong Agricultural University; Tai'an China
| | - Chengui Li
- College of Veterinary Medicine; Shandong Agricultural University; Tai'an China
| | - Guihua Wang
- College of Veterinary Medicine; Shandong Agricultural University; Tai'an China
| | - Ziqiang Cheng
- College of Veterinary Medicine; Shandong Agricultural University; Tai'an China
| |
Collapse
|
20
|
Xie XT, Kropinski AM, Tapscott B, Weese JS, Turner PV. Prevalence of fecal viruses and bacteriophage in Canadian farmed mink (Neovison vison). Microbiologyopen 2018; 8:e00622. [PMID: 29635866 PMCID: PMC6341152 DOI: 10.1002/mbo3.622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 01/01/2023] Open
Abstract
Recent viral metagenomic studies have demonstrated the diversity of eukaryotic viruses and bacteriophage shed in the feces of domestic species. Although enteric disease is a major concern in the commercial mink farming industry, few etiologic agents have been well characterized. This study aimed to identify viruses shed in the fecal matter of clinically healthy commercial mink from 40 southern Ontario farms. Viral RNA was extracted from 67 pooled fecal samples (30 adult female mink and 37 kit) and amplified for Illumina sequencing on the NextSeq platform, and the resulting contigs were trimmed and assembled using Trimmomatic 0.36.0 and Spades 3.8.0 in iVirus (CyVerse, AZ, USA) and SeqMan NGen 12 (DNAStar, WI, USA). Identification of assembled sequences >100 bp (Geneious 10.1.3) showed an abundance of bacteriophage sequences, mainly from families Siphoviridae (53%), Podoviridae (22%), Myoviridae (20%), Inoviridae (1%), Leviviridae (0.04%), Tectiviridae (0.01%), and Microviridae (0.01%). A diverse range of vertebrate viruses were detected, of which posavirus 3, mink bocavirus, gyroviruses, and avian‐associated viruses were most abundant. Additionally, sequences from nonvertebrate viruses with water and soil‐associated amebal and algal hosts were also highly prevalent. The results of this study show that viruses shed in the fecal matter of healthy commercial mink are highly diverse and could be closely associated with diet, and that more research is necessary to determine how the detected viruses may impact mink health.
Collapse
Affiliation(s)
- Xiao-Ting Xie
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Brian Tapscott
- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Elora, ON, Canada
| | - J Scott Weese
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Abbas AA, Diamond J, Chehoud C, Chang B, Kotzin J, Young J, Imai I, Haas A, Cantu E, Lederer D, Meyer K, Milewski R, Olthoff K, Shaked A, Christie J, Bushman F, Collman R. The Perioperative Lung Transplant Virome: Torque Teno Viruses Are Elevated in Donor Lungs and Show Divergent Dynamics in Primary Graft Dysfunction. Am J Transplant 2017; 17:1313-1324. [PMID: 27731934 PMCID: PMC5389935 DOI: 10.1111/ajt.14076] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 01/25/2023]
Abstract
Primary graft dysfunction (PGD) is a principal cause of early morbidity and mortality after lung transplantation, but its pathogenic mechanisms are not fully clarified. To date, studies using standard clinical assays have not linked microbial factors to PGD. We previously used comprehensive metagenomic methods to characterize viruses in lung allografts >1 mo after transplant and found that levels of Anellovirus, mainly torque teno viruses (TTVs), were significantly higher than in nontransplanted healthy controls. We used quantitative polymerase chain reaction to analyze TTV and shotgun metagenomics to characterize full viral communities in acellular bronchoalveolar lavage from donor organs and postreperfusion allografts in PGD and non-PGD lung transplant recipient pairs. Unexpectedly, TTV DNA levels were elevated 100-fold in donor lungs compared with healthy adults (p = 0.0026). Although absolute TTV levels did not differ by PGD status, PGD cases showed a smaller increase in TTV levels from before to after transplant than did control recipients (p = 0.041). Metagenomic sequencing revealed mainly TTV and bacteriophages of respiratory tract bacteria, but no viral taxa distinguished PGD cases from controls. These findings suggest that conditions associated with brain death promote TTV replication and that greater immune activation or tissue injury associated with PGD may restrict TTV abundance in the lung.
Collapse
Affiliation(s)
- A. A. Abbas
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.M. Diamond
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - C. Chehoud
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - B. Chang
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.J. Kotzin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.C. Young
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - I. Imai
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - A.R. Haas
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - E. Cantu
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - D.J. Lederer
- Departments of Medicine and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - K. Meyer
- School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - R.K. Milewski
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - K.M. Olthoff
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - A. Shaked
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.D. Christie
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - F.D. Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Corresponding authors: Frederic Bushman: , Ronald Collman:
| | - R.G. Collman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Corresponding authors: Frederic Bushman: , Ronald Collman:
| |
Collapse
|
22
|
Lima DA, Cibulski SP, Finkler F, Teixeira TF, Varela APM, Cerva C, Loiko MR, Scheffer CM, Dos Santos HF, Mayer FQ, Roehe PM. Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses. J Gen Virol 2017; 98:690-703. [PMID: 28100302 DOI: 10.1099/jgv.0.000711] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study is focused on the identification of the faecal virome of healthy chickens raised in high-density, export-driven poultry farms in Brazil. Following high-throughput sequencing, a total of 7743 de novo-assembled contigs were constructed and compared with known nucleotide/amino acid sequences from the GenBank database. Analyses with blastx revealed that 279 contigs (4 %) were related to sequences of eukaryotic viruses. Viral genome sequences (total or partial) indicative of members of recognized viral families, including Adenoviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, were identified, some of those representing novel genotypes. In addition, a range of circular replication-associated protein encoding DNA viruses were also identified. The characterization of the faecal virome of healthy chickens described here not only provides a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks. Moreover, it may also be relevant for human health, since chickens represent a significant proportion of the animal protein consumed worldwide.
Collapse
Affiliation(s)
- Diane A Lima
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Samuel P Cibulski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Fabrine Finkler
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Thais F Teixeira
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Ana Paula M Varela
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Cristine Cerva
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Márcia R Loiko
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Camila M Scheffer
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Helton F Dos Santos
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Fabiana Q Mayer
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil
| | - Paulo M Roehe
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| |
Collapse
|